ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ, 2012, том 86, № 5, с. 810–818

_____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА _ И ТЕРМОХИМИЯ

УДК 532.783+548.0

ИЗМЕНЕНИЕ СРЕДНЕЙ ПОЛЯРИЗУЕМОСТИ МОЛЕКУЛ И АНИЗОТРОПИИ ТЕНЗОРА ЛОРЕНТЦА ПРИ ФАЗОВОМ ПЕРЕХОДЕ НЕМАТИК – СМЕКТИК А И В ГОМОЛОГИЧЕСКОМ РЯДУ

© 2012 г. Е. М. Аверьянов

Российская академия наук, Сибирское отделение, Институт физики им. Л.В. Киренского, Красноярск E-mail: aver@iph.krasn.ru

Поступила в редакцию 20.04.2011 г.

Получены экспериментальные значения средней поляризуемости молекул $\overline{\gamma}$ и компонент L_j тензора Лорентца в нематической и смектической-А фазах гомологов ряда *н*-алкил-*n*-(4-этоксибензилиденамино-) α -метилциннаматов. Выяснена зависимость $\overline{\gamma}$ и L_j от температуры мезофазы, параметра ориентационного порядка молекул *S* и номера гомолога *n*. Установлена квадратичная зависимость $\overline{\gamma}(S)$ в нематической и смектической фазах, инвариантная относительно перехода нематик – смектик А. Из монотонно-убывающей зависимости $\overline{\gamma}(n)/v$ (v – объем, приходящийся на молекулу) в смектической фазе найдены плотности поляризуемости молекулярного остова и алкильной цепи. Показано наличие (отсутствие) четно–нечетной альтернации $L_j(n)$ в нематической (смектической) фазе. Обнаружено монотонное снижение анизотропии тензора *L* с ростом *n* в смектической фазе и получены предельные значения $L_j(n \to \infty)$.

Ключевые слова: поляризуемость молекул, анизотропия, фазовый переход, нематик, смектик, гомологи.

Жидкие кристаллы (ЖК) с широким набором статистически-упорядоченных фаз при температурах, отвечающих техническим требованиям и физико-химическим (биологическим) условиям функционирования живых систем, являются удобной моделью анизотропных искусственных и самоорганизованных природных молекулярных сред. Для их понимания и использования в различных приложениях от молекулярной электроники до биологии и медицины необходимо знать характер и степень влияния дальнего ориентационного и ближнего или квазидальнего позиционного порядка молекул на их физико-химические свойства, которые определяют отклик молекул на электромагнитные воздействия, влияют на межмолекулярные взаимодействия и биологическую активность молекул. Синтетической характеристикой таких молекулярных свойств является тензор поляризуемости у [1], изменение которого в анизотропной среде отражает изменение межмолекулярных взаимодействий, а также поляризации, электронной структуры и конформации молекул в процессе их самоорганизации [2].

В последнее время стало возможным объективное исследование изменений γ в одноосных молекулярных средах в рамках рефрактометрии благодаря новому методу экспериментального определения параметров локального поля для таких сред без априорных предположений о ненаблюдаемых параметрах молекул (размерах, форме, электронной структуре, поляризуемости) [3]. Дело в том, что для определения компонент γ_j тензора γ , усредненных по ориентациям молекул в системе осей эллипсоида рефракции, необходимо учитывать отличие локального поля $\mathbf{E}^{\text{loc}}(\omega)$ световой волны, поляризующего молекулу, от макроскопического поля $\mathbf{E}(\omega)$ световой волны в среде [2]. Амплитуды этих полей связаны выражением $E_j^{\text{loc}} = f_j E_j$. Компоненты $f_j = 1 + L_j(\varepsilon_j - 1)$ тензора локального поля, диагонального в этой системе координат, связаны с компонентами L_j и ε_j диагональных тензоров Лорентца (SpL = 1) и диэлектрической проницаемости.

Использование экспериментальных зависимостей показателей преломления $n_j(\lambda)$ от длины световой волны λ в видимой области позволяет взаимосогласованно получать компоненты $L_j(T)$ и среднее значение $\overline{\gamma}(T, \lambda)$, что реализовано и подтверждено для широкого круга одноосных молекулярных сред различной природы [3]. Этот метод использовался для изучения изменений $\overline{\gamma}(T)$ в нематических ЖК разных химических классов [4].

Цель настоящей работы состоит в исследовании зависимостей $L_j(T)$ и $\overline{\gamma}(T)$ в нематической и смектической-А фазах для ЖК одного гомологического ряда с выяснением зависимости величин $L_{j}, \overline{\gamma}$ от фазового состояния ЖК, ориентационной упорядоченности молекул и номера гомолога.

ОПРЕДЕЛЕНИЕ КОМПОНЕНТ *L_j* И ИХ СВОЙСТВА

Отметим основы метода определения компонент L_j , подробно изложенного ранее [3, 4]. В одноосном ЖК с N одноосными молекулами в единице объема тензор γ с продольной (γ_l) и поперечной (γ_l) компонентами характеризуется параметрами $\overline{\gamma} =$ $= (\gamma_l + 2\gamma_l)/3$, $\Delta \gamma = \gamma_l - \gamma_l$. В системе координат директора **n**, параллельного оптической оси ЖК, в видимой области прозрачности имеем $\varepsilon_j = n_j^2$, n_j – показатели преломления ЖК для световых волн, поляризованных вдоль (j = ||) и нормально **n** ($j = \bot$). Введем параметры $\overline{\varepsilon} = (\varepsilon_{||} + 2\varepsilon_{\perp})/3$, Q = $= (\varepsilon_{||} - \varepsilon_{\perp})/(\overline{\varepsilon} - 1)$,

$$r_{0} = 1 - \frac{2Q^{2}(\overline{\varepsilon} - 1)}{3(3 + Q)(\overline{\varepsilon} + 2)}, \quad b = \frac{3(\overline{\varepsilon} - 1)}{4\pi N \overline{\gamma}(\overline{\varepsilon} + 2)} - r_{0},$$

$$b_{1} = \frac{2r_{0}Q^{2}}{(3 - Q)(3 + 2Q)}, \quad b_{2} = b_{1}[(6 + Q)/Q]^{2}.$$
(1)

В силу условия SpL = 1 достаточно определить L_{\perp} . Наличию дальнего ориентационного порядка молекул в ЖК отвечает связь

$$L_{\perp} = L_{\perp k} - \frac{(\overline{\epsilon} + 2)}{12(\overline{\epsilon} - 1)} [(b_1 b_2)^{1/2} - b - [(b_1 - b)(b_2 - b)]^{1/2}],$$
(2)

где $L_{\perp k} = (3 + 2Q)/[3(3 + Q)]$. Компонента $L_{\perp}(T)$ в левой части (2) зависит только от температуры

ЖК. Все параметры в правой части (2) являются функциями от *T* и λ , причем функция $b(\lambda, T)$ зависит от неизвестной функции $\overline{\gamma}(\lambda, T)$. При известных величинах $n_j(\lambda, T)$ для дискретного набора значений λ_i (i = 1 - p), лежащих в видимой области прозрачности ЖК, в интервале $\lambda_1 - \lambda_p$ функция $b(\lambda, T)$ аппроксимируемая полиномом

$$b(\lambda, T) = a_0(T) + a_1(T)\lambda + \dots + a_m(T)\lambda^m.$$
 (3)

При каждом значении *T* совокупность m + 2 = pнеизвестных величин ($L_{\perp}^{(m)}$, $a_0 - a_m$) находится из системы *p* уравнений (2), каждое из которых отвечает одному из значений λ_i (i = 1 - p). Степень *m* полинома (3) и максимального приближения для $L_{\perp}^{(m)}$ определяется числом *p* значений λ_i .

Более высокое приближение в (3) предполагает более высокую точность значений $n_j(\lambda, T)$, иначе система уравнений для неизвестных $(L_{\perp}^{(m)}, a_0 - a_m)$ может не иметь физических решений, или приводить к нерегулярной зависимости $L_{\perp}^{(m)}(T)$. При достаточной точности значений $n_j(\lambda, T)$ в широком интервале изменения λ величины $L_{\perp}^{(m)}$ совпадают со значениями $\langle L_{\perp}^{(m-1)} \rangle$, усредненными по величинам $L_{\perp}^{(m-1)}$, отвечающим сочетаниям p - 1 значений λ_i из набора $\lambda_1 - \lambda_p$ [3, 4].

В настоящей работе исследовались гомологи ряда *n*-алкил-р-(4-этоксибензилиденамино-)α-метилциннаматов с приведенной ниже структурной формулой [5]

Гомолог LC1.1 имеет нематическую фазу, а гомологи с n = 2-10 (11, 12) — нематическую и смектическую-А фазы (только фазу SmA). С ростом n температурный интервал нематической фазы сокращается от 40° для LC1.1 до 2.7° (доли градуса) для LC1.9 (LC1.10) [5]. Наличие перехода нематик смектик A (N–SmA) для гомологов LC1.n позволяет детально исследовать влияние смектического упорядочения молекул на L_{\perp} при температуре $T_{\rm NA}$ перехода N–SmA, а также изменение $L_{\perp}(n)$ в гомологическом ряду для каждой из фаз N, SmA.

Показатели преломления $n_j(\lambda, T)$ для LC1.*n* измерены на рефрактометре и табулированы при значениях $\lambda_1 = 0.5461$, $\lambda_2 = 0.5893$ и $\lambda_3 = 0.6438$ мкм [5]. Из-за узкого интервала нематической фазы для LC1.9 (LC1.10) значения $n_j(\lambda_i)$ для нее неточны (отсутствуют) [5]. Для всех гомологов LC1.*n* на

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 86 № 5 2012

температурной зависимости $n_{\perp}(T)$ в смектической фазе имеется минимум [5], причем для заданного гомолога LC1.n глубина этого минимума и его положение относительно $T_{\rm NA}$ зависят от λ_i [6]. Это повышает требования к точности значений $n_j(\lambda_i, T)$ для определения величин $(L_{\perp}^{(m)})$, $a_0 - a_m$), $b(\lambda_i, T)$ и $\overline{\gamma}(\lambda_i, T)$, особенно в нематической и смектической фазах в окрестности T_{NA}, где получение монодоменных образцов обеих фаз затруднительно. Из-за узкого интервала $\lambda_1 - \lambda_3$ для гомологов LC1.*n* полученные зависимости $L^{(1)}_{\perp}(\Delta T)$ менее регулярны, чем зависимости $\langle L^{(0)}_{\perp}(\Delta T) \rangle$, усредненные по значениям $L^{(0)}_{\perp}(\Delta T)$ для трех пар величин λ_i из набора λ_{1-3} . Поэтому в качестве значений $L_{\perp}(\Delta T)$ для гомологов LC1.*n* используются величины $\langle L^{(0)}_{\perp}(\Delta T) \rangle$, представленные

Рис. 1. Температурные зависимости компонент $L_{\perp} = \langle L_{\perp}^{(0)} \rangle$ в нематической и смектической-А фазах гомологов LC1.*n*. Цифры отвечают значениям *n*. Сплошные (штриховые) линии – зависимости (4) для четных (нечетных) значений *n* при $\lambda = 0.5893$ мкм.

(

на рис. 1 с указанными стандартными отклонениями значений $L^{(0)}_{\perp}(\Delta T)$ относительно $\langle L^{(0)}_{\perp}(\Delta T) \rangle$. Для гомолога LC1.1 по оси абсцисс отложены значения $T - T_{\rm NI} + 45^{\circ}$ и крайняя точка справа отвечает температуре $T = T_{\rm NI}$ перехода нематик – изотропная жидкость (N–I).

Обсудим зависимость L_{\perp} от $\Delta T = T - T_{\text{NA}}$ и фазового состояния ЖК. При снижении ΔT быстрый рост $L_{\perp}(\Delta T)$ в нематической фазе сменяется скачком $\delta L_{\perp}(T_{\text{NA}})$ при переходе N–SmA первого рода и последующим слабым ростом в смектической фазе. Для каждого гомолога LC1.*n* при фиксированном значении λ зависимости $L_{\perp}(\Delta T)$ и $L_{\perp k}(\Delta T, \lambda)$ связаны линейной корреляцией

$$L_{\perp}(\Delta T) = A(\lambda)L_{\perp k}(\Delta T, \lambda) + B(\lambda).$$
(4)

Для обеих фаз точки $L_{\perp}(\Delta T)$ лежат на одной прямой (4), которая инвариантна относительно перехода N–SmA, что характерно также для переходов холестерик – SmA [7, 8] и SmA–SmB [3] с малыми значениями $\delta L_{\perp}(T_{NA})$. Приведенные в табл. 1 коэффициенты формулы (4) зависят от длины алкильной цепи, но прямые (4) для всех гомологов LC1.*n* очень близки. Коэффициенты формулы (4) с высокой точностью связаны выражением B = (1 - (A)/3), что означает выполнение соотношения

$$A(\Delta T) = (L_{\perp} - 1/3)/(L_{\perp k} - 1/3) \approx \text{const}, \qquad (5)$$

ожидаемого для нематической фазы при фиксированном λ в видимой и ИК-областях [2]. Для ин-

терпретации изменений $L_{\perp}(\Delta T)$ и $\delta L_{\perp}(T_{\text{NA}})$ для отдельного гомолога учтем связь [3]

$$Q = \frac{5\Delta\gamma}{\overline{\gamma}(1+\sigma)},\tag{6}$$

где $S = \langle 3\cos^2 \theta - 1 \rangle / 2$ – параметр ориентационного порядка молекул, θ – угол между длинной осью молекулы **l** и **n**, скобки $\langle ... \rangle$ означают усреднение по молекулярному ансамблю. Поправка σ на анизотропию $\Delta f = f_{\parallel} - f_{\perp}$ дается формулой [3]

$$\sigma = -\frac{\Delta f(9 - Q^2)(3 + 2Q)}{Q[3(3 + Q)(\overline{\epsilon} + 2)r_0 + \Delta f(3 - Q)(3 + 2Q)]}.$$
 (7)

Подстановка сюда выражения

$$\Delta f = Q(\overline{\varepsilon} - 1)(1 - A)/3 \tag{8}$$

и учет неравенства A > 1 показывают, что знаки σ и Δf противоположны, а вследствие малости $Q \ll 3$ для гомологов LC1.n в обеих мезофазах изменение $\sigma(\Delta T)$ слабое. Так, для LC1.2 при $\Delta T = -25.9^{\circ}$ и 43° имеем соответственно $\sigma = 0.278 \pm 0.005$ и 0.288 ± 0.020 ($\lambda = 0.5893$ мкм). В линейном по S приближении в формуле (6) выполняется $Q \propto S$. С другой стороны, при $Q \ll 3$ справедлива пропорциональность $(L_{\perp k} - 1/3) \propto Q$. С учетом этого для фиксированного гомолога LC1.n при снижении ΔT в нематической фазе рост $L_{\perp}(\Delta T)$ обусловлен ростом S. Инвариантность зависимости (4) относительно перехода N-SmA означает, что изменения δL_{\perp} при этом переходе и в смектической фазе вызваны изменением δS в результате взаимодействия нематического и смектического па-

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 86 № 5 2012

n	$L_{\perp} {=} \langle L_{\perp}^{(0)} \rangle$				$L_{\perp} = L_{\perp}^{(\mathrm{H})}$			
	A	-B	(A-1)/3	R	Α	В	(1 - A)/3	R
1	1.5909	0.1942	0.1970	0.9979	0.5241	0.1567	0.1586	0.99994
2	1.4859	0.1526	0.1620	0.9991	0.5269	0.1557	0.1577	0.99984
3	1.5182	0.1647	0.1727	0.9993	0.5247	0.1566	0.1586	0.99983
4	1.5383	0.1722	0.1794	0.9934	0.5229	0.1573	0.1590	0.99982
5	1.5536	0.1775	0.1845	0.9995	0.5223	0.1575	0.1592	0.99987
6	1.4949	0.1547	0.1650	0.9975	0.5181	0.1591	0.1606	0.99986
7	1.5138	0.1614	0.1713	0.9987	0.5176	0.1593	0.1608	0.99988
8	1.6764	0.2235	0.2255	0.9998	0.5163	0.1598	0.1612	0.99996
9	1.5695	0.1822	0.1898	0.9982	0.5295	0.1548	0.1568	0.99942
10	1.5750	0.1841	0.1917	0.9981	0.5199	0.1585	0.1600	0.99999
11	1.5729	0.1832	0.1910	0.9946	0.5190	0.1588	0.1603	0.99999
12	1.6900	0.2273	0.2300	0.9911	0.5157	0.1600	0.1614	0.99999

раметров порядка при одномерном трансляционном упорядочении молекул вдоль директора п смектической фазы [9].

= 0.5893 мкм

Зависимость S(n) в нематической фазе гомологов одного ряда имеет четно-нечетную альтернацию, обычно исследуемую при $T = T_{\rm NI}$ или фиксированной разности T_{NI} – T [10, 11]. Интересно сравнить зависимости $L_{\perp}(n)$ в точке перехода N-SmA при значениях $T = T_{\rm NA}^{(+)}$ в нематической и T = $=T_{\mathrm{NA}}^{(-)}$ в смектической фазе. Зависимости $L_{\perp}(n)$ для гомологов LC1.n приведены на рис. 2. Для гомологов одной четности в нематической фазе функция $L_{\perp}(n)$ монотонно убывает с ростом *n*. На эту тенденцию налагается сильная четно-нечетная альтернация $L_{\perp}(n)$, при которой значения $L_{\perp}(n)$ для гомологов с нечетными *n* выше значений $L_{\perp}(n \pm 1)$ для соседних четных гомологов. При trans-конформации алкильной цепи для нечетных гомологов LC1.n продольная ось концевого фрагмента С-СН₃ составляет меньший угол с продольной осью молекулы l, чем для четных гомологов. Поэтому характер альтернации $L_{\perp}(n)$ в нематической фазе при $T = T_{NA}^{(+)}$ соответствует альтернации S(n) [10, 11] и свидетельствует о достаточной жесткости алкильных цепей гомологов LC1.*n* в нематической фазе. При переходе N-SmA для нечетных (четных) гомологов LC1.n с ростом *n* наблюдается монотонный (более сильный немонотонный) рост величины $\delta L_{\perp}(T_{\rm NA}) =$ $= L_{\perp}(T_{\rm NA}^{(-)}) - L_{\perp}(T_{\rm NA}^{(+)})$. Это отвечает известному росту $\delta S(n)$ при переходе N–SmA с удлинением концевых алкильных цепей молекул [9, 11, 12].

В смектической фазе функция $L_{\perp}(n)$ монотонно снижается с ростом *n*. Отсутствие заметной альтернации $L_{\perp}(n)$ согласуется с тем же для зависимости S(n) при $T = T_{NA}^{(-)}$ по данным ЯМР [12] и обусловлено повышением конформационной подвижности (ориентационным плавлением) концевых алкильных цепей молекул при переходе из нематической в смектическую-А фазу [2, 13, 14]. В результате вклад цепей в анизотропию молекулярной формы, величину $\Delta \gamma$ и анизотропию стерических и дисперсионных межмолекулярных взаимодействий, определяющих значение S в

Рис. 2. Зависимости L_{\perp} от номера *n* гомолога LC1.*n* в смектической-A фазе при температуре $T_{\text{NA}}^{(-)}(I)$ и в нематической фазе при температуре $T_{\rm NA}^{(+)}$ (2, штриховая линия). Сплошная линия – аппроксимация формулой (9).

смектической фазе, существенно ослабляется по сравнению с нематической фазой.

Снижение $L_{\perp}(n)$ с ростом *n* в смектической фазе не связано с изменением S(n), поскольку в смектике A при $T = T_{NA}^{(-)}$ значения S(n) остаются неизменными при изменении характера перехода N-SmA от слабого перехода первого рода до сильного перехода первого рода и до перехода І-SmA [12]. Для гомологов LC1.*n* значения $\sigma(n)$ в (6) при $T = T_{NA}^{(-)}$ и $\lambda = 0.5893$ мкм изменяются нерегулярно со стандартным отклонением 0.004 от средней величины 0.284. Поскольку снижение $L_{\perp}(n)$ сопровождается снижением $L_{\downarrow k}(n)$ и Q(n), то из (6) следует, что вероятной причиной этого эффекта является снижение отношения $\Delta \gamma / \overline{\gamma}$ при удлинении алкильной цепи. Это закономерно для молекул LC1.n, остов которых включает продольную цепь ароматических фрагментов, связанных π-электронным сопряжением [2]. Снижение $L_{\perp}(n)$ подобно снижению L_{\perp} при снижении $\Delta \gamma$ за счет изменения электронной структуры молекул при фиксированном *S* [2–4, 7, 8].

Это можно проверить сравнением предельной величины $L_{\perp}(n \to \infty)$ со значением L_{\perp} для мультислойных лэнгмюровских пленок арахидата кадмия (Cd-A) [3], которые имеют структуру смектика A, а длинные алкильные цепи молекул [CH₃-(CH₂)₁₈-C(O)O⁻]₂Cd⁺⁺ перпендикулярны молекулярным слоям. Как видно из рис. 2, монотонная зависимость $L_{\perp}(n)$ при $T = T_{\rm NA}^{(-)}$ хорошо аппроксимируется функцией

$$F(n) = C \frac{D+n}{E+n},$$
(9)

которая описывает изменение отношения $\Delta \gamma / \overline{\gamma}$ в гомологических рядах ЖК [2] и аппроксимирует зависимость $T_{\rm NI}(n)$ для гомологов LC1.*n* с точностью 0.2° [15]. Значение $L_{\perp}(n \rightarrow \infty) = C = 0.368 \pm \pm 0.014$, полученное с учетом ошибок величин $L_{\perp}(n)$, согласуется со значением $L_{\perp}^{(1)} = 0.365$ (0.356) для пленок Cd-A на подложках из стекла (полиметилметакрилата) [3].

С другой стороны, значение $L_{\perp}(n \to \infty)$ должно соответствовать величине L_{\perp} в смектической-А фазе для молекул с длинными алкильными цепями, если остов этих молекул не содержит ароматических фрагментов. Причем для подобных молекул следует ожидать слабую зависимость $L_{\perp}(n)$ от длины алкильных цепей в этой фазе. Удобным объектом проверки этих предположений являются холестериновые эфиры жирных кислот.

Показатели преломления для холестерической и смектической-A фаз этих гомологов с n = 8 (9–11, 13) табулированы в работе [16] при значениях $\lambda = \lambda_{1-5}$ (λ_{2-5}) из набора $\lambda_1 = 0.4358$, $\lambda_2 = 0.5086$, $\lambda_3 = 0.5461$, $\lambda_4 = 0.5893$ и $\lambda_5 = 0.6438$ мкм. Это позволило определить величины $L_{\perp}^{(3)} = 0.362$ (LC2.8) и $L_{\perp}^{(2)} = 0.360$ (LC2.9), 0.361 (LC2.10–LC2.13) в смектической фазе при температуре T_{ChA} перехода холестерик – SmA. Эти величины $L_{\perp}(n)$ не зависят от n и согласуются со значениями L_{\perp} для Cd-A и $L_{\perp}(n \to \infty)$ для LC1.n. Зависимость $L_{\perp}(n)$ отсутствует также в холестерической фазе гомологов LC2.n, не имеющих смектической фазы [8], и подобных им молекул с заменой алкильной цепи на алкоксильную [17].

ЗАВИСИМОСТИ $\overline{\gamma}(S, n)$ И ИХ СЛЕДСТВИЯ

В рамках используемого метода функции $b(T, \lambda)$ и $\overline{\gamma}(T, \lambda)$ определяются взаимосогласованно с функциями $L_{\perp}(T)$ и $\Delta f(T, \lambda) = (L_{\perp k} - L_{\perp})(\overline{\epsilon} - 1)(3 + Q)$, причем знаки Δf и *b* совпадают. Величина и знак Δf налагают ограничения на $\overline{\gamma}$. Покажем это с учетом соотношения [2]

$$\overline{\varepsilon} - 1 = 4\pi N(\overline{\gamma}\,\overline{f} + 2S\Delta\gamma\Delta f/9),\tag{10}$$

где $\overline{f} = (f_{\parallel} + 2f_{\perp})/3 = (\overline{\epsilon} + 2)[1 - A(1 - r_0)]/3$. Для нематической и смектической-А фаз гомологов LC1.*n* в видимой области справедливы неравенства $L_{\perp} > L_{\perp k}$, A > 1 и $\Delta f < 0$, с учетом которых из (10) следуют неравенство ($\overline{\epsilon} - 1$) $< 4\pi N \overline{\gamma} \overline{f}$ и ограничения

$$\overline{\gamma} > \frac{3(\overline{\varepsilon} - 1)}{4\pi N(\overline{\varepsilon} + 2)[1 - A(1 - r_0)]} > \frac{3(\overline{\varepsilon} - 1)}{4\pi N(\overline{\varepsilon} + 2)} = \overline{\gamma}_{\rm H}.$$
 (11)

Выражение для $\overline{\gamma}_{\rm H}$ было произвольно введено в качестве $\overline{\gamma}$ для молекулярных кристаллов [18] и широко используется в оптике ЖК [19–31]. Вследствие известной эмпирической связи

$$\frac{\overline{\varepsilon} - 1}{N(\overline{\varepsilon} + 2)} \approx \text{const}, \tag{12}$$

которая выполняется с высокой точностью при изменении температуры и фазового состояния одноосных ЖК [2, 19–29, 32], величина $\overline{\gamma}_{\rm H}$ при этом остается неизменной. Как следует из (1), равенство $\overline{\gamma} = \overline{\gamma}_{\rm H}$ эквивалентно значениям $b = 1 - r_0 =$ $= b_{\rm H} > 0, L_{\perp}(b = b_{\rm H}) = L_{\perp}^{({\rm H})} < L_{\perp k}$ и $\Delta f(L_{\perp} = L_{\perp}^{({\rm H})}) =$ $= \Delta f_{\rm H} > 0,$ которые в видимой и ИК-областях противоречат эксперименту [2–4, 7, 8, 17]. Использование $\overline{\gamma} = \overline{\gamma}_{\rm H}$ в (10) и учет неравенства $\Delta f_{\rm H} > 0$ дают ($\overline{\epsilon} - 1$) $> 4\pi N \overline{\gamma}_{\rm H} \overline{f}_{\rm H}$, где $\overline{f}_{\rm H} = \overline{f}$ ($A = A_{\rm H}$). Отсюда следуют ограничения $A_{\rm H} > 0, L_{\perp}^{({\rm H})} > 1/3$. Изменение $L_{\perp}^{({\rm H})}(\Delta T)$ подчиняется формулам (4), (5) с высокой точностью, но зависимость $A_{\rm H}(n)$ очень слабая

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 86 № 5 2012

Puc. 3. Зависимость величин $\kappa = \overline{\gamma}/\overline{\gamma}_{\rm H}$ от (Δε)² при $\lambda = 0.5893$ мкм для гомологов LC1.*n*. Цифры отвечают значениям *n*. Прямые линии – зависимости (15) с коэффициентами табл. 2. Графики с *n* = 2–12 смещены вверх на 0.005(*n* – 1).

(табл. 1), и для всех гомологов LC1.*n* графики $L_{\perp}^{(H)}(L_{\perp k})$ лежат на одной прямой.

Рассмотрим зависимость $\overline{\gamma}$ от ориентационной упорядоченности и фазового состояния гомологов LC1.*n*. С учетом выражения (11) для $\overline{\gamma}_{\rm H}$ из (1) следует связь

$$\overline{\gamma} = \overline{\gamma}_{\rm H} (b + r_0)^{-1}. \tag{13}$$

Принимая во внимание (12) и отсутствие данных по плотности $\rho \propto N$ для гомологов LC1.*n*, вместо $\overline{\gamma}$ будем использовать нормированное значение

$$\kappa = \overline{\gamma} / \overline{\gamma}_{\rm H} = (b + r_0)^{-1}. \tag{14}$$

Изменение $\kappa(\Delta T)$ в ЖК связано с ориентационной упорядоченностью молекул и ее влиянием на анизотропию $\Delta \varepsilon = \varepsilon_{\parallel} - \varepsilon_{\perp}$, которая является макроскопическим параметром нематического порядка [9] и в линейном по S приближении $\Delta \varepsilon \propto S$ [2]. При отсутствии абсолютных значений S для гомологов LC1.*n* изменение $\kappa(\Delta T)$ естественно рассматривать как функцию к($\Delta \epsilon$). С феноменологической точки зрения, в нематической фазе величина $\overline{\gamma}(I_{1-3})$, как инвариант тензора γ , является функцией инвариантов $I_1 = SpS = 0$, $I_2 = SpS^2 \propto S^2$, $I_3 = SpS^3 \propto S^3$ тензорного параметра порядка нематической фазы $S = S(n_i n_k - \delta_{ik}/3)$ [9], где $n_{i,k}$ – компоненты директора **n** в произвольной системе координат. Поэтому изменение $\delta \overline{\gamma}(S)$ в нематической фазе относительно значения $\overline{\gamma}_i$ в изотропной фазе ЖК должно начинаться со слагаемого $\propto S^2$,

или $\infty(\Delta \varepsilon)^2$. Тогда в низшем порядке по $\Delta \varepsilon$ зависимость $\kappa(\Delta \varepsilon)$ аппроксимируется выражением

$$\kappa(\Delta \varepsilon) = \kappa_0 + \kappa_2 (\Delta \varepsilon)^2. \tag{15}$$

Для гомологов LC1.n рассчитанные по формуле (14) значения к представлены на рис. 3 как функции от $(\Delta \varepsilon)^2$ при $\lambda = 0.5893$ мкм. Точки на графиках отвечают значениям $\langle b(\Delta T) \rangle$, полученным из уравнения (2) при $L_{\perp}(\Delta T) = \langle L_{\perp}^{(0)}(\Delta T) \rangle$. Стандартные отклонения значений $b(\Delta T)$ на рис. 3 отвечают таковым для величин $L^{(0)}_{\perp}(\Delta T)$ на рис. 1. Для первых гомологов LC1.*n* максимальное отличие $\overline{\gamma}$ от $\overline{\gamma}_{\rm H}$ достигает 10%. Как видно из рис. 3, для всех гомологов LC1.*n* во всем температурном интервале нематических и смектических фаз зависимости $\kappa(\Delta \epsilon)$ хорошо аппроксимируются формулой (15) с приведенными в табл. 2 коэффициентами. Значение κ_0 зависит от величины $\overline{\gamma}(0)$, экстраполированной к значению $\Delta \varepsilon = 0$. Для переходов N–I первого рода величина $\overline{\gamma}(0)$ отличается от $\overline{\gamma}_i$ из-за ограниченного интервала изменения $\Delta \varepsilon \geq \Delta \varepsilon (T_{\rm NI})$, а также возможного различия ближнего порядка молекул в изотропной фазе и ЖК. Значения к₀ тем ближе к единице, чем ниже значения Δε при $T = T_{\rm NI} (T_{\rm IA})$ и выше точность экстраполяции к $\Delta \varepsilon = 0$ из нематической (смектической) фазы при n = 1 - 8 (9-12). Отличие κ_0 от единицы значительно меньше относительного изменения к при переходе от изотропной жидкости к ЖК.

АВЕРЬЯНОВ

n	κ ₀	κ2	R	n	κ ₀	κ2	R
1	1.0052	0.0605	0.9984	7	1.0043	0.0726	0.9991
2	1.0065	0.0605	0.9988	8	1.0006	0.0791	0.9988
3	1.0053	0.0639	0.9989	9	1.0063	0.0717	0.9978
4	1.0029	0.0688	0.9958	10	1.0061	0.0730	0.9985
5	1.0040	0.0693	0.9987	11	1.0054	0.0750	0.9984
6	1.0038	0.0713	0.9995	12	1.0046	0.0774	0.9914

Таблица 2. Коэффициенты зависимости (15) и коэффициенты корреляции *R* для гомологов ряда LC1.*n* при $\lambda = 0.5893$ мкм

Для гомологов LC1.*n* переход N-SmA сопровождается скачком $\delta \kappa(T_{\rm NA}) = \kappa(T_{\rm NA}^{(-)}) - \kappa(T_{\rm NA}^{(+)})$ за счет появления волны плотности $\psi = |\psi| \exp(i\varphi)$ смектических слоев [9]. В смектической фазе функция $\overline{\gamma}(I_{2,3}, |\psi|)$ зависит от *S* и модуля $|\psi|$. Влияние $|\psi|$ на изменение $\overline{\gamma}$ при переходах N–SmA, I-SmA и в смектической фазе проявляется через изменение величин S и $\Delta \varepsilon$ за счет связи параметров порядка S и ψ [9]. В результате для гомологов LC1.n зависимость (15) остается инвариантной относительно перехода N–SmA (n = 2-8) и выполняется при наличии одной смектической фазы (n = 9 - 12). Это показывает преимущество анализа зависимости $\kappa(\Delta \epsilon)$ с измеряемой величиной Δε в смектической фазе вместо зависимости $\kappa(\Delta T)$ с неизвестной функцией $|\psi|(\Delta T)$. Для гомологов LC1.n с нематической и смектической фазами (одной смектической фазой) коэффициент κ_2 монотонно возрастает с ростом *n*. Наличие этого эффекта теперь можно отметить и для изученных ранее нематических ЖК 1-5 с другой химической структурой молекул ([4], табл. 2) при удлинении одной (двух) концевых цепей при переходах $2 \rightarrow 1$ и $5 \rightarrow 4 \ (5 \rightarrow 3)$.

При самоорганизации молекул, химические и электронные свойства которых неоднородны по молекулярному объему, в отсутствие специфических межмолекулярных взаимодействий (комплексообразования, водородных связей) образование иерархически-организованных структур зависит от распределения поляризуемости по объему молекулы [2, 14]. Различие плотности поляризуемости ароматического остова и алифатических концевых цепей мезогенных молекул способствует микрорасслоению нематической фазы и образованию смектических фаз с сегрегацией молекулярных остовов и цепей - "подобное растворяется в подобном". При слабом (сильном) различии плотности поляризуемости остовов и цепей смектик А имеет монослойную структуру SmA₁ (бислойную структуру SmA_d) [14]. Плотность поляризуемости k-го молекулярного фрагмента в среде определим выражением $G_k = \overline{\gamma}_k / v_k$,

где $\overline{\gamma}_k$ и v_k — инкременты молекулярной поляризуемости и объема, приходящиеся на данный фрагмент в среде. Для гомологов одного ряда важны величины G_c и G_{ch} для молекулярного остова и алкильной цепи, причем G_{ch} совпадает с плотностью поляризуемости G_m метиленового фрагмента цепи.

Для молекул LC1.*n*, рассматриваемых как остов и алкильная цепь, учтем аддитивность значений $\overline{\gamma}_m$ для несопряженных метиленовых фрагментов цепи [1] и аддитивность значений v_m для тех же фрагментов в смектических фазах [33–36]. В результате имеем

$$\overline{\gamma} = \overline{\gamma}_{c} + n\overline{\gamma}_{m}, \quad v = v_{c} + nv_{m}.$$
(16)

Здесь v = 1/N -объем, приходящийся на молекулу в среде, величины $\overline{\gamma}_c$ и v_c относятся к молекулярному остову. Значения $\overline{\gamma}_c$ и $\overline{\gamma}_m$ зависят от характера и степени упорядоченности молекул изза межмолекулярных взаимодействий, а объемы v_c и v_m зависят от температуры из-за теплового расширения мезофазы [33–36]. Для молекул LC1.*n* в мезофазе плотность поляризуемости $G = = \overline{\gamma}/v = N\overline{\gamma}$ дается выражением

$$G = \frac{3(\overline{\varepsilon} - 1)}{4\pi(\overline{\varepsilon} + 2)(b + r_0)}.$$
(17)

С учетом (16) зависимость G(n) сводится к функции (9) с параметрами

$$C = \overline{\gamma}_m / v_m, \quad D = \overline{\gamma}_c / \overline{\gamma}_m, \quad E = v_c / v_m.$$
 (18)

Для смектической фазы гомологов LC1.*n* при $T = T_{\rm NA}^{(-)}$ зависимость G(n) приведена на рис. 4. Она монотонно убывает и хорошо аппроксимируется функцией (9), параметры которой при $\lambda = 0.5893$ мкм с учетом (18) дают $G_c = \overline{\gamma}_c/v_c = CD/E = 0.1018 \pm 0.0244$, $G_m = C = 0.0715 \pm 0.0009$. Незначительное различие $G_c > G_m$ согласуется с монослойной структурой смектической фазы гомологов LC1.*n* [37]. Для молекул производных азометинов с одной концевой алкильной цепью в монослойных смектиках А при температурах, близких к значениям $T_{\rm NA}(n)$ для гомологов LC1.*n*, молярный объем $V_m = N_A v_m (N_A - число Авогадро),$

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 86 № 5 2012

приходящийся на метиленовый фрагмент, изменяется в интервале $V_m \approx 16.2-17.5 \text{ см}^3$ /моль [34]. С учетом значения G_m отсюда получаем оценку $\overline{\gamma}_m \approx 1.92-2.08 \text{ Å}^3$, которая выше средней величины $\overline{\gamma}_m \approx 1.84 \text{ Å}^3$ ($\lambda = 0.5893 \text{ мкм}$) для нормальных алканов в жидкости или растворе [1, 32]. Возрастание $\overline{\gamma}_m$ в анизотропной среде обусловлено межмолекулярными взаимодействиями и соответствует ограничениям (11) с учетом равенства $\overline{\gamma}_i \approx \overline{\gamma}_H$ в изотропной фазе и ЖК.

Таким образом, обнаруженные особенности изменения $L_{\perp}(\Delta T)$ и $\overline{\gamma}(\Delta T)$ при фазовых переходах I-N-SmA и в гомологическом ряду можно разделить на универсальные, связанные с симметрией мезофаз и природой отвечающих им параметров порядка, и специфические, зависящие от свойств отдельных гомологов. Для каждого гомолога зависимость $L_{\perp}(\Delta T)$ в нематической фазе отражает изменение параметра ориентационного порядка молекул S. Квадратичная зависимость $\overline{\gamma}(\Delta \varepsilon)$, или $\overline{\gamma}(S)$, является универсальным проявлением самоорганизации молекул и обусловлена симметрией ЖК (отсутствием инварианта SpS = 0) независимо от конкретных причин, определяющих изменение тензора у (межмолекулярных взаимодействий, изменений электронной структуры и конформации молекул). Инвариантность линейной зависимости (4) и квадратичной зависимости $\overline{\gamma}(S)$ относительно перехода N–SmA показывает, что вклад смектического упорядочения молекул в изменение L_{\perp} и $\overline{\gamma}$ проявляется через изменение Sв результате взаимодействия параметров нематического и смектического порядков S и ψ , а использование шкалы $\Delta \varepsilon$ в смектической фазе предпочтительнее шкалы ΔT с неизвестной функцией $|\psi|(\Delta T).$

Альтернация $L_{\perp}(n)$ в нематической фазе при $T = T_{\rm NA}^{(+)}$ обусловлена альтернацией S(n), $\Delta\gamma(n)$ и анизотропии молекулярной формы из-за относительной жесткости алкильных цепей молекул. Отсутствие альтернации $L_{\perp}(n)$ в смектической-А фазе при $T = T_{\rm NA}^{(-)}$ связано со слабостью (или отсутствием) зависимости S(n) из-за ориентационноразупорядоченного состояния алкильных цепей. Монотонное снижение $L_{\perp}(n)$ с ростом *n* в смектической фазе гомологов LC1.*n* обусловлено изотропизацией тензора *L* с уменьшением отношения $\Delta\gamma/\overline{\gamma}$ при удлинении алкильной цепи, а полученное значение $L_{\perp}(n \to \infty)$ согласуется с L_{\perp} для лэнгмюровских пленок Cd-A и смектической-A фазы эфиров холестерина LC2.*n*, молекулы которых не имеют ароматических фрагментов.

Незначительное различие плотностей поляризуемости остова (G_c) и алкильной цепи ($G_{ch} = G_m$) гомологов LC1.*n* соответствует известному моно-

Рис. 4. Зависимость величины *G* (17) от номера *n* гомолога LC1.*n* в смектической-А фазе при температуре $T_{\text{NA}}^{(-)}$ и $\lambda = 0.5893$ мкм (точки). Линия – аппроксимация формулой (9).

слойному типу их смектической-А фазы. Применение развитого здесь подхода к исследованию ЖК с бислойными типами смектической А фазы (SmA_d, SmA₂) позволит установить значения G_c , отвечающие этим типам смектической структуры, и на молекулярном уровне прояснить количественные критерии формирования иерархической организации молекулярных ансамблей.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Верещагин А.Н.* Поляризуемость молекул. М.: Наука, 1980. 177 с.
- Аверьянов Е.М. Эффекты локального поля в оптике жидких кристаллов. Новосибирск: Наука, 1999. 552 с.
- 3. Аверьянов Е.М. // ЖЭТФ 2010. Т. 137. № 4. С. 705.
- Аверьянов Е.М. // Журн. физ. химии. 2010. Т. 84. № 10. С. 1817.
- Pelzl G., Sackmann H. // Symp. Faraday Soc. 1971. V. 5. P. 68.
- 6. Аверьянов Е.М. // Жидкие крист. и их практ. использ. 2007. № 4. С. 5.
- 7. *Аверьянов Е.М. //* Письма в ЖЭТФ 2009. Т. 89. № 7. С. 381.
- 8. *Аверьянов Е.М. //* Журн. физ. химии. 2010. Т. 84. № 5. С. 985.
- Де Жен П. Физика жидких кристаллов. М: Мир, 1977. 400 с.
- Pines A., Ruben D.J., Allison S. // Phys. Rev. Lett. 1974.
 V. 35. № 17. P. 1002.
- 11. *Чандрасекар С.* Жидкие кристаллы. М.: Мир, 1980. 344 с.
- Doane J.W., Parker R.S., Cvikl B., Johnson D.L., Fishel D.L. // Phys. Rev. Lett. 1972. V. 28. № 26. P. 1694.

- 13. Аверьянов Е.М., Адоменас П.В., Жуйков В.А., Зырянов В.Я. // ЖЭТФ 1986. Т. 91. № 2. С. 552.
- 14. *Аверьянов Е.М.* Стерические эффекты заместителей и мезоморфизм. Новосибирск: Изд. Сиб. отд. РАН, 2004. 470 с.
- 15. *Аверьянов Е.М.* // Журн. физ. химии. 2003. Т. 77. № 8. С. 1383.
- Pelzl G., Sackmann H. // Z. Phys. Chem. (Leipzig) 1973. V. 254. № 5/6. P. 354.
- 17. *Аверьянов Е.М.* // Жидкие крист. и их практ. использ. 2009. № 2. С. 21.
- Hendricks S.B., Jefferson M.E. // J. Opt. Soc. Am. 1933. V. 23. № 9. P. 299.
- 19. *Chandrasekhar S., Madhusudana N.V.* // J. de Phys. (Fr.) Colloq. C4. 1969. V. 30. № 11 12. C4-24.
- 20. Madhusudana N.V., Shashidhar R., Chandrasekhar S. // Mol. Cryst. – Liq. Cryst. 1971. V. 13. № 1. P. 61.
- Haller I., Huggins H.A., Freiser M.F. // Mol. Cryst. Liq. Cryst. 1972. V. 16. № 1/2. P. 53.
- 22. *Haller I., Huggins H.A., Lilienthal H.R., McGuire T.R.* // J. Phys. Chem. 1973. V. 77. № 7. P. 950.
- 23. Dolphin D., Muljiani Z., Cheng J., Meyer R.B. // J. Chem. Phys. 1973. V. 58. № 2. P. 413.
- 24. Haller I. // Solid St. Chem. 1975. V. 10. № 2. P. 103.
- 25. Krishnamurti D., Subramhanyam H.S. // Mol. Cryst. Liq. Cryst. 1975. V. 31. № 1/2. P. 153.

- Karat P.P., Madhusudana N.V. // Mol. Cryst. Liq. Cryst. 1976. V. 36. № 1–2. P. 51.
- 27. *Hanson E.G., Shen Y.R.* // Mol. Cryst. Liq. Cryst. 1976. V. 36. № 1–2. P. 193.
- 28. Horn R.G. // J. de Phys. (Fr.) 1978. V. 39. № 1. P. 105.
- Vaz N.A., Montgomery G.P. // J. Appl. Phys. 1987. V. 62.
 № 8. P. 3161.
- 30. *Chirtoc I., Chirtoc M., Glorieux C., Thoen J.* // Liq. Cryst. 2004. V. 31. № 2. P. 229.
- Yildis S., Ozbek H., Glorieux C., Thoen J. // Liq. Cryst. 2007. V. 34. № 5. P. 611.
- 32. Вукс М.Ф. Электрические и оптические свойства молекул и конденсированных сред. Л.: Изд-во ЛГУ, 1984. 334 с.
- Guillon D., Skoulios A. // J. de Phys. (Fr.) 1976. V. 37. № 6. P. 797.
- Seurin P., Guillon D., Skoulios A. // Mol. Cryst. Liq. Cryst. 1981. V. 71. № 1–2. P. 51.
- Albertini G., Fanelli E., Guillon D., Melone S., Poeti G., Rustichelli F., Torguati G. // J. Chem. Phys. 1983. V. 78. № 4. P. 2013.
- Albertini G., Fanelli E., Guillon D., Melone S., Poeti G., Rustichelli F., Torguati G. // J. de Phys. (Fr.) 1984. V. 45. № 2. P. 341.
- 37. *Diele S., Brand P., Sackmann H.* // Mol. Cryst. Liq. Cryst. 1972. V. 16. № 1–2. P. 105.