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Preface

A Brief Overview of Historical Origins of the Theme

Properties of collective excitations in physical systems are determined, in generic
situations, by the interplay of a few fundamental ingredients: spatial dimension,
external potential acting on the physical fields or wave functions, the number of
independent components of the relevant fields (i.e., one may naturally categorize
the systems as single-component scalar and multi-component vectorial ones), and
nonlinear self-interactions of the fields. In particular, the shape of the external
potentials determines the system’s symmetry, two most ubiquitous types of which
correspond to periodic lattice potentials and double-well potentials (DWPs) with
the symmetry between the wells.

It is commonly known that the ground state in quantum mechanics exactly
follows the symmetry of the underlying potential, while excited states may realize
other representations of the same symmetry [1]. In particular, the wave function of
the ground state of a particle trapped in the one-dimensional DWP potential is
even, with respect to the double-well structure, while the first excited state has the
opposite parity, being odd. Similarly, the wave function corresponding to the state
at the bottom of the lowest Bloch band induced by the periodic potential features
the same periodicity.

While the quantum-mechanical Schrödinger equation is linear for the single
particle, the description of rarefied gases formed by quantum bosonic particles
(i.e., Bose–Einstein condensates, BECs) is provided by the Gross–Pitaevskii
equation (GPE), which, in the mean-field approximation, takes into account effects
of collisions between the particles through an effective cubic term, added to the
Schrödinger equation for the single-particle wave function [2, 27]. The cubic term,
which corresponds to repulsive or attractive forces between the colliding particles,
gives rise, respectively, to the self-defocusing (SDF), alias self-repulsion, or self-
focusing (SF), i.e., self-attraction, of the wave function. A similar model, based on
the nonlinear Schrödinger equation (NLSE) with the cubic term accounting for the
effective SF or SDF, describes the propagation of the amplitude of electromagnetic
waves in nonlinear optical media [3].
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As well as their linear counterparts, the GPE and NLSE include external
potentials, which often feature the DWP symmetry. However, the symmetry of the
ground state in models with the SF nonlinearity (i.e., the state minimizing the
energy at a fixed number of particles in the bosonic gas, or fixed total power of the
optical beam—in either case, this is represented by a fixed norm of the respective
wave function) follows the symmetry of the underlying potential structure only in
the weakly nonlinear regime. A generic effect which occurs with the increase of
the norm is spontaneous symmetry breaking (SSB). In its simplest manifestation,
the SSB implies that the probability to find the particle in one well of the DWP
structure is larger than in the other. This, incidentally, implies that another com-
monly known principle of quantum mechanics, according to which the ground
state cannot be degenerate, is no longer valid in the nonlinear models: obviously,
the SSB which takes place in the presence of the DWP gives rise to a degenerate
pair of two mutually symmetric ground states, with the maximum of the wave
function pinned to either potential well.

It should be stressed that the same system admits a symmetric state coexisting
with the asymmetric ones, but, above the SSB point, the symmetric wave function
no longer represents the ground state, being, in fact, unstable against small sym-
metry-breaking perturbations. Accordingly, in the course of the spontaneous
transition from the unstable symmetric state to a stable asymmetric one, the choice
between the two mutually degenerate asymmetric states is determined by random
perturbations, which ‘‘push’’ the system with the SF nonlinearity to build the
maximum of the wave function in the left or right potential well.

In systems with the SDF nonlinearity, the ground state remains symmetric and
stable. In this case, the SSB manifests itself in the form of the spontaneous
breaking of the antisymmetry of the first excited state (the spatially odd one, which
has exactly one zero of the wave function, at the central point, in the one-
dimensional setting). The state with the spontaneously broken antisymmetry also
features a zero, which may be shifted from the central position.

To the best of my knowledge, the concept of the SSB in nonlinear systems of
the NLSE type was first formulated in 1979 by Davies [4], although in a rather
abstract form, using a ‘‘very mathematical’’ language. In that work, a nonlinear
extension of the Schrödinger equation for a pair of quantum particles, interacting
via a three-dimensional isotropic potential, was introduced, and the SSB was
predicted in terms of the breaking of the rotational symmetry of the ground state.

Another early work, which predicted the SSB in a relatively simple form, dealt
with the self-trapping model, which is based on a system of linearly coupled
ordinary differential equations (ODEs) with SF cubic terms [5]. This model finds
applications to some types of molecular dynamics. In fact, it was work [5] which
had made the research community aware of the SSB concept, and helped to initiate
a broad work on this topic.

Another important article which studied in detail the SSB in a physically rele-
vant model described by an ODE system addressed the propagation of CW (con-
tinuous-wave) optical beams in dual-core nonlinear optical fibers (alias nonlinear
directional couplers) [6]. In a scaled form, the corresponding system of equations is
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i
du1

dz
þ f u1j j2

� �
u1 þ ju2 ¼ 0;

i
du2

dz
þ f u2j j2

� �
u2 þ ju1 ¼ 0;

ð1Þ

where u1 and u2 are the CW amplitudes in the two cores (‘‘CW’’ implies, in this
case, that the amplitudes do not depend on the temporal variable), z is the prop-
agation distance, j the coefficient of the linear coupling between the two cores,
due to the mutual penetration of evanescent fields from each core into the parallel

one, and f ju1;2j2
� �

is a function of the intensity which accounts for the intrinsic

nonlinearity of each core. The study of SSB bifurcations, which occur with the
increase of the intensity of the symmetric mode (u1 ¼ u2), has demonstrated that,

in the simplest case of the Kerr SF nonlinearity, which corresponds to f u2ð Þ ¼ juj2
(in an appropriately normalized form), the symmetry-breaking bifurcation is of the
simplest supercritical, alias forward, type [7], which destabilizes the symmetric
state and, simultaneously, gives rise to a pair of stable asymmetric states, with

u1j j2 6¼ u2j j2. The latter states are mutually symmetric, i.e., one is obtained from the
other by the interchange, u1 � u2. On the other hand, the saturable nonlinearity, in

the form of f uj j2
� �

¼ uj j2= I0 þ uj j2
� �

, where I0 is a positive constant (the non-

linearity of this type can be induced by dopants added to the material of the dual-
core fiber) gives rise to a subcritical, alias backward, symmetry-breaking bifur-
cation. In that case, the branches of asymmetric states, which originate at the point
of the destabilization of the symmetric mode, originally go backward (in terms of

the total power, u1j j2 þ u2j j2), as unstable solutions, and then turn forward, getting
stable precisely at the turning point. This scenario implies that the pair of stable
asymmetric states actually emerge subcritically, at a value of the total power
smaller than that at which the symmetric mode loses its stability. In terms of
statistical physics, the super- and subcritical bifurcations may be identified as
symmetry-breaking phase transitions of the second and first kinds, respectively.

The next essential step in the studies of the SSB phenomenology in dual-core
nonlinear optical fibers and similar systems was the consideration of the fields
depending on the temporal variable, s. In that case, assuming the anomalous sign
of the group-velocity dispersion in the fiber, Eq. (1) are replaced by linearly
coupled partial differential equations (PDEs), in the form of a system of NLSEs,
which is usually considered with the Kerr nonlinearity:

i
ou1

oz
þ 1

2
o2u1

os2
þ f u1j j2

� �
u1 þ ju2 ¼ 0;

i
ou2

oz
þ 1

2
o2u2

os2
þ f u2j j2

� �
u2 þ ju1 ¼ 0:

ð2Þ
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The same system, but with s replaced by transverse coordinate x, models the
spatial-domain evolution of time-independent electromagnetic fields in a dual-core
nonlinear planar waveguide.

A commonly known fact is that uncoupled NLSEs give rise to solitons (tem-
poral or spatial solitary waves, in the temporal or spatial domain, respectively) [3].
Accordingly, the SSB bifurcation may destabilize obvious symmetric soliton
solutions of system (2),

u1 ¼ u2 ¼ g sech gsð Þ exp
1
2

g2 þ j

� �
z

� �
ð3Þ

(here g is an arbitrary amplitude of the soliton), replacing them by nontrivial
asymmetric two-component soliton modes. The point of the onset of the sym-
metry-breaking instability of the symmetric solitons with the increase of the sol-
iton’s peak power, g2, was found in an exact analytical form, as g2

crit ¼ 4=3, in Ref.
[8]. The resulting transition to asymmetric solitons was first predicted, in an
approximate analytical form, by means of the variational approximation, in Refs.
[9] and [10]. Afterward, it was found that, on the contrary to the supercritical
bifurcation of the CW states in system (1) with the Kerr nonlinearity, the sym-
metry-breaking bifurcation of the solitons in system (2) is subcritical [11, 12].

An independent line of the studies of the SSB originated from the consideration
of models of atomic BECs trapped in potential landscapes of the DWP type. The
scaled form of the corresponding GPE for the single-particle wave function,
w x; tð Þ, is

i
ow
ot

¼ � 1
2
o2w1

ox2
þ r wj j2w þ UðxÞw; ð4Þ

where r = ?1 and -1 for the repulsive and attractive collision-induced nonlin-
earity, respectively, and the DWP can be taken, e.g., as

UðxÞ ¼ U0 x2 � a2
� �2

; ð5Þ

where U0 and a2 are positive constants. It is relevant to mention that the con-
nection between the equation in the form of PDE (4) and a simpler ODE system
(1) (with z replaced by time t) can be established by means of the tight-binding
approximation [13], replacing wðx; tÞ by a linear superposition of two stationary
wave functions, /, corresponding to states trapped separately in the two potential
wells, with centers at points x ¼ �a:

w x; tð Þ ¼ u1ðtÞ/ x � að Þ þ u2/ x þ að Þ: ð6Þ

The analysis of the SSB in BEC and quantum models based on Eq. (4) and similar
models was initiated in Refs. [14] and [15]. Most typically, the BEC nonlinearity is
self-repulsive, which, as mentioned above, gives rise to the spontaneous breaking
of the antisymmetry of the odd states, with wð�xÞ ¼ �wðxÞ. Further, the GPE can
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be extended by adding an extra spatial coordinate, on which the DWP potential
does not depend, i.e., one arrives at a two-dimensional GPE with a double-trough
potential. In such a setting, the self-attractive nonlinearity (which, although being
less typical in BEC, is possible too) gives rise to matter-wave solitons, which may
self-trap in the free direction [16]. Accordingly, symmetric solitons are possible in
the double-trough potential, which are replaced, via the subcritical bifurcation, by
stable asymmetric solitons, provided that the number of particles in the BEC
(which determines the effective strength of the intrinsic nonlinearity) exceeds a
certain critical number [17].

The above discussion was dealing with static symmetric and asymmetric modes
supported by various nonlinear systems. The consideration of dynamical regimes,
most typically in the form of oscillations of the norm of the wave function between
two wells of the DWP structure, i.e., as a matter of fact, between the two mutually
degenerate asymmetric states existing above the critical values of the effective
strength of the nonlinearity, has been developed too. Following the analogy with
well-known Josephson oscillations of the wave function of superconducting
electrons in tunnel junctions, formed by bulk superconductors separated by a
narrow dielectric layer [18] (note that topological solitons, in the form of quanta of
trapped magnetic flux, are well-known in long Josephson junctions of this type
[19]), the possibility of similar oscillations in bosonic Josephson junctions was
predicted [20]. The simplest model of the Josephson oscillations in bosonic sys-
tems is based on the dynamical version of Eq. (1), which was derived from the full
GPE by means of the tight-binding approximation relying upon expansion (6).

As is the case with many other general topics, especially those in the area of
nonlinear science, the variety of theoretically predicted results concerning the SSB
phenomenology by far exceeds the number of experimental works. Nevertheless,
some experimental manifestations of the SSB have been observed in a clear form.
In particular, the self-trapping of a macroscopically asymmetric state of the atomic
condensate of 87Rb atoms with repulsive interactions between them, loaded into the
DWP, as well as Josephson oscillations in that setting, were reported in Ref. [21].
On the other hand, the SSB of laser beams coupled into an effective transverse DWP
created in the SF photorefractive medium has been explicitly demonstrated in Ref.
[22]. Still another result of an experimentally observed SSB effect in nonlinear
optics is the spontaneously established asymmetric regime of operation of a sym-
metric pair of coupled lasers [23]. More recently, symmetry breaking was experi-
mentally demonstrated in a plasmonic coupler [24], although in the latter case the
effect was not spontaneous, being induced by a structural element of the system.

Survey of Chapters in the Present Volume

Studies of SSB effects, self-trapping, and Josephson oscillations in very diverse
nonlinear systems have been subjects of a great number of publications, chiefly
theoretical ones. These general topics have seen a great deal of development in
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many directions. Despite the obvious imbalance between the theoretical and
experimental works, the topics call for a comprehensive review article, or even a
book, which, as a matter of fact, is still missing. The present volume partly
compensates this omission in the literature, offering a collection of 28 chapters
which cover many (although definitely not all) aspects of the general themes
named in the title of the volume, as well as related topics (even if symmetry
breaking, self-trapping, or Josephson junctions are not mentioned in titles of
particular chapters, some of these research items are considered in all of them).
Most of the chapters are written as semi-review articles, giving an adequate pre-
sentation of the respective topics, and also offering references for further reading.

The chapters are briefly surveyed below under rubrics corresponding to dif-
ferent types of physics which are considered in them. It is worthy to note that,
quite naturally, not all important branches of the field are covered by particular
chapters. In particular, the SSB occurs too in a class of systems with symmetric
pseudopotentials (rather than usual potential structures), which are induced by
appropriate spatial modulations of the local nonlinearity strength. Models of this
type were comprehensively reviewed in Ref. [25]. A more specific topic is the SSB
of discrete solitons in parallel-coupled dual-core nonlinear lattices [26].

Nonlinear Optics and Plasmonics

This topical section is the largest one in the volume, including 14 chapters, see the list
following below. It is relevant to stress that one of the chapters, ‘‘Spontaneous
Formation and Switching of Optical Patterns in Semiconductor Microcavities’’, by
J. Scheuer and M. Orenstein, includes a vast experimental material. Two chapters, viz.,
‘‘Defect Modes, Fano Resonances and Embedded States in Magnetic Metamaterials’’,
by M. I. Molina, and ‘‘Sub-Wavelength Plasmonic Solitons in 1D and 2D
Arrays of Coupled Metallic Nanowires’’, by F. Ye, D. Mihalache, and N. C. Panoiu,
deal not with optics proper, but rather with plasmonics and metamaterials, which are
new directions in studies of the propagation of electromagnetic fields in artificially
built media. It is relevant to note that chapters ‘‘Frequency and Phase Locking of
Laser Cavity Solitons’’, by T. Ackemann, Y. Noblet, P. V. Paulau, C. McIntyre, P.
Colet, W. J. Firth,and G.-L. Oppo, ‘‘Guided Modes and Symmetry Breaking
Supported by Localized Gain’’, by Y. V. Kartashov, V. V. Konotop, V. A. Vysloukh,
and D. A. Zezyulin, and ‘‘Pattern Formation Under a Localized Gain’’, by A. A.
Nepomnyashchy, are dealing with dissipative models of nonlinear optics, while
chapter ‘‘Spatial Solitons in Parity-Time-Symmetric Photonic Lattices: Recent
Theoretical Results’’, by Y.-J. He and B. A. Malomed, presents a short review of
solitons in PT-symmetric nonlinear models, which are intermediate between con-
servative systems and usual dissipative ones.

(1) Nonlinear Dynamics of Bloch wave packets in honeycomb lattices, by M.
J. Ablowitz and Y. Zhu.
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(2) Light self-localization and power-dependent steering in anisotropic dielec-
trics: Spatial solitons in uniaxial nematic liquid crystals, by A. Alberucci and
G. Assanto.

(3) Frequency and phase locking of laser cavity solitons, by T. Ackemann, Y.
Noblet, P. V. Paulau, C. McIntyre, P. Colet, W. J. Firth, and G.-L. Oppo.

(4) Light-induced breaking of symmetry in photonic crystal waveguides with
nonlinear defects as a key for all-optical switching circuits, by E. Bulgakov,
A. Sadreev, and K. N. Pichugin.

(5) Spatial solitons in parity-time-symmetric photonic lattices: Recent theoret-
ical results, by Y.-J. He and B. A. Malomed.

(6) Spontaneous symmetry breaking of pinned modes in nonlinear gratings with
an embedded pair of defects, by I. V. Kabakova, I. Uddin, J. Jeyaratnam, C.
M. de Sterke, and B. A. Malomed.

(7) Guided modes and symmetry breaking supported by localized gain, by Y.
V. Kartashov, V. V. Konotop, V. A. Vysloukh, and D. A. Zezyulin.

(8) Analytical solitary wave solutions of a nonlinear Kronig–Penney model for
photonic structures consisting of linear and nonlinear layers, by Y. Kominis
and K. Hizanidis.

(9) Trapping polarization of light in nonlinear optical fibers: An ideal Raman
polarizer, by V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz.

(10) Studies of existence and stability of circularly polarized few-cycle solitons
beyond the slowly varying envelope approximation, by H. Leblond, D.
Mihalache, and H. Triki.

(11) Defect modes, Fano resonances, and embedded states in magnetic metam-
aterials, by M. I. Molina.

(12) Pattern formation under a localized gain, by A. A. Nepomnyashchy.
(13) Spontaneous formation and switching of optical patterns in semiconductor

microcavities, by J. Scheuer and M. Orenstein.
(14) Sub-wavelength plasmonic solitons in 1D and 2D arrays of coupled metallic

nanowires, by F. Ye, D. Mihalache, and N. C. Panoiu.

Bose–Einstein Condensates

The second largest topical section, which includes nine chapters, is dealing with
BEC and related subjects, such as bosonic Josephson junctions. In addition to
atomic quantum gases, condensates of quasiparticles (polaritons) are considered
too, in chapter ‘‘Symmetry-breaking effects for polariton condensates in
double-well potentials’’, by A. S. Rodrigues, P. G. Kevrekidis, J. Cuevas, R.
Carretero-Gonzalez, and D. J. Frantzeskakis. It is relevant to mention that chapter
‘‘Classical dynamics of a two-species Bose-Einstein condensate in the presence
of nonlinear maser processes’’, by B. M. Rodriguez-Lara and R.-K. Lee, is dealing
with a situation which combines problems in the fields of both BEC and optics.
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(1) From coherent modes to turbulence and granulation of trapped gases, by V.
S. Bagnato and V. I. Yukalov.

(2) Bright solitary matter waves: Formation, stability, and interactions, by T.
P. Billam, A. L. Marchant, S. L. Cornish, S. A. Gardiner, and N. G. Parker.

(3) Temporal quantum fluctuations in the fringe-visibility of atom interferometers
with interacting Bose–Einstein condensate, by D. Cohen and A. Vardi.

(4) Temperature effects on the quantum coherence of bosonic Josephson junc-
tions, by B. Julía-Díaz, J. Martorell, and A. Polls.

(5) Multiple fluxon analogues and dark solitons in linearly coupled Bose–Einstein
condensates, by M. I. Qadir, H. Susanto, and P. C. Matthews.

(6) Symmetry-breaking effects for polariton condensates in double-well poten-
tials, by A. S. Rodrigues, P. G. Kevrekidis, J. Cuevas, R. Carretero-González,
and D. J. Frantzeskakis.

(7) Classical dynamics of a two-species Bose–Einstein condensate in the presence
of nonlinear maser processes, by B. M. Rodríguez-Lara and R.-K. Lee.

(8) Existence, stability, and nonlinear dynamics of vortices and vortex clusters in
anisotropic Bose–Einstein condensates, by J. Stockhofe, P. G. Kevrekidis, and
P. Schmelcher.

(9) Josephson tunneling of excited states in a double-well potential, by H. Susanto
and J. Cuevas.

General Models of Nonlinear Symmetric Systems

Two chapters deal with general aspects of the symmetry breaking in models of
nonlinear systems, which are based on discrete and continual equations of the
NLSE type. One chapter is dealing with dissipative dynamics, and the other one
reports results for a conservative model:

(1) Solitons in a parametrically driven damped discrete nonlinear Schrödinger
equation, by M. Syafwan, H. Susanto, and S. M. Cox.

(2) Conditions and stability analysis for saddle-node bifurcations of solitary waves
in generalized nonlinear Schrödinger equations, by J. Yang.

Josephson Junctions in Superconductivity

One chapter addresses the area in which the Josephson junctions had been first
predicted and created, namely, traditional low-temperature superconductivity:
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(1) Escape time of Josephson junctions for signal detection, by P. Addesso, G.
Filatrella, and V. Pierro.

Micromechanical Systems

A separate chapter is dealing with a physical setting different from those con-
sidered in other chapters, namely, dynamics of nonlinear micromechanical
elements:

(1) Symmetry breaking criteria in electrostatically loaded bistable curved/pre-
buckled micro beams, by L. Medina, R. Gilat and S. Krylov.
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Nonlinear Dynamics of Bloch Wave
Packets in Honeycomb Lattices

Mark J. Ablowitz and Yi Zhu

Abstract Nonlinear waves in deformed optical honeycomb lattices are
investigated. Discrete couple mode equations are used to find higher order con-
tinuous nonlinear Dirac systems which are employed to describe key underlying
phenomena. For weak deformation and nonlinearity the wave propagation is cir-
cular–ellliptical. At strong nonlinearity the diffraction pattern becomes triangular
in structure which is traced to appropriate nonequal energy propagation in
momentum space. At suitably large deformation the dispersion structure can have
nearby Dirac points or small gaps. The effective dynamics of the wave packets is
described by two maximally balanced nonlocal nonlinear Schrödinger type
equations.

1 Introduction

Wave propagation in honeycomb lattices has attracted considerable interest in
physics and applied mathematics. One of the main reasons to understand these
lattices and their behavior is due to the recent fabrication of the new material
graphene and its success in numerous applications [1]. Many of the important
properties associated with graphene come from the two-dimensional honeycomb
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arrangement of its atoms which has major effect on how the associated matter
waves propagate. More specifically, the spectrum of the Schrödinger operator with
a honeycomb lattice exhibits conical structure in the neighborhood where two
dispersion branches touch; these locations are referred as Dirac points. In the
vicinity of the Dirac points, the dispersion relation locally forms a double-cone,
referred as a Dirac cone. This special geometric structure gives rise to two inde-
pendent Bloch wave envelopes or packets. In other words the conical dispersion
relation admits the propagation of massless Fermions. Interestingly important and
novel phenomena are related to these unusual electronic excitations; e.g., anom-
alous integer quantum Hall effect, Klein tunneling, enhanced conductivity etc.
[1–3]. Other fields where honeycomb lattices play important roles include elec-
tromagnetic waves propagating in photonic crystals with a honeycomb background
[4] and ultra cold atoms trapped in optic induced honeycomb lattices [5, 6].

On the other hand even though electromagnetic waves which are classical
waves obey Maxwell equations, the propagation of light in a paraxial photonic
crystal can be described by a lattice nonlinear Schrödinger (NLS) Eq. (1), see for
example, [7]. In order to stablize the lattice, for instance, in optically induced
crystals, the lattice intensity is often much higher than the intensities of the
propagation waves [8–10]. This setup leads to the strong potential or so-called
tight-binding limit. In this context, coupled-mode theory provides an approximate
model for the wave packets which are represented as discrete evolution equations
[11]. In the case when the simple background lattice is square or rectangular the
governing Bloch envelope equation can often be reduced to a discrete nonlinear
Schrödinger equation; this generally corresponds to single band approximations
[12, 13]. But when the background lattice is not simple, such as a honeycomb-
hexagonal lattice, one finds that the fundamental governing Bloch envelope
equation satisfies a discrete nonlinear Dirac system which describes the wave
dynamics associated with the Dirac cone [14–16]. From a mathematical point of
view these problems have certain common features; in particular wave envelopes
associated with Bloch modes and the associated nonlinearity are centrally
important in the analytical description.

The study of the interplay between periodicity and nonlinearity leads to
important mathematical questions. Periodicity relates to the band structure of the
dispersion relation and Bloch waves which are similar in spirit to plane waves in
Fourier analysis. In many cases the nonlinearity induces pure self phase modu-
lation. But nonlinearity can also couple waves between different Fourier modes or
Bloch bands. In simple lattices Bloch envelopes can lead to interesting localized
structures which propagate in the gap regimes of the spectrum; they are sometimes
referred to as gap solitons. Associated with such gaps in the spectrum many
different types of propagating localized waves have been found; examples include
but are not limited to dipole solitons, vortex solitons and soliton trains [8–10,
17–23]. As in the simple lattice case honeycomb lattices can also admit gap
solitons [4, 12]. These solitons are often considered theoretically as bifurcations
from the Bloch-band edges into the band gaps [24–26]. Similarly solitons can
sometimes be found in near periodic and complex media cases [27–29].
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Wave propagation in honeycomb lattices when the potential is strong (the
tight-binding limit) was first considered by Wallace in 1947 [30]; this work paved
the way for researchers to begin to understand the theoretical underpinnings of the
linear wave propagation in honeycomb lattices. The first experimental fabrication
of the material graphene was carried out by Geim and Novoselov [1, 2]. Inspired
by the success of graphene, honeycomb structures have been studied in many
fields. In optics, gap solitons were studied in honeycomb lattices [4, 12] and
conical diffraction in honeycomb lattice was observed in [4, 31]. They experi-
mentally demonstrated conical diffraction and gap solitons in honeycomb lattices.
Theoretically speaking, wave dynamics associated with the Dirac points in hon-
eycomb lattices has recently been considered. Ablowitz and Zhu found a general
discrete envelope Dirac wave system in the tight-binding limit and studied the
associated nonlinear dynamics, including conical and triangular diffraction of the
optical wave field [14, 15, 32]. In the context of Bose-Einstein condensation,
Haddad and Carr studied nonlinear atomic waves propagating in honeycomb
optical lattices [16] in the tight binding limit. Haldane and Raghu studied linear
propagation of electromagnetic waves in the full Maxwell equations [33, 34];
Ablowitz and Zhu analyzed the wave propagation in the shallow potential and
weak nonlinear limits [35]. Wave dynamics in PT -symmetric honeycomb lattices
were studied in [36, 37] and symmetry breaking and wave dynamics in deformed
honeycomb lattices were studied in [31, 32, 38, 39]. Fefferman and Weinstein
rigorously proved the existence of Dirac points for a perfect honeycomb lattice in a
generic regime and obtained the first order approximation in the neighborhood of
Dirac cones [40].

As indicated above, one of the key features of honeycomb lattices is the
existence of the Dirac cones and the associated envelope wave dynamics. This
paper addresses the novel aspects of the nonlinear propagation of wave packets
near the Dirac cone in two-dimensional (2-D) honeycomb lattices. The outline of
this paper is as follows. In Sects. 2–3 the fundamentals of periodic optical and
honeycomb lattices are discussed. In Sect. 4 the discrete nonlinear Dirac system is
derived; we include a deformation parameter q: Depending on the size of q in
Sect. 5 we explain that one might or might not have Dirac points. The continuum
limit of the discrete system associated with the special points is studied in Sect. 6;
here we obtain the nonlinear Dirac equation and discuss the associated conical
dynamics. In Sect. 7 we show the symmetry breaking of the conical dynamics due
to the nonlinearity which also requires the higher order dispersive terms to
describe the dynamics. We then study deformed honeycomb lattices in Sect. 8.
The effect of nonlinearity on the wave propagation in the various deformation
regions is explored in the remaining parts of the paper. Novel nonlinear wave
equations are derived in the two different regimes: (i) where there are two
neighboring Dirac points (ii) no Dirac points. We find asymptotically valid
equations to be nonlocal NLS equations which we refer to as NLS Kadomtsev–
Petviashvili (KP) type equations—or NLSKP type equations; i.e., they are analogs
of nonlocal KP equations which arise in water waves [41].
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2 2-D Optical Periodic Lattices

As mentioned earlier, electromagnetic waves propagating in an inhomogeneous
Kerr nonlinear medium can often be described by a two-dimensional nonlinear
Schrödinger Eq. (7); this equation written in dimensionless form is given by

iwz þr2w � dVðrÞw þ rjwj2w ¼ 0: ð1Þ

Here r ¼ ðr1; r2Þ is the transverse coordinate; z is the propagation direction; the
potential, VðrÞ is a real periodic function which represents the transverse variation
of the refractive index, and d represents its order of magnitude; r is the nonlinear
coefficient which is positive for focusing nonlinearity and negative for defocusing
nonlinearity. In Bose–Einstein condensation this equation is usually called the
Gross–Pitaevskii (GP) equation. In this context it describes the wave propagation
associated with the ultra cold atoms trapped in a periodic lattice [5].

The geometric distribution of local minima of the potentials, also called sites,
determines the main features of the periodic potential. These sites are the positions
of the potential wells. In optics, they have increased refractive index the electro-
magnetic field is attracted to the sites. A 2-D periodic function has two periods
along two different directions which we call primitive lattice vectors. Let C ’ Z

2

denote a two-dimensional lattice generated through the basis v1; v2f g; i.e.,

C ¼ mv1 þ nv2 : m; n 2 Zf g:

The primitive unit cell X is defined as

X ¼ q1v1 þ q2v2 : qj 2 ½0; 1Þ
� �

:

The primitive cell X is the fundamental tile of a tessellation of the plane associated
with the lattice C; i.e., R2 ¼

S
v2CðX þ vÞ:

For simple 2-D lattices, there is only one site (local minimum) per cell. All sites
can be generated by a starting point with two discrete translational symmetries,
i.e., two periods v1 and v2: Interactions between two sites are the same as the
interactions between two cells. Typical examples are square lattices and triangular
lattices. In so-called non-simple lattices, there are multiple sites per cell. In
addition to periodicity, extra freedoms are needed to identify the distributions of
the sites. They are the inner freedoms which, for instance, describe the distances
between sites in the same cell or depths of the sites. All sites are identical under
translational symmetries in simple lattices while non-simple lattices contain at
least two different types of sites. A honeycomb lattice is such a structure. It has
two sites per cell. The inner parameters (distance between two sites and depths of
each site) play very important roles. The dual lattice C0 is spanned by the dual
basis vectors k1 and k2 where km � vn ¼ 2pdmn: Namely C0 ¼ mk1 þ nk2 : m;f
n 2 Zg.The primitive dual unit cell X0 is defined
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X0 ¼ q1k1 þ q2k2 : qj 2 ½� 1
2
;
1
2
Þ

� �
:

This is also called the Brillouin zone. It is noted that Brillouin zone has other
representations but all representations are the same due to the periodicity [42].

3 Honeycomb Lattices and Bloch Theory

A honeycomb lattice is a special 2-D lattice. Its unit cell is equivalent to a hexagon
under discrete translational symmetries and all sites (local minima of the contin-
uous periodic potential) are located at the vertices of this hexagon. Note that only
two of these six vertices are independent under discrete translational symmetries.
It also should be noted that a triangular lattice has a hexagonal structure as well but
it has only one independent starting site which is located at the center. A triangular
lattice only has one site per cell and all sites are identical.

By considering the site distribution, a honeycomb lattice is composed of two
triangular sublattices. Namely there are two initial points A 2 X and B 2 X; where
A 6¼ B; then the two sublattices are

CA ¼ A þ C; CB ¼ B þ C

A honeycomb lattice is the union of the two sublattices, i.e.,

CH ¼ CA [ CB:

A honeycomb lattice and corresponding indices used herein are displayed in
Fig. 1; we note that in the strong potential limit which we will consider there are
coefficients q and q0 that arise in the dispersion structure of the linear lattice; they are
usually termed nearest neighbor hopping energies. In this paper we take q0 ¼ 1: The
filled black dots are A lattice points and the circles are B lattice points. We see that an
A lattice point Ap 2 CA has three nearest neighbors that are all B lattice points:
Bp;Bp�v1 and Bp�v2 ; a B lattice point has three nearest neighbors that are all A lattice
points: Ap;Apþv1 and Apþv2 :

Here we choose the following characteristic vectors of the honeycomb lattice

v1 ¼ l

ffiffiffi
3

p

2
;
1
2

� �
; v2 ¼ l

ffiffiffi
3

p

2
;� 1

2

� �
;

k1 ¼ 4p

l
ffiffiffi
3

p 1
2
;

ffiffiffi
3

p

2

� �
; k2 ¼ 4p

l
ffiffiffi
3

p 1
2
;�

ffiffiffi
3

p

2

� �
;

where l is the lattice constant.
If the wave intensity jwðz; rÞj is infinitesimal, the nonlinear term can be omitted

and we get a linear Schrödinger equation with a periodic potential. Certain key
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solutions are obtained by considering wðz; rÞ ¼ uðrÞe�ilz; where l is constant.
Then we obtain a linear eigenvalue problem

�r2 þ dVðrÞ
	 


u ¼ lu: ð2Þ

According to Bloch’s theorem [43], the eigenfunction of the the eigenvalue
problem (2), called the Bloch mode or the Bloch wave, has the k-dependent form

uðr;kÞ ¼ eik�ruðr; kÞ ð3Þ

where uðr; kÞ has the same periodicity as the potential VðrÞ for any k, i.e.,
uðr þ v; kÞ ¼ uðr; kÞ for v 2 C: The eigenvalue l ¼ lðkÞ is referred to the dis-
persion relation.

Since the Bloch mode u is usually not periodic in r, it is more convenient to
study uðr; kÞ (instead of uðr; kÞ) where uðr; kÞ 2 L2

perðXÞ: The following eigen-
value problem arises

HkuðnÞðr; kÞ ¼ lðnÞðkÞuðnÞðr; kÞ; n� 1 ð4Þ

where the operator Hk is defined as

Hk ¼ �r2 � 2ik � r þ jkj2 þ dVðrÞ: ð5Þ

The spectrum of the operator Hk is discrete [43], i.e.,

rðHkÞ ¼
[

n� 1

lðnÞðkÞ;

and they can be ordered as

lð1ÞðkÞ� lð2ÞðkÞ� lð3ÞðkÞ� � � � :

lðnÞðkÞ is continuous as a function of k and due to the gauge invariance lðnÞðkÞ
is periodic. As k varies in the Brillouin zone X0; lðnÞðkÞ sweep out a closed interval

Fig. 1 A honeycomb lattice is composed of two triangular sublattices, CA (dots) and CB

(circles), generated by v1 and v2 from different starting points. q and q0 are coefficients
associated with the dispersion structure of the linear lattice; they are usually termed nearest
neighbor hopping energies; here we take q0 ¼ 1
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which is called the nth; n ¼ 1; 2; 3::: band of the dispersion relation. In the liter-
ature, a dispersion band is often referred as the entire continuous region which
supports bounded Bloch modes, i.e., the whole interval between two adjacent
regions where bounded Bloch modes are not allowed. In this context, a dispersion
band can have multiple branches. Generally, the lowest band in the tight-binding
limit is usually simple and well-separated from higher bands. However, due to the
underlying symmetries honeycomb lattices may have degenerate ground states.

If the eigenvalue problem (2) can be solved completely, i.e., the dispersion
relation lðkÞ and associated Bloch waves can be constructed, the general linear
problem can then be solved by a Bloch decomposition; this is due to the com-
pleteness of the Bloch waves in L2ðR2Þ; furthermore each Bloch mode propagates
independently. However, it is usually not possible to construct the dispersion
relation and associated Bloch waves analytically. Hence numerical and asymptotic
approximations are usually used. There are various numerical schemes that can be
used to solve this eigenvalue problem; e.g., finite differences and spectral methods
are often utilized [44]. On the other hand, asymptotic approximations require some
asymptotic limits. Two typical limits are d � 1 and d � 1 where the former case
is sometimes referred as the low contrast limit (or shallow potential) and the latter
case high contrast limit, or more often, tight-binding limit. If d � 1; direct per-
turbation theory of the eigenvalue problem can be carried out and uðr; kÞ can be
obtained. The dispersion relation is obtained via solvability conditions; see [13] for
example. If d � 1; an orbital approximation can be employed. In this case, the
Bloch waves are localized around the wells and can be approximated by appro-
priate superposition of the orbitals. From the orbital approximation one can find
the dispersion relation.

4 Nonlinear Discrete Dynamics

In the tight-binding limit (d � 1), the Bloch waves are localized around the sites
and their main properties are determined from the potential in the vicinities of the
wells. We introduce two single-well potentials WAðrÞ and WBðrÞ which approach
maxfVðrÞ : r 2 Xg rapidly as jrj ! 1 and coincide with VðrÞ in the vicinities of
A and B respectively.

The orbitals /A and /B are defined as the eigenfunctions of the one-well
potentials; namely,

�r2 þ dWjðrÞ
	 


/jðrÞ ¼ Ej/jðrÞ j ¼ A;B ð6Þ

where Ej are the orbital energies. For simplicity, we let WAðrÞ ¼ WBðr � dÞ where
d is the shift vector from A site to the B site in the same cell, then EA ¼ EB ¼ E: It
is noted that the eigenvalue problem can have multiple discrete eigenvalues. We
are only interested in the ground (or lowest) state which in turn gives the lowest
band of the dispersion relation and determines the associated dynamics of the
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honeycomb lattice. For these single-well potentials WAðrÞ; the ground state is
simple and the orbital energy E is well-separated from the excited energies on the

order of Oð
ffiffiffi
d

p
Þ (cf. [45] and references therein).

Then the Bloch waves associated with the lowest band can be approximated by

uðr; kÞ ¼
X

v

ðaðkÞ/Aðr � vÞ þ bðkÞ/Bðr � vÞÞeik�v; ð7Þ

where aðkÞ and bðkÞ are determined later by the original eigenvalue problem (2).
Substituting the above expression into eigenvalue problem (2) leads to a matrix

eigenvalue problem where ðaðkÞ; bðkÞÞ is the eigenvector. The orbital approxi-
mation converts the eigenvalue problem of a differential operator to an eigenvalue
problem of a 2 � 2 matrix. Since the discrete envelope equation, which will be
obtained later in this section, inherits the dispersion relation of the eigenvalue
problem (4) in the tight-binding limit, the direct derivation of the dispersion
relation is omitted here. We explain later how to get the discrete dispersion
relation in the following section where the full dispersion relation is given—see
Eqs. (17)–(18a, b). Additional details can be found in [15].

The aim of this section is to understand the key equations which govern the
dynamics of the wave packets associated with the lowest band. It turns out that the
dispersion relation are exactly related to the linear part of the governing equation
of the wave packets. The set ð/Aðr � vÞ;/Bðr � vÞÞf gv2C can approximate the
wave packets associated with the lowest band in the sense that

wðrÞ ¼
X

v

ðAv/Aðr � vÞ þ Bv/Bðr � vÞÞ: ð8Þ

In other words, fðAv;BvÞgv2C 2 l2ðCÞ is a natural representation of the
continuous L2ðR2Þ envelope associated with the lowest band and ð/Aðr � vÞ;f
/Bðr � vÞÞgv2C plays the role of a basis. This decomposition is sometimes referred
as coupled mode theory [11].

The above decomposition (8) is similar to a Wannier decomposition (see for
example [46]). But orbitals and Wannier functions are not the same. Wannier
functions are the Fourier coefficients of the Bloch modes uðr; kÞ which are peri-
odic functions in k. Hence they are only defined in periodic lattices. On the other
hand in the tight-binding limit orbitals are natural approximations to eigenfunc-
tions associated with complicated potentials and this is not necessarily limited to
periodic potentials. The definition of the orbital is straightforward and leads to
physical insight and intuition. In simple lattices, orbitals can be used as the
approximations to the Wannier functions; but in many cases Wannier functions
can be employed directly. However, in non-simple lattices, Wannier functions are
difficult to construct and their interactions are complicated.

Substituting the above wave packet approximation (8) into the lattice NLS
Eq. (1) implies
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X

v

i
dAv

dz
þ AvdðVðrÞ � WAðr � vÞÞ

� �
/Aðr � vÞ

þ
X

v

i
dBv

dZ
þ BvdðVðrÞ � WBðr � vÞ

� �
/Bðr � vÞ

þ r
X

v

Av/Aðr � vÞ þ Bv/Aðr � vÞð Þ
 !2

�
X

v

Av/Aðr � vÞ þ Bv/Bðr � vÞð Þ
 !	

¼ 0: ð9Þ

Multiplying both sides by /Aðr � pÞ and /Bðr � pÞ respectively and integrat-
ing lead to (only nearest neighbor interaction terms are kept)

i
dAp

dz
þ c0Ap þ ðsL�ÞBp þ rgjApj2Ap ¼ 0;

i
dBp

dz
þ c0Bp þ ðsLþÞAp þ rgjBpj2Bp ¼ 0;

where c0 ¼
R

/AðrÞdðVðrÞ � WAðrÞÞ/Adr; s ¼
R

/AðrÞdðVðrÞ � WAðr � vÞÞ
/AðrÞdr; g ¼

R
/4

Adr;

L�Bp ¼ Bp þ q1Bp�v1 þ q2Bp�v2 ; ð10Þ

LþAp ¼ Ap þ q1Apþv1 þ q2Apþv2 ; ð11Þ

and qj ¼ 1
s

R
/AðrÞdðVðrÞ � WAðrÞÞ/Aðr � vjÞdr; j ¼ 1; 2: Here c0 represents the

correction to the orbital energy due to the difference between the orbital potentials
and the lattice potentials, s is the magnitude of the nearest neighbor hopping
energy while q1 and q2 represent the inequality of the three nearest neighbor
hopping energies. This inequality measures the deformation of the honeycomb
lattice. If q1 ¼ q2 ¼ 1; the honeycomb lattice is undeformed. The deformation is
induced by the inequality of distances of any given site to its three nearest
neighbors. It can also be induced by other reasons, for example, local doping to
change the depth of wells and so on. For simplicity, we take q1 ¼ q2: More
detailed calculations of these parameters can be found in [15].

Rewriting the discrete system, we have the following rescaled couple-mode
equation

i
dAp

dz
þ L�Bp þ rjApj2Ap ¼ 0; ð12Þ

i
dBp

dz
þ LþAp þ rjBpj2Bp ¼ 0: ð13Þ
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It governs the evolution of Bloch waves associated with the lowest band. This
coupled mode equation is different from the 2-D discrete NLS equation associated
with simple lattices. A significant difference is that this couple mode equation
contains two equations which come from the non-equivalence of A and B sites.
This coupled mode equation governs the dynamics of the wave packets associated
with the whole lowest band.

If an envelope is associated with a specific wave number k; then it can be
conveniently represented by

wðrÞ 

X

p2C

ap/Aðr � pÞ þ bp/Bðr � pÞ
	 


eik�p:

A single-mode equation is then obtained. For completeness we also give the
equations of the discrete envelope in terms of the variables fðapðzÞ; bpðzÞÞgp2C

(see [15])

i
dap

dz
þ L�

k bp þ rjapj2ap ¼ 0; ð14aÞ

i
dbp

dz
þ Lþ

k ap þ rjbpj2bp ¼ 0; ð14bÞ

where

L�
k bp ¼ bp þ qbp�v1 e�ik�v1 þ qbp�v2 e�ik�v2 ;

Lþ
k ap ¼ ap þ qapþv1 eik�v1 þ qapþv2 eik�v2 :

It is noted that the single-mode Eq. (14a, b) can be obtained from Eq. (12) by
changing ðAp;BpÞ to ðapeik�p; bpeik�pÞ: This is due to the linear properties of the
coupled mode equation which will be discussed in the next section. It should also
be noted that the above discrete approach can be extended beyond the tight binding
limit. If the potential intensity d is not sufficiently large, the nearest neighbor
interaction approximation may not be adequate. In such cases additional sites
should be included in order to get more accurate approximations. A rigorous
discussion for the validity of the orbital approximation can be found in [45].

5 Linear Properties

Neglecting the nonlinear terms in (12), the linear equation can be solved by using a
discrete Fourier transform, i.e.,

Âðk; zÞ ¼
X

v2C

Ave�ik�v; Av ¼ 1

jX0j

Z

X0
ÂðkÞeik�vdk;

where jX0j is the area of X0:
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Similar to what is indicated above, substituting the Fourier mode ðÂðkÞ;
�

B̂ðkÞÞe�ixzþik�vgv2C into the linear discrete evolution problem associated with
Eq. (12) leads to

x cðkÞ
c	ðkÞ x

� �
ÂðkÞ
B̂ðkÞ

� �
¼ 0

0

� �
; ð15Þ

where cðkÞ ¼ 1 þ qe�ik�v1 þ qe�ik�v2 : Unlike the continuous Fourier transform, in
the discrete Fourier transform k only takes values in X0 as opposed to all of R2:
Existence of nontrivial solutions leads to the dispersion relation xðkÞ which is
only defined in the Brillouin zone X0; In other words, the dispersion relation xðkÞ
is continuous and periodic with two periods k1 and k2 in R

2: This dispersion
relation xðkÞ approximates the original dispersion relation lðkÞ apart from
scalings; namely,

lðkÞ ¼ E þ c0 þ sxðkÞ ð16Þ

where we recall that E is the orbital energy which is mainly determined by the
potential in the vicinity of a site; c0 is the correction to the orbital energy which is
from the difference between the lattice potential and the approximating orbital
potential; as indicated above s is the magnitude of the nearest neighbor hopping
energy which represents the strength of the interactions between sites; xðkÞ is the
effective dispersion relation. The corresponding Bloch modes can then be con-
structed from Eq. (7) where aðkÞ; bðkÞð Þ are the eigenvectors of (15). Hence the
coupled mode equation inherits the dispersion relation of the original lattice NLS
equation. In our case, existence of nontrivial solutions to (15) leads

x�ðkÞ ¼ � 1 þ qe�ik�v1 þ qe�ik�v2
�� ��: ð17Þ

We see that the dispersion relation has two branches: xþðkÞ ¼ �x�ðkÞ: The
two branches may or may not intersect with each other depending on the value of
q: Let K	 ¼ K	ðqÞ 2 X0 denote the special point(s) in the Brillouin zone such that
xþðK	Þ ¼ min

k2X0
xþðkÞ; and, x�ðK	Þ ¼ max

k2X0
x�ðkÞ: The values, ðK	;x�ðK	ÞÞ are

the closest values of the two branches if there is a gap between them. If the two
branches intersect, xþðK	Þ ¼ x�ðK	Þ ¼ 0 and ðK	;x�ðK	ÞÞ are the intersection
points.

Calling b ¼ 2q � 1; a direct calculation shows that

1. If b [ 0; the two branches touch each other at two different points which are
referred as the Dirac points. Namely, K	 has two values in entire the Brillouin

zone X0: K	 ¼ �K ¼ � 2
l 0; p � arccosð 1

2qÞ
� 

: Near the K point, the dispersion

relation has the leading expansion x�ðK þ qÞ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

1 þ ðb2 þ 2bÞq2
2

q
where

q ¼ ðq1; q2Þ and jqj � 1 which forms a local elliptic cone.
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2. If b ¼ 0; the two branches touch each other at one point. In this critical case,
the two Dirac points actually merge into one due to the underlying periodicity
of k 2 R

2: Namely, K ! 2
l 0; pð Þ ¼ 1

2 ðk1 � k2Þ as q ! 1
2 ; and both 1

2 ðk1 � k2Þ
and � 1

2 ðk1 � k2Þ are equivalent to 1
2 ð�k1 � k2Þ 2 X0 due to the periodicity.

Near the intersection point K	; the dispersion relation has the leading expansion
x�ðK	 þ qÞ� � jq1j where q ¼ ðq1; q2Þ and jqj � 1 which is the degenera-
tion of the above ellipse to local crossing of planes.

3. If b\0; the two branches separate from each other and there exists a gap
between the two branches. The only closest point is K	 ¼ 1

2 ð�k1 � k2Þ ¼
ð 4p

l
ffiffi
3

p ; 0Þ: Near K	 points, the dispersion relation has the leading expansion

x�ðK	 þ qÞ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ ð1 þ bÞ2q2

1

q
where q ¼ ðq1; q2Þ and jqj � 1 which has

the structure of a hyperboloid. The gap width is 2jbj:

6 Conical Dirac Dynamics

In many applications, the dynamics of an envelope associated with a specific value
of k is of interest. Then the Eq. (14a, b) are more convenient to use. From these
equations we can derive a continuous system which is more convenient to study
instead of the differential-difference equation.

The discrete envelope can be considered as the continuous envelope evaluated
at the lattice points, i.e., apðzÞ ¼ aðr ¼ p; zÞ and bpðzÞ ¼ bðr ¼ p; zÞ; here the
continuous transverse variable associated with the lattice is r ¼ ðr1; r2Þ: In this
application the envelopes are assumed to depend only on the long-wave variables
and the amplitudes are assumed small. Accordingly, we define, ðaðr; zÞ; bðr; zÞÞ ¼
ffiffiffi
m

p
ð~aðx;~zÞ; ~bðx;~zÞÞ where the transverse variable is given by x ¼ ðx1; x2Þ ¼ r=L;

the propagation variable is ~z ¼ mz; m ¼
ffiffi
3

p
l

2L � 1; where the lattice size is l and the
envelope scale L is much greater than l; i.e., l

L � 1: For simplicity, we drop the
tildes on the top of a; b and z:

Here we are interested in the effective dynamics associated with the special
point(s) K	: It turns out that if the initial envelope is associated with a value k which
is far away from K	; then the continuous dynamics reduces to an effective nonlinear
Schrödinger equation in a moving frame [15]. One can find effective NLS equations
associated for simple bands; the lowest bands of most simple lattices also yield
effective NLS equations. At K	; as b changes from positive to negative values,
both the geometric structure of the dispersion relation and the associated effective
wave dynamics change dramatically. We investigate some of the important cases
next.

We first consider the case b [ 0: As indicated above, the two branches touch
each other at the Dirac points: K and �K: Here we only consider the effective
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dynamics associated with K; the analysis for �K is similar. At k ¼ K; x� ¼ 0
and by direct calculation we have

qe�iK�v1 þ qe�iK�v2 ¼ �1; qe�iK�v1 � qe�iK�v2 ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q2 � 1

p
:

Calling f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q2 � 1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 2b

p
and using Taylor expansion, and evalu-

ating at k ¼ K; we have

L�
Kbp � m3=2 ðox1 þ i

f
ffiffiffi
3

p ox2Þ �
m
2

o2
x1
þ 1

3
o2

x2
þ 2i

f
ffiffiffi
3

p ox1ox2

� ��

þ m2

6
o3

x1
þ 1

3
ffiffiffi
3

p o3
x2
þ ox1o

2
x2
þ

ffiffiffi
3

p
ifo2

x1
ox2

� ��
b þ � � �

and

Lþ
Kap � m3=2 ð�ox1 þ i

f
ffiffiffi
3

p ox2Þ �
m
2

o2
x1
þ 1

3
o2

x2
� 2i

f
ffiffiffi
3

p ox1ox2

� ��

� m2

6
o3

x1
þ 1

3
ffiffiffi
3

p o3
x2
þ ox1o

2
x2
�

ffiffiffi
3

p
ifo2

x1
ox2

� ��
a þ � � �

If b ¼ Oð1Þ; i.e., f ¼ Oð1Þ; then only taking the leading order term, we
immediately obtain the so-called nonlinear Dirac equation

ioza þ ox1 þ i
f
ffiffiffi
3

p ox2

� �
b þ rjaj2a ¼ 0; ð18aÞ

iozb þ �ox1 þ i
f
ffiffiffi
3

p ox2

� �
a þ rjbj2b ¼ 0: ð18bÞ

The above nonlinear Dirac equation describes the evolution of the wave packet in
the vicinity of the Dirac points. It is seen that the linear dispersion relation of
Eq. (18a, b) reveals the leading order expansion of the effective dispersion relation

which is a double cone. Namely, x�ðqÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

1 þ f2

3 q2
2

q
: A typical phenomenon

associated with this equation is the conical diffraction. It says a localized input
evolves into expending rings and a cone forms in the direction of propagation in
the crystal. Typical conical diffraction is illustrated in Fig. 2. The top panel shows
the evolution of an initial Gaussian envelope at the Dirac point K and then at two
different propagating distances. If the lattice is not deformed, i.e., q ¼ 1; then

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q2 � 1

p
¼

ffiffiffi
3

p
and circular ring structures are obtained. Figure 2 shows a

comparison between the circular conical diffraction in the NLS Eq. (1) and the
approximate nonliner Dirac equation (18a, b). The initial condition for the NLS
equation is a weak and wide Gaussion envelope multiplied by a Bloch wave
associated with the Dirac point K: The initial condition for the nonlinear Dirac

equation (18a, b) is aðz ¼ 0Þ ¼ e�x2
1�x2

2 and bðz ¼ 0Þ ¼ 0:
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7 Symmetry Breaking and Nonlinear Transitions

Conical diffraction is a consequence of the behavior associated with a dispersion
relation that has conical crossings. In principle it can be either linear and non-
linear; but as we will see with strong nonlinearity the conical behavior is modified.
Next we analyze higher order dispersive effects and nonlinear transitions. It is
found that the Dirac dynamics breaks down in the lattice NLS equation if the
nonlinearity is strong [38]. As nonlinearity increases, the circular rings deform and
become triangular. Figure 3 shows the evolution patterns for different nonlinear
coefficients. It is noted that changing the value of r is equivalent to changing the
magnitude of the input.

Defining the operators L0 ¼ 0 ox1 þ ifox2

�ox1 þ ifox2 0

� �
and L1 ¼

0 Dþ
D� 0

� �
; where D� ¼ o2

x1
þ 1

3 o
2
x2
� 2ffiffi

3
p ifox1ox2 ; we can write the higher

order nonlinear Dirac equation in the following vector form

iozU þ L0U � m
2
L1U þ NðUÞU ¼ 0 ð19Þ

where U ¼ ða; bÞT and the nonlinear operator is given by NðUÞ ¼
jaj2 0
0 jbj2

� �
:

Fig. 2 Wave intensities initially a localized pulse (Gaussian) and subsequently at two successive
propagating distances. Top panel: simulations of the lattice NLS equation (1). Bottom panel:
simulations of the nonlinear Dirac equation (18a, b)
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We first study the linear case. Define the Fourier transform FðFÞ ¼ F̂ ¼R
FðxÞe�iq�rdx and inverse Fourier transform F�1ðFÞ ¼ 1

4p2

R
FðqÞeiq�xdq: Note

that x ¼ ðx1; x2ÞT is the envelope coordinate, q ¼ ðq1; q2ÞT is the wave number
associated with the envelope, and from the above definitions the scales are dif-
ferent from r and k in the original lattice NLS Eq. (1).

Letting L ¼ L0 � m
2L1: Since L is a linear differential operator with constant

coefficients, FðLUÞ ¼ L̂Û where L̂ is a 2 � 2 k q-dependent matrix which has the
form

L̂¼ 0 iq1 �q2

�iq1 �q2 0

� �
�1

2
m

0 �q2
1 � 1

3q2
2 � 2ffiffi

3
p ifq1q2

�q2
1 � 1

3q2
2 þ 2ffiffi

3
p ifq1q2 0

 !

:

We see that L̂ is a Hermitian matrix. In q space, the linear initial value problem
becomes

iÛz þ L̂Û ¼ 0; Ûðz ¼ 0Þ ¼ Û0:

Then we have

ÛðzÞ ¼ eiL̂zÛ0:

L̂ has two eigenvalues x�ðqÞ ¼ �q þ OðmÞ which correspond to the two
branches of the dispersion relation. The two branches intersect each other at the
single point q ¼ 0: Note that at the degenerate point q ¼ 0; the multiplicity is two
and for any q there are two linearly independent eigenvectors U� which are
normalized to be Uy

mUn ¼ dmn where m; n ¼ þ;�: Hereafter, the superscript y
means the complex conjugate with a transpose.

Then L̂ ¼ ðUþ;U�ÞKðUþ;U�Þy where K ¼ diagðx1;x2Þ: Thus

ÛðzÞ ¼ ðUþ;U�ÞeiKzðUþ;U�ÞyÛ0

Fig. 3 Evolution patterns of the NLS equation (1) with nonlinear coefficient r being: a 0; b 1;
c 5; (d) -5. Here m ¼ 0:1 and the evolution distance is z ¼ 50 and d ¼ 100 which is in the tight-
binding regime
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or rewriting

ðUþ;U�ÞyÛðzÞ ¼ diagðeixþz; eix�zÞðUþ;U�ÞyÛ0: ð20Þ

If we call p̂�ðzÞ ¼ Uy
�ÛðzÞ; then p̂�ðzÞ represents the projection of Û onto the

� branch in q space. From (20), we immediately obtain that

p̂�ðzÞ ¼ eix�zp�ðz ¼ 0Þ: ð21Þ

In addition we denote �� ¼ 1
ð2pÞ2

R
jp̂�j2dk which represents the energy asso-

ciated with � branch. From (21), we know that ��ðzÞ ¼ ��ðz ¼ 0Þ: There is no
energy exchange between two branches in the linear evolution.

Since ðUþ;U�Þ is unitary, the total energy of the system is given by

�ðzÞ ¼
Z

jUðr; zÞj2dr ¼ 1

ð2pÞ2

Z
jÛðzÞj2dk ¼ 1

ð2pÞ2

Z
jðUþ;U�ÞyÛj2dk

¼ 1

ð2pÞ2

Z
jðp̂þ; p̂�Þyj2dk ¼ �þðzÞ þ ��ðzÞ

where we have used Parseval’s theorem.
The above analysis shows that: (i) the linear propagation can be decomposed

into upper and lower components and each component evolves independently;
(ii) the magnitudes of the projections of each branch remain the same under
propagation—see Eq. (21).

We first focus on the combination of the higher order effects and nonlinearity
without deformations. We take f ¼

ffiffiffi
3

p
in the remainder of this section. The linear

Dirac dynamics is essentially a 2-D wave equation after eliminating b and keeping
a only or vice verse and it is a weakly dispersive system. Letting q ¼ jqj and
h ¼ arctanðq2

q1
Þ; then the dispersion relation has the form

x�ðq; hÞ ¼ �q þ OðmÞ

and the group velocities for q 6¼ 0 are ox�
oq ¼ �1 þ OðmÞ; ox�

oh ¼ 0 þ OðmÞ: Two

eigenvectors have the form

Uþ ¼ 1
ffiffiffi
2

p e�ih2

ieih2

� �
þ OðmÞ; U� ¼ 1

ffiffiffi
2

p e�ih2

�ieih2

� �
þ OðmÞ:

Then to leading order, an initial localized input (e.g., a Gaussian spot) evolves
into radially spreading rings. Along any specific angle h; the field behaves like a
traveling wave with unit velocity since the group velocity along h direction is zero.
The conical diffraction then ensues. Further, due to the preservation of the mass
one expects that the intensity decays at the order of Oð1

zÞ: These conclusions can be
deduced from long-time asymptotic methods.

Next we turn to the nonlinear and higher order dispersive effects. When higher
order terms (OðmÞ terms) are included, the dispersion relation is approximated by

16 M. J. Ablowitz and Y. Zhu



x�ðq; hÞ ¼ �qð1 � m
6

q sinð3hÞÞ þ Oðm2Þ ð22Þ

we see that there is a three-fold symmetry. The dispersion xþðqÞ has three steepest
descent directions and x�ðqÞ has three orthogonal steepest descent directions.
Each admits the so-called ‘triangular warping’. If the initial condition is specified
completely in one branch, the linear wave remains in that branch since there is no
branch transition in the linear problem. In such a case a triangular pattern results. If
initial condition is evenly distributed into the two branches, the patten is the
superposition of two triangular patterns which evolves into a hexagonal shape.
Figure 4 triangular and hexagonal patterns due to different initial conditions where

aðz ¼ 0Þ ¼ e�x2
1�x2

2 is a unit Gaussian and the choice of bðz ¼ 0Þ for the left
triangular figure is such that p̂�ðz ¼ 0Þ ¼ 0 and for the right hexagonal figure is
bðz ¼ 0Þ ¼ 0 which ensures p̂�ðz ¼ 0Þ ¼ p̂þðz ¼ 0Þ; i.e we take equal strength in
both components. Here we choose m ¼ 0:2 which corresponds to the strength of the
higher order effects.

Nonlinearity brings two major effects. The first one is to couple the upper and
lower branches together and the second one is to broaden p̂�ðzÞ in q space under
propagation. Next we give some brief discussion on this matter. We first describe
some numerical results for the HONLD equation. In the numerical simulations

here, the initial input is always taken to be aðx; y; 0Þ ¼ e�x2�y2
; bðx; yÞ ¼ 0 which

ensures the two branches are initially evenly distributed. Figure 5 shows the
evolution of such an input in the HONLD Eq. (19) for different r: It is seen that a
conical diffraction pattern changes into a triangular-like pattern as nonlinearity
increases. This is consistent with Fig. 3. These results show that when the non-
linearity is significant the HONLD equation is needed in order to describe the
envelope dynamics.

HONLD Eq. (19) is the single-mode equation which asymptotically describes
the dynamics of the envelope associated with the Dirac point. Since the

Fig. 4 Triangular and hexagonal patterns in the linear evolution of the HONLD Eq. (19). Here
we take m ¼ 0:2 to show higher order linear propagations
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nonlinearity is found to couple the two branches we plot the energy ratios of the
two branches—see Fig. 6. It is seen that one branch is enhanced and the other is
weakened. It is also seen that modifications to the energy ratios occur rapidly at the
beginning and gradually saturates so that the percentages of the two branches tend
to constant values. We reiterate that this occurs when the initial branches are taken
to have the same energies.

Meanwhile, the projections p̂�ðzÞ also change under propagation. Figure 7
displays the changes of the projection p̂þ under propagation. It is seen that the
energy spreads in q space. Since triangular warping increases as jqj increases,
triangular diffraction become more noticeable. In order words, triangular warping
breaks the radial symmetry of the circularly conical dispersion relation. This
symmetry breaking is amplified when the nonlinearity is included.

Fig. 5 Evolution patterns in the HONLD equation (19) with r equal a 0; b 1; c 5, d -5. Here
m ¼ 0:1 and the evolution distance is z ¼ 5
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Fig. 6 The percentages of
the energy in the two
branches. The black curves
are for r ¼ 5 and red curves
for r ¼ 1; dashed lines for
the lower branch and solid
lines for the upper branch
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8 Effective Dynamics for Deformation Lattices

In applications, the honeycomb lattices are often not perfect. Deformations occur
for many reasons such as local doping and uniform strains to the lattice. In such
cases f 6¼

ffiffiffi
3

p
and b 6¼ 1: If the lattice is deformed slightly the diffraction is

modified so that the circular rings now become elliptical in structure. Figure 8
shows such a deformation with elliptical conical diffraction. It is also noted that the
energy is centralized to the x1 direction of the ellipse. This is traced to the fact that
ox
oh 6¼ 0 when f 6¼

ffiffiffi
3

p
: Two steepest descent directions are h ¼ 0; p: So the field is

attracted to the horizontal axis.
However, in some cases, the deformation can be large enough so that the

deformation parameter b becomes small enough to become comparable to the long
wave parameter m: Then the dynamics changes considerably. When jbj � 1; the
leading order equations is nearly a one-dimensional wave equation. In this case,
instead of splitting to expanding rings, the localized input separates into two
traveling waves.

Figure 9 displays such straight line diffraction patterns which are the simula-
tions of the continuous equations of the coupled mode Eq. (14a, b) in two cases.

The initial conditions are aðz ¼ 0Þ ¼ x1e�x2
1�x2

2 ; bðz ¼ 0Þ ¼ 0: This initial input
ensures the regularity of the nonlocal equations we will derive later [47]. We see
that the evolutions are degenerated into nearly straight line diffraction with some
additional parabolic structures.

This section is devoted to understanding the effective dynamics along the
moving frames. There are two small parameters noting: b and m: If they are
comparable, various interesting maximally balanced equations and associated
phenomena arise. We only illustrate a special balance jbj ¼ Oðm2Þ which has two
subcases: b [ 0 when the two branches still touch each other and b\0 when a gap
just opens.

Fig. 7 The magnitude of the projection p̂þðzÞ in the nonlinear evolution at z ¼ 0 (left) and z ¼ 5
(right). Here r ¼ 5
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8.1 Before Separation

For simplicity, we introduce the variables x ¼ x1; y ¼ x2ffiffi
3

p : We then convert con-

tinuous system to a second order system which are linearly decoupled. Keeping
terms up to Oðm2Þ leads to

o2
z a � o2

xa þ m2T x;ya þ r �iozðjaj2aÞ þ oxðjbj2bÞ
h i

¼ 0 ð23aÞ

o2
z b � o2

xb þ m2T x;yb þ r �iozðjbj2bÞ � oxðjaj2aÞ
h i

¼ 0 ð23bÞ

where

T x;y ¼ �a2
1o

2
y þ ia1ðo2

xoy � o3
yÞ �

1
12

o4
x þ 6o2

xo
2
y � 3o4

y þ 4oxo
3
y

� 

and a1 ¼ f
m which we assume is Oð1Þ: Note that we only consider the case with

weak nonlinearity, i.e., jða; bÞj ¼ OðmÞ; some higher order terms in the nonlinear
terms can be neglected in the above equation.

Accordingly, we introduce a slow time scale, Z ¼ m2z and we express a and b as

a ¼ mða0ðz; x; y; ZÞ þ m2a1ðz; x; y; ZÞ þ � � �Þ;
b ¼ mðb0ðz; x; y; ZÞ þ m2b1ðz; x; y; ZÞ � � �Þ

where a0 and b0 satisfy the leading order equations and the dependence on z can be
understood via the leading order equations while the dependence on Z will be
given by the effective dynamics. Note that the only small parameter is m2:

Define two moving frames, i.e., n ¼ x � z and g ¼ x þ z; hence a0 and b0 have
the form

a0 ¼ Fðn; y; ZÞ þ Gðg; y; ZÞ
b0 ¼ ~Fðn; y; ZÞ þ ~Gðg; y; ZÞ:

Furthermore, from the leading order equation we can easily get

Fig. 8 Elliptical diffractions of the nonlinear Dirac equation (18a, b). Left: f ¼ 4
ffiffi
3

p

5 : Right: f ¼
ffiffi
3

p

2
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onð�iF þ ~FÞ ¼ 0; ogðiG þ ~GÞ ¼ 0:

Hence for decaying functions: ~F ¼ iF and ~G ¼ �iG:

At order Oðm2Þ; we have the equation

2onoga1 ¼T n;yF þ T g;yG þ �2onoZF þ 2ogoZG
	 


þ r 2ionðjFj2F þ 2jGj2F þ G2F	Þ � 2iogðjGj2G þ 2jFj2G þ F2G	Þ
h i

;

When we integrate a1; secular terms arise from the pieces that are functions of n
or g alone, not both. Removal of secular terms at order Oðm2Þ leads to the fol-
lowing maximally balanced nonlocal nonlinear equation for the right moving
component

onoZF � 1
2
T n;yF � rionðjFj2FÞ ¼ 0; ð24Þ

and similarly the left moving component equation is

ogoZG þ 1
2
T g;yG � riogðjGj2GÞ ¼ 0:

We see that the above equations have a special nonlocal structure. The is
reminiscent of the non-locality of the 2-D KP equation [41]. These equations are a
two-dimensional NLS analog of the KP equation. We refer to them as NLSKP type
equations. They describe the additional evolution structures along the moving
frames. The simulation given in Fig. 10 shows the evolution given the initial data

Fðn; y; Z ¼ 0Þ ¼ ne�n2�y2
; r ¼ þ1: The additional structure obtained from the

NLSKP Eq. (24) is consistent with Fig. 9; i.e. it is consistent with a blowup of the
local structure depicted in Fig. 9.

8.2 After Separation

When b\0; there is a gap between two dispersion branches. The edges to this gap
for both branches are reached at K	 ¼ � 1

2 k1 � 1
2 k2: The width of the band gap is

Fig. 9 Diffraction patterns for large deformations. Top: b ¼ 0:005 Bottom: b ¼ �0:01: Here
m ¼ 0:1
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2jbj: We then study the effective dynamics close to the edge; more specifically we

study the case that jbj ¼ Oðm2Þ with a2 ¼ jbj
m2 ¼ Oð1Þ:

It is noted that the continuous expansion changes when the gap is open. It is
similar to the above case, so we omit the details. Taking the continuous limit from
the discrete system (14a, b), making use of the relation: qe�iK	�v1 ¼ qe�iK	�v2 ¼ �q;
keeping terms up to m2 and rescaling the variables x ¼ x1; y ¼ x2=

ffiffiffi
3

p
; we obtain the

continuous equations

ioza þ ð1 � a2m
2ÞF 1b þ a2mb þ rjaj2a ¼ 0; ð25aÞ

iozb þ ð1 � a2m
2ÞF 2a þ a2ma þ rjbj2b ¼ 0; ð25bÞ

where

F 1 ¼ ox �
m
2
ðo2

x þ o2
yÞ þ

m2

6
o3

x þ o3
y þ 3oxo

2
y

� 

F 2 ¼ �ox �
m
2
ðo2

x þ o2
yÞ �

m2

6
o3

x þ o3
y þ 3oxo

2
y

� 
:

As before we convert the above equations to a second order system which is of
the form

o2
z a � o2

xa þ m2F x;ya þ r �iotðjaj2aÞ þ oxðjbj2bÞ
h i

¼ 0

o2
z b � o2

xbm2F x;yb þ r �iotðjbj2bÞ þ oxðjaj2aÞ
h i

¼ 0;

where the operator

F x;y ¼ a2
2 � a2ðo2

x þ o2
yÞ �

1
12

o4
x þ 6o2

xo
2
y � 3o4

y þ 4oxo
3
y

� 

and we recall a2 ¼ jbj
m2 is Oð1Þ:

Then we express a and b as

a ¼ mða0ðn; g; y; ZÞ þ m2a1ðn; g; y; ZÞ þ � � �Þ;
b ¼ mðb0ðn; g; y; ZÞ þ m2b1ðn; g; y; ZÞ þ � � �Þ;

Fig. 10 Numerical simulations of NLSKP equations. Left: Eq. (24). Right: Eq. (26). Here
r ¼ þ1 and a1 ¼ a2 ¼ 1
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where a0 and b0 satisfy the leading order equations.
As above, a similar calculation shows that

a0 ¼ Fðn; y; ZÞ þ Gðg; y; ZÞ; b0 ¼ iFðn; y; ZÞ � iGðg; y; ZÞ:

At order Oðm2Þ; we have

2onoga1 ¼F n;yF þ F g;yG þ �2onoZF þ 2ogoZG
	 


þ r 2ionðjFj2F þ 2jGj2F þ G2F	Þ � 2iogðjGj2G þ 2jFj2G þ F2G	Þ
h i

;

F n;y and F g;y are obtained from F x;y by changing x to n and g respectively.
Removal of secular terms at order m2 leads to two maximally balanced equa-

tions which govern the leading order dynamics of the right and left moving
components; the equation for F is

onoZF � 1
2
F n;yF � rionðjFj2FÞ ¼ 0; ð26Þ

and the equation for G is

ogoZG þ 1
2
F g;yG � riogðjGj2GÞ ¼ 0:

These nonlocal equations are also NLSKP-type, though slightly different from
those found the preceding subsection. In Fig. 10 we show a typical numerical
result. We see similarity to the preceding case –see Eq. (24)—but with more of a
focusing effect which is ascribed to our now being in the gap region.

9 Conclusion

Wave propagation in honeycomb lattices has attracted keen interest in many
disciplines. This paper discusses nonlinear waves in honeycomb lattices and in
particular nonlinear optical wave propagation are studied in deformed honeycomb
lattices. Discrete coupled mode equations were obtained via an orbital approxi-
mation. These equations describe the lowest band of the linear dispersion relation
of the original lattice NLS equation. Depending on the deformation, the dispersion
relation may or may not admit conical crossings. In undeformed lattices, there are
two Dirac cones. The associated envelope dynamics is obtained by taking the
continuum limit of the couple mode equations near the Dirac points. This results in
a higher order nonlinear Dirac equation. Utilizing this equation, both linear and
nonlinear propagation of the envelope wave packets near Dirac points are ana-
lyzed. The leading order effect is a circular conical diffraction while the next order
correction modifies the circular structure into hexagonal structure in the linear
problem and triangular diffraction when nonlinearity is included. In general higher
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order linear effects become noticeable even when m is very small. We see that
nonlinearity expands the energy distribution in momentum space. In addition,
nonlinearity also induces the coupling of two branches. Depending on the sign of
the nonlinearity, one branch is enhanced while the other is weakened. Triangular
diffraction is obtained even when initial condition is evenly distributed between
the two branches.

When the deformation is small, the evolution pattern is changed moderately:
circular conical diffraction becomes elliptical. However, when the deformation is
large, the two branches may separate from each other and conical crossings in the
dispersion relation disappear. In this regime a localized input splits into two
moving nearly straight line components propagating in ‘left and right’ going
directions. The effective dynamics of the wave packets associated with the Dirac
point (before separation) or edge point (after separation) is described by into two
maximally balanced nonlocal NLS equations termed here as: NLSKP type
equations.
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Light Self-Localization and Power-
Dependent Steering in Anisotropic
Dielectrics: Spatial Solitons in Uniaxial
Nematic Liquid Crystals

Alessandro Alberucci and Gaetano Assanto

Abstract We discuss nonlinear propagation of light beams in anisotropic media,
addressing the role of nonlocality and nonlinearity in power-dependent beam self-
steering. With specific reference to spatial solitons in positive uniaxial nematic
liquid crystals (i.e. nematicons), we describe soliton self-acceleration through
reorientational response and nonlinear walk-off.

1 Introduction

Since the invention of laser by Maiman in 1960 [1] and the consequent availability
of intense coherent light sources, nonlinear optics has been widely investigated [2,
3] and several phenomena have been demonstrated: frequency generation, stim-
ulated scattering, wave-mixing, self-action, electromagnetic-induced transparency,
etcetera. We focus hereby on beam self-focusing [4]: as the refractive index
depends on light intensity via the Kerr effect, a bell-shaped wavepacket is able to
define an index well which, in turn, acts on the confinement of the beam itself.
When nonlinear trapping balances diffractive spreading, a spatial soliton is gen-
erated [5–7].1 Self-focusing in anisotropic dielectrics has not been studied as in-
depth as in isotropic media, despite the fact that light propagation in anisotropic
media encompasses peculiar properties such as double and conical refraction,
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1 In this work we will use the terms soliton and solitary waves interchangeably, even though in
mathematical physics they can refer to distinct wave entities.
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nonspecular reflection, etc. [8]. Anisotropic materials are employed in optical
signal processing to realize basic components, such as waveplates, polarizers,
beam splitters, spin-to-orbital angular momenta converters, displays, modulators
and so on. Therefore, it appears quite natural to investigate how light self-traps in
the presence of optical anisotropy, with specific attention to inherently anisotropic
nonlinear mechanisms: spatial solitons have been observed e.g. in photorefractive
media [9], parametric crystals [10–12] and liquid crystals [13–15].

In this chapter we describe spatial self-focusing of light in anisotropic media,
emphasizing the interplay between birefringence and nonlinearity, and the appear-
ance of effects unavailable in isotropic materials, such as self-steering due to non-
linear changes in walk-off. In isotropic media, self-steering of individual solitons was
predicted in conjunction with asymmetric beams [16] or transverse phase modulation
[17], through the nonlinear tunnelling of a linear barrier [18, 19], the asymmetric
interaction with boundaries in the absence [20] or in the presence [21] of a linear
trapping potential. In photorefractive crystals soliton self-steering was demonstrated
via the asymmetric diffusion of photogenerated charges [22], in quadratic parametric
media through mutual dragging of fundamental and second harmonic field compo-
nents [12], in liquid crystals owing to the interaction with a linear trapping potential
[23] or finite boundaries [24]. Recently, self-acceleration of linear as well as non-
linear Airy beams has been investigated and reported [25–29].

In the next sections, following a general discussion, we will focus on nematic
liquid crystals, a highly nonlinear and highly birefringent uniaxial. The theoretical
ideas discussed in this chapter were tested with several experiments in nematic
liquid crystals: an excellent good agreement was found, both on soliton properties
and on walk-off dependence with power [30]. Finally, for the sake of conciseness,
we limit our discussion to the propagation of individual nematicons. However, the
results presented in this chapter can be extended to the case of interacting ne-
maticons as in Ref. [31].

2 Nonlinear Light Propagation in Anisotropic Media

In this section, starting from Maxwell’s equations in complete vectorial form, we
show how it is possible to model nonlinear light propagation in uniaxials using a
single (scalar) equation. Such an equation is able to describe nonlinear phenomena
occurring uniquely to anisotropic media, including power-dependent beam self-
steering via nonlinear changes in walk-off.

2.1 Equations for the Optical Field

Let us consider a uniaxial medium with a dielectric tensor of the form
� ¼ �xx; 0; 0; 0; �yy; �yz; 0; �zy; �zz

� �
, that is, an optic axis lying in the plane yz. The

dielectric tensor �L accounts only for the linear polarizability of the medium: we
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explicitly write the nonlinear polarization PNL by defining D ¼ � � E þ PNL. For
the sake of simplicity we limit ourselves to the (1 ? 1)D case, i.e. we set ox ¼ 0.
The previous assumptions guarantee the independence of extraordinary and
ordinary components, avoiding energy exchange between the two waves and
related effects. The Maxwell’s equations for the extraordinary component in the
harmonic regime (pulsation x) take the form [32]

oz þ
�yz

�zz
oy

� �
Hx ¼ jx n2

e�0Ey �
�yz

�zz
PNL

z þ PNL
y

� �
; ð1aÞ

oz þ
�yz

�zz
oy

� �
Ey ¼

j

x�zz
o2

yHx þ jxl0Hx �
oyPNL

z

�zz
; ð1bÞ

Ez ¼ � �yz

�zz
Ey þ

j

x�zz
oyHx �

PNL
z

�zz
; ð1cÞ

where we neglected the spatial derivatives of �L and set n2
e ¼ �yy � �2

yz=�zz

� 	
=�0.

Equations (1a–1c) are quite general and hold valid even for an inhomogeneous
dielectric tensor �, for any nonlinearity and in the non-paraxial limit. To analyze
the physical meaning of Eqs. (1a–1c), we note that the quantity �yz=�zz correspond
to the walk-off angle d of a plane wave with wavevector parallel to ẑ (k "" ẑ). If we
take the walk-off to be uniform in space, we can introduce the new reference
system y0 ¼ y � tan d z and z0 ¼ z. We also define the unit vectors t̂ ¼ cos d ŷ �
sin d ẑ and ŝ ¼ cos d ẑ þ sin d ŷ, parallel to the electric field and the Poynting
vector, respectively. Thus, light propagation can be modeled by the scalar
equation [32]

o2
z0Hx � 2oz0 ln neð Þ oz0Hx þ

jx
cos d

PNL
t

� �
þ Do2

y0Hx

þ k2
0n2

eHx �
jx

cos d
oz0P

NL
t � D cos d oy0P

NL
z

� �
¼ 0;

ð2Þ

where k0 is the vacuum wavevector and D ¼ �0n2
e=�zz. The magnetic field Hx

completely describes the electromagnetic wave, with electric field components

given by Et ¼ oz0Hx

jx�0n2
e cos d �

j sin d
x�zz

oy0Hx � PNL
t

�0n2
e cos2 d þ sin d

�zz
PNL

z and Es ¼ j cos d
x�zz

oy0

Hx � cos d
�zz

PNL
z :

Let us first consider the application of Eq. (2) to the simplest case of a
homogenous uniaxial. Equation (2) provides o2

z0Hx þ Do2
y0Hx þ k2

0n2
eHx ¼ 0, i.e.

the walk-off angle of beams with center wavevector k ¼ k0ẑ is d, even in the non-
paraxial regime [33]. For beams paraxial along z, Eq. (2) becomes the classical
paraxial Helmholtz equation, but with a diffraction coefficient D determined by the
orientation of the optic axis. The latter suggests to enforce the paraxial approxi-
mation in the moving frame y0z0.
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We now turn to shape-preserving solutions of Eq. (2), i.e., solitary waves,
propagating with a walk-off d in geometries retaining their transverse distribution
along z0, i.e., with oz0ne ¼ 0. Accordingly, we set Hx ¼ uðy0Þe�jk0 n0þnNLð Þz0 , with n0

and nNL the linear and the nonlinear contributions to the effective index, respec-
tively; similarly, we define pNL from PNL. Equation (2) thus gives [32, 34]

� k2
0 n2

NL þ 2n0nNL


 �
u þ Do2

y0u þ k2
0Dn2

eu

� k2
0c n0 þ nNLð Þ

cos d
pNL

t þ jk0cDoy0p
NL
z ¼ 0;

ð3Þ

where Dn2
e ¼ n2

e � n2
0 accounts for a linear index well, when present. For a generic

solution u of Eq. (3) we can compute the corresponding Poynting vector S as [34]

S ¼ 1
2

ŝ
n0 þ nNL

n2
e cos d

Z0juj2 þ
j sin d
x�zz

u�oy0u þ pNL
t u�

�0n2
e cos d

��

� sin d pNL
z u�

�zz

�
þ t̂

j cos d
x�zz

u�oy0u � cos d
�zz

u�pNL
z

� ��
;

ð4Þ

being Z0 the vacuum impedance.
Equation (3), coupled with an expression for the nonlinear polarization, yields

the profile of solitary waves in uniaxials, generally accounting for large anisotropy,
large (i.e., non-perturbative) nonlinear effects and beam non-paraxiality. Accord-
ing to Eq. (3), the phase of u does not vary on a generic plane z0 ¼ constant if pNL

t

is real (i.e., in phase with u) and pNL
z is purely imaginary (i.e., shifted by 90� with

respect to u). The term proportional to pNL
t is responsible for light self-trapping,

with the nonlinear index well depending on the optical field according to the
specific nonlinearity. In the case of asymmetric nonlinearities [20, 35], pNL

t can
induce distortions on the phase front of u, corresponding to a sideway motion of
input beams with phase fronts normal to ẑ. The term proportional to pNL

z can be
also responsible for soliton self-steering via nonlinear changes in walk-off, as we
will show in the following section.

Finally, we stress that generalizations to the full (2 ? 1)D case are easily
accomplished if we neglect the field components Ex;Hy and Hz; the changes in
Eq. (2) mainly consist in the addition of the second derivatives along x [36].

2.2 Soliton Self-Steering

For an arbitrary nonlinear polarization, we expect the beam walk-off to vary with
power P owing to the changes in the medium polarization with respect to the linear
case. Let us begin discussing which nonlinear response would conserve the walk-
off constant to its linear value. We use the superscript ov to indicate the overall
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properties of the dielectric, i.e. both linear and nonlinear contributions. For the

walk-off we then have dov ¼ arctan �ov
yz=�

ov
zz

� 	
: by setting �ov ¼ �þ vNL, at the first

order we get dov ¼ d if the equivalence

vNL
yz

vNL
zz

¼ tan d ð5Þ

is satisfied. In deriving Eq. (5) we assumed vNL purely real: for the sake of sim-
plicity we will retain this hypothesis hereafter. The condition (5) seems to rely on
physical grounds, as in order to conserve the direction of propagation of the
photons, the dipoles induced by the external field have to keep oscillating in the
same (linear) direction.

We now validate condition (5) using the mathematical tools developed in the
previous section. From Eqs. (3) and (4) we find that the phase front of u conserves
its shape for increasing P if Re pNL

z =�ov
zz


 �
¼ 0. It is then straightforward to obtain

the condition (5), confirming the intuitive result.
Whenever condition (5) is not satisfied, the nonlinear eigenvalue problem of

Eq. (3) is solved by a complex u. The appearance of a tilted phase on the soliton
indicates a variation in walk-off, i.e. an angle change between the wavevector—no
longer aligned to ẑ due to the nonlinear polarization—and the Poynting vector
along ŝ.

To prove the latter statement, we assume a local Kerr-like nonlinearity with

PNL ¼ �0n2 jEtj2 þ jEsj2
� 	

E. Since the nonlinearity is symmetric, pNL
t acts only on

the beam waist. We get pNL
z / juj2u if Es � Et; in addition

oy0pNL
z / u2oy0u� þ 2juj2oy0u

� 	
, where the star stands for complex conjugate.

Substituting back into Eq. (3), the imaginary terms can be dropped with the
substitution uðy0Þ ¼ vðy0Þ exp ðjn0y0Þ, thus ensuring that v is purely real. The
quantity n0 represents the variation in walk-off with respect to the unperturbed
value d [32].

To conclude this section we stress that, when the condition (5) is not satisfied,
nonlinear changes in walk-off take place, even at low powers. In homogeneous
media (i.e., Dn2

e ¼ 0) we expect distinct behaviors in the perturbative and in the
highly nonlinear regimes, respectively, depending on the size the excitation [37].
For small input powers the beam evolves in the perturbative regime, that is, the
nonlinear polarization is small with respect to the linear polarization. The obser-
vable role of the nonlinearity is to change the beam waist via self-focusing,
whereas changes in walk-off are negligible as PNL is much smaller than � � E.
When the nonlinear and linear polarizations becomes comparable, the walk-off
becomes a function on the beam power P, yielding a measurable power-dependent
beam trajectory [38].
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3 Highly Nonlocal Case

An important case is the high nonlocality, i.e., the case of uniaxials with nonlinear
polarization extending much beyond the beam profile [39]. High nonlocal
responses are usually related to diffusion, comprising charge diffusion in photo-
refractive materials [40], heat transfer in thermo-optic media [41] and elastic
interactions in liquid crystals [42].

In these dielectrics the mathematical description of solitons is based on the
well-known quantum harmonic oscillator [43]. For example, supposing PNL ¼
V0ðPÞ þ V2ðPÞy02½ �ût and small nonlinear deflections, Eq. (3) provides

2n0nNL þ
cn0V0

cos d
� DV2

0 c2 sin2 d
4

� �
v ¼ D

k2
0

o2
y0v �

cn0

cos d
V2y02v; ð6Þ

with a phase-front tilt given by n0 ¼ k0V0c sin d
2 , thus depending only on the peak of

PNL. Equation (6) can be solved once a specific nonlinear mechanism is invoked,
so that a the dependence of V0 and V2 on the soliton power P can be derived. The
nonlinear eigenvalue problem stated by Eq. (6) governs nonlocal solitons in uni-
axial media, accounting also for nonlinear variations in walk-off. Solitons are
Hermite-Gauss functions, with waist depending on P via V2 [43]. The illustrated
approach fails for large nonlinear effects, when neither the dependence of D and d
on power P can be neglected, nor the nonlinear polarization in the relationship
between electric and magnetic fields. The arbitrarily nonlinear case needs be
treated with reference to a specific response. In the following of the chapter we
will focus on the reorientational nonlinearity in nematic liquid crystals, which has
lately stimulated a good deal of attention [15].

3.1 Reorientational Nonlinearity in Nematic Liquid Crystals

Liquid crystals are phases of matter characterized by properties of both solids and
liquids. In the nematic phase the organic molecules are randomly located on a
macroscopic scale, but in average they are oriented in the same direction due to
strong mutual interactions (Fig. 1) [44].

Macroscopically, nematic liquid crystals (NLC) behave as uniaxial crystals,
with the optic axis parallel to the molecular director n̂ defined as the preferential
alignment of the molecules (Fig. 1). We name nk and n? the refractive indices
experienced by light polarized parallel and normal to the director, respectively

(Fig. 1) and introduce the optical anisotropy �a ¼ �0 n2
k � n2

?

� 	
. The director

distribution varies from point to point, thus NLC can in general be modelled as
inhomogeneous birefringent media; defining h as the angle between n̂ and
wavevector k==ẑ, the elements of � are �lkðhÞ ¼ n2

?dlk þ �anlnk ðl; k ¼ x; y; zÞ,
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where nl ¼ n̂ � l̂ and dlk is the Kronecker delta. We recall that ne hð Þ ¼

cos2 h
n2
?

þ sin2 h
n2
k

� ��1=2

and d hð Þ ¼ arctan
�a sinð2hÞ

�aþ2�0n2
?þ�a cosð2hÞ

h i
; ne and d are graphed in

Fig. 2 for a typical NLC (e.g. E7). When subjected to external electric fields, the
NLC director undergoes a torque as the induced molecular dipoles tend to align
with the field lines (see Fig. 3).

The electric torque is counteracted by an elastic torque due to the microscopic
intermolecular forces. The director distribution in equilibrium can be found by
minimizing the total free energy [44].

Since electric fields are able to rotate the director (i.e. the optic axis), they can
strongly modify the optical properties of the uniaxial NLC [45]. When the electric
fields are at low frequency, i.e. they stem from the application of an external
voltage, a strong electro-optic effect characterizes the NLC, a phenomenon widely
employed in flat display technology. When the electric fields are associated with
light waves, a strong Kerr-like response takes place with a resulting self-focusing
[13, 46]. In either cases, NLC possess a very large polarizability, making them
ideal candidates for external control on light wave propagation [47].

Mathematically, if we assume that the NLC molecules rotate in the plane yz
exclusively under the action of an optical field, the director distribution can be
calculated by solving the Euler-Lagrange equation

Kr2h þ �a

4
sin 2hð Þ jExj2 � jEzj2

� 	
þ 2 cos 2hð ÞRe ExE�

z


 �h i
¼ 0; ð7Þ

where K is the scalar Frank elastic constant [44, 45]. To identify the various
contributions to h, we write h ¼ h0ðx; y; zÞ þ wðx; y; zÞ, with h0 the director

Fig. 1 Molecule distribution
(green ellipses) in liquid
crystals in the nematic phase;
the molecular director and the
principal axes are indicated,
as well

Fig. 2 Extraordinary
refractive index ne and walk-
off d versus h. Here we took
n? ¼ 1:5, nk ¼ 1:7
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orientation in the absence of illumination and w its nonlinear optical perturbation
(see Fig. 3). Noteworthy, Eq. (7) establishes a nonlinear relationship between
the intensity and the perturbation of the director angle. Equation (7) permits the
evaluation of the width ww of the angular perturbation w; the magnitude of the
nonlocality can be determined by the ratio between the beam waist w in intensity
(defined as the square root of the second-order centered momentum) and ww. In
fact, the spatial extent of w is determined by the Green function of the linearized
version of Eq. (7) (corresponding to a Poisson-like equation), in turn fixed by the
boundary conditions [30]. If the beam is narrower than any linear dimension of the
sample, the width ww depends on the shortest side of the cell which confines
the NLC.

Equation (7) has to be solved in conjunction with Maxwell’s equations. At
variance with the notation introduced to derive Eq. (2), we now indicate with � the
overall dielectric tensor, including the power-dependent contributions (depending
on w). Since w and h0 can be comparable under experimental conditions, the latter
choice helps simplifying the description of beam evolution. Therefore, in the
highly nonlocal limit paraxial light beams propagating along ẑ obey the general-
ized anisotropic NLSE [30]

2jk0nb
oA

oz
þ tan db

oA

oy

� �
þ D

o2A

oy2
þ o2A

ox2
þ k2

0Dn2
eA ¼ 0; ð8Þ

with A the slowly varying envelope of Hx and subscript b indicating values on the
beam axis (i.e. peak intensity). The term Dn2

e ¼ n2
eðhÞ � n2

b accounts for index
inhomogeneities, of both linear (given by h0) and nonlinear (given by w) origins,
respectively. We stress that the nonlinear index well is computed via Eq. (7), the

latter determining the relationships between the optical intensity jAj2 and the
optical perturbation w. Analogously, the trajectory dependence on nonlinear walk-
off variations is modelled by dbðzÞ and its dynamics with the evolution coordinate z
is governed by Eq. (7) [38].

Fig. 3 Effect of an external electric field E (red arrow) polarized along y on molecular
orientation in a positive uniaxial NLC (i.e., �a [ 0). In the absence of perturbation (left) the
molecular director is at an angle h0 with ẑ. When an intense electric field E is present (right), the
molecule tends to rotate and align the induced dipole (parallel to n̂) with E, with a net change w
in h
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4 Basic Physics of Nematicons

Nematicons can be modelled by the system of Eqs. (7–8). The physics of nema-
ticon formation through reorientation is sketched in Fig. 4. Hereafter, we will
assume positive NLC, i.e., �a [ 0 in the optical spectrum.2 In the following, unless
specified otherwise, we will assume a homogeneous director distribution in the
absence of light, i.e., h0 independent from spatial coordinates. A finite beam in the
extraordinary polarization is launched into the NLC. At small power, the torque is
weak and no appreciable director reorientation occurs: the beam undergoes dif-
fractive spreading. At high power, the beam induces molecular reorientation and,
in turn, a focusing increase in refractive index ne. When the latter lens-like effect
due to w compensates diffraction, a bright solitary wave is obtained [15]. In
general, solitary waves in NLC undergo periodic oscillations in waist and peak
intensity, i.e., they breathe [43, 48]; profile-invariant nematicons [49] will be dealt
with in Sect. 5, breathers in Sect. 6. In the remaining of this section we describe
perturbative and highly nonlinear regimes of nematicon propagation [37] for both
breathing and steady nematicons.

4.1 Perturbative Regime

The nonlinear perturbative regime is characterized by the condition w � h0, i.e.,
the optical perturbation is small with respect to the distribution of the director
angle at rest. In this regime the light beam is able to self-write a photonic potential
[given by Dn2

e in Eq. (8)] strong enough to affect the beam via self-focusing.
The self-induced index well is due to the inhomogeneous nonlinear polarization.

Fig. 4 Propagation of single-hump beams in NLC. When reorientation is negligible (left), the
beam diffracts linearly. For high enough powers, the director distribution is perturbed and self-
focusing takes place; when diffraction and self-focusing counterbalance one another (right) a
profile invariant nematicon is generated

2 Nematicons could propagate even in negative uniaxial NLC, the only difference being the sign
of the torque. To our knowledge, no experimental observation was reported in this case.
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The beam trajectory, fully determined by the walk-off,3 is not appreciably modi-
fied as compared with the linear response.

When solving Eq. (7), h in the trigonometric functions can be replaced by h0

without significant error. After setting d0 ¼ d h0ð Þ and c ¼ �a=ð4KÞ, the reorien-
tational equation takes the form of a linear Poisson equation, i.e. r2wþ
cjEtj2 sin½2ðh0 � d0Þ� ¼ 0, the solution of which is given by wðx; y; zÞ ¼
n2 h0ð Þgðx; y; zÞ, with g the convolution between jEtj2 and the Green function G.
Thus, the shape of the nonlinear photonic potential relates to the Green function G
in the highly nonlocal limit. In the latter limit the nonlocality is fixed by G, i.e. it
depends on the geometry of the NLC cell. The depth of the light-induced index
well depends on the effective nonlocal Kerr coefficient [30]

n2ðh0Þ ¼ 2c sin 2ðh0 � d0Þ½ �n2
eðh0Þ tan d0; ð9Þ

which is only a function of the initial angle h0, the refractive index n? and the
anisotropy �a.

A similar approach leads to the walk-off change. After defining cd ¼ ddb=dP,
we can express it as [38]

cdðh0Þ ¼
sin 2 h0 � d0ð Þ½ �

1 þ tan2 d0

dd0

dh0
: ð10Þ

Calculated n2 and cd are plotted in Fig. 5 for a standard NLC (E7). Self-
focusing, ruled by n2, is maximum for h0 � p=4 where the light torque is maxi-
mum, zero for h0 ¼ 0 (Freedericksz threshold) and h0 ¼ p=2 (no torque). The
function cd depends on the interplay between the field-dipole torque and the
derivative of d with respect to h. The net results is that self-steering is zero for
h0 � p=4, whereas it is positive for 0\h0\p=4 and negative for p=4\h\p=2; cd

is zero in h0 ¼ 0 and h0 ¼ p=2 owing to the lack of reorientation at those angles.
Noteworthy, the perturbative regime is limited by the size of cd: the larger cd is for
a given h0, the sooner the highly nonlinear regime needs to be considered.

Fig. 5 Calculated n2 (left)
and cd (right) versus h0 for
nk ¼ 1:7 and n? ¼ 1:5

3 Hereby we ignore wavevector deflections associated with asymmetric boundary conditions.
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4.2 Highly Nonlinear Regime

When the power is large enough, the approximation h � h0 is no longer valid and
the nematicon trajectory depends on power via variations of db. The linearization
of Eq. (7) becomes inaccurate as the nonlinear response takes a saturating char-
acter, with nonlinear effects drastically reducing for angles hb approaching p=2. It
is important to underline that the nonlocality, in the highly nonlocal limit, is not
affected by saturation. In fact, from the reorientational equation we can write (the
vector rb follows the nematicon trajectory) [38]

wðx; y; z;PÞ � 2Z0c
nb cos2 db

GðrbÞ
Z P

0
sin 2 h0 þ wb � db½ �f gdP: ð11Þ

Equation (11) is not valid by the beam peak due to the divergence of G; from
the accessible soliton model, in this region w has a parabolic profile with curvature
stemming from the conditions of continuity and derivability of w. Despite these
limitations, we see that saturation affects the amplitude of the perturbation wb

[from Eq. (11)] but not its profile.

5 Profile-Preserving Nematicons

The system of Eqs. (7–8) models light self-focusing in NLC. First, we look for
solitary waves when the NLC is homogeneous in the absence of a beam (i.e., h0

has the same value everywhere), using the ansatz w ¼ wsðx; y � tan dbzÞ and
A ¼ Asðx; y � tan dbzÞ exp jk0nNLzð Þ, with db a constant depending on input power.
At variance with Sect. 3, we now fix the phase-front (planes normal to ẑ) and let
the director free to rotate in the plane yz, such rotation leading to a varying walk-
off. We have to solve the nonlinear eigenvalue problem

2nNLnbk2
0As ¼

o2As

ox2
þ D

o2As

oy2
þ k2

0Dn2
eAs; ð12Þ

1 þ tan2 db


 � o2ws

oy2
þ o2ws

ox2
þ j2c sin 2 h0 þ wb � dbð Þ½ �jAsj2 ¼ 0; ð13Þ

with j ¼ Z0=ðnb cos dbÞ. The solution of the two coupled equations (12–13) for a
given input power consists in the profiles ws and As, with the scalar db which
determines the soliton trajectory along propagation. Here we focus on lowest-order
bright solitons, i.e., bell-shaped solutions. We consider planar cells, i.e. a slab of
NLC infinitely extended along y and z, but with finite thickness L along x (the cell
mid-plane is chosen in x ¼ 0). To avoid repulsive effects due to the boundaries
(where molecules are anchored), we restrict to beams propagating in the mid-plane
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x ¼ 0 [24]. In this case, taking the peak of the intensity profile in y ¼ tan dbz, it is
db ¼ d hbð Þ.

We solved numerically the system (12–13) using typical experimental condi-
tions, setting nk ¼ 1:7, n? ¼ 1:5 (indices corresponding to the NLC E7 in the near
infrared), L ¼ 100 lm and k ¼ 1064 nm (both L and k will be kept constant in the
following). The computed As and ws are graphed in Fig. 6. For every excitation, ws

is affected by the boundaries in the tails of the distribution, with a cylindrically
symmetric curvature around the beam center. Away from the beam, ws closely
follows the Green function for the Poisson equation in the given geometry, con-
firming that ww is nearly equal to L. The corresponding profiles As are symmetric
for waists w small compared to L, with transverse shape closely resembling a
Gaussian function, in agreement with the accessible soliton theory [43]. Small
anisotropies arise only for large waists or small powers, when the confinement is
weaker. These results demonstrate that the asymmetry stemming from D is neg-
ligible for typical anisotropies �a.

Due to the nonlocal and saturating character of Eq. (13), we expect that
nematicon properties versus power strongly depend on the rest orientation of the
director. Numerical results, plotted in Fig. 7 versus the initial director angle h0 and
input power P, confirm the prediction. Clearly, the peak in reorientation hb always
increases with P, but with a rate proportional to the light-dipole torque: in fact, the
density of the isolines in Fig. 7 is higher for hb close to p=4, the latter corre-
sponding to the maximum torque according to Eq. (13). It is also apparent that
saturation of the nonlinearity versus P begins at lower excitations for larger h0.
The behavior of hb and the dependence of ne from h (see Fig. 2) imply a mono-
tonic growth of nNL versus P, therefore ensuring nematicon stability on the basis of
the Vakhitov-Kolokolov criterion [7]. The walk-off experienced by the nematicon
depends on hb as in Fig. 2. Since the walk-off is maximum for hb close to p=4 (see
Fig. 2),4 in Fig. 7 (middle panel) the locus of maximum walk-off is a quasi-straight
line starting from P ¼ 0 mW; h0 ¼ 45�ð Þ and ending in P ¼ 16 mW; h0 ¼ 15�ð Þ.
Below (above) the straight line the walk-off increases (decreases), in agreement
with the behavior of cd in Fig. 2. Hence, the walk-off db versus P has a local

Fig. 6 Transverse profile of
As (left) and ws (right). h0 ¼
p=4 when the input powers
are P ¼ 1:8 mW (bottom
black lines), 12 mW (middle
red lines) and 47 mW (top
blue lines). Dashed and solid
lines correspond to profiles
versus x and y, respectively

4 This is true for the given anisotropy; see [50] for a complete discussion on the role played by
the anisotropy �a on nematicon properties.
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maximum for h0\p=4, whereas for larger h0 the Poynting vector monotonically
relaxes towards k==ẑ for increasing P [49].

Another important quantity is the nematicon waist w: in Fig. 7 we can see that
the nematicon size is symmetric with respect to h0 � p=4 for powers up to 5 mW,
as expected based on the plot of n2 h0ð Þ (Fig. 2), whereas for larger excitations the
plot develops a strong asymmetry. This is connected with the transition from
perturbative to highly nonlinear regimes, as detailed in Sect. 4.2. Figure 8 graphs
the minimum soliton waist (versus input power) for each fixed h0: the highly
nonlinear regime breaks the symmetry around h0 � p=4.

6 Breathing Nematicons

In Sect. 5 we discussed profile-preserving nematicons and their properties. As well
known, the family of self-trapped waves in highly nonlocal media comprises
breathing solitons, i.e., self-localized structures undergoing periodic oscillation in

Fig. 7 Contour plots of hb (left) and the corresponding db (middle) versus nematicon power P
and the initial director orientation h0. Right Contour plots of log w=w0ð Þ versus log P=P0ð Þ and
h0; here P0 ¼ 5 mW and w0 ¼ 1 lm

Fig. 8 Minimum nematicon
waist calculated for each h0.
For small h0 the waist tends
to the minimum set by the
wavelength
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waist, in full analogy with linear propagation in a parabolic index well. In fact, the
existence curve for invariant nematicons is of the form P ¼ const 	 w�2 [43, 48]:
parameter pairs w�P not satisfying the existence relation give rise to breathing
solitons, widening or narrowing by the input region for parameters below or above
the existence curve in the plane P�w, respectively.

We analyze breathing solutions studying light propagation when Gaussian
beams with various waists and powers are launched into NLC. This strictly relates
to typical experimental conditions, when TEM00 laser beams are coupled into an
NLC sample.

6.1 Simplified (1 1 1)D Model

The numerical simulations of the system of Eqs. (7–8) require considerable
computer effort. A substantial simplification can be achieved with the ansatz
wðx; y; zÞ ¼ w2Dðy; zÞ cos px

L


 �
, providing [30]

2jk0nb
oA
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þ tan db

oA

oy

� �
þ D

o2A

oy2
þ k2

0Dn2
eA ¼ 0; ð14Þ

r2
yzw2D � p

L

� 	2
w2D þ j2c sin 2ðh0 þ w2D � dbÞ½ �jAj2 ¼ 0: ð15Þ

Equations (14–15) govern light beam propagation in the mid-plane x ¼ 0 when
neglecting the dynamics across x, i.e., they form a (1 ? 1)D model. Noticeably,
Eq. (15) is a Yukawa equation with a screening term given by L, i.e. the nonlo-
cality is correctly accounted for. Equation (15) includes nonlocal effects along ẑ by
retaining the term o2

z w2D, previously neglected in most of the models on nemati-
cons [42, 51–53]. In the (1 ? 1)D approximation, the beam power in Eqs. (14–15)
is underestimated with respect to the full 3D case; otherwise stated, light self-
localization can be obtained at powers much lower than in a 3D analysis [30].

The inclusion of the elastic forces along z permits to correctly model important
effects: self-steering due to nonlinear changes in walk-off, the smoothing action of
nonlocality along z, the attenuation due to the unavoidable scattering losses.
Concerning self-steering, the solution of the reorientational equation (15) does not
need the a priori knowledge of the nematicon propagation angle, which varies
with power as demonstrated in Sect. 5. The averaging/smoothing along z plays an
important role in the computation of the waist since, according to a model local
along z, the curvature of the nonlinear index well should be proportional to the
intensity peak [48]; the effect would be a fast z-varying nonlinear photonic
potential, which is unphysical. Finally, when propagating in NLC, light undergoes
scattering losses due to the size of the molecules [45] (of the order of 0:5 cm�1 in
the infrared region), with a consequent change in the strength of the nonlinear
response and, in turn, a non negligible o2

z w.
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6.2 Lossless Limit

In this subsection we show numerical solutions of the system (14–15) when a

Gaussian beam of the form Aðy; z ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Z0P= j2pnbw2

inð Þ
p

exp �y2=w2
in


 �
is

launched in a planar homogeneous NLC cell. In the simulations we kept the input
waist win fixed to 5 lm. The numerical code is based on a Crank-Nicolson beam
propagation method and standard relaxation algorithms for the computation of
light propagation and director distribution, respectively. Consistent combined
solutions are pursued by alternatively launching the two numerical procedures
until convergence is achieved.

Figure 9a–f shows the beam evolution in the plane yz for three input powers
and h0 ¼ p=4, the latter maximizing self-focusing. The size of the numerical grid
in the y-direction was much larger than 2L in order to avoid spurious effects from
the boundaries. The thickness L was 100 lm and the wavelength 1064 nm: both
these values were kept constant. At the input (z ¼ 0) and output sections
(z ¼ 1:5 mm) we assumed strong anchoring by imposing h ¼ h0.

In the linear regime (P ¼ 50 lW) the beam diffracts while propagating at the
linear walk-off angle d0, with a Rayleigh distance LR ¼ pne h0ð Þw2

in= Dkð Þ [50] (see
Fig. 9a). As power increases, self-focusing counteracts diffraction, reducing the
spreading as compared with the linear case. For further increase in power, the
waist versus z begins to decrease, i.e., a breathing nematicon is formed (see
Fig. 9b). As excitation keeps increasing, both the period and the amplitude of the
breathing diminish (Fig. 9c), reaching a quasi-stationary behavior versus z for

Fig. 9 Nematicon evolution in yz for P ¼ 50 lW (a), 100 lW (b), 200 lW (c), 1 mW (d),
1.4 mW (e) and 2.5 mW (f). g Beam profile computed at the output section z ¼ 1:5 mm versus y
for the same set of powers used in a–f; the fields are normalized with respect to their own peak
value. h Nematicon waist (in microns) versus z and P
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P ¼ 1 mW (Fig. 9d). Up to this excitation the walk-off is nearly unperturbed, as
seen in the output field profile in Fig. 9g. Consistently with the results in Sect. 5,
the variations in beam profile along z are minimized for a power depending on h0,
corresponding to the profile invariant nematicon for the waist win. Note that a truly
stationary nematicon can never be obtained as we launched a Gaussian beam, not
matching the exact nematicon solution (Sect. 5). For still higher powers
(Fig. 9e–f) the waist resumes oscillating with period and amplitude monotonically
growing versus excitation P. The trend in waist is summarized in Fig. 9h. We
pinpoint that, in the initial stage of propagation, the beam widens (narrows) if the
input power is smaller (larger) than the stationary value, respectively, due to the
interplay of self-focusing and diffractive spreading. At all powers nematicons
propagate in a straight line, in a direction corresponding to the power-dependent
walk-off. In particular, the walk-off in the considered range of powers and for the
given h0 reduces, as visible by the shift of the beam output profile versus y, see
Fig. 9g.

The profiles of the corresponding reorientation angle h are shown in Fig. 10a–f.
The perturbation follows the beam profile, with the peaks of the field and of w
perfectly overlapping (i.e. no deflections due to gradients in the refractive index
well). Figure 10g shows hb versus z: the oscillations in reorientation are strongly
damped by the nonlocality along z and the nematicon breathing remains almost
periodic, at variance with local models predicting strongly aperiodic oscillations at
high powers [54]. Finally, Fig. 10 graphs the transverse profile of w: the shape is
consistent with the full 3D model (Sect. 5), confirming that the (1 ? 1)D model
encompasses the correct amount of nonlocality.

Fig. 10 Distribution of h (measured in degrees) in the plane yz for P ¼ 50 lW (a), 100 lW (b),
200 lW (c), 1 mW (d), 1.4 mW (e) and 2.5 mW (f), respectively. g Maximum director
orientation hb (in degrees) versus z for various powers P. h Transverse profile of w in the section
z ¼ 1:45 mm versus y for the same set of powers used in a–f; the functions are normalized to their
own peak value
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6.3 Lossy Case

We now turn our attention to the more realistic case of a medium with scattering
losses, accounted for in Eq. (14). As shown in Ref. [30], the inclusion of losses in
the theoretical description of nematicons is essential in order to accurately describe
the experimental results. We assume an attenuation coefficient a � 5 cm�1 (power
drops as exp �2azð Þ); such value is realistic with reference to near-infrared scat-
tering in the NLC E7. Typical beam profiles and corresponding distribution of the
director orientation are plotted in Fig. 11 for win ¼ 5 lm.

In the linear regime (Fig. 11a) the beam diffracts as the nonlinear index well is
negligible (Fig. 11d), with its power decreases in propagation. As power increases
(Fig. 11a, e) the beam self-confines, even if its average amplitude attenuates
with z. The beam trajectory bends because the amount of self-steering varies
along z owing to power attenuation and the consequent drop in field-dipole torque.
The sign of the curvature depends on the rest angle h0 via the coefficient cd

[Eq. (10)], as confirmed by a direct comparison between panels (e) and (f) of
Fig. 11. It can also been appreciated how self-confinement is much stronger for
h0 ¼ 50� than for h0 ¼ 10� [see Eq. (9)], resulting in a more gradual reduction of
the maximum perturbation wb thanks to the stronger localization. When the power
in a given section is too low, diffraction prevails over self-focusing. For the same
reason, for large enough z the nematicon walk-off is the linear value d0, regardless
the excitation. Summarizing, the losses make the beam evolution more involved
due to the continuous variation of local power versus z.

Figure 12 plots the beam waist versus z for various excitations and h0. With
respect to the case of no losses (Fig. 9), breathing is in general aperiodic due to the

Fig. 11 a–c Perturbation w (measured in degrees) and d–f beam intensity profile jAj2
(normalized to the peak at the input) in the plane yz, for P ¼ 1 lW and h0 ¼ 10� (a, d),
P ¼ 5 mW and h0 ¼ 10� (b, e), P ¼ 5 mW and h0 ¼ 50� (c, f), respectively
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dynamics stemming from a continuous transition between lossless solutions at
each power versus propagation distance. Self-trapping is stronger for h0 close to
p=4, in agreement with Eq. (9). The results for initial angles h0 equally distant
from p=4 show comparable nematicon properties at low powers, whereas at high
powers a strong discrepancy appears as the system evolves from the perturbative to
the highly nonlinear regimes.

Figure 13 shows power-dependent changes in nematicon trajectory Dyb ¼
ybðz;PÞ � z tan d0, with ybðzÞ 


R
yjAj2dy=

R
jAj2dy. Dyb follows Eq. (10) and

approaches a constant value for large propagation distances, i.e., when wb goes to
zero. Interestingly, the variations of Dyb are monotonic with power except for
h0 ¼ 30� and h0 ¼ 40�. In these latter cases the system is in the highly nonlinear
regime as the reorientation is large enough to reach hb ¼ 45�, where dd=dh
changes sign.

To conclude, Fig. 14a plots the breathing period X versus h0 for P ¼ 0:8 mW.
Due to the breathing aperiodicity, we approximate X=4 with the distance of the
waist first maximum from the input. In agreement with the theory, the larger n2 the
shorter X is. To quantify self-trapping for fixed h0 and P we introduce the average

waist w ¼ 1=Lzð Þ
R Lz

0 wðz0Þdz0 with Lz ¼ 1:5 mm. Figure 14b shows the computed
w. At small excitations w varies with h0 owing to the different diffraction D, the
latter larger (smaller) for h0 closer to p=2 (0) [50]. Up to P ¼ 1:5 mW, the plot is
nearly symmetric with respect to h0 ¼ p=4 as the system is in the perturbative
regime. For larger powers, self-trapping becomes much stronger for small h0 due
to saturation close to p=2.

Fig. 12 Nematicon waist versus z for h0 ¼ 20� (a), 30� (b), 40� (c), 50� (d), 60� (e) and 70� (f).
Here the input powers are 0.5, 1, 3 and 5 mW, from navy blue to light blue, respectively
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7 Conclusions

We discussed light self-trapping in nonlinear uniaxials. We demonstrated that
spatial solitons in general self-steer as power changes, owing to a power-depen-
dence in walk-off; the latter is clearly more appreciable in the highly nonlinear
regime. We specialized the study to the case of reorientational nonlinearity in
nematic liquid crystals featured by a high nonlinearity: hence, they are ideal
candidates for investigating highly-nonlinear effects. We showed that nematic
liquid crystals exhibit a nonlocal response to a degree determined by the con-
finement geometry. In typical experimental conditions where the sample is much
larger than the beam profile, light propagates according to the highly nonlocal
limit. We discussed and derived expressions of both profile-invariant and breathing
nematicons, in the perturbative and highly nonlinear regimes, respectively,
detailing their behavior in terms of waist and trajectory versus input beam and
sample parameters. Finally, we demonstrated that nematicon trajectories evolve
from straight to bent owing to scattering losses, the latter responsible for decay in
nonlinear response versus propagation.

Fig. 13 Nonlinear changes in nematicon trajectory Dyb with respect to the linear case for various
h0. The input powers are 0.5, 1, 3 and 5 mW, from the darkest to the lightest line, respectively

Fig. 14 a X=4 versus h0 for
P ¼ 0:8 mW; n2 versus h0 is
also plotted for a direct
comparison. b Normalized
average waist w=win versus
log P=P0ð Þ and h0. Here
P0 ¼ 1 mW and win ¼ 5 lm
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The results presented in this work demonstrate how, in anisotropic media,
parity symmetry is broken as photon properties depend on their spin (i.e., field
polarization); in particular, symmetry breaking depends on excitation in the highly
nonlinear regime.
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Frequency and Phase Locking of Laser
Cavity Solitons

T. Ackemann, Y. Noblet, P. V. Paulau, C. McIntyre, P. Colet,
W. J. Firth and G. -L. Oppo

Abstract Self-localized states or dissipative solitons have the freedom of translation
in systems with a homogeneous background. When compared to cavity solitons in
coherently driven nonlinear optical systems, laser cavity solitons have the additional
freedom of the optical phase. We explore the consequences of this additional
Goldstone mode and analyze experimentally and numerically frequency and phase
locking of laser cavity solitons in a vertical-cavity surface-emitting laser with
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frequency-selective feedback. Due to growth-related variations of the cavity reso-
nance, the translational symmetry is usually broken in real devices. Pinning to different
defects means that separate laser cavity solitons have different frequencies and are
mutually incoherent. If two solitons are close to each other, however, their interaction
leads to synchronization due to phase and frequency locking with strong similarities to
the Adler-scenario of coupled oscillators.

1 Introduction

Lasers are a prominent example for self-sustained nonlinear oscillators. The phase
of the oscillation of the electromagnetic field is not determined but results from the
spontaneous breaking of the time symmetry present for cw pumping. Hence, the
phase is a Goldstone mode of the dynamics and couples easily to perturbations,
such as, for example, spontaneous emission. As a result of the induced ‘phase
diffusion’ [1], a laser has a finite linewidth (Schalow–Townes limit) and the
mutual coherence between two independent lasers will be limited even if they have
the same center frequency. Hence a lot of attention has been given to the phe-
nomena of frequency and phase locking, by which coupled lasers can synchronize
their frequency and phases to achieve coherent emission [2–5]. Laser synchroni-
zation is just a special example of synchronization dynamics of coupled oscilla-
tors, which is of high importance in all fields of Nonlinear Science [6, 7], the
earliest example being the famous observation made by Christiaan Huygens on
two pendulum clocks. A very well known biological example involving a large
number of oscillators is the synchronized flashing of fireflies [6, 7].

In photonics, frequency and phase locking has particular relevance for laser
injection [8, 9] and in laser arrays where it can establish coherence between
individual emitters even in the presence of disorder [10–12], i.e. an unintentional
variation of the frequencies of the free-running emitters forming the array. Phase-
locking of disorder-induced localized modes was observed in microchip
lasers [13]. Synchronization of chaotic lasers has promises for secure communi-
cation [14–17].

One other object of fundamental importance in different areas of Nonlinear
Science is the soliton [18–20], i.e. a nonlinearly self-localized state in one or more
dimensions in a conservative or dissipative system. As a self-localized state it can
exist anywhere in a translationally invariant system. Hence, laser solitons [21, 22]
have the freedom of translation in an ideally homogeneous system typical of
solitary waves as well as the freedom to choose the oscillation phase typical of
lasers. Both are Goldstone modes of the dynamics. Their interplay involves aspects
of synchronization dynamics and of soliton interaction. Dissipative solitons in
coherently driven optical systems [23] (Fig. 1a)—i.e. without the phase degree of
freedom—display a peculiar interaction behavior with a set of bound states with
different, discrete distances between constituents [24–27], which is also typical of
many non-optical systems [28], and is related to modulated tails of the solitons.
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Propagation solitons in conservative system like the Nonlinear Schrödinger
equation show phase-sensitive interaction behavior (attraction for zero relative
phase, repulsion for p relative phase) [18]. In the present case of a soliton laser,
phase and location are both dynamical variables.

As a consequence of synchronization and interaction, phase-locked bound
states with well defined phases and distances of the constituent laser solitons have
been predicted to form in simple model systems like the cubic-quintic Ginzburg–
Landau equation (CQGLE) [29–36]. These works concentrate on one-dimensional
dissipative solitons being motivated by temporal solitons in mode-locked lasers
(Fig. 1d). Indeed corresponding bound states were observed experimentally in
fiber lasers [26, 37–39]. A recent review of these phenomena is in [40].

Until recently the spatial case had been addressed only theoretically in lasers
with saturable absorbers (LSA) (Fig. 1c) [21, 41, 42]. Early experiments on sol-
itons in LSA using dyes and photorefractives as gain medium were limited to one
soliton due to specific cavity geometries [43–45]. Later investigations in a
photorefractive oscillator found multiple spatial laser solitons but did not inves-
tigate the interaction and phase properties [46]. Recently, there has been strong
progress in the realization of spatial laser solitons in semiconductor-based micro-
resonators with frequency-selective feedback [47–52] and saturable absorption
[42, 53–56]. In these systems, a broad transverse area (transverse indicates the
plane orthogonal to the cavity axis) is pumped in a marginally stable plano-planar
cavity. Emission does not take place over the whole aperture but on filaments
which are much smaller than the pumped aperture. These filaments are dissipative
solitons. We will refer to them as laser cavity solitons (LCS) and to the device as a
cavity soliton laser (CSL). Recent reviews are in [57, 58].

Fig. 1 Optical schemes displaying dissipative solitons. Panels a–c illustrate different schemes
for spatial solitons where the gain cavity is short to achieve a high Fresnel number or aspect
ratio (ideally single longitudinal mode, for simplicity and the validity of an uniform field
approximation), whereas scheme d illustrates a scheme for temporal solitons as, e.g., a fiber laser,
where the cavity is long and highly multi-longitudinal mode. SA saturable absorber, FSF
frequency selective feedback, thick black lines: cavity mirrors, dashed lines: partial reflectors (in
scheme c the partial reflector is not mandatory but present in many experimental realizations). In
panel a, illustrating an amplifier (or a driven passive cavity), the phase symmetry is broken due to
an external coherent field

Frequency and Phase Locking of Laser Cavity Solitons 51



LCS represent small coherent emitters, i.e. microlasers [47, 49]. Spatially
separated LCS are usually found to be incoherent in experiments [49, 59]. This is
due to uncontrolled fluctuations in the expitaxial growth process, which cause a
variation of resonance conditions across the pumped aperture of the device. Since
translation is a Goldstone mode of a soliton, it will couple to all spatially inho-
mogeneous perturbations and the soliton will move until it reaches a local extre-
mum of the perturbation, where the gradient vanishes [60, 61]. This leads first to a
pinning of the solitons at certain positions generally referred as either traps or
defects. This was investigated in detail in coherently driven semiconductor
microcavities [62, 63] (Fig. 1a). More recently, frequency-selective feedback
(Fig. 1b) to a laser device was shown to provide simple means for mapping these
variations [64].

Background defects in lasers not only fix LCS position but also induce a shift in
the LCS natural frequency. Recently it was shown that this diversity in natural
frequencies among LCS pinned by defects is a critical ingredient in the description
of their interaction and synchronization in real systems, leading to a scenario quite
different from the CQGLE on a homogenous background [65]. Reference [65]—
which we review and extend here—presents experimental and theoretical evidence
that the interaction of spatial LCS in real lasers is governed by the archetypal
Adler locking mechanism [66]. The Adler locking mechanism has relevance in
biological clocks, chemical reactions, mechanical and electrical oscillators [6]. In
optics frequency locking of the Adler type was first observed in lasers with
injected signals [9] with more recent generalizations to coupled lasers [4], the
spatio-temporal domain [67], quantum dot lasers [68] and frequency without phase
locking [69].

We note that for temporal LCS, such as those arising in fiber lasers [26, 37, 38]
and driven fiber cavities [70, 71], the effects of longitudinal inhomogeneities are
washed out by the propagation dynamics along the cavity axis (see Fig. 1d). Thus
every soliton sees the same material characteristics [72]. Hence, theoretical studies
considering the interaction of identical LCS arising on a homogeneous background
seem to be suitable for temporal LCS, but are not adequate to describe the
dynamics of coupled spatial LCS. Temporal solitons would be affected by
copropagating inhomogeneities [73, 74] which can be induced by modulating laser
parameters [75–78]. These regular parameter modulations were shown to have a
substantial effect on the phase-locked bound states but do not induce frequency
detunings between solitons when these are assembling at the minima of the
potential. Hence the relevance of frequency and phase locking and the Adler
scenario was not addressed in these works.

The organization of this book chapter is as follow. In the next section, Sect. 2,
we introduce the experimental system, a vertical-cavity surface-emitting laser
(VCSEL) coupled to a volume Bragg grating (VBG) as a frequency-selective
element (Fig. 1b). We review basic features and observations in this system and
then provide evidence and a detailed analysis of frequency and phase locking.
From a dynamical point of view, VCSELS can be considered as Class B lasers
characterized by the fact that the dynamics can be described in terms of the

52 T. Ackemann et al.



complex optical field and population inversion while the material dielectric
polarization can be adiabatically eliminated. For a theoretical and numerical
description of the system, we discuss in Sect. 3 a class B-laser model [52]. This
model is simplified afterwards to a complex equation for the optical field alone,
which is a Ginzburg–Landau equation with an additional linear filter (GLE-F)
[79, 80] and provides the simplest framework to understand the observed
dynamics. In Sect. 4 we study first the interaction of LCS on a homogeneous
background in the GLE-F and find a close correspondence to the results predicted
by the CQGLE. We will see that some of the LCS interaction properties on a
homogeneous background are significantly modified in the class-B model that
works for more realistic parameters. Then, in Sect. 5, we investigate the case of
LCS interaction in the presence of inhomogeneities, describe the resulting Adler-
synchronization for both models and compare the results to experiments. Section 6
provides then a final discussion and outlook.

2 Laser Cavity Solitons and Their Interactions in VCSELs
with Feedback

2.1 Devices and Experimental Setup

A vertical-cavity surface-emitting laser (VCSEL) is a semiconductor laser in
which the emission is in the direction of the epitaxial growth (see Fig. 2a). The
VCSEL used for this experiment is similar to the ones described in more detail in
[49, 81–83]. Three InGaAs quantum wells are serving as gain medium leading to
emission in the 980 nm range. The quantum wells are surrounded by passive
AlGaAs spacer layers with a total thickness of one wavelength. The cavity is
closed by high reflectivity distributed Bragg reflectors (DBR) with 33 layers
AlGaAs/GaAs on the top side (p-contact) and 22 layers on the bottom side
(n-contact). The emission takes place through the n-doped Bragg reflector and
through the transparent substrate. In this so-called bottom-emitting geometry a
reasonable uniformity of carrier injection can be achieved over fairly large aper-
tures [81, 82]. A 200 lm diameter circular oxide aperture provides optical and
current guiding. This active diameter is much larger than the effective cavity
length of about 1.2 lm. As a result, the VCSEL has a large Fresnel number
allowing for the formation of many transverse cavity modes of fairly high order.

The laser has an emission wavelength around 975 nm at room temperature.
Frequency-selective feedback is provided by an external volume Bragg grating
(VBG). The VBG has a reflection peak at kg ¼ 981:1 nm with a reflection
bandwidth of 0:2 nm full-width half-maximum (FWHM). The VCSEL is tuned in
temperature up to 70 �C so that the emission wavelength approaches the reflection
peak of the VBG. At such a high temperature the free running laser has an infinite
threshold and lasing only occurs because of the feedback from the VBG.
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Fig. 2 a Schematic diagram of VCSEL layer structure (from [84]). b Near field image of the
VCSEL aperture taken at 396 mA showing the relative position and numbering of a few solitons.
Output VCSEL images, like all in the following, are in a linear gray scale with black denoting
high intensity

Fig. 3 Experimental setup. VCSEL Vertical-cavity surface-emitting laser, BS Beam splitter,
VBG Volume Bragg grating, HWP Half wave plate, A Aperture, M Mirror, PD Photo diode,
CCD1 CCD camera in near field image plane of VCSEL, CCD2 CCD camera in far field image
plane of VCSEL, FP Fabry–Perot
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A schematic diagram of the experimental setup is illustrated in Fig. 3. The
VCSEL is coupled to the VBG via a self-imaging external cavity. Every point of
the VCSEL is imaged at the same spatial position after each round trip therefore
maintaining the high Fresnel number of the VCSEL cavity and ensuring local
feedback compatible with self-localization.

The VCSEL is collimated by f1 ¼ 8 mm focal length plano-convex aspheric
lens. The second lens is a f2 ¼ 50 mm focal length plano-convex lens and is used
to focus the light onto the VBG. This telescope setup gives a 6:25:1 magnification
factor onto the VBG. This cavity has a round trip frequency of 1:23 GHz which
corresponds to a round trip time of 0:81 ns. The light is coupled out of the cavity
using a glass plate (beam splitter with a front uncoated facet and a back anti-
reflection coated facet). The reflection is relying on Fresnel reflection and therefore
is polarization dependent. The reflectivity is on the order of 10 % for s-polarized
light and 1 % for p-polarized light.

An optical isolator is used to prevent reflection from the detection system to
pass into the external cavity. There are two charge-coupled-device (CCD) cameras
used for detection, one is used to produce images of the VCSEL emission in the
gain region (near field) and the other camera produces images of the Fourier plane
of the gain region (far field). The optical spectrum is recorded with a scanning
Fabry–Perot interferometer (FP). It has free spectral range (FSR) of 10 GHz and a
maximal Finesse of 80. There is also a photodiode which measures the total laser
power.

As it will be discussed in more detail in the following, the precise alignment of
the VBG is very important. It is controlled by fine adjustment screws. The tilt b
(see Fig. 4) in the horizontal direction can be fine-adjusted by a piezo-electric
transducer (PZT), which is stabilized against drift by a servo-loop controlled by a
strain gauge. A computer-controlled voltage U applied to the PZT leads to a tilt of
db=dU ¼ 2:1 � 10�5=V, a change of the external cavity length at a rate of
dL=dU ¼ 0:628 lm/V, and a change of the resonance frequency in the external
cavity by dm=dU ¼ 1:576 GHz/V. Perhaps even more importantly for what fol-
lows, there is also a differential shift for two LCS. If their distance projected onto a
plane orthogonal to the rotation axis is Dx, this shift is

Dm ¼ Dx
2mFSR sin b

k
; ð1Þ

where mFSR is the free spectral range of the external cavity and k the operating
wavelength of the VCSEL. The change of the ray angle after returning to the
VCSEL (corrected for the magnification of the telescope) is h ¼ b M.

The adjustment of the self-imaging condition is described in detail in [85]. The
distance between the VCSEL and the collimating lens can be adjusted for best
collimation, while the distance between the focusing lens and the VBG is selected
by adjusting the images of the VCSEL emission at high current for maximum
sharpness of the aperture. For the distance between the two lenses there is no
simple alignment criterion, hence it needs to be set from the lens specifications
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taking the dispersion data of the lenses into account. Then it can be checked by
measuring dispersion curves of the off-axis states above threshold [85]. After
optimization we estimate to be within �0:2 mm of the self-imaging condition with
a reasonable depth of focus [85].

2.2 Basic Properties of Laser Cavity Solitons

When increasing the VCSEL input current, LCS appear at specific spatial loca-
tions. The first lasing emission occurs at currents of about 360–380 mA, depending
on the exact temperature and alignment of the VBG. Figure 2b shows a typical
near field intensity distribution slightly above threshold. There are several distinct
spots of emission, which are approximately circularly symmetric and approxi-
mately equal in amplitude and shape. These are the LCS. The size of a LCS is
about 5–7 lm (1=e2-radius). The far field has also a single-lobe, well-behaved
profile with a width of a few 10 s of mrad [49], i.e. the LCS have a high spatial
coherence. The emission is also temporally coherent with a typical linewidth of
about 6 MHz when operating on a single longitudinal mode of the external cavity
[49], quite a typical value for grating-controlled lasers on millisecond and second
time scales. Hence each LCS is a coherent emitter, a micro-laser. We will discuss
the mutual coherence of LCS below. For increasing current, a soliton typically
splits into a compound state with two humps, and then possibly three or four,
followed by disordered extended states. Evidence for these states, stemming from
the LCS with the lowest threshold, is visible in the lower right part of the aperture
in Fig. 2b. Details on the LCS and pattern evolution beyond threshold can be
found in [49, 85].

The appearance of each LCS is abrupt and we observe hysteresis when the
current is ramped up and down, i.e., each LCS shows bistability. Figure 5 illus-
trates this phenomena for two sample LCS shown in the corresponding inset. The

Fig. 4 Scheme of VCSEL
cavity carrying two LCS with
feedback from a tilted VBG.
The tilt angle b of the VBG
controls the mutual detuning
of the two LCS (see text for
details). The pivot point is
much further away from the
optical axis in reality (about
30 mm)
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right one switches on abruptly at about 379.5 mA, the left one only slightly later at
about 381 mA. If the current is decreased again, the latter survives till about
376 mA, the former till 372.5 mA. In between 376 and 379.5 mA the two LCS are
simultaneously and individually bistable, i.e. they can be independently switched
on and off by an external writing pulse [47–49]. This represent a 2-bit memory,
which is interesting for optical information processing when extended to more
channels that can provide the potential for massive parallelism in broad-area
VCSELs. The details of this hysteresis loops are different for different LCS and
also depend on alignment. Typically switch-on occurs to the single-humped fun-
damental LCS as demonstrated in Fig. 5. Corresponding scenarios are described in
[47–49, 86], but a direct transition to multi-humped and ring-shaped states is also
possible for, e.g., solitons 1 and 2. The experiments described later in Sect. 2.3 are
performed at a bias current at which two fundamental, single-humped LCS are
individually bistable.

The mechanism for the bistability is the following [48, 85, 87, 88]. Initially, the
longitudinal resonance of the cavity is blue-detuned to (at higher frequency than)
the grating frequency (the reflection peak of the grating). Hence there is a fre-
quency gap, in which no linear state exists. The gain is below the value where
lasing without the help of the feedback from the grating is possible. Increasing the
current leads to an increase of Ohmic dissipation and hence to a temperature rise in
the laser structure. This results in an increase of the refractive index and hence in a
red-shift of the cavity resonance. This shift is around 0:0035 nm/mA. Let’s assume
now a fluctuation leading to an increase in output power. Due to stimulated
emission, the carrier density is decreased and this increases the refractive index
due to phase-amplitude coupling in semiconductors, described phenomenologi-
cally by Henry’s alpha-factor [89]. This red-shifts the cavity resonance and hence
the detuning between VCSEL and VBG decreases. As a result, the feedback
strength increases and the intensity will increase ever further leading to positive
feedback. At a certain critical detuning, the positive feedback is strong enough to

Fig. 5 Light-current (LI)
curve for two sample LCS
(shown in inset). The solid
line refers to increasing
current and the dashed line to
decreasing current.
Measurements taken at
0.1 mA intervals at a rate of
1 mA per second to avoid
thermal hysteresis
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cause an abrupt switch-on of the laser. After switch-on, the laser can self-sustain
the condition of the near-resonance between the (shifted) cavity resonance and the
VBG in the high-amplitude emission state due to the continuous depletion of
carriers and the resulting refractive index shift even if the current is reduced again,
resulting in a bistable situation. Bistability due to shifts of cavity resonances is
usually referred to as dispersive optical bistability [90].

In a spatially extended system, the whole aperture might switch to the high-
amplitude state, but it turns out that this state is unstable, or at least that there is the
coexisting possibility of localized emission, the LCS [51, 52]. An intuitive
mechanism to understand the drive for localization is self-lensing, as indicated in
Fig. 4. A self-induced lens can render the marginally stable plano-planar resonator
locally stable and lead to a self-induced nonlinear mode, the LCS [25, 91]. It is
important to realize that under our typical operating conditions the main effect of
the change of the control parameter ‘current’ (see e.g. Fig. 5) is the change of the
detuning condition and not the gain change. This is further evidenced by the fact
that a decrease of the ambient temperature of the VCSEL leads to an increase in
threshold current. Since the gain at constant current increases in a semiconductor
with decreasing temperature, this indicates that the main function of the increased
current is to provide the larger detuning shift required at lower temperature. The
system with feedback by a normal mirror lases already at about 180 mA [85],
demonstrating that ample gain is available.

The reason for the difference in threshold for the different solitons as well as for
the preference of certain locations lies in growth irregularities of the semicon-
ductor material. If the cavity resonance of the VCSEL is spatially varying, the
linear gap between the grating frequency and the cavity resonance is changing in
space and a minimum value of the detuning for switch-on is met at different
locations at different injection currents. Hence the lasing will start first at the most
‘reddish’ location with the smallest gap. With increasing currents more locations
reach the critical detuning value and additional LCS switch on, whereas the LCS
formed originally may give way to high-order compound states and extended, off-
axis lasing states [64, 85]. Typical length scales of disorder are about 10 lm and
they span some tens of GHz [64] in line with the results from other devices in the
literature [63, 92, 93]. A simple calculation shows that a monolayer variation of
DL � 0:3 nm corresponds to a frequency variation of Dm � 76 GHz. Similar
results are obtained with more accurate models of the multi-layer stacks forming a
VCSEL [94, 95]. Since the cavity linewidth of a low-loss VCSEL is about 0.1 nm
or 30 GHz (depending on the actual free-carrier and scattering losses), this
explains the extreme sensitivity of the feedback light distribution to disorder.

As explained in the introduction, LCS will couple to parameter variations and
drift [60, 61] until they either disappear from the system or reach a point in which
all first order perturbations, i.e. gradients, vanish at a local extremum of the
‘landscape’ imposed by the variations. These preferred locations are the ones
where we find LCS in Fig. 2b. We will refer to them as traps or defects. This
disordered ‘landscape’ is frozen after the growth process of the semiconductor
structure although some minor external influence on the position of the LCS is
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possible by alignment changes in the external cavity. In particular, a tilt of the
VBG induces a tilt of the wavefront of the returning beam, which should lead to
continuous drift of the LCS in a homogeneous system. For a LCS in a trap, the tilt
shifts the position where the potential minimum of the combined perturbation
(frozen disorder plus tilt) lies and hence the LCS shifts to a new equilibrium
position (see [49] for images). As the quantitative analysis in Fig. 6a shows, this
shift is quite small. It should be noted also that the tilt is minute, about 0.15 mrad
total, leading to a change of ray angle at the VCSEL smaller than 1 mrad, much
smaller than, e.g., the angular width of a LCS. The shift within the trap is also
different for different solitons, which is expected for a disordered system because
the curvature of the potential should vary randomly from trap to trap. At some
critical tilt angle (larger than typically achievable with the PZT), the LCS disap-
pears. The expectation is that the potential minimum disappears for a critical tilt
and the LCS unpins and starts to drift. A corresponding transition between drifting
and pinned patterns was found in [96]. In our system, an experimental investi-
gation of the unpinning phenomenon requires simultaneous spatial and temporal
resolution and has not been undertaken, yet.

In conclusion, bistable emission spots with high temporal and spatial coherence
emerge at the threshold of a VCSEL with frequency-selective feedback. Although
their position is affected by the disordered landscape due to the variations of the
cavity resonance, these spots maintain rotational symmetry and a common spatial
shape and width, i.e. their shape seems to be dominated by the nonlinear process.
Theoretical results discussed below confirm the existence of self-localized LCS for
realistic parameter values. Hence these spots are identified as LCS. The spatial
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Fig. 6 a (Color online) Peak position of the near field profile as a function of the tilt angle for
LCS 1 (red curve, gray in print) and 2 (black curve); b Peak position of the far field profile as a
function of the tilt angle. The curves are averaged over two runs and most of the undulations are
likely to stem from measurement noise, although a deterministic contribution due to small-scale
disorder within the trap cannot be ruled out. The zero of the y-axis in panel b is set at the center of
the two individual angular centres of the far fields of LCS 1 and 2. For a better comparison with
the results presented below the horizontal axis is scaled in the change of differential detuning
between the two LCS in the external cavity as obtained from Eq. (1). The total tilt is 0.15 mrad
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fluctuation of the cavity resonance condition, however, pins LCS to certain
locations and leads to a dispersion of thresholds and operating frequencies. Each of
these LCS is a coherent emitter but they are mutually incoherent due to the spatial
disorder of the background [49, 59, 65].

2.3 Phase Locking of Laser Cavity Solitons Via Change
of Current

Investigation of LCS interactions were done on pairs of different LCS. We report
here results on LCS with a separation distance of 49 (LCS 3 and 4) and 79 lm
(LCS 1 and 2). The qualitative features of the observations are robust, but the
details can vary a fair amount as one would expect since parameters are affected by
spatial disorder. We stress that we are only looking at LCS in different traps. The
coherence properties of compound, high-order states of LCS in the same trap are a
separate issue and more detailed investigation are needed in our system. For the
LSA some results are in [59, 86].

Two spatially separated LCS are typically incoherent. Then their combined far
field is the incoherent sum of the intensity distributions of the two solitons. Under
certain conditions (explained in detail below), this changes drastically and a
pronounced fringe pattern is visible across the far field intensity profile
(Fig. 7c, d). Its wavevector is parallel to the connection line between the two
solitons, i.e. the fringes are orthogonal to it. This far-field fringe pattern is stable
for longer than the exposure time of the CCD (20 ms), typically it can be observed
for minutes to hours, once achieved. This evidences phase-coherence between the
two LCS over time spans orders of magnitude higher than the intrinsic dynamics
(nanoseconds) and also higher than typical time scales of technical noise
(microseconds to seconds). A cut through the fringe pattern is taken across the
center of the far field intensity. Then a Gaussian profile modulated by a sine-wave
is fitted to this cut,

y ¼ y0 þ A exp
�ðh � h0Þ2

2w2

" #
1 þ M sinðFðh � h0Þ þ PÞ

1 þ M

� �
: ð2Þ

Here y0 is the offset, A is the amplitude, h0 is the peak center, w is the width, M is
the modulation depth or fringe visibility, F is the frequency of the sine modulation
and P its phase.

Figure 7a, b show the locking behavior of LCS 1 and 2 during an upward scan of
the current. The dominant features of the spectra in Fig. 7b are multi-frequency
emission and the common red-shift of all modes due to the Ohmic heating discussed
earlier. This shift is about 0.44 GHz/mA, about half the value of the free-running
laser. This is expected because the grating stabilizes the emission frequency [85,
87]. At low current the LCS emit on two or three different external cavity modes
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which corresponds to a fringe visibility close to 0.5. This indicates that the LCS
operate on different external cavity modes but share side-bands, i.e. each LCS is
not single-mode. Then, as the current is increased, the fringe visibility increases
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Fig. 7 a (Color online)
Fringe visibility (black) and
fringe phase (green curves,
gray in print) as a function of
current for LCS 1 and 2,
79 lm apart. The zero of the
current scale corresponds to a
current of 380 mA. The
fringe visibility and phase are
obtained from a fit of far field
profiles to Eq. (2).
b Evolution of frequencies;
the frequency distribution is
obtained from the optical
spectra recorded by a Fabry–
Perot with a FSR of 10 GHz.
The frequency separation
between side modes
corresponds to the free
spectral range of the external
cavity (1.23 GHz). In these
measurements, the Finesse is
only 25 due to misalignment
(frequency resolution
400 MHz). c Far field
intensity distribution at
380 mA corresponding to a
fringe visibility of 0.55. d Far
field intensity distribution at
385.5 mA corresponding to a
fringe visibility of 0.95. Other
parameter: Temperature
69 �C
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abruptly to reach up to 0.95. At this point, only one spectral line is strongly
dominant and both LCS occupy the same external cavity mode and are then
strongly frequency and phase locked. Increasing the current further leads to a jump
of one LCS to an adjacent external cavity mode inducing a drop in fringe visibility
back to 0.5. A similar scenario with a transition to nearly complete locking occurs at
the end and high visibility is reached again. Beyond this point, a third LCS switches
on in the detection area thus complicating the interpretation of the results.

From the Fourier theorems, a field distribution shifted by a distance a in the
near field acquires a phase-shift of exp ðik?aÞ in far field. Hence a, the separation
of the interference source (here the LCS) in near field and the fringe period
Dh ¼ 2p=F are related by

a ¼ k
Dh

: ð3Þ

For a far field fringe spacing of 12.6 mrad obtained from the fit one obtains a near
field separation of 77.8 lm which agrees very well with the measured LCS sep-
aration of 79 lm thus confirming that the interference comes from the two
interacting LCS.

From Fig. 7a it is apparent that the fringe phase fluctuates around a value
smaller than p. As we will discuss below, a locking phase of p is typical for two
coupled oscillators without detuning while a non-zero detuning changes the
locking phase away from p. The current induced heating is a global parameter and
hence it should not change the detuning condition between the two LCS in the
VCSEL cavity, in line with the fact that the locking phase is not varying by much.
The operating frequency of the solitons, however, is a compromise between the
VCSEL cavity resonance and the external cavity resonance leading to a tran-
scendent equation for the operating frequency [97] (see (A.3) of [87] for a VCSEL
with FSF). With an initial, position dependent offset, a global shift of the VCSEL
resonance conditions can result in a change of relative stability and frequency of
the modes of the coupled cavity system (e.g. a destabilization of an external cavity
mode for one LCS but not for the other), leading to the possibility of a non-
synchronous evolution of soliton frequencies and locking or unlocking. In addi-
tion, there might be small local variations either in gain or cavity resonance
because the current induced temperature shift is only nominally homogeneous.
These considerations indicate that the global parameter ‘current’ is not a good
handle to investigate the locking behavior, but one should look for a ‘local knob’.

2.4 Phase and Frequency Locking of Laser Cavity Solitons
Via Change of Feedback Phase

Since it is experimentally difficult to change the detuning of two LCS by locally
changing the properties of the VCSEL itself, the PZT is used to minutely tilt the
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VBG of the external cavity with respect to the optical axis (Fig. 4). As indicated
by Eq. (1) this induces a difference in external cavity length DL for the two
solitons therefore leading to a difference of feedback phase and detuning in the
external cavity. It is then possible to adjust the frequency difference (i.e. the
detuning) between two LCS. Indeed, the locking discussed in the previous section
was achieved by aligning the VBG such that a high fringe visibility was obtained
for some current (2 or 4.5 mA). This follows the procedure used to control the
detuning of coupled solid-state lasers, see [4, 5], but with the additional complication
of coupled cavity effects due to the high reflectivity of the VCSEL outcoupling
mirror, whereas the gain chip in the solid-state lasers is typically anti-reflection
coated.

As indicated before, the tilts are actually quite small and it turns out that the
soliton profiles are essentially unaffected. The width of the near field is constant
within 0.3 lm (variation � 5 % of a single soliton width) and the width of the far
field profiles to within 1.5 mrad (6 % of a single soliton width). When tilting the
VBG both near and far field profiles of the LCS are not affected while the positions
are. As discussed in conjunction with Fig. 6, the positions and beam pointing of
the LCS change slightly in the trap, but the changes are small and the differential
changes are even smaller. Hence, it seems reasonable to assume that the dominant
effect of the tilt is indeed the change of differential feedback phase.

When tilting the VBG a region of phase and frequency locking appears as
illustrated in Fig. 8a, c by a range of high fringe visibility in the far field. This
region of high fringe visibility can last for seconds to hours depending on
parameters. It confirms that locking is a robust feature once achieved by a fine
alignment of the VBG. We note that the choice to start the x-axis displaying the
detuning parameter with zero is arbitrary. If one considers the locking-dynamics, it
would be reasonable to expect that the zero lies at the center of the locking region.
However, as the fringe phase is only approximately symmetric with respect to the
center of the locking range and the details of the underlying dynamics are
unknown, the position of the zero is somewhat ill-defined and no adjustments were
made. Such cautious choice comes at the expense of a slightly awkward labelling:
whereas the real detuning decreases in the left half (roughly) of the figure and
increases in the right half, the detuning parameter chosen increases all along the
x-axis. As qualitatively apparent from Fig. 8c, the fringes shift with detuning
within the locking region (within a fringe visibility higher than 0.5), i.e. the
locking phase changes. The quantitative analysis in Fig. 8a indicates that this
variation is nearly linear over most of the range. The width of the locking range is
close to p. If the direction of the scan of the tilt is reversed (see green dashed line
in panel a) the locking phase shadows the one obtained in the up-scan, i.e. there is
no discernible hysteresis. As we will discuss in the theoretical sections, these
features are fingerprints of the Adler locking. The noise of the fringe phase is
considerably smaller in the region corresponding to complete locking than in the
partially locked regions. For even larger tilts (not achievable with the PZT), the
two LCS are completely unlocked and their phases random. Modulations depths of
about 5 % are due to noise in the images.
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The transitions to and from frequency and phase locking are rather abrupt and
one might expect hysteresis at their onset. Due to the mechanical scanning, there is
some jitter of the transition point. Hence only one sweep is shown in Fig. 8a and
we are currently not in a position to investigate possible hysteresis systematically.
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Fig. 8 a (Color online)
Fringe visibility (black) and
fringe phase (green curves,
gray in print) as a function of
the tilt angle that changes the
difference between the
feedback phases for LCS 1
and 2, 79 lm apart. This
difference is converted to a
frequency scale by
multiplying it by the free
spectral range of the external
cavity thus providing the
change of the relative
detuning between the two
LCS in the external cavity.
The zero of this detuning
scale is arbitrary. The solid
and dashed green curves are
obtained for scanning the tilt
back and forth. b Evolution
of frequencies, the frequency
distribution is obtained from
the optical spectra recorded
by the FP (Finesse 80). c Cut
through far field intensity
distribution orthogonal to
fringe orientation. Other
parameters: Temperature
69 �C, current I ¼ 373 mA
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Panel b of Fig. 8 illustrates the evolution of the frequencies of LCS in optical
spectra. The first obvious feature is that all spectral lines are shifted due to the tilt
of the VBG. The Finesse of the FP is 80, hence the frequency resolution is only
about 130 MHz. This means that the differential frequency shift of the two LCS
cannot be resolved (it is in total about 30 MHz), but only inferred from its indirect
effect via stabilization and destabilization of external cavity modes and the
resulting possibility of locking and unlocking. When comparing panel b to panels a
and c one observes that when the fringe visibility is high, the two LCS operate on a
single frequency (region within dashed lines in panel b).

There is a jump in the common operation frequency of the LCS by one FSR
slightly after 15 GHz, where the fringe visibility is nearly maintained. It drops from
0.9–1 to 0.8–0.9. This indicates that the two LCS do a common mode jump retaining
phase and frequency locking, though at this point there is a change of behavior in the
phase evolution (green solid line in Fig. 8a); it becomes essentially flat.

Outside the locking region the two LCS operate on two different external cavity
modes (with a frequency separation of 1.23 GHz between two adjacent modes). In
this region the fringe visibility is rather low (below 0.25) and the locking is very
weak. Some residual coupling via side-modes is probably responsible for this
residual partial locking. As indicated, for higher tilts, the visibility drops to a
background given by noise on the order of 5 % or less.

Although the transition from locking to unlocking seems to be accompanied by
a transition between a one-frequency to a two-frequency spectrum, there are other
regions in which the spectrum appears to be predominantly single-humped (pos-
sibly with weak side-modes) but with low fringe visibility. A close inspection
however shows that the spectral line is wider there than in the central locking
range, by around 45–55 % in the region between 2 and 6 MHz detuning, and by
27 % in the region at 19.5–20.5 MHz (close to the locking range). This indicates
that the two LCS are operating close in frequency so that the difference cannot be
resolved within the limited resolution of the FP (about 130 MHz). There is a third
region around 26 MHz, where the spectral line seems to be slightly, but not
significantly broader, and we conjecture that the frequency difference is below the
resolution there.

The basic features of the scenario described for LCS 1 and 2 (79 lm apart) are
also typical for other distances and other pairs of LCS. Fig. 9 shows phase and
frequency locking for LCS 3 and 4, which are 49 lm apart. In this case we observe
a far field fringe spacing of 19.1 mrad which corresponds to a near field separation
of 51.3 lm. It again agrees well with the measured LCS separation of 49 lm.
Again, there is a region of nearly complete locking with a high fringe visibility.
The phase (within the locking region) is centred around p and varies linearly with
the detuning from 0.6p to 1.4p (green curve in panel a, see also panel c). The
locking-unlocking transition is accompanied by a transition between a single-
frequency and a two-frequency regime. Around a detuning of 4 MHz, the transi-
tion leads to a single locked state with a visibility of 0.7 dominated by a single
mode, although weak side-modes are still present in the spectrum, the latter dis-
appearing with a further increase of the visibility to the 0.9 level. As in Fig. 8b, the
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LCS perform a common mode-hop within the locking region (around 7.5 MHz
detuning), but remain locked. In contrast to the previous case, the phase evolution
is not perturbed, i.e. the phase continues to grow approximately linearly. This
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Fig. 9 a (Color online)
Fringe visibility (black) and
fringe phase (green curve,
gray in print) as a function of
the tilt angle that changes the
difference between the
feedback phases for LCS 3
and 4, 49 lm apart. The zero
of this detuning scale is
arbitrary. b Evolution of
frequencies, the frequency
distribution is obtained from
the optical spectra recorded
by the FP (Finesse 80). c Cut
through far field intensity
distribution orthogonal to
fringe orientation. Other
parameters: Temperature
69 �C, current I ¼ 387 mA
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might be related to the fact that the visibility remains above the 0.9 level, i.e.
remains higher than in Fig. 8a.

Before the main locking region, there are already small regions (around 1.5 and
3 GHz) in which partial locking takes place. An extrapolation of the phase in the
main locking region seems to match qualitatively the phase values obtained in
these regions. There are also some ranges of non-monotonous behavior of the
phase (a decrease with increasing detuning) in the partial locking regions around 3
and 4 GHz. The significance of these observations is not clear at the present stage
of investigations.

In summary, we have obtained a variety of different dynamical behaviors for
LCS pairs with different distances ranging from 30 to 80 lm. They all share the
common feature of a region of nearly complete locking in which the phase is
evolving approximately linearly with detuning. The locking is dominantly anti-
phase (p locking phase) and the locking phase varies by nearly p over the locking
range. We will argue in the next sections that these observations are a manifes-
tation of the Adler-scenario. The observed variations in dynamics are expected
since important parameters are associated to background disorder that cannot be
controlled by the operator.

3 Theoretical Description

3.1 The Semiconductor Class-B Model

Since the pioneering work of Lang and Kobayashi [97] a good deal of attention has
been paid to the modelling of feedback effects on the dynamics of semiconductor
lasers (see for example [98]). Most of the work has been done however by
neglecting the spatial degrees of freedom in the transverse direction. Transverse-
space dependence is critical for LCS and it should be included in any model that
describes the set-up discussed in the previous section. Following [52] the
dynamical evolution of the intra–VCSEL optical field E and carrier density N of a
VCSEL with frequency-selective feedback can be modelled by the following
system of coupled partial differential equations and mapping:

otE ¼ �ð1 þ ihÞE þ ir2E þ rð1 � iaÞðN � 1ÞE þ 2
ffiffiffiffiffi
T1

p

ðT1 þ T2Þ
F ð4Þ

otN ¼ �c N � J þ jEj2ðN � 1Þ þ Dr2N
h i

ð5Þ

FðtÞ ¼ e�idsf Ĝðt � sf =2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � T1

p
Fðt � sf Þ þ

ffiffiffiffiffi
T1

p
Eðt � sf Þ

n o
ð6Þ

In Eq. (4), h is the detuning of the VCSEL cavity with respect to the carrier
reference frequency, r is a coupling constant, a is the linewidth enhancement
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factor, and T1 and T2 are the transmittivities of the VCSEL mirrors. Note that light
propagation in the external cavity is considered here without approximations
typical of the Lang–Kobayashi approximation (see also [99]). This allows for the
consideration of large feedback reflectivities without incurring in unphysical
results (see more details in [52]).

In Eq. (5), J is the injection current normalized to the value at transparency.
Time is scaled to the VCSEL cavity lifetime, and c is the ratio of the cavity
lifetime to the carrier response time in the VCSEL. The term Dr2N describes
carrier diffusion but is omitted in what follows. A similar description for field and
carriers dynamics was used to model an amplifier CS [23, 100]. Here, the holding
field of the amplifier model is replaced by the feedback field F due to the external
Bragg reflector. Space is normalized to the square root of the diffraction parameter.
For a low-loss VCSEL, where losses are dominated by the outcoupling, the time
scale is of the order of 10 ps, while the spatial scale is around 4 lm (see also
[100]). Since losses due to scattering and background absorption are difficult to
quantify we have restricted the analysis to these values of the physical scales.

In Eq. (6), d is the external cavity carrier field detuning, sf the external round–

trip time (see [52] for a detailed description of the external cavity). The operator Ĝ
describes the frequency–selective operation of the Bragg reflector on the field
envelope and is taken to be

ĜðtÞ hðtÞf g ¼ rg

2f

Z t

t�2f

eiXgðt0�tÞ hðt0Þ dt0; ð7Þ

where Xg is the grating central frequency relative to the reference (carrier) fre-
quency (shifted to zero in the following), f the inverse of the filter bandwidth and
rg the overall reflection coefficient. Note that this description neglects the trans-
verse wavevector dependence of the reflector response. Transverse effects of free–
space propagation (i.e. diffraction) in the external cavity are also disregarded, since
in the experimental setup the VCSEL output coupler is imaged directly onto the
Bragg reflector as described in the previous section.

Equations (4)–(6) have traveling wave solutions as discussed in [52]. It turns
out that there are two relevant sets of modes. One set is grouped around the grating
frequency and the other around the solitary VCSEL lasing frequency, with a
frequency gap in between. The former modes owe their existence to the strong
feedback provided by the grating at frequencies close to its central frequency and
as a result, have the lowest thresholds. The latter modes exist where the feedback
is small and so can be termed VCSEL modes. The frequency gap between grating–
determined and VCSEL modes depends on the detuning between VCSEL and
grating, as well as on other system parameters.

Under suitable operating conditions it is possible to create a threshold gap
between the highest–threshold grating mode and the lowest–threshold VCSEL
mode [52]. As a result, a range of currents opens up where the grating–determined
modes exist (i.e. the system can lase) but where the laser off state is also stable (i.e.
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the system can also not lase). In this region of bistability between lasing and non–
lasing states it is possible to observe LCS. Numerically one finds that the LCS can
be either single– or multi–frequency, depending on system parameters, in 2D as
well as 1D [52].

Spatial inhomogeneities, such as those associated to uncontrolled fluctuations in
the VCSEL growth process, can be introduced in the model by considering spatial
dependence on the model parameters. In particular one can consider in Eq. (4) a
spatially dependent detuning, that is h ¼ hðxÞ for a 1D system and h ¼ hðx; yÞ for a
2D one.

3.2 The Simplifed Ginzburg–Landau Model

In this work we are primarily interested in single-frequency laser solutions, in
particular solitons. For such solutions the carrier dynamics can be eliminated,
reducing the model to a nonlinear equation for Eðx; tÞ, coupled to a linear equation
for the feedback field F. As discussed in [52] and in more detail in [79] these
equations have a structure corresponding to the matching of a nonlinear ‘soliton’
response to a linear ‘spectral’ response. The latter contains all the gain/loss and
phase dependence arising from the delay, grating and mirror properties, while the
former describes the effects of current (gain, saturation) and of diffraction. The
matching of these responses is associated with the intersection of corresponding
curves in a complex plane (C in Fig. 10) describing net gain and phase shift [79].
As illustrated in Fig. 10, the soliton curve is typically rather smooth, originating in
a point whose location depends smoothly on current. The spectral curve can be
highly structured, especially in the case of delayed feedback as is clear when one
considers that each external cavity mode must correspond to a different intersec-
tion between the soliton line and the spectral curve [52]. Figure 10 shows an
example.

It is instructive to investigate the simplest scenario of LCS, which we can
obtain by setting aside complications such as delay and high-order nonlinearity.
Doing so will also enable us to compare and contrast other models of dissipative
soliton interaction, such as those based on generic models such as the cubic-quintic
complex Ginzburg–Landau equation (CQGLE) and systems of CGLE [30, 101, 102].
If we eliminate delay and replace the feedback grating with a Lorentzian-response
filter, the spectral response curve is broadly similar to the envelope of that in Fig. 10.
It is intersected only twice by the soliton line in relevant cases, corresponding to two
single-frequency soliton solutions. One (of lower amplitude) is always unstable,
while the other may be stable.

A simple model based on this scenario, which captures the basic features of a
semiconductor laser with feedback, consists of a cubic complex Ginzburg–Landau
equation (CGLE3) linearly coupled to an additional linear filter equation [80, 103]
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oE

ot
¼ g0E þ g2jEj2E þ ~D

o2

ox2
E þ F þ inðxÞE;

oF

ot
¼ �kF þ ~rE:

ð8Þ

Here, Eðx; tÞ is the intra-cavity field (we consider only the 1D case), g0 describes
linear gain and detuning, g2 nonlinear gain saturation and frequency shifts (the
ratio Imðg2Þ=Reðg2Þ corresponds to the a-factor of semiconductor lasers discussed
above). The spatial coupling parameter ~D represents diffusion and/or diffraction
depending on its phase: we will set ~D ¼ �i corresponding to pure diffraction.
Fðx; tÞ is the feedback field, ~r the feedback strength and k the bandwidth of the
feedback. Finally, nðxÞ describes spatial variations of the linear detuning due to
local variations in the optical length of the cavity, as discussed in Sect. 2. The time
and space coordinates (t; x) are scaled to 1 ns and 40 lm, respectively, i.e. the
normalized scalings cannot be compared directly between the class-B and the
CGLE-F model, but they refer to similar physical scales, after the scalings are
undone.

For nðxÞ ¼ 0, Eq. (8) has an analytical soliton solution of chirped-sech type
[79, 103, 104]:

E ¼ Emax½coshðKxÞ	�1�ibei/eixt ð9Þ

where the amplitude Emax, the inverse width K, the chirp b and the frequency x are
expressed through system parameters. / is an arbitrary phase, indicating the phase
invariance of the system. The field amplitude decays exponentially in the wings of
the soliton (see Fig. 11a below for a particular example). The full width at half
maximum of the intensity profile of the soliton is 2x0, where cosh2ðKx0Þ ¼ 2, i.e.
x0 
 0:88=K. The crucial difference between the dissipative soliton (9) and an
analogous conservative soliton is the nonzero value of b leading to the dependence
of the phase on x as illustrated in Fig. 11a. Far from the center, the phase changes
linearly with distance and hence repeats with a period of P ¼ 2p=ðKbÞ. Hence
only with a moderate to large absolute value of chirp will the soliton phase change

Fig. 10 Spectral curve for
the coupled–cavity system
showing the soliton line
(dashed) and the plane–wave
threshold (dotted line). After
[52]
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significantly within the soliton width x0. Recall that an NLSE soliton has flat
phase, i.e. zero chirp: broadly speaking, the chirp increases with the ratio of
nonlinear gain to nonlinear dispersion.

4 Theoretical Results: Homogeneous Systems

4.1 Ginzburg–Landau Model

In this subsection and in Sect. 5.1 we consider the pairwise interaction of solitons
found in the model (8). We adopt throughout the parameter values of
g0 ¼ ð�4; 28Þ, g2 ¼ ð�96;�48Þ, k ¼ 2:71, ~r ¼ 162:6 (see [80]). These parame-
ters imply a rather small value (0:5), of the alpha-factor, so chosen in order to
enhance the soliton chirp, thus making the interaction stronger and easier to model.

We consider first the ideal case with translational invariance (nðxÞ ¼ 0), where
a single soliton has two free parameters, location and phase. We chose a super-
position of two solutions of type (9), with the maximum of the left soliton at x1,
and the maximum of the right soliton at x2 [ x1 as initial conditions for the
evolution. We also chose the initial phases /1 and /2. The two LCS will mutually
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Fig. 11 a Profile of the soliton field (9) for the parameters listed in the text. Dots show the phase
(left vertical axis); solid line shows the amplitude distribution (right vertical axis, semi-
logarithmic scale). b ‘interaction plane’ of two LCS. The arrows indicate the direction of motion
of the system along any trajectory. The dark-gray shaded region is a dense spiral. Black dots near
U ¼ p=2 are foci, while the open dots (along U ¼ 0 and U ¼ p) are saddle points. The vertical
dash-dotted lines link subplots a and b, and confirm that the saddles have the same spatial period
as the phase of an isolated soliton. The shading is explained in the text
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interact by providing a perturbation to each other. The interaction can indeed be
understood as if each solitons is placed in a potential created by the other, con-
sidered as the ‘driver’. This means that the field profile of a solitary soliton can be
considered as the ‘driving potential (and field)’ (see Fig. 11a).

The integration of model (8) can be visualized nicely in the ‘interaction plane’,
introduced in [30] and spanned by polar coordinates L ¼ jx2 � x1j and
U ¼ /2 � /1. The temporal evolution on the interaction plane with different initial
values of L and U is presented in Fig. 11b, which depicts key trajectories. It is
characterized by a series of foci at U � p=2 corresponding to moving bound states,
and two series of saddles with U ¼ 0 and U ¼ p representing stationary bound
states. The stable and unstable manifolds of the saddles coincide with the Gold-
stone modes of the single soliton. The horizontal manifolds correspond to the
soliton translation mode, while the vertical manifolds to that of the local phase.
Note that neighboring saddles have opposite stability properties with respect to
phase and translation. The light-gray (white) shading in Fig. 11b shows the regions
where the active tangential components are directed counterclockwise (clockwise)
in the upper half-plane (the sense of rotation is inverted in the lower half-plane that
is not shown). It is clear that the location of the saddles is strongly determined by
the chirped phase of the individual solitons, which leads to intensity oscillations
in their mutual interference profile [29, 34]. We will see how the linewidth
enhancement factor a affects the chirped phase and consequently the LCS inter-
action in Sect. 4.2. Note that in driven systems without phase symmetry the
amplitude already oscillates in the tail of the single soliton as it decays, providing
direct means for the formation of bound states at discrete separations [24, 25, 27].

The interaction phase space diagram of our cubic system with filter looks
qualitatively similar to that of the cubic-quintic complex Ginzburg–Landau
equation [34, 36]. We can conclude that this kind of weak-interaction scenario is
qualitatively independent from the mechanism of soliton stabilization (quintic
nonlinearity or linear filter), although details as soliton width and interaction
strength are affected by the details of the nonlinearity quantitatively, of course.
This is maybe not surprising since the weak-interaction scenario is dominated by
the spatial region in the middle between the solitons where the intensities of both
LCS are rather small.

As the principal structure of the interaction plane has been described before
[34, 36], we do not go into more detail but mention the deviations of the foci points
from �p=2 (see, in particular, the innermost focus in Fig. 11b). It appears that the
foci are slightly shifted from / ¼ p=2 (asymptotically approaching p=2 for
L ! 1), while the exact p=2 would correspond to fixed points of center type,
rather than attracting foci [41]. In summary when the soliton phase is strongly
chirped, the dynamics in the interaction plane consists of sets of trajectories which
spiral (sometimes very slowly if L is large) into one of a series of foci, each
corresponding to a two-soliton bound state which moves transversely. These
spirals are bounded by a semi-annulus consisting of a set of four heteroclinic
trajectories separate linking adjacent pairs of (0; p) saddles. This picture loses
validity for very small values of L, when the description as a pair of separate,
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weakly-interacting, solitons becomes problematic and soliton merging takes place
[105] (see also the discussion in the following subsection).

For increasing absolute value of the imaginary part of g2 (increasing a-factor of
the semiconductor laser) the phase profile of the solitons becomes flatter and the
saddles move to higher distances in the interaction plane. The chosen value of g2

here corresponds to a ¼ 0:5, which is smaller than the experimentally relevant
value (a �2–9) but allows for an effective utilization of the interaction plane.

4.2 Semiconductor Class-B Model

As in the case of the Ginzburg–Landau model described above, the semiconductor
class-B model (4)–(6) plus (7) does not contain any optical injection, i.e. it is not
an externally driven system. The LCS are then free to choose their own frequency
and phase. As such, each LCS can take on a different phase from its neighbouring
LCS. We examine here the interaction between two LCS with an initial phase
difference at a fixed value while increasing the initial spearation distance. In order
to be closer to the experimental realization we use two separate values of the
linewidth enhancement factor: a ¼ 5:0 and a ¼ 9:0. Other parameter values are:
f ¼ 1, c ¼ 0:01, T1 ¼ 0:008, T2 ¼ 0:0002, sf ¼ 0:05 ns, rg ¼ 0:9 and r ¼ 0:9. For
a ¼ 9:0 LCS are found for J ¼ 1:63, h ¼ 1:0 and d ¼ 0:0 while for a ¼ 5:0 LCS
are found for J ¼ 1:61, h ¼ 1:0 and d ¼ 2:0. We note that since the reflection of
the grating is large (rg ¼ 0:9) and the return times are relatively short, Lang–
Kobayashi models cannot be applied here since they would produce spurious
solutions with no physical meaning [52]. Model (4)–(7) does not contain Lang–
Kobayashi approximations and carefully describes configurations close to the
experimental realizations of high feedback reflectivities.

Figure 12 displays the single LCS profiles of amplitude and phase for the two
parameter cases corresponding to a ¼ 9:0 and a ¼ 5:0. It is clear when comparing
these figures with Fig. 11a that the LCS phase profiles greatly depend on the
linewidth enhancement factor a. In the phase profile of the LCS in the Ginzburg–
Landau model with a ¼ 0:5, the range of phase variation within the width over
which the LCS is above the noise floor was larger than 9p. In the semiconductor
class-B models with a factors ten times larger, the total phase variation over which
the LCS is above the noise floor is instead just above p. The much smaller chirp of
the LCS has important consequences on the position and dynamical relevance of
the saddle points in the interaction (LcosðUÞ; LsinðUÞ) plane (see Fig. 11b). By
linearly fitting the phase profiles of the LCS we have estimated the position of the
closest saddle points with growing distances L (taking the results of Fig. 11 as a
guidance). In physical units the saddles are expected to be around L ¼ 108 lm and
L ¼ 117 lm for a ¼ 9:0 and a ¼ 5:0, respectively, i.e. more than ten times the
FWHM size of the LCS.
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Numerical simulations of the interaction of two closely placed LCS on a
homogeneous background have been performed. Figure 13 shows the temporal
evolution of the laser intensity for the process of merging of two LCS when the
initial distance of the LCS is 18.8 lm for a ¼ 9. The two peaks oscillate out of
phase while approaching each other before merging takes place. Merging of
interacting spatial solitons is intrinsically related to their dissipative nature and has
been described at length in the case of VCSELs with optical injection in [105]. The
phase difference between the LCS first rotates and then becomes ill-defined when
one of the two LCS disappears.

(a)

(b)

Fig. 12 (Color online) a The phase (solid line) and log of the amplitude (dashed line) of a LCS
for a ¼ 9:0. b The phase (solid line) and log of the amplitude (dashed line) for a LCS with
a ¼ 5:0. The blue dashed-dotted line corresponds to the noise floor
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We have then increased the initial separation distances L of the LCS to 27 lm
for a ¼ 9:0 and to 50 lm for a ¼ 5:0. These distances are above the critical values
below which LCS merging is observed. Figure 14 shows the time evolution on the
interaction plane (LcosðUÞ; LsinðUÞ) of simulations starting at U ¼ �0:1p.

One first observes a quick resetting of the LCS phase difference to the value of
U ¼ p followed by a very slow progressive separation of the two LCS. The tip of
the solid line after phase resetting and along the horizontal axis of Fig. 14 cor-
responds to the final LCS distance after long extended simulations (90 ls). This
means that the dashed line on the horizontal axis corresponds to regions where the
LCS are almost incapable to interact. The situation is similar to what has been
observed in numerical simulations for LCS in semiconductor lasers with saturable
absorbers and large initial separation distances between the solitons [42]. In our
case the LCS reach a distance larger than five soliton diameters at which they do
not feel each other any longer. More importantly, the slowly decaying phase
profile implies that interacting LCS at physical values of the a factor cannot reach
the saddle points that re-direct the phase difference evolution towards the foci at
U ¼ p=2 in the Ginzburg–Landau model of Sect. 4.1.

One cannot refer to the two LCS at the end of the simulations of the semi-
conductor class-B model of Fig. 14 as ‘locked’ although the phase difference U is p,
since the LCS are not interacting any longer. Moreover, defects in the growth of the
semiconductor material pin LCS to given spatial positions. For these reasons we

(a) (b)

(c) (d)

Fig. 13 Time evolution of the intensity of two interacting LCS for an initial distance of 18.8 lm
and a ¼ 9 for the class-B VCSEL model with FSF. a t ¼ 0 ns, b t ¼ 1:2 ns, c t ¼ 1:8 ns and
d t ¼ 6 ns. Parameter values are specified in the text
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decided that is was important to study locking of LCS when pinned in material
defects as described in details in Sect. 5.

5 Theoretical Results: Inhomogeneous Systems
and Adler-Locking

5.1 Ginzburg–Landau Model

We turn now to address the case of practical importance in which the interaction is
between solitons trapped by defects. We break the translational invariance by
imposing a pinning potential, nðxÞ, which is localized, being zero everywhere
except in the intervals xj � W

2 \x\xj þ W
2 with j ¼ 1; 2, where it is given by

nðxÞ ¼ nj

2
sin � p

2
þ 2pðx � xjÞ

W

� �
� 1

� �
: ð10Þ

This potential is a smooth function, as shown for example in Fig. 16 by a gray line.
The width W of each trap is chosen close to the width at half maximum of the
LCS. The trap separation Lt ¼ jx2 � x1j is obviously an important parameter. We
consider the practically-relevant initial condition where there is one soliton in each
trap. In terms of the unperturbed (L;U) phase space diagram we are interested in
trajectories emanating from (Lt;U0), where U0 is arbitrary.

We consider first the symmetric case of two identical traps with n1 ¼ n2 ¼ n0,
and examine the changes in the interaction plane trajectories as n0 is increased.
Since translation is a neutral mode of the unperturbed system, any attractive
potential is able to trap an isolated LCS. Two solitons in identical, weak, traps will
still interact, and the strength and sign of their interaction depend strongly on the
separation Lt of their respective traps. As mentioned above, almost all trajectories
in the trap-free case are attracted to one of the the foci in Fig. 11b for the
considered values of g2, in accordance with the literature [30, 31, 34]. The

108μm

(a)

27μm
117μm

50μm

(b)

Fig. 14 The interaction plane ðLcosðUÞ; LsinðUÞÞ showing a numerically calculated trajectory
and the estimated location of the anticipated closest saddle for a a ¼ 9:0 and b a ¼ 5:0. The
origin of the plane is in the center of the circle
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corresponding bound states move with a finite speed, and so these states are not
destroyed by infinitesimal perturbations, but only by those of finite amplitude.
Since almost all trajectories in the interaction plane are attracted to a focus for
n0 ¼ 0, they will still do so in the presence of infinitesimal perturbations.
Trajectories starting close enough to a L-unstable saddle will however be modified
by infinitesimal perturbations because the unstable eigenvalue becomes vanish-
ingly small close enough to such a saddle. We can therefore expect that such
saddles become stable nodes when Lt is close enough to the saddle separation.
Such a node corresponds to the two solitons being phase-locked, either in-phase or
out-of-phase, depending on Lt. The basin of attraction of each new node will be
infinitesimal for an infinitesimal perturbation, but grows with n0. Note that the
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L-stable saddles of the homogeneous system are all U-unstable, and will remain so
under perturbation.

For finite n0, the solitons will phase-lock over a finite range of Lt around the
saddle-separation. These trap-induced nodes will become the dominant attractors
once n0 is large enough to destroy the p=2 foci thus implying that the solitons
remain locked for all times. For strongly-trapped solitons the interaction plane
dynamics collapses onto the circle L ¼ Lt, and the phase difference U is attracted
to either 0 or p, depending on Lt but independent of U0.

Due to the decrease of interaction strength with distance L, the outermost foci
and saddles are affected first. For n0 ¼ 3:0 (still an order of magnitude smaller than
Imðg0Þ ¼ 28), the depth of the trap is large enough to prevent drift and to keep the
solitons at fixed positions for Lt [ 1:25, i.e. outside the central white region in
Fig. 11b. At the same time, the perturbation by nðxÞ is still small enough that the
shape of the solitons deviates only slightly from (9) within the trap. Within each of
the colored bands (light-gray or white) in Fig. 11b the locking phase is that of the
saddle lying in that band, which is phase-stable in the unperturbed problem. This is
illustrated in Fig. 15, where the anti-phase state is selected for Lt ¼ 1:9 but the in-
phase one for Lt ¼ 2:1.

Since the trapped soliton pairs have a pure phase dynamics, we can attempt to
describe the system by an Adler equation [66], the archetypical equation
describing synchronization between coupled oscillators. For our case it can be
written in the form

dU
dt

¼ Dx � e sinðUÞ ; ð11Þ

where Dx is the trap-detuning (which is zero for n1 ¼ n2), and e is a coupling
constant. In-phase and anti-phase solutions are selected for Dx ¼ 0, depending on
the sign of the coupling. For positive e the stable final state is U ¼ 0, for negative e
it is U ¼ p. It is obvious from the above results that the distance between traps
affects both the magnitude and sign of the coupling in our system. Corresponding
terms appear in the perturbation analysis of the cubic-quintic Ginzburg–Landau
equation [34]. The survival of the (slightly modified) p=2-states for weak per-
turbations, followed by a transition to in- or anti-phase locking was also observed
numerically for the CQGLE with regular modulations [76, 78].

In- and anti-phase synchronization are the only possibilities in the Adler
equation for Dx ¼ 0, corresponding to the ideal situation of identical traps with
n1 ¼ n2. The pinning potential of real systems is however the result of the growth
process of the semiconductor material and the traps are not identical. Then we
model this fact by introducing a difference in the trap depths (gray line in Fig. 16).
This difference leads to the crucial consequence that the natural frequencies of the
two LCS are unequal, and so Dx is finite in the Adler equation. For states with
negligible interaction (large Lt), the phase difference evolves as a linear function of
time, U ¼ Dxt. Decreasing Lt the coupling increases and the dynamics of U starts
to deviate from a linear change (see Fig. 16 bottom inset). For small enough Lt,
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there is frequency and phase locking (see Fig. 16 top inset). One can see that the
system is synchronized now to a phase-locked state (Fig. 16 main panel) with a
locking phase which is neither 0 or p.

For a single soliton in a shallow trap direct numerical integration demonstrates
that its frequency depends linearly on the depth of the trap. Hence, for each value
of n1 and n2, we can calculate the frequencies x1 and x2 which the LCS would
have in the absence of neighbors. We have studied the synchronization dynamics
for different detunings Dx for various choices n2 6¼ n1, and found very good
agreement with that predicted by the Adler equation (11) (see Fig. 18, for a plot).
The stable steady state of the system (11) gives the simple expression
sin�1 ðDx=eÞ for the locked value of U. Locking obviously becomes impossible
for jDxj[ jej, and we can use this limit to compute the coupling constant e as a
function of trap separation Lt. We find that the interaction strength has an oscil-
latory component superimposed on the expected decay with increasing trap sep-
aration, which we can attribute to the saddle distribution in the unperturbed
problem, see Fig. 11. This is illustrated in Fig. 17.

One can interpret the findings in Figs. 11 and 17 in the way that the coupling
coefficient e has an (exponentially) damped oscillatory behavior with inter-soliton
distance Lt. In particular this implies that the coupling becomes zero at some
distances (at the boundaries between the ring-shaped regions in Fig. 11, where the
direction of phase flow in the phase direction changes), at least in leading orders,
and the tendency to locking is very weak. It also explains, at least qualitatively,
why the points of strongest locking are shifted away from the center of the ring-
shaped regions in Fig. 11: The coupling strength is defined by the maximum of the
product of the exponential decay and the oscillatory component and hence occurs
at smaller distances than the maximum of the oscillation, which determines the
ring structures. The decay of coupling strength is related to the diminishing
overlap between the soliton tails with increasing distance, the oscillatory
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Fig. 17 Critical difference in
trap depths for unlocking of
LCS versus distance Lt

between traps (open circles).
The two filled circles
correspond to the data of
Fig. 16, which straddle the
critical curve. The vertical
line at Lt � 2 corresponds to
the LCS separation in one of
the focus states in the
unperturbed problem, which
appears linked to a local
minimum of the locking
range. The two dash-dot
vertical lines correspond to
the adjacent saddles
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component to the change of interference conditions due to chirp. One can also
reinterpret the sequence of phase-stable and phase-unstable saddles at U ¼ 0; p in
Fig. 11 as being due to an Adler-type phase selection for zero detuning and an
oscillatory sign of the coupling coefficient e. Indeed, for the LSA and the CQGLE
Adler-type equations for the relative phase with an interaction coefficient showing
an exponentially damped oscillatory behavior with distance were derived in
[34, 41], but with additional terms due to the translational Goldstone mode. Of
course, the damped oscillatory behavior of the phase-coupling coefficient with
inter-soliton distance in the Adler equation is related to a corresponding behavior
of the overall interaction strength between solitons with inter-soliton distance as
described first in [29] and then explored in many of the references given in the
introduction.

Taking into account the Lt dependence by scaling Dx by e, the Adler equation
predicts a universal arcsin dependence of the locking phase on the trap-detuning.
We find just such a dependence for a broad range of parameters. An example is
shown in Fig. 18 for Lt ¼ 1:5, where analogous data for the semiconductor class-B
model shows exactly the same Adler signature as discussed in the following
section.

Before ending this section, we mention that two LCS in two traps of different
depths (or widths) are obviously not entirely equivalent but for the parameters
considered the differences are negligible as shown by the profiles in Fig. 16. The
same holds for the class-B case discussed below. In the experiment there are
actually noticeable variations in width and amplitude between different LCS,
although still small, as evidenced in Fig. 5 (see also the text in Sect. 2.2 and [49]).

Fig. 18 (Color online) Locked phase differences U of pinned LCS versus the potential depth
difference Dn ¼ n1 � n2 from integration of the semiconductor class-B model (triangles, LCS
separation of 4 soliton widths) and Ginzburg–Landau model (blue circles, jx2 � x1j ¼ 1:5). The
solid line refers to the Adler equation (11) for negative e. The inset shows the near-field profile of
the jEj2 of two interacting LCS. Such profile changes very little across the Adler locking region.
From [65]
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5.2 Semiconductor Class-B Model

The locking of LCS pinned to background defects as observed experimentally in
the VCSEL with frequency-selective feedback in Sect. 2 and in the simulations of
the Ginzburg–Landau model in Sect. 5.1 is a universal phenomenon and has been
found in the semiconductor class-B model of Eqs. (4)–(7) too. In order to simulate
the presence of the pinning defects, we have modified the field equation to

otE ¼ �ð1 þ ihÞE þ i
o2

ox2
E þ rð1 � iaÞðN � 1ÞE þ inðxÞE þ 2

ffiffiffiffiffi
T1

p

ðT1 þ T2Þ
F; ð12Þ

where the feedback field is still given by Eq. (6) and the trapping potential nðxÞ is
equal to zero everywhere except in the two intervals xj � W\x\xj þ W where
nðxÞ ¼ nj with j ¼ 1; 2. The homogeneous case is recovered when n1 ¼ n2 ¼ 0.
The pinning potential is now a step function of x and the width 2W of the defects is
chosen to be around twice the width at half maximum of the LCS. As in the
Ginzburg–Landau case, differences between the defects are described by the
depths n1 and n2 of the pinning potential. For nj different from zero, the presence
of the pinning potential breaks the translational invariance of each LCS. Small
variations of nj from zero lead to small changes in the soliton frequency x without
modifying its stability properties.

If two trapped defects are close enough in space, the LCS interaction locks their
phase difference to values that depend on Dn ¼ n1 � n2 until the potential depth
difference is too large to maintain strong interaction. When compared to the case
without defects (see Sect. 4.2) the evolution of the phase difference U between the
trapped LCS contains now only a fast relaxation to well determined stationary
values that depend on Dn and consequently on the frequency difference between
the two LCS. The triangles in Fig. 18 show the stationary phase difference U from
numerical simulations of Eq. (12) and (5)–(7) when changing the depth of one of
the trap while keeping the second one fixed to the value of �0:1 while the distance
between the centres of the traps is kept fixed at jx2 � x1j ¼ 31 lm. LCS phase
locking takes place for jDnj\Dntr. This locking phenomenon is universal for LCS
pinned by defects and the blue circles in Fig. 18 corresponds to numerical simu-
lations of the Ginzburg–Landau model of Sect. 18 under very different conditions
of operation. The solid line in Fig. 18 shows an excellent agreement of the Adler
equation (11) predictions with the numerical results of both the Ginzburg–Landau
and the semiconductor class-B models for two interacting LCS trapped by defects.

In the locked state, LCS have a fixed phase difference and the same frequency.
This is demonstrated in Fig. 19a where the optical spectra for two values of Dn
inside the locked region are shown, which correspond to Dn=Dnth ¼ 0 and 0:99,
respectively. Within the locked region, the spectra of the two LCS overlap exactly
indicating a strong interaction. There is a progressive shift of the locked frequency
while scanning the Adler region. This matches qualitatively the experimental
results in Figs. 8 and 9, though the absolute value is much lower. This is not

Frequency and Phase Locking of Laser Cavity Solitons 81



surprising, because the technique used to change detuning in the experiment is
different.

Figure 19b displays the corresponding far field images. Interference fringes
between the two locked solitons are clearly visible. A progressive change of the LCS
phase difference U (from p at Dn=Dnth ¼ 0 to around 1:5p at Dn= Dnth ¼ 0:99) is
reflected in the change in the symmetry of the fringe pattern. All these features of the
LCS locked states are confirmed in the Ginzburg–Landau model and, more impor-
tantly, in the experiments on VCSELs with frequency-selective feedback presented
in Sect. 2.

Both optical spectrum and far-field fringes change greatly as soon as one moves
outside of the locking range as shown in Fig. 20 for Dn=Dnth ¼ 2 and 5. The spectra
of the two LCS are now clearly separated although a partial overlap of some of the
peaks is still present due to the non-uniform evolution of the relative phase. Such
feature affects the far-field image, too, where some interference maxima are still
visible although progressively disappearing with increasing Dn. For very large
difference of the defect minima, the fringe visibility disappears completely, as
expected for two LCS with large frequency separation.

The Adler locked state between LCS is a robust feature independent of initial
conditions such as initial phases, frequencies and sequential order of creation of
the two LCS. Once the locked state is attained, one of the two LCS can be
switched off by a short, localized perturbation to the carrier density at its location.
Hence, LCS retain their solitonic properties in the phase-locked state in the sense
that they are still individually bistable and optically controllable.

(a) (b)

Fig. 19 Optical spectra for a time window of 5 ls (a) and far field fringes averaged over 2 ls
(b), for Dn=Dnth ¼ 0 (solid lines in a and b) and 0:99 (dashed lines in a and b). In a each line
contains the overlap of the spectra of both LCS. Simulations of the semiconductor class-B model

82 T. Ackemann et al.



6 Conclusions

Lasers are oscillators of very high-frequency electromagnetic radiation amplified
via stimulated emission in a cavity. Thus, it is not surprising that coupled lasers
lock their phases and frequencies in a way similar to oscillators as demonstrated in
the seventies through injection locking [9]. Indeed phase and frequency locking of
master-slave lasers is almost as old as the laser itself [2]. In the nineties, coupling
between adjacent laser elements in arrays also resulted in phase locking typical of
coupled oscillators [4].

Here we have demonstrated that locked laser beams can be contained in the
same semiconductor laser device in the form of coupled spatial solitons. The
specific configuration of choice is that of a VCSEL with frequency-selective
feedback provided by a volume Bragg grating. Such systems has been shown to
sustain localized structures in the form of bright LCS corresponding to narrow
intensity peaks of coherent light on a dark background [47–49]. In principle, well
separated LCS are independent micro-laser beams that can be individually
addressed and removed thus forming an optical memory. Theoretically, the
interaction of two phase-chirped LCS should lead to a phase locked state with a
frequency difference close to p=2 in a way similar to what is observed in temporal-
longitudinal systems [40]. The reality of VCSELs with frequency-selective feed-
backs is however quite different from this scenario. First, realistic values of the
linewidth enhancement factor a strongly reduce the LCS phase chirp making it
impossible to observe the p=2 locking even on homogeneous backgrounds.

(a) (b)

(d)(c)

Fig. 20 Optical spectra for a time window of 5 ls a–c and far field fringes averaged over 2 ls
b–d, for Dn=Dnth ¼ 2 (a–b) and 5 (c–d). In a and c the solid and dashed lines correspond to the
spectra of each LCS
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Secondly and more importantly, LCS in real systems are pinned to local defects
that are due to the growth process of the semiconductor material. We have shown
that the pinning process has two fundamental effects on a single LCS: to break the
translational symmetry and to modify its frequency. When these effects are taken
into consideration, the picture of the interaction of pinned LCS changes drastically
from that of cavity solitons in temporal-longitudinal systems. We demonstrated
both experimentally and theoretically that two trapped LCS in VCSELs with
frequency-selective feedback display Adler synchronization leading to phase and
frequency locking.

We expect similar considerations to apply to solitons in LSA and non-
semiconductor systems with phase symmetry such as photorefractive oscillators.
Moreover our study uses a continuous model, but synchronization is between
discrete entities, the solitons. As such, we have provided a bridge between
spatially extended media and coupled, predefined oscillators. Furthermore we
note that the LCS are quite peculiar micro-lasers since they are self-localized and
bistable so that new interesting dynamics beyond the standard Adler scenario is
expected from these properties.

We plan to extend the study of interaction of pinned LCS from two to multiple
elements as well as considering their pinning into externally induced regularly and
irregularly arranged traps. This can be based on codes already developed for 2D
dynamical simulations and stability analysis of single soliton solutions in the
CGLE-F as well as class-B models [52, 80, 106]. In view of the random detuning
conditions due to the disorder, it can be anticipated that it is impossible, or at least
difficult, to achieve locking of more than two LCS by a single, global control
parameter (as the VBG tilt). Although we occasionally observed phase-locking of
three solitons [107], it would be useful to have control on the local values of the
detuning, in addition to the global one used in this work. Previous investigations
established that the hysteresis loop of LCS can be shifted to some extent inde-
pendently by local injection of an external beam [108]. The external beam gen-
erates or depletes carriers (depending on wavelength), the refractive index changes
and this causes a shift of the cavity resonance (there might be a thermal effect in
addition) and finally of switching thresholds. Although not investigated in [108],
we expect the change of switching thresholds to be accompanied by a change in
frequency. This would open up the intriguing possibility of shaping the disorder
dynamically via an external beam structured with a spatial light modulator.
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Light-Induced Breaking of Symmetry
in Photonic Crystal Waveguides
with Nonlinear Defects as a Key
for All-Optical Switching Circuits

Evgeny Bulgakov, Almas Sadreev and Konstantin N. Pichugin

Abstract We consider light transmission in 2D photonic crystal waveguide
coupled with two identical nonlinear defects positioned symmetrically aside the
waveguide. We show that with growth of injected light power there is a breaking
of symmetry by two ways. In the first way the symmetry is broken because of
different light intensities at the defects. In the second way the intensities at the
defects are equaled but phases of complex amplitudes are different. That results in
a vortical power flow between the defects similar to the DC Josephson effect if
the input power over the waveguide is applied and the defects are coupled.
As application of these phenomena we consider the symmetry breaking for the
light transmission in a T-shaped photonic waveguide with two nonlinear defects.
We demonstrate as this phenomenon can be explored for all-optical switching of
light transmission from the left output waveguide to the right one by application of
input pulses. Finally we consider the symmetry breaking in the waveguide coupled
with single defect presented however by two dipole modes.

1 Introduction

Symmetry breaking in a nonlinear quantum system is a fundamental effect caused
by the interplay of nonlinearity with linear potential which defines the symmetry.
It is commonly known that the ground state in one-dimensional linear quantum
mechanics is nodeless and follows the symmetry of the potential. However the
self-attractive nonlinearity in the nonlinear Schrödinger equation breaks the
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symmetry of the ground state, replacing it by a new asymmetric state minimizing
the system’s energy. For example, the nonlinear Schrödinger equation in double-
well potential reveals asymmetric ground state with variation of normalization of
the state [1, 2]. The phenomenon of the spontaneous symmetry breaking in
analogy with the double-well potential are realized in a nonlinear dual-core
directional fiber [3–5]. Spontaneous symmetry breaking was demonstrated
recently by Brazhnyi and Malomed in a linear discrete chain (Schrödinger lattice)
with two nonlinear sites [6]. They have shown as analytically as well as numer-
ically the existence of symmetric, anti-symmetric, and non-symmetric eigen-
modes with eigen-frequencies below the propagation band of the chain, and that a
variation of the population of modes can give rise to a bifurcation form one to
another mode. The system has direct relation to photonic crystal (PhC) waveguides
with two in-channel nonlinear cavities where the population of the cavities might
be governed by external source of the light.

Indeed, the phenomenon of symmetry breaking is studied in the nonlinear
optics with injection of input power with the establishment of one or more
asymmetric states which no longer preserve the symmetry properties of the
original state [7–11]. In particular Maes et al. [12, 13] considered the symmetry
breaking for the nonlinear cavities aligned along the waveguide, that is a
Fabry-Pérot architecture close to the system considered in Ref. [9]. That system is
symmetric relative to the mirror of the transport axis if equal power is injected on
both sides of the coupled cavities. The symmetry breaking was found also for the
case of many coupled nonlinear optical cavities in ring-like architecture [14, 15].
In the Sect. 2 we write the equations of motion for the nonlinear optical cavities
coupled with PhC waveguides by using an analogy of the two-dimensional PhC
with quantum mechanics [16]. As for an application we consider three simple PhC
systems which undergo the symmetry breaking phenomena for variation of the light
frequency or the input power. The first simplest system is two identical nonlinear
defects positioned symmetrically aside a linear waveguide (Sect. 3). Each defect is
presented by single monopole mode. We show two types of the symmetry breaking
[17, 18]. In the first type the symmetry is broken because of different light inten-
sities at the defects. In the second type of the symmetry breaking the intensities at
the cavities are equal but phases of complex amplitudes are different. That results in
a vortical power flow between the defects similar to the DC Josephson effect if the
input power over the waveguide is applied, and the defects are coupled.

In Sect. 4 we consider as the phenomenon of the symmetry breaking can be
explored for so called all-optical switching [19–22] by use of the T-shaped
photonic waveguide with two identical nonlinear cavities positioned symmetri-
cally. That system combines two systems. The first one is the Fabry-Pérot inter-
ferometer (FPI) consisting of two nonlinear off-channel cavities aligned along the
linear waveguide considered in Refs. [12, 13, 23]. As was shown in Ref. [23]
there is a discrete set of the a self-induced bound (localized) states in continuum
(BSC) which are the standing waves between off-channel cavities. In the second
system two nonlinear cavities are aligned perpendicular to the input waveguide.
As was said above there is the anti-bonding BSC which was recently observed
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experimentally in PhC [24]. Here we show that both types of the bound states
might be important for the breaking of symmetry. All these phenomena agree
well with computations based on an expansion of the electromagnetic field into
optimally adapted photonic Wannier functions in two-dimensional PhC [25, 26].

Finally, in Sect. 5 we consider the single nonlinear defect with two dipole
eigen-modes which belong to the propagation band of the PhC linear waveguide
(Sect. 3). We demonstrate the symmetry breaking provided that the system is
excited with equal powers from both sides similar to that Maes et al. has shown in
the system of two coupled nonlinear cavities [12, 13].

Finally, we note that the Sects. 2–4 mostly review the papers [17, 18, 27] which
were published in 2011 for preparation of the present article article while Sect. 5
is reports new results.

2 Basic Equations

The light propagation in linear PhC is described by the Maxwell equations

r�~E ¼ � o~H

ot

r� ~H ¼ o~D

ot
;

~Dð~r; tÞ ¼ �0ð~rÞ~Eð~r; tÞ:

ð1Þ

We take the light velocity to be equal to unit. However if there are defects with
instantaneous Kerr nonlinearity, the displacement electric vector interior to the

defects has a nonlinear contribution ~Dð~r; tÞ ¼ �0ð~rÞ~Eð~r; tÞ þ vð3Þ½~Eð~r; tÞ�2~Eð~r; tÞ [28].
A substitution of the electric field in the form ½~Eð~r; tÞ ¼ 1

2 ½~Eð~rÞeixt þ~E�ð~rÞe�ixt�
into Eq. (1) and neglect by highly oscillating terms such as e2ix allows us to write
the Maxwell equations in the same form as Eq. (1) with

�ð~rÞ ¼ �0ð~rÞ þ vð3ÞðxÞjEð~rÞj2: ð2Þ

We took into account that in what follows we consider the 2D PhC with arrays of
infinitely long dielectric rods as shown in Fig. 1a in which the electric field is
directed along the rods while the magnetic field is directed perpendicular to the
rods (in the plane of Fig. 1a).

There is a remarkable analogy of electrodynamics in dielectric media with
quantum mechanics [16, 29]. In particular, if the nonlinear contribution to the
dielectric constant is small we can use the well-known methods of quantum

mechanical perturbation theory. Let jwi ¼ E
!

H
!

� �
be the electromagnetic state in

the PhC. Then the Maxwell equations (1) can be written as the Schrödinger

equation i _jwi ¼ bH jwi indeed with the Hamiltonian [16, 29, 30]
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bH ¼ 0 i
�ð~rÞ r�

�ir� 0

� �
: ð3Þ

Because of the perturbation of the dielectric constant (2) the Hamiltonian can be

presented as bH ¼ bH0 þ bV where

bH0 ¼ 0 i
�0ð~rÞ r�

�ir� 0

� �
; bV ¼ 0 id 1

�ð~rÞ

� �
r�

0 0

 !

; ð4Þ

and

d
1

�ð~rÞ

� �
¼ 1

�ð~rÞ �
1

�0ð~rÞ
: ð5Þ

Let us introduce (following, for example, Refs. [30, 31]) the following inner
product for the unperturbed system:

hwjw0i ¼ 1
2

Z
½�0ð~rÞ~E�~E0 þ ~H�~H0�d3~r: ð6Þ

which obeys the following normalization and orthogonality conditions for the

bound eigen-states of the unperturbed Hamiltonian bH0jwmi ¼ xmjwmi

hwnjwn0 i ¼
1
2

Z
½�0ð~rÞ~E�

n
~En0 þ ~H�

n
~Hn0 �d3~r ¼

Z
�0ð~rÞ~E�

n
~En0d

3~r ¼ dnn0 : ð7Þ

Then the matrix elements for the perturbation calculated by use of these eigen-
states are

hmjV jni ¼ xn

2

Z
d3~r�2

0ð~rÞd
1

�ð~rÞ

� �
~E�

mð~rÞ~Enð~rÞ: ð8Þ

(a) (b)

u

1

2

y

x

Fig. 1 a Two defect rods made from a Kerr media marked by filled circles are inserted into the
square lattice PhC of dielectric rods with the lattice constant a ¼ 0:5 lm; the cylindrical
dielectric rods have radius 0:18a and dielectric constant �0 ¼ 11:56: The 1D waveguide is formed
by substitution of linear chain of rods by the rods with dielectric constant �W þ �0 marked by
stars. b Schematic system consisting of a waveguide aside coupled with two single-mode cavities.
The cavities are coupled to each other via u
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One can see that the matrix (8) is not Hermitian as was noted in Ref. [30]. The
origin is that the unperturbed states obey the inner product (6) with the dielectric

constant �0ð~rÞ while the eigen-states of the full Hamiltonian bH0 þ bV obey
the inner product with a different dielectric constant �ð~rÞ: Respectively, the

Hamiltonian bH is non-Hermitian with the inner product (7).
In order to avoid this problem we must use the inner product which is not tied to

a specific choice of the dielectric constant. One way, given in Ref. [16], is by using
only the magnetic field for the state. Another way is to absorb the dielectric

constant in the scalar product by a new function as ~F ¼
ffiffiffiffiffiffiffiffi
�ð~rÞ

p
~E: Then the inner

product becomes

hwjw0i ¼ 1
2

Z
½~F�~F0 þ ~H�~H0�d3~r: ð9Þ

The value hwjwi ¼ 1
2

R
½�ð~rÞj~Ej2 þ j~Hj2�d3~r is proportional to the energy of EM

field which is important for the derivation of the forthcoming coupled mode theory
(CMT) equations. That technique changes the Maxwell equations as follows:

r�
~F
ffiffiffiffiffiffiffiffi
�ð~rÞ

p ¼ � _~H

1
ffiffiffiffiffiffiffiffi
�ð~rÞ

p r� ~H ¼ _~F:

ð10Þ

The Hamiltonian takes the following form

bH0 ¼
0 iffiffiffiffiffiffiffi

�0ð~rÞ
p r�

�ir� 1ffiffiffiffiffiffiffi
�0ð~rÞ

p 0

0

@

1

A;

bV ¼
0 id 1ffiffiffiffiffiffi

�ð~rÞ
p
� �

r�

�ir� d 1ffiffiffiffiffiffi
�ð~rÞ

p
� �

0

0

BB@

1

CCA:

ð11Þ

Now the eigen-states of the full Hamiltonian can be expanded over the eigen-

states jmi ¼
~Fm
~Hm

� �
of the unperturbed Hamiltonian bH0 where

r�
~Fmffiffiffiffiffiffiffiffiffiffi
�0ð~rÞ

p ¼ ixm~Hm

r� ~Hm ¼ �ixm

ffiffiffiffiffiffiffiffiffiffi
�0ð~rÞ

p
~Fm:

ð12Þ

Then we obtain from (8)

hmjVjni ¼ ðxm þ xnÞ
2

Z
d3~r�3=2

0 ð~rÞd 1
ffiffiffiffiffiffiffiffi
�ð~rÞ

p

 !

E�
mð~rÞEnð~rÞ: ð13Þ

Light-Induced Breaking of Symmetry in Photonic Crystal Waveguides 93



One can see that the full Hamiltonian is Hermitian now.
If the nonlinear defect rods are thin enough, the dielectric constant (2) can be

rewritten as follows

�jðxÞ ¼ �0 þ
3
4
vð3ÞðxÞjEðxÞj2

� �X

j

hðx � xjÞ: ð14Þ

Here j enumerates the defects, h ¼ 1 inside the defect rod and h ¼ 0 outside.
As was shown for the simple square lattice 2D PhC from thin GaAs dielectric rods
[26] the resonance spectra in the PhC waveguide are located in a rather narrow
frequency domain. Therefore, we neglect the frequency dependence in the
nonlinear susceptibility vð3ÞðxÞ in the following. Assuming that the nonlinear
contribution in Eq. (14) is small compared to �0 we obtain for the matrix ele-
ments (13) per unit length of the defect rods

hmjV jni � � 3

16�3=2
0

vð3Þðxm þ xnÞ
X

j

Z

rj

d2xjEðxÞj2EmðxÞ�EnðxÞ: ð15Þ

In order to find electric fields at the defects we must constitute a way to excite
the defect modes. Here we consider that the EM field propagates from the left
along the linear single-channel waveguide, interacts with the nonlinear defects,
reflects back and transmits to the right. Then the transmission process can be
described by the CMT stationary equations [32–35]

x �
X

n

ðxmdmn þ Vmn þ iCnÞ
" #

Am ¼ i
ffiffiffiffiffiffi
Cm

p
Ein: ð16Þ

These CMT equations, in fact, are the Lippmann–Schwinger equation [36, 37]

ðx � bHeff ÞW ¼ i bW Ein: ð17Þ

where the complex matrix bHeff equals

bHeff ¼ bH0 þ bV � i bW bWþ; ð18Þ

the columns of the matrix bW consists of coupling constants of the m-th eigen-
mode with the p-th injecting wave

ffiffiffiffiffiffiffiffi
Cmp

p
; and the column W consists of the

mode amplitudes Am: The solution W is given by inverse of the matrix x � bHeff

where the matrix elements of the effective Hamiltonian bHeff in turn depend on the
mode amplitudes Am: In order to write the equations of self-consistency for the
amplitudes at the defects we expand the electric field at the j-th defect over eigen-
modes EðxjÞ ¼

P
m AmwmðxjÞ: That defines the equations of self-consistency after

substitution into Eq. (16).
Finally, we present the transmission amplitude in the framework of the CMT

[33, 34]

t ¼ Ein � bWþW: ð19Þ
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3 Linear Optical Waveguide Coupled with Two Nonlinear
Off-Channel Cavities Aligned Symmetrically

Two identical nonlinear defects positioned symmetrically relative to the single
linear waveguide is one of the simplest systems in which the breaking of symmetry
occurs [17, 18]. The system can easily be realized in 2D PhC as shown in Fig. 1a.
The system is symmetric relative to the inversion of the y axis, as shown in
Fig. 1b, and thereby supplements the system in which two nonlinear cavities are
aligned along the waveguide considered by Maes et al. [12, 13]. That system is
symmetric relative to the inversion of the x axis if equal power is injected on both
sides of the waveguide.

Let each defect supports a localized non degenerate monopole solution for the
TM mode only, which has the electric field component parallel to the infinitely
long rods [16, 26]. Other solutions, (dipole, quadrupole, etc.) are assumed to be
extended in the photonic crystal for the appropriate cavity radius and the dielectric
constant [26, 38] and are thereby excluded from the consideration. Therefore, we
have a two-level description for Ĥ0 with the eigen-frequencies

xs;a ¼ x0 � u ð20Þ

where u is the coupling constant u. We denote the corresponding even (bonding)
and odd (anti-bonding) eigen-modes as ws;aðxÞ: Both modes for specific PhC are
shown in Fig. 2. We pay attention that the frequency of the bonding (nodeless)
mode is higher than the frequency of the anti-bonding mode with one
nodal line.

Next, we assume that the EM wave which propagates along the waveguide
obeys the symmetry of the total system. Therefore the wave might be only
symmetrical relative to y ! �y or anti-symmetrical. Respectively, the sym-
metric wave could excite only the bonding mode while the anti-bonding
mode would remain as a hidden mode. Other words, the anti-bonding mode is
the bound state in symmetrical continuum [36]. The same refers to the case of
the anti-symmetric wave and the defect bonding mode. Therefore, for the linear
case one can see the only resonance dip at xs; if the symmetric wave
propagates along the waveguide. However due to the nonlinearity the light
transmission acquires much more rich behavior because of spontaneous
breaking of symmetry.

Substituting two eigen-functions ws;aðxÞ into Eq. (15) and considering a radius
of the defect rods are very thin compared to the characteristic scale of wave
function we obtain

hmjV jni � � 3
16

rvð3Þðxm þ xnÞ
X

j¼1;2

jEðxjÞj2wmðxjÞ�wnðxjÞ; ð21Þ

where r is the cross-section of the defects. Finally, we obtain from Eq. (21)
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bV ¼ k xs/
2
s ðI1 þ I2Þ x0/s/aðI1 � I2Þ

x0/s/aðI1 � I2Þ xa/
2
aðI1 þ I2Þ

� �
ð22Þ

where /s ¼ wsðx1Þ
ffiffiffi
r

p
¼ wsðx2Þ

ffiffiffi
r

p
;/a ¼ waðx1Þ

ffiffiffi
r

p
¼ �waðx2Þ

ffiffiffi
r

p
; x1 and x2

are the positions of the defects in the two-dimensional PhC, and Ij ¼ jEðxjÞj2;
j ¼ 1; 2 are the intensities of the electric field at the nonlinear defects, k ¼ � 3

4 vð3Þ:
In order to find electric fields at the defects we must constitute a way to excite

the defect modes. Here we consider that the EM field propagates from the left
along the waveguide, interacts with the nonlinear defects, reflects back, and
transmits to the right. Then the transmission process can be described by the CMT
stationary equations [32–34] for the bonding mode amplitude As and the anti-
bonding amplitude Aa

½x � xs � kxs/
2
s ðI1 þ I2Þ þ iC�As � kx0/s/aðI1 � I2ÞAa ¼ i

ffiffiffiffi
C

p
Ein;

� kx0/s/aðI1 � I2ÞAs þ ½x � xa � kxa/
2
aðI1 þ I2Þ�Aa ¼ 0; ð23Þ

where only the bonding mode is coupled with the waveguide because of the
symmetry. The equivalent model is shown in Fig. 1b.

The amplitudes As and Aa are given by inverse of the matrix given in the right
hand of Eq. (23) whose matrix elements in turn depend on the intensities I1; I2:
In order to write the equations of self-consistency for the intensities at the defects
Ij; j ¼ 1; 2 we expand the electric field EðxÞ at the thin j-th defect over eigen-
modes /sðxÞ as EðxjÞ ¼

P
m¼s;a Am/mðxjÞ: The expansion can be specified as

follows

E1 ¼ Eðx1Þ ¼ /sAs þ /aAa; E2 ¼ Eðx2Þ ¼ /sAs � /aAa ð24Þ

Fig. 2 a Bonding (even) mode and b anti-bonding (odd) mode of two overlapped linear defects
in the 2D PhC. The defects have the same radius as the radius of rest rods but different dielectric
constant �0 ¼ 3: The frequency of the isolated defect equals 0.3593 in terms of a value 2pc=a: For
the case of two overlapped defects shown here the frequency is split to be equal 0.3603 (bonding)
and 0.3584 (anti-bonding)
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where symmetry properties of the eigen modes /mðxÞ were taken into account.
Respectively,

I1 ¼ j/sAs þ /aAaj2; I2 ¼ j/sAs � /aAaj2 ð25Þ

which defines the equations of self-consistency after substitution into Eq. (23).
In general they are rather cumbersome. Let us, first, consider the more simple case
of the isolated defects so that the overlapping u can be neglected. Then the values
of the eigen-functions at the defects are equal /s ¼ /a: Even in that simplified
case the solution of Eq. (23) has cardinal features different from the case of the
single nonlinear defect considered in Refs. [39–46]. These features are the result
of the mutual interference of wave flows reflected by the nonlinear defects.

If detðbHeff � xÞ 6¼ 0 the amplitudes of the mode excitement for the transmission
can be easily found from Eq. (23) as follows

As ¼
i
ffiffiffiffi
C

p
Ein½x � x0ð1 þ 2kIÞ�

ðx � x0ð1 þ 2kIÞÞ2 � x2
0D

2 þ iCðx � x0ð1 þ 2kIÞÞ
;

Aa ¼ i
ffiffiffiffi
C

p
Einx0D

ðx � x0ð1 þ 2kIÞÞ2 � x2
0D

2 þ iCðx � x0ð1 þ 2kIÞÞ
;

ð26Þ

where the values I ¼ ðI1 þ I2Þ=2;D ¼ kðI1 � I2Þ in turn depend on the mode
amplitudes according to (25). Substituting these solutions into Eq. (25) we obtain
the following nonlinear equations of self-consistency

I1 ¼ CE2
in½x � x0ð1 þ 2kI2Þ�2

½x � x0ð1 þ 2kI1Þ�2½x � x0ð1 þ 2kI2Þ�2 þ C2½x � x0ð1 þ 2kIÞ�2
;

I2 ¼ CE2
in½x � x0ð1 þ 2kI1Þ�2

½x � x0ð1 þ 2kI1Þ�2½x � x0ð1 þ 2kI2Þ�2 þ C2½x � x0ð1 þ 2kIÞ�2
:

ð27Þ

The solution of these equations gives the steady state for the transmission in the
waveguide coupled with two nonlinear defects. Finally, we write from Eq. (19)
equation for the transmission amplitude:

t ¼ Ein �
ffiffiffiffi
C

p
As: ð28Þ

The odd amplitude Aa does not contribute into the transmission amplitude
because of the symmetry. In the forthcoming CMT calculations we fix the
parameters of the CMT model as follows: x0 ¼ 1; C ¼ 0:01; k ¼ �0:01: We
consider the case of isolated defects u ¼ 0;/s ¼ /a ¼ 1 and the case of coupled
defects with u ¼ 0:01;/s ¼ 1;/a ¼ 1:1: Rigorously speaking these values u and
/s;/a correlate with each other. However, in our model case, we disregard this
correlation.
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3.1 Symmetry Preserving Solution

We start with the solution E1 ¼ E2 that preserves the symmetry. In this case the
incident wave excites only the symmetric even mode As

As ¼
i
ffiffiffiffi
C

p
Ein

x � x0ð1 þ 2kIÞ þ iC
ð29Þ

as follows from Eq. (26) with the only resonance frequency x0ð1 þ 2kIÞ and the
width 2C: The self-consistency equation for the symmetry preserving solution
I ¼ I1 ¼ I2 simplifies

I½ðx � x0ð1 þ 2kIÞÞ2 þ C2� ¼ CE2
in: ð30Þ

That coincides with the equation of self-consistency for the single off-channel
nonlinear defect obtained in Ref. [41]. The solution of this cubic nonlinear
equation is shown in Fig. 3 by dashed blue lines. The frequency behavior of the
intensities inherits the linear case, as shown in the inset. With growth of the input
power the resonance frequency shifts to the left because of the nonlinear contri-
bution 2kI as seen from Eq. (29).

The frequency behavior of mode excitations jAsj; jAaj is shown in Fig. 4 by blue
dashed lines. As seen from Fig. 4a As has a resonance peak. Respectively, the

transmission T ¼ jtj2=E2
in has a resonance dip at the frequency x0ð1 þ 2kIÞ ¼

x0ð1 þ 2kE2
in=CÞ as shown in Fig. 5a by the dashed line. The last equality follows

from Eq. (30).

3.2 Symmetry Breaking Solution

For the transmission through the nonlinear symmetric media the symmetry might
be broken [7–15]. Numerical solution of Eq. (23), indeed, reveals the solution with
I1 [ I2; i.e., the nonlinearity gives rise to a breaking of the symmetry below
(above) the critical frequency xc for k\0 ðk [ 0Þ: The symmetry breaking
solution is shown in Fig. 3 by solid lines for I1 and dash-dotted lines for I2: There
is also the solution that differs from the former in that E1 $ E2: If the solutions are
stable, a choice of the solution happens incidentally, as it does for a phase tran-
sition of the second order in cooperative systems. As shown in Fig. 6, a value
I1 � I2 or the odd mode amplitude Aa; indeed, might serve as the order parameter
that characterizes the symmetry breaking.

It is surprising that there is the frequency at which the intensity at one of the
nonlinear defects turns to zero as shown in Fig. 3. According to Eq. (27) that
occurs at the frequency

xdip ¼ x0ð1 þ 8kE2
in=CÞ: ð31Þ
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At this frequency we have As ¼ Aa ¼ E1=2 ¼ Ein=
ffiffiffiffi
C

p
in accordance with

Eqs. (26) and (24). By substituting this equality into Eq. (19) we immediately
obtain that the frequency (31) defines the position of resonance dip for the sym-
metry breaking solution. As will be shown, that result of full extinction of one of
the nonlinear defects is observed in the PhC system as well (Fig. 13b).

In Fig. 4a and b we show the frequency dependence of the even and odd mode
amplitudes jAsj and jAaj respectively for Ein ¼ 0:05: One can see that, first, the
incident wave begins to excite the odd mode below xc for k\0; and, second, jAsj
and jAaj show the bistability. The even mode As displays a resonance peak (solid
line) with the resonance width twice less than the resonance width of the peak for
the symmetry preserving solution (dashed line). Correspondingly, the transmission
in Fig. 5 demonstrates a narrow dip for the symmetry breaking solution. In order to
understand that phenomenon let us consider the resonance poles of the even and
odd amplitudes given by zeros of the denominators in Eq. (26)
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Fig. 4 Frequency behavior of (a) the bonding amplitude jAsj and (b) the anti-bonding amplitude
jAaj of the model shown in Fig. 1b for u ¼ 0;Ein ¼ 0:05
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Fig. 3 Frequency behavior of the intensities at the isolated defects u ¼ 0: a Ein ¼ 0:01;
b Ein ¼ 0:05: Here and in the forthcoming figures dashed blue line shows the symmetry
preserving solution. Solid and dash-dotted red lines show the symmetry breaking solutions which
has different intensities at the defects I1 and I2: Gray thick solid line shows a new phase symmetry

breaking solution at which detðx � bHeff Þ ¼ 0
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z1;2 ¼ x0ð1 þ 2kIÞ � iC
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
0D

2 � C2

4

s

: ð32Þ

For the solution with D ¼ 0 we had the only resonance pole with the resonance
half width C: As Fig. 6 shows there is the frequency domain roughly between 0.98
and 0.99 where x0D [ C=2 and where the resonance half-width is twice less than
C according to formula (32). Therefore, in this frequency domain we can expect
the resonance dip to be twice narrower compared to the symmetry preserving
solution with D ¼ 0:

The lesser the width of resonance, the more unstable the resonance [16].
One can thereby see that the bistability of the symmetry breaking solution is more
profound in comparison to the symmetry preserving solution. The resonance peak
in jAsj for the symmetry breaking solution terminates at that frequency where the
odd mode amplitude jAaj arises as seen from Fig. 4b. Close to this frequency
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Fig. 5 Frequency behavior of the transmission for the isolated defects for (a) Ein ¼ 0:05 and (b) for
the coupled defects for Ein ¼ 0:01: Stars and open circles show stable domains of the solutions
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Fig. 6 The difference between the intensities at the defects for u ¼ 0: a Ein ¼ 0:01 and
b Ein ¼ 0:05: Only the symmetry breaking solution is shown
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the amplitude Aa has a square root behavior typical for the order parameter in
phase transition of the second order. The dependence of Aa on the amplitude of the
incident wave demonstrates the same behavior (see below Fig. 7b).

3.3 Phase Symmetry Breaking Solution

At last, there is the solution that has equal intensities at the defects but nevertheless
a symmetry is broken because of phases of the complex amplitudes E1 and E2:
This solution refers to the special case of Eq. (23) when the determinant of the

matrix x � bHeff equals zero, (i.e., the inverse of matrix does not exist). It occurs at

I1 ¼ I2 ¼ I; x ¼ xað1 þ 2k/2
aIÞ: ð33Þ

Then the solution of Eq. (23) for the even mode amplitude As is

As ¼
Einffiffiffiffi

C
p ; ð34Þ

while Aa is undetermined yet.
Let us take for a while, the defects to be linear. Then the second equation in

(33) shrinks to the isolated point x ¼ xa: As given by the CMT equations (23) and
as seen from Fig. 1 this odd mode has zero overlapping with the waveguide and
Eq. (33) thereby defines the bound state in continuum (BSC) [36, 47–51]. The

solution of the Eq. (23)
As

Aa

� �
with As given by Eq. (34) and arbitrary Aa is

therefore a superposition of the transport solution and the BSC.
For the nonlinear defects the situation changes dramatically. First, there

is the whole frequency region x	xa for k[ 0 or x
xa for k\0 where

detðx � bHeff Þ ¼ 0 as seen from Eq. (33). Equation (33) thereby defines the BSC
with eigen frequency in whole region as dependent on the BSC intensity. Second,
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Fig. 7 Amplitudes (a) jAsj and (b) jAaj as a function of the incident wave amplitude Ein for the
coupled defects with the parameters x ¼ 0:95; u ¼ 0:01;/s ¼ 1;/a ¼ 1:1
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the BSC can not be independently superposed to the transport solution for the
nonlinear case. The BSC begins to couple with the incident wave and can not be
defined as the bound state if Ein 6¼ 0:

(1) Let the defects be isolated; (i.e. u ¼ 0;/s ¼ /a ¼ 1: On the one hand, we
obtain from Eq. (34)

As ¼
E1 þ E2

2
¼ Ein=

ffiffiffiffi
C

p
; ð35Þ

according to Eq. (24). That is the bonding mode amplitude is constant over the
frequency as shown in Fig. 4a by the gray thick solid line. On the other hand,
Eq. (33) directly shows that the intensities at the defects do not depend on Ein;

I ¼ x � x0

2k
: ð36Þ

Since jE1j ¼ jE2j ¼
ffiffi
I

p
the only way to satisfy Eqs. (35) and (36) is to consider

that the amplitudes at the defects are E1 ¼
ffiffi
I

p
expðihÞ;E2 ¼

ffiffi
I

p
expð�ihÞ:

That is illustrated in Fig. 8a. With the use of Eqs. (35) and (36), we obtain

cos2 h ¼ 2kE2
in

Cðx � x0Þ
: ð37Þ

For Ein ! 0 we have the following limits: h ! p=2;E1 ! i
ffiffi
I

p
;E2 !

�i
ffiffi
I

p
;E1 þ E2 ! 0 as seen from Eq. (37). As soon as Ein 6¼ 0 the defects

amplitudes are seized to oscillate in fully anti-symmetric way as shown in
Fig. 8a. We emphasize that phase difference 2h has nontrivial behavior if the
defects are nonlinear (k 6¼ 0) and the incident wave is applied (Ein 6¼ 0) as
follows from Eq. (37). For the symmetry preserving solution h ¼ 0 (dashed
line in Fig. 9), for the symmetry breaking solution 2h ¼ 0 or p (solid line
in Fig. 9) while for the present solution the phase difference 2h behaves as an
order parameter (gray thick dashed line in Fig. 9) similar to Aa shown in
Figs. 4b or 7b. We define the present solution of the CMT equations (23) with

(a)

E1

E2

As

(b)

E2

E1 As

Fig. 8 Graphic solutions of (a) Eqs. (35) and (b) (39), respectively. Radius of circle is
ffiffi
I

p
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the zero determinant detðx � Heff Þ ¼ 0 as the phase symmetry breaking
solution. It exists for x
x0 þ 2kE2

in=C for k\0: Knowledge of the phase h
allows us now to find the anti-bonding amplitude

Aa ¼ ðE1 � E2Þ=2 ¼ i
ffiffi
I

p
sin h: ð38Þ

The frequency behavior of the even and odd amplitudes jAsj; jAaj are shown in
Figs. 4b and 7b. Finally, by substituting Eq. (35) into Eq. (28) we obtain t ¼ 0
for the phase symmetry breaking solution as shown in Fig. 5a by gray thick
dashed line.

(2) 1a the coupling between the defects u is rather small compared to the cou-
pling between the waveguide and defects

ffiffiffiffi
C

p
: Nevertheless, an account of the

coupling between the defects has a principal importance as will be seen below.
As was given earlier, the parameters of the coupled defects are specified as
follows u ¼ 0:01;/s ¼ 1; /a ¼ 1:1:

A substitution of Eq. (33) into Eq. (34) gives

As ¼
x0 þ u

x0ð1 � aÞ þ uð1 þ aÞ �
ffiffiffiffi
C

p
Ein

x � xr þ iCr
¼ As0

x � xr þ iCr
ð39Þ

where

xr ¼
ð1 � aÞxsxa

x0ð1 � aÞ þ uð1 þ aÞ ; ð40Þ

Cr ¼ C
xa

x0ð1 � aÞ þ uð1 þ aÞ ; ð41Þ
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Fig. 9 Difference between phases of the amplitudes E1 and E2 for u ¼ 0:01 as a function of
(a) the frequency for Ein ¼ 0:05 and (b) the amplitude of the incident wave for x ¼ 0:95: Dashed
blue line shows the symmetry preserving solution, solid red line shows the symmetry breaking
solution, and gray lines show the phase symmetry breaking solution, u ¼ 0 dashed and u ¼ 0:01
solid. The BSC point is shown by open bold circle
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As0 ¼
ffiffiffiffi
C

p
Einxa

x0ð1 � aÞ þ uð1 þ aÞ ð42Þ

a ¼ /2
s=/

2
a: Therefore for the coupled defects the amplitude As acquires typical

Bright–Wigner resonance behavior in which the nonlinearity is excluded.
Respectively, a substitution of the solution (39) into Eq. (28) immediately results
in the transmission having the resonance dip at the frequency xr with the half
width Cr which depends on ratio a and u. That result is shown in Fig. 5b by the
gray thick line. If u ! 0;/a ! /s; a ! 1 the frequency of the resonance dip goes
away, and Cr ! 1; that is, the resonance at the phase symmetry breaking solution
disappears, and the corresponding transmission tends to zero as seen from Fig. 5a.

Equation (33) fixes intensity at the defects

I ¼ x � xa

2k/2
axa

ð43Þ

which is similar to the former case given by Eq. (36). On the other hand, we have
according to Eq. (24) E1 þ E2 ¼ As=2/s where As is given by Eq. (39). A graphic
illustration of the solution of this equation with modules of Ej; j ¼ 1; 2 fixed

by Eq. (43), is shown in Fig. 8b. By presenting E1 ¼
ffiffi
I

p
expðiðb þ hÞÞ and

E2 ¼
ffiffi
I

p
expðiðb � hÞÞ we obtain from Eq. (39)

cos2 h ¼ kCrxaxrE2
in

2að1 � aÞxsðx � xaÞ½ðx � xrÞ2 þ C2
r �
;

tan b ¼ x � xr

Cr
:

ð44Þ

The behavior of the phase difference 2h on the frequency or the incident wave
amplitude Ein for u ¼ 0:01 is shown in Fig. 9.

However, the most remarkable feature of the phase symmetry breaking solution
for u 6¼ 0 is related in a current circulated between the defects. When the phase
difference 2h exists between two quantum dots (QD) or superconductors,
connected by a weak link, a tunneling or Josephson current J ¼ J0 sin 2h will flow
between them. The value of the current J0 is proportional to the coupling constant
between QDs or superconductors [52]. In order to explicitly write the expression
for a current flowing between defects we use the Green function approach
developed in Refs. [39, 40, 42, 53] for the 2D PhC of dielectric rods with the
dielectric constant �0: The PhC holds the 1D cavity (waveguide) and two 0D
defects (nonlinear cavity rods) as shown in Fig. 1a. Then the dielectric constant of
full system �ðxÞ is a sum of periodic perfect PC and cavity-induced terms �ðxÞ ¼
�PCðxÞ þ d�ðxjEÞ; where d�ðxjEÞ ¼ �WðxÞ þ �dðxjEÞ is contributed by the
waveguide and the two nonlinear defects:

�dðxjEÞ ¼ �W

X1

n¼�1
hðx � xnÞ þ

X

j¼1;2

�j: ð45Þ
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Here h ¼ 1 inside the cavity rod and h ¼ 0 outside, and the nonlinear contributions
�j are given by Eq. (14). Then the TM electric field directed along the rods of the
PhC Eðx; tÞ ¼ EðxÞeixt is satisfied the integral equation

EðxÞ ¼ x2

c2

Z
d2yGðx; yjxÞd�ðyjEÞEðyÞ ð46Þ

where Gðx; yjxÞ is the Green function of the ideal 2D PC of the rods which was
calculated in Ref. [53] for the square lattice PhC. If the radius of the defects rods is
sufficiently small in comparison to the wavelength of the EM wave, we can write
Eq. (46) as the discrete nonlinear equation [42, 53]

En ¼
X

m

Jn�mðxÞd�mEm ð47Þ

where Jn�mðxÞ ¼ r x2

c2 Gðxn; xmjxÞ; r is the cross-section of the rods, and n, m
runs over sites of the defects (marked by stars and filled circles in Fig. 1a).

We use the nearest-neighbor approximation and write (47) as the tight-binding
linear chain coupled with two nonlinear defects

1
�W

� J0ðxÞ
� �

En ¼ J1ðEnþ1 þ En�1Þ þ dn;0
J2

�W
ðd�1E1 þ d�2E2Þ;

½1 � d�1J0ðxÞ�E1 ¼ J2�WE0 þ J4d�2E2;

½1 � d�2J0ðxÞ�E2 ¼ J2�WE0 þ J4d�1E1:

ð48Þ

The model is shown in Fig. 10 and consists of a linear infinitely long tight-binding
chain presented by amplitudes En whose spectrum is given by dispersion equation
J0ðxÞ ¼ 1

�W
� 2J1 cos k; and two nonlinear defects presented by amplitudes /1;/2:

The coupling J2 connects the defects and the chain and the coupling J4 connects
the defects.

By multiplying Eq. (48) by E�
0 ¼ t� and subtracting the complex conjugated

terms one can obtain the value of the power flow current flowing between the
chain at the ‘‘0’’-th site and the defects enumerated as j ¼ 1; 2 as follows

j0!1;2 ¼ �W J2ImðtE�
1;2Þ: ð49Þ

J1 J1 J1 J1 J1 J1

E1

E2

J2

J2
J4

Fig. 10 Tight-binding
version of the PhC system
shown in Fig. 1a: J2 couples
the chain and the defects and
J4 connects the defects to
each other

Light-Induced Breaking of Symmetry in Photonic Crystal Waveguides 105



Similar manipulations with the cavity’s amplitudes give the current between the
defects

j1!2 ¼ J4d�ImðE1E�
2Þ ¼ J4d�I sinð2hÞ: ð50Þ

It follows also that the current from the ‘‘�1’’-th site to the ‘‘0’’-th site of the chain
coincide with the current from the ‘‘0’’-th site to the ‘‘1’’-th one. Therefore the
currents (49) and (50) coincide also in accordance to the Kirchhoff rule. Thus,
the input power induces vortical current between the waveguide and defects via
the couplings J2 and J4: The current is excited by the incident wave provided the
defects are nonlinear. Thus, our analysis shows that the symmetry can be broken
not only because of different intensities at the defects but also by a circulating
current between the defects although the intensities at the defects are equal. This
model result of the Josephson like current between the defects with different phase
is reflected in computations of the Poynting vector in the PhC structure as will be
shown below.

3.4 Stability of Solutions

Furthermore, we studied stability of different solutions by standard methods given
for example in Ref. [31]. The stability of the solution can be found from the
temporal CMT equations

i _as ¼ ½xs þ kxs/
2
s ðI1 þ I2Þ � iC�as þ kx0/s/aðI1 � I2Þaa þ

ffiffiffiffi
C

p
Eine�ixt;

i _aa ¼ kx0/s/aðI1 � I2Þas þ ½xa þ kxa/
2
aðI1 þ I2Þ�aa:

ð51Þ

By presenting asðtÞ ¼ ðAs þ nsðtÞÞe�ixt; aaðtÞ ¼ ðAa þ naðtÞÞe�ixt with As;Aa as
the steady state obeying the stationary CMT equations (23) and jnsðtÞj �
jAsj; jnaðtÞj � jAaj we obtain the linearized time-dependent equations for complex
ns; na

Reð _nsÞ
Imð _nsÞ
Reð _naÞ
Imð _naÞ

0

BB@

1

CCA ¼ bL

ReðnsÞ
ImðnsÞ
ReðnaÞ
ImðnaÞ

0

BB@

1

CCA: ð52Þ

Their stability is determined by eigen values of the matrix bL which is time
independent. The results of our calculation of stability are presented in Fig. 5
which shows that the stability of the phase symmetry breaking solution appears if
only the defects are coupled and /s 6¼ /a: We collected the results of stability of
all three solutions in Fig. 11 in the form of phase diagrams in plane of the incident
wave amplitude and the frequency. One can see that the phase symmetry breaking
solution is stable in some small area of the phase diagram.
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3.5 Numerical Calculations in Photonic Crystal

We numerically solve the Maxwell equations (1) for the TM mode in the PhC with
defect nonlinear rods by expansion of electromagnetic field over maximally
localized photonic Wannier functions [25, 26, 36]. The square lattice 2D PhC has
the same parameters as given earlier [see Fig. 1a]. For the case of isolated linear
defects with the same radius as the radius of host rods and the dielectric constant
�d ¼ 3 their eigen frequency x0 ¼ 0:3593 in terms of 2pc=a: Overlapping of
the defect’s monopole modes gives rise to splitting of this frequency
xs ¼ 0:3603;xa ¼ 0:3584 as numerical computation of Eq. (1) gives. Respec-
tively we obtain that the value of coupling u ¼ �0:001: The corresponding
bonding and anti-bonding modes for the nearest distance a between defects were
found in Refs. [54, 55]. For more distance 4a they are shown in Fig. 2. By the
normalization condition (7) the heights of the amplitude modes at the defects equal
/s ¼ 0:5569;/a ¼ 0:6179: Let us evaluate the dimensionless nonlinearity
constant k: We take in numerical calculations the incident power per length of
order 100 mW/a which corresponds to the incident intensity I0 ¼ 100 mW=a2: For
chosen PhC lattice with period a ¼ 0:5 lm we obtain that the incident intensity
equals 0:04 GW=cm2: With the use of � ¼ �0 þ 2

ffiffiffiffi
�0

p
n2I0 we obtain

k � 2
ffiffiffiffi
�0

p
x0ð�0Þn2I0; ð53Þ

where the value x0 is the rate of change of the eigen frequency of the defect with
the dielectric constant �: That rate was calculated for example in Refs. [16, 26].
We take the linear and nonlinear refractive indexes of the defect rods to be,
respectively, n0 ¼ ffiffiffiffi

�0
p ¼

ffiffiffi
3

p
; n2 ¼ 2 � 10�12cm2=W and x0 ¼ �0:01 � 2pc=a:

By substituting all of these estimates into (53) we obtain k� � 2 � 10�5 provided
that the frequency is given in terms of 2pc=a: Finally, we estimate the coupling of
the defect mode with the propagation mode of the PhC waveguide

ffiffiffiffi
C

p
: There are

many ways to calculate C using for example Refs. [31, 56, 57]. In the present
paper we estimated C numerically by using the following approach. We took the

Fig. 11 Regions of stability
of the solution. The symmetry
preserving solution is stable
everywhere except interior of
the closed region shown by
solid blue line. The stability
of the symmetry breaking
solution is shown by red,
while the phase symmetry
breaking solution is shown by
gray. The parameters are
u ¼ 0:01; x0 ¼ 1;
C ¼ 0:01; k ¼ �0:01;
/s ¼ 1; /a ¼ 1:1
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single linear defect aside the PC waveguide as shown in Fig. 1a, and calculated the
transmission spectra. By the resonance width of the spectra we evaluated
C ¼ 0:00185:

The self-consistent solutions are presented in the form of the intensities in
Fig. 12a, which are similar to the CMT results shown in Fig. 3a. Also, one can see
three solutions in the transmission shown in Fig. 12b, as was found in the CMT
model for the transmission shown in Fig. 5. Figure 13 shows the EM field (the
absolute value of the electric field) for the symmetry preserving solution (a) and
for the symmetry breaking solution (b) and (c). In the latter case one can see
that the field is strongly different at bottom and top. Moreover Figs. 3 and 12 show
that there is a frequency at which the intensity of the EM field might be zero at the
bottom defect. Indeed, Fig. 13c demonstrates this case.

In agreement with the model consideration Fig. 14 shows that current flows
(the Poynting’s vector patterns) are strongly different for the different solutions.
For the symmetry preserving solution we have laminar current flow over the
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Fig. 12 Self-consistent solution for (a) the intensities of the EM field at the nonlinear defects and
(b) transmission spectra in the PhC structure in the PhC structure shown in Fig. 1. The parameters
of the PhC and defects are given in Fig. 2. The input power per length equals
100 mW=a: n2 ¼ 2 � 10�12cm2=W ; k ¼ �0:009

Fig. 13 Absolute value of the EM field solution for (a) the symmetry preserving solution
xa=2pc ¼ 0:355; (b) and (c) the symmetry breaking solution for xa=2pc ¼ 0:355 and xa=2pc ¼
0:358 respectively. The EM wave incidents at the left of the waveguide
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waveguide with excitation of two current vortices around each defect. The laminar
flow over the waveguide and the vortical flows around defects are well separated.
The whole current pattern is symmetrical relative to the symmetry transformation
y ! �y: The picture has a similarity with ballistic electron transport in waveguide
coupled with off-channel quantum dot [58]. For the case of the symmetry breaking
solution there is a current vortex inside the waveguide complemented by two
vortices near each defect, as shown in Fig. 14b. The circulation in vortical flow
around the upper defect is opposite to the circulation around the bottom defect.
The vortical flow in the waveguide and the vortical flows around the defects are
well separated for both solutions. In the third case (c) for the phase symmetry
breaking solution one can see the current vortex in the waveguide and single
vortices around the defects are mixed. Nevertheless because of the continuity

equation in the space beyond of the nonlinear defects r j
!ðx; yÞ ¼ 0 the vortical

flows around the defects and in the waveguide can not cross.

4 The T-Shape Waveguide Coupled with Two
Nonlinear Defects

One of the most ambitious goals in nonlinear optics is the design of an all-optical
computer that will overcome the operation speeds in conventional (electronic)
computers. Vital in this respect is the design of basic components such as
all-optical routing switches and logic gates. It is believed that future integrated
photonic circuits for ultra fast all-optical signal processing require different types
of nonlinear functional elements such as switches, memory and logic devices.
Therefore, both physics and designs of such all-optical devices have attracted
significant research efforts during the last two decades, and most of these studies
utilize the concepts of optical switching and bistability. One of the simplest
bistable optical devices which can be built-up in photonic integrated circuits is a
single cavity coupled with optical waveguide or waveguides [16, 59].

(a) (b) (c)

Fig. 14 Current flows for the symmetry preserving solution which inherits linear case (a), the
symmetry breaking solution (b), and (c) the phase symmetry breaking one at ax=2pc ¼ 0:35:
Bold open circles mark the nonlinear defects
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The concept of the all-optical switching is based on a discontinuous transition
between the symmetry breaking solutions by a small change of the input [20].
Many of these devices employ a configuration of two parallel coupled nonlinear
waveguides [19, 21, 60–62]. Recently Maes et al. demonstrated the all-optical
switching in the system of two nonlinear micro-cavities aligned along the wave-
guide [12] by the use of pulses of injected light. In the present section we use
similar approach to demonstrate the all-switching effects in the T-shaped wave-
guide coupled with two nonlinear micro-cavities [27, 63]. The PhC structure of the
T-shaped waveguide shown in Fig. 15 differs from the structures considered
before in Sects. 2 and 3 a mechanism for the all-optical switching is mainly based
on the symmetry breaking solutions.

We consider the PhC shown in Fig. 15 with the same parameters as given in
Sect. 3: the lattice constant a ¼ 0:5 lm; the cylindrical dielectric rods have
radius 0.18a and dielectric constant � ¼ 11:56: We substitute two defect rods of
the same radius as shown in Fig. 15 made from an instantaneous Kerr media with
the nonlinear refractive index n ¼ n0 þ n2I0 where n0 ¼

ffiffiffi
3

p
and n2 ¼ 2�

10�12cm2=W: The corresponding equivalent configuration of the T-shaped
waveguide with two nonlinear defects is presented in Fig. 16.

We start with the position of the defect rods shown in Fig. 15a which have
strong coupling with the output waveguides 2 and 3, and negligibly weak coupling
with the input waveguide 1. We consider a light given by the amplitude S1þ is
incident into the waveguide 1 and outputs into all three terminals as
shown schematically in Fig. 16. The outgoing amplitudes are labelled as S1�; S2�
and S3�: Each nonlinear optical cavity is assumed to be given by single mode
amplitudes Aj; j ¼ 1; 2 and coupled with the guides 2, 3 via the coupling constant c
shown in Fig. 16 by dotted lines and with the guide 1 via the coupling constant C:

We consider that the defects are not coupled. Therefore the eigen frequencies of
the system of the defects equal the monopole eigen frequencies of the isolated

defects xj ¼ x0 þ kjAjj2; j ¼ 1; 2 shifted because of the Kerr effect. Then the
Eq. (16) will take the following form

(a)

1

2 3

(b)

1

2 3

(c)

3

1

2

Fig. 15 T-shaped waveguide with two nonlinear defect rods. The cases (a)–(c) differ by the
positions of the nonlinear defects
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ðx � x0�kjA1j2 þ ic þ iCÞA1 þ iCA2 ¼ i
ffiffiffiffi
C

p
ðS1þ þ r1�eihÞ þ i

ffiffiffi
c

p
r2�ei/

ðx � x2�kjA2j2 þ ic þ iCÞA2 þ iCA1 ¼ i
ffiffiffiffi
C

p
ðS1þ þ ir1�eihÞ þ i

ffiffiffi
c

p
r3�ei/

ð54Þ

Here phases h and / as shown in Fig. 16 are the optical lengths through which
light goes between the connections. These CMT equations are to be complemented
by the equations for light amplitudes at each connection A, B, and D

r1þe�ih ¼ S1þ �
ffiffiffiffi
C

p
ðA1 þ A2Þ

S1� ¼ r1�eih �
ffiffiffiffi
C

p
ðA1 þ A2Þ

S2� ¼ r2�ei/ � ffiffiffi
c

p
A1

S3� ¼ r3�ei/ � ffiffiffi
c

p
A2:

r2þe�i/ ¼ � ffiffiffi
c

p
A1:

r3þe�i/ ¼ � ffiffiffi
c

p
A2:

ð55Þ

The T-connection at the C point connects ingoing and outgoing amplitudes by the
S-matrix as follows

r1�
r2�
r3�

0

@

1

A ¼
a b b
b c d
b d c

0

@

1

A
r1þ
r2þ
r3þ

0

@

1

A: ð56Þ

In particular, the solution of the Maxwell equations for the T-shaped waveguide
without defects gives the matrix elements of the S-matrix (56) a ¼ �0:3547
þ0:308i; b ¼ 0:6 þ 0:173i; c ¼ �0:4319 þ 0:2271i; d ¼ �0:568 þ 0:2225i at
xa=2pc ¼ 0:35: Equations (54–56) form a full system of equations for 11
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Fig. 16 CMT model of the T-shape photonic crystal waveguide coupled with two nonlinear
defects shown by filled bold circles. The defects are coupled with input waveguide 1 via the
constant C shown by dashed lines and with the output waveguides 2,3 via the constant c shown by
dotted line. Separately each connection is shown with corresponding light amplitudes

Light-Induced Breaking of Symmetry in Photonic Crystal Waveguides 111



amplitudes A1;A2; r1þ;r1�; r2þ; r2�; r3þ; r3�; S1�; S2�; S3�: Substituting S1þ ¼
Eineixt; A1;2 ¼ A1;2e�ixt we obtain after some algebra the following stationary
CMT equations

ðx � Heff Þ
A1

A2

� �
¼ iEinF

1
1

� �
; ð57Þ

where

Heff ¼
x1 � iG �iH
�iH x2 � iG

� �
; ð58Þ

G ¼ c þ Cð1 þ ae2ihÞ þ cde2i/þ
ffiffiffiffiffiffi
cC

p
ðb þ cÞeihþi/;

H ¼ C þ
ffiffiffiffiffiffi
cC

p
ðb þ cÞeihþi/ þ Cae2ih þ cde2i/;

F ¼
ffiffiffiffi
C

p
ð1 þ ae2ihÞ þ ffiffiffi

c
p

beiðhþ/Þ:

ð59Þ

We can calculate all parameters which are necessary in Eqs. (57–59). For the
light transmission in the linear single-channel waveguide coupled with the single
linear off-channel defect positioned at different positions we able to extract
the coupling constant of the cavity with PhC waveguide C and the eigen frequency
of monopole mode x0: The results are collected in Table 1. The limiting case of
the T-shaped waveguide with C ¼ 0 is considered in Ref. [27] with results qual-
itatively close to those shown in Fig. 18. Here we find the solutions with the

Table 1 Parameter sets of the CMT for PhC T-shaped waveguide shown in Fig. 15

Type of structure in Fig. 15 (a) (b) (c)

C (in terms of a=2pc) 0.0002 0.0002 0.00189
c (in terms of a=2pc) 0.03093 0.00189 0.00002

x0 (in terms of a=2pc) 0.3609 0.365 0.3596

0.32 0.34 0.36 0.38 0.4 0.42 0.44
0
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1.5

2
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ωa/2πc
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π

Fig. 17 Frequency behavior
of the optical length (phase)
shown by solid line for the
linear PhC waveguide which
is fabricated by removing one
row of dielectric rods. The
parameters of the PhC are
listed in figure caption of
Fig. 1. The BSC point is
marked by star
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substitution of concrete parameters listed in Table 1 and present the output light
transmission to the left and to the right waveguides. We start with the case shown
in Fig. 15a.

Moreover we present real dispersion curve xðkÞ calculated for the linear PhC
waveguide to find as the optical length given by the phase h or / depends on the
frequency x: This curve is shown in Fig. 17 by solid curve for the parameters of
PhC given in Fig. 1. In the vicinity of the BSC frequency xca=2pc ¼ 0:3402 we
approximate the dispersion curve as linear to obtain

phase

p
¼ 1 þ 17:68ðx � xcÞa

2pc
: ð60Þ

parameters for the phases.
After substitution of the parameters listed in Table 1 for the case shown in

Fig. 15a and material parameters given in the beginning of this section into
Eq. (61) we calculated the solution of Eq. (61) for the light intensities of the

nonlinear defects Ij ¼ cjAjj2=8p in terms of W=a2 for broken mirror symmetry
with the input power I0 ¼ 0:48 W=a2: That choice of the input power gives
according to Eq. (53) k ¼ �1:3 � 10�3: The results of computation are presented
in Fig. 18. The case of the T-shaped structure shown in Fig. 15a has an analogy
with the Fabry-Pérot interferometer (FPI) comprising two off-channel nonlinear
cavities. As was shown in Ref. [23] there is a series of the self-induced BSCs
which are the standing waves between the off-channel cavities. It was shown that
the BSCs exist for any distance between the off-channel defect rods because of
their nonlinearity [23] however for the limit of S1þ ! 0 (vanishing input power).
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Fig. 18 a Frequency behavior of light intensities at the defect rods given in terms of W=a2 in the
PhC T-shaped waveguide shown in Fig. 15a. Dotted blue and dash-dotted red lines correspond to
the input power equal to 0:48 W=a2; solid blue and dashed red lines do to 1:92 W=a2: Only those
solution for intensities is shown which breaks the symmetry. The BSC point is shown by blue
star. b The frequency dependence of the transmissions to the left TL (blue dashed lines) and to the
right TR (red solid lines). The thicker lines show the domains of stability. Gray thick line shows
the equal transmissions for the symmetry preserving solution
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Similar BSC solutions are expected to exist in the present case of the T-shaped
waveguide coupled with two off-channel cavities shown in Fig. 15a. However
these solutions must be the standing waves with nodes at the point of connection of
the waveguides. Therefore in the present case the BSCs are the anti-symmetric
standing waves. Figure 19 shows one of these waves in the T-shaped waveguide
with two nonlinear defect rods with the eigen frequency xca=2pc ¼ 0:3402 which
satisfies the condition 3kðxcÞa ¼ p: Figure 18a demonstrates the solution for the

light intensities of the cavities Ij ¼ cjEjj2=8p; j ¼ 1; 2 with broken mirror
symmetry where Ej are the amplitudes of the electric field in thin defect rods for
two values of input power. The solution converges to the BSC point marked by the
star if the input power limits to zero. At this point the symmetry is restored. For the
linear case the BSC shown in Fig. 19a has zero coupling with the symmetric EM
wave which inputs in the waveguide 1. However as was considered in Sect. 2
nonlinearity gives rise to the important effect of the excitation of BSC by the
transmitted wave as shown in Fig. 19b. As a result the total solution lacks
the mirror symmetry of the PhC structure shown in Fig. 15a. That is one of the
scenarios of the symmetry breaking, respectively for the input power P 6¼ 0 the
light transmission from the input waveguide 1 to the left waveguide 2 differs from
the transmission and to the right waveguide 3 as seen from Fig. 18b. Moreover the
difference TL � TR crucially depends on the frequency in the vicinity of the BSC
point. Note, that Maes et al. [12] have already reported the symmetry breaking
in the FPI. In order for the FPI with two off-channel nonlinear cavities to have
the mirror symmetry equal input power must be applied to both sides of the FPI
[12]. In our case of the T-shaped waveguide this symmetry is achieved by
application of the input power via the additional waveguide positioned at the
center of the FPI.

As seen from Fig. 18b the system of two nonlinear cavities close to the
waveguide (see Fig. 15a) has extremely small frequency domains of the stability

Fig. 19 Solutions of Maxwell equations for the case shown in Fig. 15a which demonstrate
(a) the anti-symmetric FPI BSC (standing wave between nonlinear off-channel defects marked by
stars) with frequency xca=2pc ¼ 0:3402 for zero input power P ¼ 0 and (b) as because of
nonlinearity this anti-symmetric BSC mixes with the symmetric incident EM wave to give rise to
the symmetry breaking for P ¼ 1:94 W=a: Yellow stars mark defect rods
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for the symmetry breaking solution. In Fig. 20a we show that with change of
position of defect rods in the T-shaped PhC waveguide additional branch of a loop
shape for the symmetry breaking solution appears which has sufficient domains of
stability of the symmetry breaking solutions. The loops shown by dotted lines in
Fig. 20 are the result of individual instability that arises for transmission in the left
or right waveguide coupled with the left or right nonlinear off-channel cavity [27].
With further moving away of the nonlinear optical cavities from the output
waveguide (see configuration in Fig. 15c) the system becomes close to the that
considered in Refs. [17, 18]. Then the anti-symmetric standing wave additional
loops in the transmission disappear Bistability of the light transmission in the PhC
waveguide coupled with nonlinear optical cavity crucially depends on the cou-
pling: the smaller a coupling the less input power is needed for bistability [16]. For
case (a) in Fig. 15 the coupling is rather large to observe bistability in the trans-
mission. However case (b) has the sufficiently smaller coupling as one can see
from Table 1. As a result case in Fig. 15b gives rise to additional loops as shown
in Fig. 21 for larger input power 5:57W=a: Figure 21 shows the wave function for
the symmetry preserving solution (a) and the symmetry breaking solutions (b–d).
Cases (b) and (c) differ by the frequency but correspond to the same defect con-
figuration shown in Fig. 15b. The case corresponds to the configuration shown in
Fig. 15c. One can see from Fig. 21 that for the symmetric solution the transmis-
sion excites the cavities weakly, while for the symmetry breaking solution the
defects are strongly excited because of mixing the injecting symmetrical wave
with the anti-symmetric FPI BSC. Figure 21c shows that for the frequency in the
loop domain xa=2pc ¼ 0:3442 the first nonlinear cavity is excited much more
than the second one that is correlated with the outputs. However for the nonlinear
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Fig. 20 Frequency behavior of the transmissions TL and TR in the PhC T-shaped waveguide
shown in (a) Fig. 15b for the input power P ¼ 5:57 W=a and (b) Fig. 15c for P ¼ 0:48 W=a: The
symmetric solution is shown by solid gray line which inherits the linear case. The symmetry
breaking solution is shown by solid blue and red lines. The next symmetry breaking solution
because of a bistability of the transmission in each output waveguides is shown by dotted brown
and green lines. The thicker lines show the domains of stability of the symmetry breaking
solution
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defects far from the output waveguides, they are excited almost equally as shown
in Fig. 21d.

The T-shaped waveguide coupled with two nonlinear cavities shown in Fig. 15
is remarkable in that it allows the limit to the FPI [case (a)] with the FPI BSC in
the form of the standing waves between two off-channel defects [23] as well as the
limit to case (c) in Fig. 15 with the BSC in the form of the anti-bonding defect’s
state. Patterns of such anti-bonding BSC in PhC linear waveguide coupled with
two cavities positioned perpendicular to the waveguide are shown in Fig. 2. The
nonlinearity gives rise to mixing the anti-bonding BSC with the wave transmitted
over waveguide 1. For the linear defect rods this state would be the perfect BSC.
For the nonlinear cavities mixing this anti-bonding BSC with symmetric input
light leads to the breaking of the mirror symmetry to give rise to the breaking of
symmetry in the input waveguide. Then for the evolution of this structure to the
T-shaped case can expect different outputs to the right and to the left. Indeed, in
spite of the small difference of the defect intensities presented in Fig. 20a the
transmissions TL and TR demonstrate vast difference including the case of almost
perfect blocking of the transmission to the left.

These results are extremely important for the switching of the output power
from the left waveguide to the right one. In order to switch the system from one

Fig. 21 The EM field solution in a scale realðEzÞ expð�jEzjÞ for (a) the symmetry preserving
solution for xa=2pc ¼ 0:3442; (b) the symmetry breaking solution caused by the BSC for
xa=2pc ¼ 0:3388; and (c) the for xa=2pc ¼ 0:3442: Light with power P ¼ 5:57W=a is incident
into the 1 waveguide and scatters to the left and right waveguides 2 and 3. d The symmetry
breaking solution for P ¼ 0:48 W=a;xa=2pc ¼ 0:3505 and the configuration shown in Fig. 15c.
Yellow stars mark defect rods
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asymmetric state to the other we following Refs. [12, 14] apply pulses of the input
power injected into the waveguide 1. The direct numerical solution of the temporal
CMT equation

i _A1 ¼ ðx1 � icÞA1 þ i
ffiffiffi
c

p
r2�ei/

i _A2 ¼ ðx2 � icÞA2 þ i
ffiffiffi
c

p
r3�ei/

ð61Þ

with S1þðtÞ ¼ EinðtÞe�ixt is shown in Fig. 22 which demonstrates the switching
effect. The stepwise time behavior of amplitude EinðtÞ is shown by gray line. One
can see that after the first impulse of the input amplitude the oscillations of the
cavity amplitude relax onto the stable stationary solutions with broken symmetry.
Moreover after each next impulse the state of the system transmits from one
asymmetric state to the other as was observed by Maes et al. [12].

5 Dipole Modes of the Single Nonlinear Defect Coupled
with Waveguide

If to present the defect by the single monopole mode EsðxÞ we obtain from
Eq. (16)

½x � xs � kjAsj2 � iCs�As ¼ i
ffiffiffiffiffi
Cs

p
Ein; ð62Þ

t ¼ Ein �
ffiffiffiffiffi
Cs

p
As; ð63Þ

where k ¼ � 3
4 rvð3ÞðxsÞEsððxdÞ2: That model has attracted interest over the past

two decades because of analytical treatment and its generality for description of
bistability phenomena [16, 39–46]. However the monopole eigen-function presents
only the trivial identical symmetry transformation. Respectively there is no room
for the breaking of symmetry.

In this respect the system becomes nontrivial if we include two eigen dipole
modes E1ðxÞ and E2ðxÞ of the defect rod with the eigen-frequencies x1 and x2:
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Fig. 22 The time
dependence of the amplitudes
of the light amplitudes
jA1j; jA2j in the cavities (solid
and dashed respectively)
which follow the impulses of
the input amplitude Ein

(gray). We take the cavities
oscillate in non symmetric
way: A1 ¼ 0;A2 ¼ 1
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The modes are shown in Fig. 23. Respectively, the electric field at the thin defects
can be expanded over these dipole modes EðxdÞ ¼ A1E1ðxdÞ þ A2E2ðxdÞ only.
Substituting that expansion into Eq. (15) we obtain that Eq. (16) will take the
following form

½x � x1 � k11jA1j2 � k12jA2j2 þ iC1�A1 � 2k12ReðA�
1A2ÞA2 ¼ i

ffiffiffiffiffiffi
C1

p
ðSþ

1 � Sþ
2 Þ;

� 2k12ReðA�
1A2 þ ½x � x1 � k22jA2j2 � k12jA1j2 þ iC2�A2 ¼ i

ffiffiffiffiffiffi
C2

p
ðSþ

1 þ Sþ
2 Þ;
ð64Þ

where Sþ
1;2 are the amplitudes of light injected simultaneously into both sides of the

waveguide. Here with accordance to Eq. (13) we have

kmn ¼ 3

16�3=2
vð3Þðxm þ xnÞQmn; Qmn ¼

Z
E2

mðxÞE2
nðxÞd2x ð65Þ

Moreover we have taken into account the symmetry relations for the coupling
constants of the dipole modes with the waveguide solutions [64]. As seen from
Fig. 23 the first dipole mode has the coupling with the left and the right ingoing
waves opposite signs while the second dipole mode has the same coupling with
these waves. Therefore the coupling matrix in Eq. (17) equals

W ¼
ffiffiffiffiffiffi
C1

p
�

ffiffiffiffiffiffi
C1

p
ffiffiffiffiffiffi
C2

p ffiffiffiffiffiffi
C2

p
� �

: ð66Þ

Moreover Eq. (64) must be complemented by equation for the transmission
amplitude

tLR ¼ Sþ
1 � i

ffiffiffiffiffiffi
C1

p
A1 þ i

ffiffiffiffiffiffi
C2

p
A2;

tRL ¼ Sþ
2 � i

ffiffiffiffiffiffi
C1

p
A1 þ i

ffiffiffiffiffiffi
C2

p
A2:

ð67Þ

Fig. 23 Two defect dipole eigen-modes with the eigen frequencies x1 ¼ 0:3578 and x2 ¼
0:3616 pa=c in the two-dimensional square lattice PhC consisted of the GaAs dielectric rods with
radius 0:18a and dielectric constant � ¼ 11:56 where a ¼ 0:5 lm is the lattice unit. These rods are
shown by black open circles. The defect shown by open gray circle has the same radius 0:18a and
�0 ¼ 30: Its center is positioned at xd ¼ 0; yd ¼ 0:3a
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Figure 24 shows the self-consistent solutions of Eq. (64) after substitution of
the following model parameters x1 ¼ 0;x2 ¼ 0:01; k11 ¼ k22 ¼ 0:1; k12 ¼
0:05;C1 ¼ 0:1;C2 ¼ 0:03: One can see that for the symmetry preserving branch
the first even dipole mode is excited with frequency behavior typical for the single
nonlinear mode described by Eq. (35) while the second odd dipole mode is not
excited because of symmetry. Respectively, the transmission probability to both
sides of the waveguide equals 1/2 because of normalization condition for the

intensity of input light and unitarity of the S-matrix jS1j2 þ jS2j2 þ jtLRj2 þ
jtRLj2 ¼ 1: However there is also the symmetry breaking branch in some narrow
frequency domain. Respectively, that branch gives rise to an asymmetry in the
light outputs. Moreover there is a frequency at which the right (left) output is
blocked almost perfectly.

Also we consider the phenomenon of the symmetry breaking based on the
parameters calculated in the 2D square lattice PhC with parameters given earlier.
The results for the eigen frequencies are collected in Fig. 23 caption where the
parameters of the PhC are given too. The coupling constants are the following
C1 ¼ 0:00075;C2 ¼ 0:00025 in terms of 2pc=a: In order to enhance the coupling
constants we substituted two additional linear rods nearby the nonlinear defect rod
as shown in Fig. 23. Let us evaluate the nonlinearity constants kmn: With use

�d ¼ �0 þ 2
ffiffiffiffi
�0

p
n2I0; n2 � 2pvð3Þ

n0
we obtain from (65)

kmn ¼ � 3p
8

ffiffiffiffi
�0

p
n2I0

Z
E2

mðxÞE2
nðxÞd2x: ð68Þ
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Fig. 24 Frequency behavior of (a) intensities of dipole modes and (b) transmissions from the
right to the left TL ¼ jtRLj2 and from the left to the right TR ¼ jtLRj2 for light injection Sþ

1;2 ¼
0:025 onto both sides of the waveguide. In (a) dashed blue lines show the intensity of even dipole
mode, while red lines show the intensity of odd dipole mode. The model parameters are listed in
the text. In (b) dashed blue line shows the symmetry preserving solution while solid lines do the
symmetry breaking solution. The red solid line shows TR; blue solid line does TL: In both subplots
the thicker lines mark stable solutions
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We take the linear and nonlinear refractive indexes of the defect rods are,
respectively, n0 ¼ ffiffiffiffi

�0
p ¼

ffiffiffi
3

p
; I0 ¼ 1:8 W/a; n2 ¼ 2 � 10�12 cm2=W [65, 66].

Moreover substituting the dipole modes into integrals in Eq. (68) we obtain Q11 ¼
0:0123;Q22 ¼ 0:0114;Q12 ¼ 0:0037: Results of solution of the self-consistency
equations for two complex amplitudes A1 and A2 are presented in Fig. 25a.
Correspondingly from Eq. (67) we obtain the transmission coefficients shown in
Fig. 25b. Finally, Fig. 26 shows the solution of the Maxwell equation in the
form of the electric field directed along the rods of the 2D PhC for the
symmetry breaking solution. The streamlines in Fig. 26 demonstrate a forma-
tion of two optical vortices, one around the defect rod cavity, and the second
one near by. The streamlines are the lines along which the Poynting vector
energy flows [67, 68].
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Fig. 25 Frequency behavior of (a) intensities of dipole modes and (b) transmissions to the left
and to the right after substitution of the parameters C1 ¼ 0:00075; C2 ¼ 0:00025 in terms of
2pc=a which corresponds to the real 2D PhC for S1;2 ¼ 0:015: In (a) dashed/solid blue lines show
the intensity of even dipole mode for the symmetry preserving/symmetry breaking solution, solid
red lines show the intensity of the odd dipole mode amplitude for the symmetry breaking
solution. In (b) dashed blue line shows the symmetry preserving solution while solid lines do the
symmetry breaking solution. The red solid line shows TR; blue solid line does TL: In both subplots
the thicker lines mark stable solutions

Fig. 26 EM field solution
for the symmetry breaking
solution caused by excitation
of the odd dipole mode
xa=2pc ¼ 0:369: Gray thick
open circle marks the
nonlinear defect rod. White
solid lines mark the Poynting
vector energy flows
(streamlines)
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6 Summary and Conclusions

By solution of the Maxwell equations complemented by solution of the CMT
equations we have demonstrated the symmetry breaking in the system of two
nonlinear defects coupled with waveguide through which a light is injected. The
defects are aligned symmetrically relative to the waveguide as shown in Fig. 1, so
there is the mirror symmetry relative to the waveguide axis. The thin dielectric
rods made from Kerr media are defect rod cavities which presented by the eigen
monopole mode whose eigen frequency belongs to the propagation band of the
waveguide. We assume that other eigen modes are beyond the band, and therefore
have no coupling with the injected light with accuracy of evanescent modes.

That simplest system is remarkable in that it reveals as nonlinearity gives rise to
the breaking of symmetry. Indeed, let us take temporarily the defects are linear. If
the coupled defects were isolated, it would have only two eigen-modes, bonding
(even) and anti-bonding (odd) with corresponding eigen frequencies (20). The
modes are shown in Fig. 2. For light propagating over the waveguide we take that
the input wave possesses by the mirror symmetry. Then the light can excite only
the bonding mode As to give rise typical resonance dip at the symmetrical eigen
frequency xs while the anti-bonding mode Aa would remain hidden for the
propagating light as shown in Fig. 13a. Obviously, that mode is the simplest case
of the bound state in continuum [17, 24, 69, 70]. That state can be superposed to
the scattering function with coefficient determined by a way to excite the anti-
bonding mode [49]. However the principle of linear superposition is not valid for
the nonlinear case. Therefore the nonlinearity gives rise to interaction of the
scattering state with the anti-bonding mode, i.e., to the interaction of the
symmetric propagating light with the anti-bonding mode. That obviously breaks
the mirror symmetry as explicitly shown in Figs. 13b, c, 19b, 21b–d, and 26.
Obviously, the mixing gives total state which is nor symmetrical neither anti
symmetrical, breaking the mirror symmetry, similar to results obtained in Ref. [1,
2]. However the symmetry can be broken not only because of different light
intensities but also because of different phases of light oscillations at the cavities to
provoke the Josephson like current between cavities [18]. For the light transmis-
sion in two-dimensional PhC the Poynting power vector is an analog of the
Josephson currrent, which is shown in Fig. 14c. It is clear that for the light
transmission in PhC waveguide there is the energy flow over the waveguide. As
Fig. 14a shows the flow is mostly laminar for the symmetry breaking solution.
However if the mirror symmetry is broken, the Poynting vector pattern might be
rather complicated as shown in Fig. 14b and c. One can see that laminar current
flow over the waveguide induces two vortices around the defects which obey the
mirror symmetry. As the symmetry has broken the vortex in the waveguide
appears which is well separated from the defect vortices. Although the mirror
symmetry relative to circulation of currents in defect vortices is broken, however,
the symmetry is remained relative to absolute value of current flows. At last, for
the phase symmetry breaking solution still there is symmetry in absolute value of
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current, but all vortices are exchanging by current flows as seen from Fig. 14c. The
case of the isolated nonlinear defect rod cavity with two dipole eigen-modes
demonstrates similar effect as shown in Fig. 26.

The T-shaped waveguide coupled with two symmetrically positioned nonlinear
defects as shown in Fig. 15 can be considered as a combination of the previous
system and the Fabry-Pérot interferometer (FPI) consisted of two nonlinear
off-channel cavities aligned along the waveguide considered in Refs. [12, 13, 23].
As was shown in Ref. [23] there is a discrete set of the a self-induced bound states
in continuum (BSC) which are standing waves between off-channel cavities which
are to be anti-symmetric in order to elucidate an escape to the input waveguide 1.
As dependent on position of the nonlinear defects shown consequently in Fig. 15
the system goes from the FPI (case a) to the system considered in Sect. 2 (case c).
In the case (a) the nonlinearity couples the FPI BSC shown in Fig. 19 with the
incident wave which is symmetrical relative to the inversion left to right. As the
result the mirror symmetry is broken as shown for real PhC in Figs. 19b and 21b–d
to give rise to strong asymmetry of light outputs to the left and to the right. We
demonstrate as these phenomena can be explored for all-optical switching of light
transmission from the left output waveguide to the right one by application input
pulses (see Fig. 22).

In Sect. 5 we show that breaking of symmetry might occur even for the single
nonlinear defect positioned in the linear single-channel waveguide provided that
the defect is presented by two dipole modes. That model embraces two dipole
eigen-modes of the defect rod cavity while in the former models each defect rod
cavity was presented by the only monopole eigen-mode. Therefore the model
realizes the nonlinear Fano-Anderson model [70].
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58. P. Exner, P. Šeba, A.F. Sadreev, P. Středa, P. Feher, Phys. Rev. Lett. 80, 1710 (1998)
59. G.S. McDonald, W.J. Firth, J. Mod. Opt. 37, 613 (1990)
60. Y. Chen, A.W. Snyder, D.N. Payne, IEEE J. Quantum Electron. 28, 239 (1992)
61. N. Boumaza, T. Benouaz, A. Chikhaoui, A. Cheknane, Int. J. Phys. Sci. 4, 505 (2009)
62. V. Grigoriev, F. Biancalana, Opt. Lett. 36, 2131 (2011)
63. E.N. Bulgakov, A.F. Sadreev, Phys. Rev. B 84, 155304 (2011)
64. S.G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J.D. Joannopoulos, H.A. Haus, Opt.

Lett. 23, 1855 (1998)
65. D. Milam, Appl. Opt. 37, 546 (1998)
66. G. Boudebs, K. Fedus, J. Appl. Phys. 105, 103106 (2009)
67. R.V. Waterhouse, D. Feit, J. Acoust. Soc. Am. 80, 681 (1986)
68. K.-F. Berggren, A.F. Sadreev, A.A. Starikov, Phys. Rev. E 66, 016218 (2002)
69. de M.L.L. Guevara, F. Claro, P.A. Orellana, Phys. Rev. B 67, 195335 (2003)
70. E.N. Bulgakov, A.F. Sadreev, Phys. Rev. B 80, 115308 (2009)

124 E. Bulgakov et al.



Spatial Solitons in
Parity-Time-Symmetric Photonic
Lattices: Recent Theoretical Results

Ying-Ji He and Boris A. Malomed

1 Introduction

In 1998, seminal work [1] had demonstrated that non-Hermitian Hamiltonians

(Ĥy 6¼ Ĥ) can give rise to entirely real eigenvalue spectra (thus being appropriate
for physical applications), provided that they obey the condition of the parity-time

(PT) symmetry, i.e., Ĥ �rð Þ ¼ Ĥy rð Þ. This condition implies that the Hermitian
and anti-Hermitian parts of the Hamiltonian are spatially even and odd, respec-
tively. Such a Hamiltonian usually features spontaneous breaking of the
PT-symmetry at a critical value of the coefficient accounting for its anti-Hermitian
part. Above the critical point, the spectrum is no longer completely real [2–6].

More recently, it was proposed [6–13] and demonstrated experimentally
[14, 15] that PT-symmetric can be implemented in optics, see also review [16].
This possibility relies upon the fact that the propagation of optical waves obeys the
same Schrödinger equation as the evolution of the wave function in quantum
mechanics, while the spatially odd anti-Hermitian part of the corresponding
Hamiltonian may be represented by symmetrically placed and mutually balanced
gain and loss elements, which are represented by an imaginary part of the effective
potential in the corresponding propagation equation.

In most cases, the PT-symmetric setting is built in the form of a periodic
structure in the optical medium, i.e., as a complex photonic lattice (PL), with
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spatially even and odd real and imaginary parts, respectively. The use of such
lattices makes it possible to demonstrate a number of interesting features, such as
double refraction, power oscillations, nonreciprocal diffraction patterns, etc.

Further, both one-dimensional (1D) and two-dimensional (2D) PT-symmetric
linear PLs can be created in Kerr-nonlinear media [8, 9, 12, 13, 16], which nat-
urally opens the way to the creation of PT-symmetric optical solitons. In the
framework of this topic, interactions of spatial solitons in PT-symmetric periodic
complex-valued potentials with defect of the PL have been studied in Refs. [17, 18].
Another variety of defects is represented by a domain wall in a chain of
PT-symmetric dimers, with the orientation of dimers inverted at a particular site.
Scattering of propagating waves ion the domain wall was investigated in Ref. [19].
Solitons in PT-symmetric complex-valued periodic PLs, whose real part is
represented by a superlattice potential, were investigated in Ref. [20]. Stable 1D
and 2D bright spatial solitons in defocusing Kerr media with PT-symmetric
potentials have been found too [21]. Also, it was demonstrated that gray solitons in
PT-symmetric potentials can be stable [22]. The analysis of the stability of solitons
in PT-symmetric lattices has revealed that both 1D and 2D solitons have their
stability regions [23]. Dark solitons and vortices in PT-symmetric systems combined
with defocusing nonlinearities were constructed in Ref. [24].

The model of a PT-symmetric nonlinear optical coupler was introduced in Ref.
[25], as a system of linearly coupled cores, with the intrinsic self-focusing Kerr
nonlinearity and mutually balanced gain and loss introduced in them. Families of
analytical PT-symmetric and antisymmetric solitons were found, and their stability
investigated by a combination of analytical and numerical methods. Soon after-
wards, a similar analysis was independently reported in Ref. [26], and optical
modes in PT-symmetric double-channel waveguides were also considered in Ref.
[27]. Oscillatory localized modes (breathers) in the PT-symmetric nonlinear
couplers were recently investigated in Refs. [28] and [29]. In the latter work, it was
shown that stability of both high- and low-frequency breathers is determined by a
single combination of its amplitude and the gain-loss coefficient of the coupled
waveguides. A special case of the PT-supersymmetric coupler, with equal the gain
and loss coefficients in the two cores equal to the constant of the inter-core linear
coupling, was introduced in Ref. [30], where it was demonstrate that solitons,
which are unstable in this system, can be stabilized by means of periodic ‘‘man-
agement’’, in the form of the periodic synchronous reversal of the sigh of all these
three coefficients.

Nonlinear modes in finite-dimensional PT-symmetric systems, based on cou-
pled waveguides, were studied in Ref. [31]. It was shown that the transformations
among the PT-symmetric systems by rearrangements of waveguiding arrays car-
rying the balanced gain and loss do not affect their real linear spectra, while
nonlinear features of such PT-symmetric systems undergo significant changes.

Recently, it was demonstrated that stable solitons may exists in localized
PT-symmetric potential embedded into an optical medium with quadratic (alias
second-harmonic-generating) optical medium [32], in addition to many results
reported in other works for the cubic (Kerr) nonlinearity.
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Bragg gap solitons in PT-symmetric lattices with competing optical nonlinearities
of the cubic-quintic type have been investigated in recent work [33]. Various
families of solitons, including multi-stable ones, with even and odd symmetries,
were found in both the semi-infinite and the first finite bandgaps [34].

Recently, solitons in PT-symmetric potentials with nonlocal nonlinearities were
also investigated [35–37]. The nonlocality can significantly affect the structure and
stability of PT-symmetric lattice solitons [35]. Defect solitons in PT-symmetric
potentials with nonlocal nonlinearity were investigated in recent work [36]. It was
shown that, for positive and zero defects, fundamental and dipole solitons may be
stable in the semi-infinite gap, and in the first finite bandgap, respectively. A recent
study of solitons in PT-symmetric potentials with a spatially modulated nonlocal
nonlinearity [37] revealed the existence of stable and unstable solitons in low-
power and high-power regions, respectively. Unstable solitons spontaneously jump
from the original site (channel) to the next one, and can continue this model of the
motion into adjacent channels [37].

In addition to solitons in uniform PLs, it is natural to consider surface solitons
in truncated lattice. Surface solitons cannot be stable in the truncation of
PT-symmetric complex-valued potentials, because such semi-infinite potentials
break the PT symmetry of the complex-valued potentials, and do not support the
formation of stationary states at the edge of the potential profile. However, surface
solitons, that may form at the edge of truncated conservative periodic lattices
(without the gain and loss) were theoretically studied and subsequently observed in
1D and 2D settings, in various optical media [38–43], and stationary states may
exist near the edge of the truncated potential if gain also acts at the edge [44].
Recently, it was demonstrated that truncated periodic complex potentials
(involving the truncation of PT-symmetric complex-valued potentials) with
homogeneous losses can support stable surface solitons in both focusing and
defocusing media [45].

The study of solitons in nonlinear PLs, with the linear potential replaced by or
combined with a spatially periodic modulation of the local strength of the non-
linearity, has recently attracted a lot of attention [46]. It should be mentioned that
PT-symmetric nonlinear PLs can support stable discrete solitons [46]. A series of
works dealing with PT-symmetric nonlinear lattices in various physical settings
have been recently published [47–49]. The existence of localized modes, including
multipole solitons, supported by PT-symmetric nonlinear lattices was reported in
this context [47]. Such PT-symmetric nonlinear PLs can be implemented by means
of a proper periodic modulation of nonlinear gain and losses, in specially engi-
neered nonlinear optical waveguides. Further, solitons in purely PT-symmetric
nonlinear lattices were studied too [47, 50, 51].

Also investigated were solitons in mixed linear-nonlinear lattices [52]. In par-
ticular, the competition between linear and nonlinear lattices in contexts of matter
waves in Bose–Einstein condensates was the subject of Ref. [53]. Solitons in mixed
PT-symmetric linear-nonlinear lattices have been investigated too [54]. It was
found that the combination of PT-symmetric linear and nonlinear lattices can sta-
bilize solitons, with parameters of the periodic lattice potential playing a significant
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role in controlling the extent of the stability domains [54, 55]. In addition, the
existence and stability of defect gap solitons in real linear periodic PLs with
PT-symmetric nonlinear optical potentials was reported in Ref. [55]. For uniform
real periodic PLs including positive defects, the fundamental solitons exist in the
semi-infinite gaps, where they are stable in wide regions. For negative defects,
solitons can exist in the semi-infinite gap and in the first finite bandgap [56].

In this chapter, we present an outline of basic theoretical results obtained for
lattice solitons which can be supported by various types of PT-symmetric optical
potentials. The most general model for the spatial beam propagation in PT-sym-
metric periodic PLs with the Kerr nonlinearity is described in Sect. 2. Then, in
Sect. 3 we review the simplest case of the lattice solitons in 1D Kerr media in
PT-symmetric periodic PLs. In Sect. 4, the existence of dark solitons and vortices
in PT-symmetric nonlinear media is analyzed. The existence and stability of lattice
solitons in PT-symmetric mixed linear-nonlinear PLs in self-focusing Kerr media
is briefly discussed in Sect. 5. Finally, solitons in PT-symmetric PLs combined
with spatially periodic modulation of the Kerr and nonlocal nonlinearities is briefly
overviewed in Sect. 6.

2 The General Model

The spatial beam propagation in PT-symmetric periodic PLs with the Kerr optical
nonlinearity obeys the following normalized 1D nonlinear Schrödinger (NLS)
equation:

i
oq

oz
þ 1

2
o2q

ox2
þ v xð Þ þ iw xð Þ½ �q � qj j2q ¼ 0; ð1Þ

where i is the imaginary unit, q is the complex field amplitude, and z and x are the
normalized longitudinal coordinate and transverse coordinate, respectively. Note
that m(x) and w(x) are even and odd functions of transverse spatial coordinate x,

respectively. The nonlinear terms, � qj j2q correspond, severally, to the self-
focusing self-defocusing media. Stationary solutions of Eq. (1) are searched for as
q(x,z) = f(x)exp(ilz), where l is a real propagation constant, and complex-valued
function f(x) satisfies the following nonlinear differential equation:

1
2

d2f

dx2
þ v xð Þ þ iw xð Þ½ �f þ fj j2f ¼ lf : ð2Þ

By substituting f(x) = h(x) ? ie(x) in Eq. (2), the following coupled nonlinear
differential equations are derived for real functions h and e:

1
2

hxx þ vh � we þ e2h þ h3 ¼ lh; ð3aÞ
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1
2

exx þ ve þ wh þ h2e þ e3 ¼ le� ð3bÞ

The linear stability of stationary soliton solutions is analyzed by adding small
perturbations g(x) and t(x) to the stationary soliton solution:

q x; zð Þ ¼ exp ilzð Þ f xð Þ þ g xð Þ � t xð Þ½ � exp dzð Þ þ g xð Þ þ t xð Þ½ ��exp d�zð Þf g;

where d is the instability growth rate and the asterisk stands for the complex
conjugate. Substituting this expression into Eq. (1) and linearizing it, the following
coupled equations are derived:

dg ¼ �i
d2t

dx2
� lt þ vt � iwg þ 2 fj j2t � 1

4
f 2 � f �2
� �

g � 1
4

f 2 þ f �2
� �

t

� �� �
;

dt ¼ �i
d2g

dx2
� lg þ vg � iwt þ 2 fj j2g þ 1

4
f 2 þ f �2
� �

g þ 1
4

f 2 � f �2
� �

t

� �� �
�

8
>>><

>>>:

ð4Þ

Coupled equations (4) can be numerically solved by means of the matrix
eigenvalue method. If there exists at least a single eigenvalues with Re(d) [ 0, the
solitons are linearly unstable, otherwise they are stable.

The linear version of nonlinear Eq. (2) is

1
2

d2f

dx2
þ v xð Þ þ iw xð Þ½ �f ¼ lf � ð5Þ

According to the Bloch theorem, eigenfunctions of Eq. (5) can be constructed in
the form of f = Fk exp(ikx), where k is the Bloch wave number, and Fk is a
periodic function with the same period as functions m(x) and w(x). Substituting the
Bloch solution in Eq. (5), the following eigenvalue equation is obtained,

d2

dx2
þ 2ik

d

dx
� k2

� 	
Fk þ v xð Þ þ iw xð Þ½ �Fk ¼ lFk� ð6Þ

Finally, the basic characteristic of the soliton is its total power, P ¼
Rþ1

�1
fj j2dx�

3 Optical Solitons in PT-Symmetric Periodic Potentials

Following Ref. [8], we here consider for simple lattice model, with

v xð Þ ¼ v0 cos2 xð Þ; w xð Þ ¼ w0 sin 2xð Þ� ð7Þ

In this section, v0 = 1 is fixed. Corresponding to such a potential, purely real
spectral bands exist in the range of 0�w0\1=2. Figure 1 shows the associated
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band structure for various values of potential parameter w0. With the increase of
w0, the bandgap becomes narrower and closes completely at the critical point,
w0¼1=2. For w0\1=2, families of soliton solutions with real eigenvalues, located
within the semi-infinite gap, were constructed numerically. A typical profile of
such a soliton is shown in Fig. 2a.

Next, the stability of these solutions was addressed, given that these complex
structures involve strong loss and gain. In general, the instability growth rate tends
to increase with w0. In addition, narrower self-trapped waves are more stable, as
the nonlinearity tends to further enhance the index guiding. Accordingly, the beam
becomes confined and propagates undistorted with the increase of the power, thus
forming a stable lattice soliton. Figure 2b shows the propagation dynamics of such
a soliton (for w0 = 0.45 and l ¼ 1:57). The corresponding transverse power flow
is plotted in Fig. 2c. As seen in the latter panel, the direction of the flow from gain
to loss regions varies across the lattice. More specifically, it is positive (from left to
right) in waveguiding channels, and becomes negative (from right to left) in the
space between the channels. This may be anticipated, as the power transport is
always directed from gain to loss domains.

For the 2D case, the bandgap structure corresponding to the periodic potential
with

v x; yð Þ ¼ cos2 xð Þ þ cos2 yð Þ; w x; yð Þ ¼ w0 sin 2xð Þ þ sin 2yð Þ½ � ð8Þ

is depicted in Fig. 3a for w0 = 0.3. Note that the PT-symmetry-breaking critical
value of the coefficient in front of the imaginary part of 2D potential (8) is identical
to that for the 1D potential, i.e., w0 = 0.5. Above this point, the first two bands
merge together forming an oval, a double-valued surface attached to a 2D mem-
brane of complex eigenvalues. A 2D PT-symmetric soliton with eigenvalue
belonging to the semi-infinite gap is shown in Fig. 3b. At low intensities, the
nonlinearity is not strong enough, hence this beam asymmetrically diffracts in the
complex lattice, as shown in Fig. 3c. However, if the power is high enough, the
nonlinear wave propagates as a stable soliton. To further understand the internal
structure of these self-trapped states, the corresponding transverse power flow

Fig. 1 The bandstructure for
the PT potential. (7) with
w0 ¼ 0:45 (dotted line), and
w0 ¼ 0:6 (solid line), as per
Ref. [8]
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vector is depicted in Fig. 3d, which again implies the energy exchange among the
gain or loss domains.

4 Dark Solitons and Vortices in PT-Symmetric Nonlinear
Self-Defocusing Media: From Spontaneous Symmetry
Breaking to Nonlinear PT Phase Transitions

4.1 One-Dimensional Dark Solitons

In Ref. [24], Eq. (1) was considered for the self-defocusing medium, with a real
parabolic potential of strength X,

v xð Þ ¼ 1=2ð ÞXx2; ð9Þ

which models the transverse distribution of the refractive index (or the external
trap in Bose–Einstein condensates), while the imaginary part w(x) is assumed to be
an odd localized function of spatial width � X�1, viz.,

Fig. 2 a The soliton field profile in the PT lattice (7) with w0 ¼ 0:45. The real and imaginary
parts are shown by the blue and red lines, respectively, for l ¼ 0:7. b The stable propagation of a
PT lattice soliton with eigenvalue l ¼ 1:57. c The transverse power flow (solid line) of the
soliton in (a) across the lattice. The dotted line represents the real part of the lattice potential in
panels (a) and (c). The results were reported in Ref. [8]
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w xð Þ ¼ ex exp �x2



2
� �

� ð10Þ

The solution is factorized into the background part, qb, and the soliton proper,
q(x,t), using the product ansatz,

w xð Þ ¼ qb xð Þq x; tð Þ; ð11Þ

where function q x; tð Þ assumes—in the absence of the imaginary potential
(e = 0)—a hyperbolic tangent profile. Then, the following perturbed NLS equa-
tion is derived:

iotq þ 1
2
o2

xq þ q 1 � qj j2
� �

¼ q � 2p qð Þ; ð12Þ

Fig. 3 a The band structure of 2D PT-symmetric potential (8) with w0 ¼ 0:3. b The intensity
profile of a PT soliton with the propagation eigenvalues l ¼ 1:3. c The linear diffraction pattern
generated by the low-power single-channel excitation (the formal soliton input with l ¼ 1:3).
d The transverse power flow of this PT soliton solution within one cell where the dark area of the
background represents the waveguide area. Positions, at which the gain and loss attain the
maximum, are indicated by points G and L, respectively. The results are represented as per
Ref. [8]
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where perturbation p qð Þ is p qð Þ ¼ 1 � qj j2
� �

q v þ 2w2ð Þ þ qx
1
2 vx � 2 w � ið Þ


R
wdx��
Equation (12) possesses a dark soliton solution of the form

q x; tð Þ ¼ cos u tanh n þ i sin u; ð13Þ

where n 	 cos u x � x0 tð Þ½ � with u and x0 tð Þ ¼ sin uð Þt representing the soliton’s
phase angle and central coordinate, respectively. The evolution of these parameters
is governed by the following equations:

dx0

dt
¼ sin u tð Þ; ð14Þ

du
dt

¼ � 1
2
ov x0ð Þ
ox0

�
Zþ1

�1

sec h4 nð Þ tanh nð Þ
Z

wdx

� 	2

þw

Z
wdx

" #

dx� ð15Þ

To examine the stability of the equilibrium at x0 = 0, the Taylor expansion of
Eq. (15) can be used, as the leading order:

d2x0

dt2
¼ �x2

oscx0; x2
osc 


X
ffiffiffi
2

p
� 	2

� 6
5

e2: ð16Þ

Equation (16) implies that, if amplitude e of w(x) is less than a critical value,

e 1ð Þ
cr ¼

ffiffiffiffiffiffiffiffiffiffi
5=12

p
X, then the soliton performs oscillations in the effective potential

with frequency xosc. Such a case is demonstrated in the bottom panel of Fig. 4,
where a dark soliton oscillating around the trap’s center is shown for

e ¼ 0:04\e 1ð Þ
cr . The numerically found trajectory, obtained by direct numerical

integration of Eq. (1), is compared with the analytical result given by Eq. (16) [the
dashed (white) line]. Excellent agreement is observed between the analytical and
numerical results. On the other hand, Eq. (16) predicts that the soliton becomes

unstable at e [ e 1ð Þ
cr .

4.2 Two-Dimensional Generalizations

Next, the case of a 2D PT-symmetric potential with a real parabolic part and an
odd imaginary one,

v x; yð Þ ¼ 1=2ð ÞX2 x2 þ y2
� �

; w x; yð Þ ¼ e x þ yð Þ exp � x2 þ y2
� �


4
 �

; ð17Þ

is considered, following Ref. [24]. The bifurcation of nonlinear structures
emerging in this 2D setting follows a similar, but more complex, pattern than in
the corresponding 1D setting. Figure 5a depicts the full bifurcation scenario for
solutions bearing no vortices [the Thomas–Fermi (TF) background states], one to
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six vortices, and a dark soliton stripe. Dipole modes, built as bound states of
vortices with opposite charges (hence, the net topological charge is zero) are
represented by the top-right red curve. At the first critical point the dipole branch is
destabilized through a spontaneous symmetry-breaking bifurcation (the dipole is
stable between e = 0 and this critical point). As this branch is followed (from top
to bottom in the figure), a series of bifurcations occur where the existing vortices
are drawn to the periphery of the cloud, and a dip in the center deepens, leading to
emergence of a new vortex pair (i.e., a higher excited state). In this manner, the
branches with even number of vortices are all connected. As more and more vortex
pairs emerge, the cloud ‘‘saturates’’ and can no longer fit in new vortex pairs,
finally colliding with a dark soliton stripe (see the lower blue branch in Fig. 5a).
This overall bifurcating structure with even vortex numbers is depicted in Fig. 5a,
with the corresponding density and phase profiles shown in the series of panels of
Fig. 5b.

As for the bifurcation scenario with odd numbers of vortices, the first excited
state bearing a single vortex at the origin (for e = 0) is stable at small values of e,
while it again sustains a spontaneous symmetry-breaking bifurcation at larger e. As
e increases, the vortex moves toward the periphery of the cloud and a dip at the
center of the cloud deepens until a vortex pair emerges from it. This scenario
connects the single-vortex branch with an asymmetric three-vortex (+ - ? vortex

Fig. 4 Top: The density (left) and phase (right) of a single stationary dark-soliton state in the 1D
model with the real and imaginary parts of the PT-symmetric potential given by Eqs. (9) and (10),
respectively. Parameters are l ¼ 3, X ¼ 3, and e = 0.3. Bottom: A contour plot showing small-
amplitude oscillations of a dark soliton. The dashed (white) line depicts the corresponding
analytical prediction. Parameters are as in the top panel, but with e = 0.04. The results were
reported in Ref. [24]
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tripole) branch, as shown by the top (magenta and green) lines in panel 5a, and the
series of snapshots in panels 5c. It is evident from the figure that the asymmetric
three-vortex branch eventually connects with the symmetric state at e ? 0. A
similar bifurcation occurs with the symmetric three-vortex branch, which becomes
asymmetric with a deepening dip at the center, where a vortex pair emerges (at the
same moment when a vortex is lost at the periphery), connecting in this way with
the four-vortex branch (see series of snapshots in panels 5d).

5 Soliton in PT-Symmetric Mixed Linear-Nonlinear PLs

For the PT-symmetric mixed linear-nonlinear PL structure introduced in Ref. [53],
Eq. (1) for the spatial beam propagation is

i
oq

oz
þ o2q

ox2
þ v xð Þ þ iw xð Þ½ �q þ v1 xð Þ þ iw1 xð Þ½ �q qj j2¼ 0� ð18Þ

In this section, three typical cases of different PT-symmetric periodic mixed
linear-nonlinear PLs are considered.

Fig. 5 Results for the 2D PT-symmetric model corresponding to the complex potential (17),
reported in Ref. [24]. a The bifurcation diagram for the 2D stationary nonlinear (vortex and dark-
soliton stripe) states. Stable (unstable) branches are depicted by solid (dashed) lines. b Series of
density (left) and phase (right) configurations along the branch with an even number of vortices,
corresponding to circles in panel (a) (from top to bottom). c Same as (b) for the branch starting
with one vortex and connecting with the three-vortex state corresponding to the squares in panel
(a) (from top to bottom). d Same as (b), for the branch starting from three symmetric vortices and
ending with the four-vortex state corresponding to triangles in panel (a) (from top to bottom).
Parameters are l = 2 and X ¼ 2. The size of the displayed domains is [-10.5, 10.5] 9 [-10.5,
10.5]
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5.1 The PT-Symmetric Linear Lattice Potential Different
from its PT-Symmetric Nonlinear Counterpart

Following Ref. [54], the PT-symmetric linear-lattice profile is taken as in
Eq. (7), whereas the PT-symmetric nonlinear-lattice modulation in Eq. (18) is
defined as

v1 xð Þ ¼ v1 cos 2xð Þ; w1 xð Þ ¼ �w1 sin 2xð Þ: ð19Þ

For this choice of the two jointly acting linear and nonlinear lattice potentials,
the real parts, signs of the imaginary parts, and amplitudes of the modulation
profiles may be totally different.

First, parameters of the PT-symmetric linear lattice are fixed as v0 = 4 and
w0 = 0.8, to investigate effects of the PT-symmetric nonlinear lattice on the
soliton propagation. Dependences of soliton power P on propagation constant l
are shown in Fig. 6a–c, for three sets of the nonlinear PL parameters, v1 = 0.1
and w1 = 0.1, v1 = 0.5 and w1 = 0.5, and v1 = 1 and w1 = 1, respectively.
From Fig. 6, one sees that the soliton power increases with the decrease of
amplitudes v1 and w1 of the nonlinearity modulation. This can be explained as
follows. In the case of the self-focusing Kerr nonlinearity, if the depth of the
nonlinear lattice increases, the corresponding self-focusing effect exerted on the

optical beam, which is determined by 1 þ v1 xð Þ½ � qj j2q, and the associated effect
of the nonlinear gain effect, coming from the imaginary part of the nonlinear
lattice potential, become stronger. In addition, for a given depth of the nonlinear
lattice, a higher peak power of solitons will cause a much stronger self-focusing
of the optical beam. If the combination of the self-focusing and nonlinear-gain
effects is stronger than a certain critical value, the lattice solitons will collapse.
Therefore, the existence of solitons in this specific situation requires that their
peak powers must decrease with the increase of the depth of the nonlinear
lattice, in order to avoid the destruction of the solitons in the course of the
propagation due to the very strong self-focusing effect. Note that if only the
depth of the dissipative part of the nonlinearity modulation increases, the soliton
power decreases, i.e., the effect of the imaginary (dissipative) part of the non-
linearity modulation on the soliton power is smaller than that induced by the real
part of the nonlinearity modulation.

Typical results of simulations of the evolution of the lattice solitons are shown
in Fig. 7, where both the soliton field profiles and their development in the course
of the propagation were plotted. Stable soliton regions are: 2:7� l� 3:4 for
v1 = 0.1 and w1 = 0.1, 2:7� l� 3:2 for v1 = 0.5 and w1 = 0.5, and 2:7� l� 3:0
for v1 = 1 and w1 = 1. These results clearly show that lattice solitons may be
stabilized only in the low-power range, and that the stable soliton domain narrows
with the growth of amplitudes v1 and w1 of the nonlinear lattice.
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5.2 The PT-Symmetric Linear Lattice Potential Identical
to the PT-Symmetric Nonlinear Lattice Potential

In what follows, the special case when identical PT-symmetric lattice potentials
for both linear and nonlinear PLs is considered, as per Ref. [54], taking the linear
modulation profiles as in Eq. (7), and the identical profiles for the nonlinear
modulation, v1 xð Þ ¼ v xð Þ and w1 xð Þ ¼ w xð Þ.

To illustrate effects of the amplitudes of the real and imaginary parts of the
linear and nonlinear modulation profiles on the soliton propagation, three typical
sets of parameters are displayed in Fig. 8: (i) v0 = 4 and w0 = 0.8; (ii) v0 = 3 and
w0 = 0.8; (iii) v0 = 4 and w0 = 0.6. The corresponding dependences of total
power P on propagation constant l are shown. The stability domains are found to
be 2:7� l� 3:5, 1:9� l� 3:0, and 2:7� l� 4:5, for the above sets of parameters
(i), (ii), and (iii), respectively. These results clearly show that solitons may be
stable, again, only in the low-power regime, and that the stability region increases
with the decrease of amplitudes of the imaginary parts of the modulation profiles.
Also, the stability region shifts towards lower values of l with the decrease of the
modulation amplitude of the real parts of the PL potentials.

Fig. 6 Power P versus propagation constant l for v0 ¼ 4 and w0 ¼ 0:8 and a v1 ¼ 0:1 and
w1 ¼ 0:1, b v1 ¼ 0:5 and w1 ¼ 0:5, and c v1 ¼ 1 and w1 ¼ 1, in the 1D PT-symmetric model
with the mixed linear-nonlinear model, defined according to Eqs. (7) and (19), as per Ref. [54].
Here and in similar figures below, the stable and unstable branches are plotted by solid and
dashed curves, respectively
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5.3 Defect Gap Solitons in Real Linear Lattices Combined
with the PT-Symmetric Nonlinear Potentials

Here, the linear lattice in Eq. (18) is defined by its real part,

v ¼ v0 cos2 xð Þ 1 þ e exp �x8



128
� � �

ð20Þ

in the absence of the imaginary part, w = 0. It represents the PL of depth v0 (here,
we fix v0 = 6), which contains a single defect of depth e. This real linear potential

Fig. 7 Soliton profiles in the same model as represented in Fig. 6, for v0 ¼ 4, w0 ¼ 0:8, and
l = 2.7, as per Ref. [54]. Stable evolution of the solitons is displayed for: a, b v1 ¼ 0:1 and
w1 ¼ 0:1; e, f v1 ¼ 0:5 and w1 ¼ 0:5; i, j v1 ¼ 1 and w1 ¼ 1. Unstable evolution is displayed for
l = 5: c, d v1 ¼ 0:1 and w1 ¼ 0:1; g, h v1 ¼ 0:5 and w1 ¼ 0:5; k, l v1 ¼ 1 and w1 ¼ 1
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is combined with the PT-symmetric nonlinear one, which is taken as per Eq. (19)
with v1 = 1 and w1 replaced by -w0. Profiles of the real linear lattice with the
defect are shown in Fig. 9a, c and d, respectively. The respective band structure
diagram is shown in Fig. 9b. In the present case, the semi-infinite gap is l C 3.94
and the first finite band gap is 0.84 B l B 3.73.

For the positive defect with e = 0.5 and w0 = 0.4, solitons exist only in the
semi-infinite gap, Fig. 10a showing the corresponding power diagram. Solitons are
stable in a wide region. For l = 9 (point A in Fig. 10a), a stable soliton profile is
shown in Fig. 10b, and Fig. 10d shows the corresponding propagation. Figure 10c
shows the profile of another stable soliton for l = 7.0 (point B in Fig. 10a), whose
propagation is displayed in Fig. 10e.

For the negative defect with e = -0.5 and w0 = 0.4, Fig. 11a shows the sol-
iton’s power versus propagation constant l. In this case, the solitons exist in the
semi-infinite gap and the first finite bandgap as well. In the semi-infinite gap, the
solitons are stable in a wide region, but cannot be stable in the region
3.94 B l B 4.19 near the Bloch band, as follows from the picture for Re(d) shown
in Fig. 11b. Figure 11c, e show profiles and propagation of a stable soliton for
l = 6.0. Figure 11d, f present the profile and propagation of an unstable soliton
for l = 4.15.

Fig. 8 Power P versus l for a v0 ¼ 4 and w0 ¼ 0:8; b v0 ¼ 3 and w0 ¼ 0:8; c v0 ¼ 4 and
w0 ¼ 0:6, in the model with the identical modulation profiles of the linear and nonlinear profiles,
taken as in Eq. (7), as per Ref. [54]
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6 Solitons in PT-Symmetric Periodic Linear Potentials
with Spatially Modulated Nonlinearity

6.1 The Periodic Modulation of the Kerr Nonlinearity

The beam propagation in the PT-symmetric linear PLs, combined with a modu-
lation of the nonlinearity (without nonlinear gain and loss, unlike the models based
on Eq. (18) considered above) obeys the following normalized 1D nonlinear
Schrödinger equation [51]:

i
oq

oz
þ 1

2
o2q

ox2
þ v xð Þ þ iw xð Þ½ �q þ 1 � N xð Þ½ � qj j2q ¼ 0; ð21Þ

where the PT-symmetric periodic linear potential us again taken in the form of
Eq. (7), and the nonlinearity-modulation function is chosen as

N xð Þ ¼ p cos2 x=Tð Þ; ð22Þ

where p is the amplitude of the modulation of the nonlinear refractive index, and
T is the corresponding period.

For v0 = 4 and w0 = 0.8, the PT-symmetric complex-valued PL (7) and the
corresponding band structure are displayed in Fig. 12a, b, respectively. The results
for power P versus l, and for Re dð Þ versus l, obtained by means of numerical

Fig. 9 a The uniform real linear PL. b The corresponding band structure. c The PL with a
positive defect (e = 0.5). d The PL with a negative defect (e = -0.5). The results were reported
in Ref. [56] for the linear potential (20) with v0 = 6
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methods for the soliton family, are shown in Fig. 13 for different depths P of the
nonlinearity-modulation function (22). Figure 13 shows that for, v0 = 4 and
w0 = 0.8, the solitons exist in the semi-infinite gap and are stable in the low-power
regime. Moreover, the picture of Re dð Þ shown in Fig. 13b, d, f demonstrate that
the stable range of the soliton propagation Re dð Þ ¼ 0½ � expands with the decrease
of depth P of the nonlinearity-modulation function N(x).

Typical examples of stable and unstable solitons propagation for different
depths P are presented in Fig. 14. This figure demonstrates that, in the low-power
regime, the solitons exhibit have a multi-peak structure and stable propagation,
while in the high-power regime, the solitons feature a single peak and unstable
evolution.

Fig. 10 Results obtained in Ref. [56] for the model combing the real linear potential (20) with
e = 0.5 (a positive defect), v0 = 6, and the PT-symmetric nonlinearity modulation as in Eq. (19)
with v1 = 1 and w1 = -0.4. a The power diagram. b The profile of a soliton and d its
propagation for l = 9 (point A in panel (a)). c The profile of a soliton and e its propagation for
l = 7 (point B in panel (a))
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Fig. 11 The same as in Fig. 10, but for the linear lattice with a negative defect, e = -0.5. a The
power diagram for the solitons. b The instability growth rates of the soliton solutions, Re(d),
versus propagation constant l. c The profile of a soliton and e its propagation for l = 6.0
(point A in panel (a)). d The profile of a soliton and f the corresponding propagation for
l = 4.15 (point B in panel (a)). The results were reported in Ref. [56]

Fig. 12 a The PT-symmetric complex-valued periodic lattice potential (7) (real part: the solid
curve, imaginary part: the dashed curve) with v0 ¼ 4 and w0 ¼ 0:8. b The corresponding bandgap
structure of (a), as per Ref. [51]
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6.2 Spatially Modulated Nonlocal Nonlinearity

A 1D model including the PT-symmetric linear PL and spatial modulation of
nonlocal nonlinearity was put forward in Ref. [37], in the form of the following
equation:

i
oq

oz
þ 1

2
o2q

ox2
þ V þ iWð Þq þ 1 þ f xð Þ½ �q

Zþ1

�1

g x � kð Þ q kð Þj j2dk ¼ 0; ð23Þ

with

g xð Þ ¼ 1
.

2d
1
2

� �
exp � xj j

.
d

1
2

� �
� ð24Þ

where d is the range of the uniform nonlocality. When d ? 0, the nonlinearity in
Eq. (23) becomes linear. Here, the PT-symmetric periodic potential and the
function accounting for the periodic modulation of the nonlocal nonlinearity are
taken as

V xð Þ ¼ 4 cos 2xð Þ; W xð Þ ¼ w0 sin 2xð Þ; and f xð Þ ¼ k cos2 2xð Þ; ð25Þ

cf. Eq. (7).

Fig. 13 The total power and Re dð Þ (the instability growth rate) versus l, for the soliton family in
the model based on Eqs. (21) and (22), with the PT-symmetric potential taken as in Eq. (7) with
v0 ¼ 4 and w0 ¼ 8. The corresponding parameters of the nonlinearity modulation in Eq. (22) are
p ¼ 1:2 in (a, b), p ¼ 1 in (c, d), and p ¼ 0:8 in (e, f). The results were reported in Ref. [51]
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Fig. 14 Soliton profiles in the same model which is represented by Figs. 12 and 13 (real part: the
solid curves, imaginary part: the dashed curves), and the corresponding soliton-propagation
pictures. With p ¼ 1:2 in Eq. (22), a stable case is shown in (a, b) for l ¼ 2:7, and unstable one is
shown in (c, d) for l ¼ 3:1. With p ¼ 1, stable and unstable cases are shown, respectively, in
(e, f) for l ¼ 2:7, and in (g, h) for l ¼ 3:5. With for p ¼ 0:8, stable and unstable examples are
presented in (i, j) for l ¼ 2:7, and in (k, l) for l ¼ 4:0, respectively. Other parameters and the
nonlinear modulation function are the same as in Fig. 13. The results were reported in Ref. [51]

Fig. 15 Power P versus
propagation constant l at
different values of k for the
soliton family, found in Ref.
[37] in the model based on
Eqs. (23), (24), and (25), with
d = 1 and w0 = 2
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Soliton solutions of Eq. (23) are looked for in the usual form,
q ¼ u xð Þ exp ilzð Þ, here l is a real propagation constant and u(x) is a complex
function. The refractive index distribution induced by the nonlocality in this model

can be written as n ¼
Rþ1

�1
g x � kð Þ q kð Þj j2dk�

First, by setting d = 1 and w0 = 2 and varying the strength of the modulated
nonlocality, k, solitons can be found in the semi-infinite gap. They are stable in the
low-power region but unstable at higher powers. Figure 15 shows the power
diagram for k = -0.8, k = 0 (which corresponds to the unmodulated nonlinearity
in Eq. (23)), and k = 1. These results indicate that the stability region for the
solitons expands with the growth of k. Further, typical examples of stable and
unstable solitons are presented in Fig. 16. Stable and unstable examples for
k = -0.8 are shown in Fig. 16a, c and b, d, respectively.

Figure 16d shows that unstable solitons may jump into adjacent channels in the
course of the propagation. This effect of the transverse motion is more pronounced
for smaller k. The effects arise from the interplay of the modulation of the nonlocal
nonlinearity and the PT-symmetric potentials. Moreover, it is seen in Fig. 17 that
the stability domain becomes narrower with the increase of the w0 and d.

Fig. 16 Soliton profiles (the blue and red lines stand for the real and imaginary parts,
respectively, and the green dashed line is the refractive index profile), and the simulated
evolution of the soliton, in the same model as presented in Fig. 15, for l = 1.8 (a, c), and
l = 2.5 (b, d). The other parameters are d = 1, w0 = 2, and k = -0.8. The results were reported
in Ref. [37]
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7 Conclusions

In this chapter, we have presented a review of recent results concerning the spatial
solitons dynamics in parity-time- (PT-) symmetric potentials in optical media with
one- and two-dimensional photonic lattices (PLs). The following basic findings
were included.

(1) Firstly, the landmark result that stable propagation of 1D and 2D solitons is
possible in such PT-symmetric synthetic periodic potentials.

(2) Dark solitons and vortices, supported by the defocusing nonlinearity combined
with the PT-symmetric potential, were described concisely. Spontaneous
generation of complex multi-soliton and multi-vortex patterns can be con-
trolled by varying the strength of the PT-symmetric potential.

(3) The existence and stability of lattice solitons in PT-symmetric mixed linear-
nonlinear PLs in Kerr-linear media were overviewed. It is concluded that the
parameters of the linear lattice potential play a significant role in controlling
the size of stability domains for the solitons. In addition, effect of defects in
such potentials on the soliton propagation was considered. It was found that
positive defects can expand the existence domain of the stable modes, while
the negative defects reduce it.

(4) Finally, we have briefly summarized the soliton dynamics in the PT-symmetric
potential in the medium with the spatially modulated local or nonlocal cubic

Fig. 17 Stability domains (gray) in the plane of (l, k), produced in Ref. [37] in the same model
which is presented in Figs. 15 and 16, for: a w0 = 1.2, b w0 = 2, and c w0 = 2.4, while d = 1.
d The stability domain in the plane of (l, d) for w0 = 2 and k = 1
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nonlinearity. The depth of the spatial modulation of the nonlinearity and the
range of the nonlocality can profoundly affect the stability of solitons.

These results suggest new possibilities for experimental and theoretical studies
of the dynamics in more complex PT-symmetric potentials and in higher-dimen-
sional settings. A challenging direction for further studies is to consider similar
possibilities in 3D models. On the other hand, it may also be interesting to study
solitons in PT-symmetric potentials combined with the quadratic (rather than
cubic) nonlinearity.
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Spontaneous Symmetry Breaking
of Pinned Modes in Nonlinear Gratings
with an Embedded Pair of Defects

I. V. Kabakova, I. Uddin, J. Jeyaratnam, C. M. de Sterke
and B. A. Malomed

Abstract We consider spontaneous symmetry breaking (SSB) in nonlinear periodic
structures with two embedded identical defects. We focus on Bragg grating (BGs) in
which the defects are formed by local phase shifts. The defects are positioned rela-
tively close to each other, so as to allow the light to couple between them. At low
optical energies, i.e., in the linear regime, this system supports two symmetric
eigenstates, which have identical intensity distributions but different frequencies.
At higher energies, the lower-frequency state becomes unstable against symmetry-
breaking perturbations, and the light gets predominantly trapped by one of the defects,
leading to an asymmetric field distribution. We analyze the SSB effect for different
coupling strengths and conclude that, quite naturally, the symmetry-breaking energy
threshold increases with the strength. The symmetric state is stable below the SSB
threshold, while the emerging asymmetric mode is stable above the threshold.

1 Introduction

Spontaneous symmetry breaking (SSB) is a general phenomenon in modern non-
linear physics. Its manifestations can be found in a variety of settings, including
classical and quantum mechanics [1, 2], dual-core optical waveguides with the
intrinsic Kerr [3–9] and quadratic [10] nonlinearities, dual-core Bragg gratings

I. V. Kabakova (&) � I. Uddin � J. Jeyaratnam � C. M. d. Sterke
Center for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS) and Institute
of Photonics and Optical Sciences (IPOS), School of Physics, University of Sydney,
Sydney, NSW 2006, Australia
e-mail: kabakova@physics.usyd.edu.au

B. A. Malomed
Department of Physical Electronics, School of Electrical Engineering,
Tel Aviv University, 69978 Tel Aviv, Israel

Progress Optical Sci., Photonics (2013): 149–165
DOI: 10.1007/10091_2012_22
� Springer-Verlag Berlin Heidelberg 2012
Published Online: 14 December 2012



(BGs) [11], various nonlinear discrete systems [12–16], and other settings in
nonlinear optics [17–26] and plasmonics [27–31]. Further, SSB effects were studied
in detail in quantum field theory [32–35], Bose–Einstein condensates (BECs) [22,
36–40] (specifically, in BEC [41–53] and degenerate Bose–Fermi mixtures [54, 55]
trapped in double-well potentials), spin waves in ferromagnets [56], and in other
physical systems. The symmetry-breaking phenomena occur in situations described
by symmetric Hamiltonians, which are expected to support symmetric and anti-
symmetric eigenstates. However, in the presence of nonlinearity the (anti)symmetry
can be broken and asymmetric states become favorable, realizing an energy mini-
mum (the ground state of the system). In addition to SSB in ordinary Hamiltonian
systems, the spontaneous breaking of parity-time ðPT Þ symmetry was predicted in
models described by PT -symmetric models, with spatially separated mutually
balanced gain and loss [57–59] added to the conservative part.

The propagation of optical [60–67] and plasmon [68, 69] waves in nonlinear
media is a tremendous area of research, which gives rise to a great variety of
fundamental effects and offers a myriad of potential applications to classical and
quantum telecommunications, lasers, all-optical data processing, etc. Recently,
there have been several experimental demonstrations of SSB in Kerr-nonlinear
media using two-component optical solitons [17] and optically induced photonic
latices [18]. A major application envisioned in these studies is the all-optical
steering and switching of laser beams. In particular, a nonlinear device which
would implement switching and flip-flop operations was proposed by a number of
authors [19–21]. It is built of two coupled micro-cavities embedded into a two-
dimensional (2D) photonic crystal (as similar 2D configuration for the trapped
BEC was introduced in [53]). Similar effects of the SSB between two mutually
symmetric trapping elements inserted into a uniform matrix can be achieved in 1D
periodic structures, which are much easier to fabricate and straightforward to
model, using coupled-mode theory [15, 16, 22, 51, 52]. In particular, a pair of
repulsive local defects embedded into a nonlinear fiber BG may form an effective
cavity trapping gap solitons [70]. A generalization in the form of a triplet of local
defects embedded into the nonlinear BG was considered too [71].

In this chapter we discuss SSB in a 1D model of light propagation in a dielectric
medium combining the Kerr nonlinearity and a simple periodic structure in the
form of a BG. To be definite, we consider a shallow grating, which means that the
local variations of the refractive index are much smaller than the average value of
the index, Dn � �n. Such gratings can be written in optical fibers or waveguides by
exploiting the photosensitivity of germanosilicate glasses in the ultraviolet range
[72–74], or by other processes [75]. In this way, long gratings, which can be
several centimeters long, carrying as many as � 100;000 periods, can be written.

Solitons in the Kerr-nonlinear fiber BG were predicted as exact analytical
solutions [76, 77], and further analysis has demonstrated that, roughly speaking,
half of this soliton family is stable [78–80]. While the theoretical analysis predicts
that the BG solitons (also frequently called gap solitons) may exist as quiescent
pulses trapped in the grating, in the experiment such solitons were created as
moving ones [81, 82].
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To implement a symmetric two-component system based on the 1D grating, we
here introduce a model with two identical embedded defects, in the form of local
phase shifts of the grating. Each defect creates a trapped state with an exponen-
tially decaying field distribution around it (the localized mode attached to the
single defect may be realized as a pinned soliton [83]). If the two defects are
located close to each other, the light can leak from one defect to another, resulting
in their coupling.

To analyze the possibility of SSB in this system, we first consider its linear
version, which is valid for low intensity of light. In this case, there are two
eigenmodes with different frequencies, which can be found in an analytical form.
The two modes feature field distributions in which the energy is split evenly
between the two defects, but which differ in their phases. When the intensity
increases, the frequencies of the modes shift at the same rate, due to the action of
the Kerr nonlinearity, and the intensity distributions remain largely unchanged,
until the intensity attains a threshold at which the SSB bifurcation occurs and one
of the symmetric mode becomes unstable, similar to the situation considered in
Refs. [51, 52] and [22]. Above the threshold, the stable solution demonstrates an
asymmetric field distribution, with most of the energy captured by one of the
defects. We show that the strength of the coupling between the defects determines
the energy threshold for the SSB: the stronger the coupling (i.e., the closer the
defects to each other), the larger the energy required for the bifurcation to occur.

This chapter is structured as follows: in Sect. 2 we briefly revisit coupled-mode
theory of BGs and discuss steady-state linear solutions for the BG with one and
two local defects. Section 3 provides a short description of numerical methods
used for solving nonlinear coupled mode equations in steady-state and dynamic
regimes. In Sect. 4 we present results of our analysis, including the stability of the
trapped states. A short discussion about implication of the results for all-optical
switching completes the chapter.

2 The Model

2.1 The Coupled-Mode Theory

The propagation of light in a shallow 1D periodic medium is conventionally described
using coupled mode theory [84], which represents the total optical field as a super-
position of two modes, which are linearly coupled through Bragg scattering in the
periodic medium. In the usual BG, these are forward- and backward-traveling modes.

Thus, we assume that the refractive index of the waveguide can be written as

nðzÞ ¼ �n þ Dn cos
2pz

K
� u

� �
: ð1Þ
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where �n is the average refractive index, Dn the modulation amplitude, K the period
and u the phase of the grating. The coupling between the forward and backward
propagating modes arises from the partial reflections from the grating induced by
the periodic modulation of the refractive index. At the Bragg wavelength,
kB ¼ 2�nK, all partial reflections occur in-phase, resulting in constructive inter-
ference. For a narrow interval of incident wavelengths Dk around kB, the grating
acts as a reflector, providing for the strongest linear coupling between the forward-
and backward-traveling modes.

The coupled-mode equations (CMEs) can be derived as described by Marcuse
[84]. These equations link the complex amplitudes of the forward, Eþðz; tÞ, and the
backward, E�ðz; tÞ, traveling components of the total electric field at frequency x,
so that

Eðz; tÞ ¼ Eþðz; tÞeþibz þ E�ðz; tÞe�ibz
� �

e�ixt þ c.c., ð2Þ

where c.c. stands for the complex conjugate. We now take the propagation constant
b ¼ p=K corresponding to the Bragg resonance, and x to be the associated
frequency. In the Kerr medium, described by the effective refractive index, nðz; IÞ ¼
nðzÞ þ n2IðzÞ where n2 is the Kerr coefficient and I intensity of the electromagnetic
waves, the nonlinear CMEs [85] are

i
oEþ
oz

þ i

v

oEþ
ot

þ jE�e�iu þ CjEþj2Eþ þ 2CjE�j2Eþ ¼ 0;

�i
oE�
oz

þ i

v

oE�
ot

þ jEþeþiu þ CjE�j2E� þ 2CjEþj2E� ¼ 0:
ð3Þ

where v is the group velocity at the Bragg frequency in the waveguide in the
absence of the grating. The terms involving the coupling coefficient,

j ¼ p
kB

Dn;

represent the grating. Further, C ¼ 4pn2=kZ0 is the nonlinearity coefficient,
Z0 ¼ 377 X is the characteristic free-space impedance, and the total electric field is

related to the field intensity by I ¼ 2njEj2=Z0, assuming the field is in the form of
Eq. (2).

At low intensities, where the nonlinear effects are negligible, the uniform BG,
with constant j, gives rise to the photonic bandgap at [85]

�j� d� þ j; ð4Þ

in terms of the detuning from the Bragg frequency,

d ¼ n=cð Þðx � xBÞ: ð5Þ

Equations (3) are the CME system, which forms a basis for the analysis reported in
this chapter below. We will now discuss stationary solutions of these equations.
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2.2 Linear Solutions for the Single Defect

We first consider gratings with a single defect placed at z ¼ 0, as shown in Fig. 1a.
It is modeled by a jump of the phase in Eq. (1) between values uI 6¼ uII at z\0
and z [ 0:

uc ¼
1
2

uII � uIð Þ ð6Þ

We here address solutions for the linear BG ðC ¼ 0Þ; with the e�ivdt time
dependence, where detuning d is defined as per Eq. (5). By demanding the field of
the trapped mode to decay as jzj ! 1, which can only occur for frequencies in the
photonic bandgap (4), and by requiring E� to be continuous, we construct the
solution for the localized mode pinned to the defect which consists of an resonant
frequency and an associated electric field. The resonant frequency is expressed in
the angle w where

eiw ¼ d þ ia
j

; ð7Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � d2

p
. The implication of Eq. (7) is that the solution exists at the

single value of the detuning,

d ¼ j cos uc ð8Þ

Note that Eq. (7) automatically satisfies the consistency condition, eiw
�� �� � 1, inside

of the photonic bandgap (4). The associated state can be written as

EþðzÞ
E�ðzÞ

� �
¼

1

�eiweiuI

� �
eaz; for z\0

EþðzÞ
E�ðzÞ

� �
¼

1

�e�iweiuII

� �
e�az; for z [ 0:

ð9Þ

Here we are particularly interested in the case of uc ¼ p=2, for which Eq. (8)
yields d ¼ 0, i.e., the defect state is placed at the center of the bandgap.

Fig. 1 Schematic of the refractive-index grating with a one p=2 defect placed at z ¼ 0, and
b two p=2 defects at z ¼ �L=2
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2.3 Linear Solutions for the Double Defect

We now consider gratings with two identical defects placed at z ¼ �L=2, as shown
in Fig. 1b, which corresponds to the following phase distribution in Eq. (1):

u ¼
uI ; z\ � L=2;
uII ; �L=2\z\L=2;
uIII ; z [ L=2:

8
<

:

As in Sect. 2.2, we aim to find solutions which are continuous at z ¼ �L=2 and
exponentially decay as jzj ! 1. After a simple analysis, this results in the
condition

sinðw � uLÞ
sin uL

sinðw � uRÞ
sin uR

¼ exp �2jL sin wð Þ; ð10Þ

where w is the phase defined by Eq. (7), and

uL � 1
2

uII � uIð Þ; uR � 1
2

uIII � uIIð Þ: ð11Þ

The associated state can be written as

z\ � L=2 :

EþðzÞ
E�ðzÞ

� �
¼ 1 þ e�iw sinðw � uLÞ

sin uL

� �
1

�eiweiuI

� �
eaðzþLÞ;

�L=2\z\ þ L=2 :

EþðzÞ
E�ðzÞ

� �
¼ sinðw � uLÞ

sin uL

1

�eiweiuII

� �
eaðzþLÞ�iwþ

1

�e�iweiuII

� �
e�az

z [ L=2 :

EþðzÞ
E�ðzÞ

� �
¼ 1 þ e�iwe2aL sinðw � uLÞ

sin uL

� �
1

�e�iweiuIII

� �
e�az:

ð12Þ

In the limit of a very large spacing between the defects, i.e., jL 	 1, the expo-
nential factor in Eq. (10) vanishes, and this condition amount to its counterpart (7)
for the isolated defects. In the general case, Eq. (10) is a transcendental equation
which should be solved numerically.

Here we only consider the case of uL ¼ uR ¼ p=2, reducing Eq. (10) to

d ¼ �j exp �2jL sin wð Þ; ð13Þ

leading to the two solutions with detunings ð�jdjÞ which are located symmetrically
around the center of the bandgap ðd ¼ 0Þ. Equation (13) is still transcendental, as the
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parameter w depends on d via Eq. (7). When the spacing between the defects
increases, the splitting between the eigenvalues of d in Eq. (13) decreases, as
expected in analogy with the properties of double-well potentials in quantum
mechanics. Note that jL is the single parameter which determines the strength of the
coupling between the defects. It can be shown, though we do not do it here, that the
intensity distributions of the two solutions, corresponding to the upper and lowers
signs in Eq. (13), are identical, while their phases differ. An example of the intensity
distribution is displayed in Fig. 2a.

3 Methods for Solving the Nonlinear Problem

In the previous section we found solutions for the linear BG with a single defect or
a symmetric pair of coupled defects. These solutions are valid in most situations
that involve low to moderate optical powers. For gratings written in silica fibers,
which has a positive Kerr coefficient ðn2 ¼ 2:7 
 10�20 m2=WÞ, the nonlinearity
starts to play a significant role at kilowatt power levels [82]. The increase of the
effective refractive index due to the nonlinear correction is equivalent to a longer
optical path in the medium for a high-intensity pulse, compared to its low-intensity
counterpart at the same wavelength. Briefly speaking, an approximate relationship
Dk=k � Dn=n holds, hence the nonlinearity manifests itself by a shift of the Bragg
resonances towards longer wavelengths, i.e., lower frequencies. To find the exact
shift of the resonance for a given optical energy, nonlinear CMEs (3) need to be
solved. These equations are difficult to solve analytically, especially for gratings
with multiple phase-shift defects (an analytical solution for a trapped gap soliton is
available in the framework of the nonlinear CME system with a single attractive
defect [83]). Therefore, solutions should be obtained in a numerical form, as
discussed below.

Fig. 2 a Symmetric and b asymmetric eigenstates of the nonlinear stationary problem. The total
length of the grating is l ¼ 15 cm; the coupling coefficient j ¼ 100 m�1 and the separation
between two p=2 defects is L ¼ 3 cm: The intensity for each distribution is normalized to its
maximum
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3.1 Solving the Steady-State Nonlinear Problem

We are looking for the stationary solutions of the time-independent nonlinear
CMEs for the grating with a pair of defects. This can be done by solving the
stationary version of Eq. (3), produced by the substitution of the e�ivdt time
dependence. For the numerical solution we chose the 4th-order Runge–Kutta
algorithm, due to its accuracy.

In the stationary regime without a driving source, no energy flow must exist
inside the grating. Therefore, far from the defects the total electric field should
approach zero. However, to start the integration we need to introduce some non-
zero value to at least one of the field amplitudes at the grating’s boundary. To this
end, we apply the boundary conditions at the end of the grating, z ¼ l:

Eþðl; dÞ ¼ A0;

E�ðl; dÞ ¼ �A0
d þ ia

j

� �
;

ð14Þ

where amplitude A0 is sufficiently small to fall into the linear limit, i.e., CjA0j2 � j.
We integrate the steady-state nonlinear CMEs from the end of the grating ðz ¼ lÞ
towards its beginning ðz ¼ 0Þ. By setting boundary fields as in Eq. (14) we ensure no

energy flow at z ¼ l, i.e., jEþðlÞj2 � jE�ðlÞj2 ¼ 0. With Eq. (14), the transmission
and reflection coefficients of the grating cannot be defined in the usual way [86],
as we have E�ðlÞ 6¼ 0. The valid eigenstates, however, can be found (which is the
objective of the present analysis) by tracking amplitudes ðEþ; E�Þ at z ¼ 0 and

choosing those solutions for which Ið0Þ � jEþð0Þj2 þ jE�ð0Þj2 ! 0.

3.2 Solving the Time-Dependent Nonlinear Problem

After the stationary solutions of the nonlinear problem have been found, they need
to be tested for the stability against perturbations. This can be studied numerically
by monitoring the evolution of a particular perturbed solution in time. A small
noise added to the solution can show if the latter is stable, remaining unchanged
over a substantial period of time, or breaks down. To solve time-dependent Eq. (3),
we used a versatile numerical procedure developed earlier by de Sterke et al. [86].
It was shown that Eq. (3) posses linear characteristics, and, by means of an
appropriate coordinate transformation, they can be brought into the form of a set of
coupled ordinary differential equations. The latter can be integrated along the
characteristics by using a variety of algorithms, e.g., the 4th-order collocation
method. More details of this integration technique can be found in [86]. We utilize
it for our time-dependent numerical calculations presented in Sect. 4.2.
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4 Results of the Numerical Analysis

4.1 Eigenstates of the Nonlinear Grating with a Pair
of Coupled Defects

We use the method described in Sect. 3.1 to solve the stationary version of Eq. (3)
for a 15 cm long grating with the coupling coefficient j ¼ 100 m�1. The grating
incorporates a pair of p=2 defects positioned around its center and separated by
distance L. Varying L, we can control the strength of the coupling between the
defects. If L is small, viz., jL � 3, the defects are strongly coupled. This means
that the field localized around one of the defects decays on a spatial scale
essentially larger than L, hence it covers the second defect too.

Figure 2a, b shows two distinctly different modes, symmetric and asymmetric
ones, found for different energies inside the grating with separation L ¼ 0:2l � 3 cm
between the two defects. These modes are normalized to their maxima, for conve-
nience. The map of the trapped modes versus the energy in the grating is shown in
Fig. 3, the energy inside the grating being defined as

e ¼
Z l

0

jEþðzÞj2 þ jEþðzÞj2dz: ð15Þ

Fig. 3 Map of resonances for the nonlinear grating with jL ¼ 3. Square and circular markers
represent symmetric eigenstates, whereas triangular markers show asymmetric ones, which occur
at energies above the threshold, eth ¼ 1:5
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To characterize the degree of asymmetry in the symmetry-breaking eigenmodes,
we introduce the parameter

X ¼ IR � IL

IR þ IL

; ð16Þ

where IR;L are the intensities at positions of the left- and right-hand defects.
Obviously, the symmetric eigenstates have X ¼ 0.

As mentioned earlier, two different eigenstates are found at low energies, in
agreement with analysis in Sect. 2.3 The frequencies of these eigenstates are
symmetrically positioned around the Bragg frequency [d ¼ 0, see Eq. (10)], and
the eigenstates feature identical intensity distributions [as in Fig. 2a], but differ in
the phase. The intensity distribution has two equal peaks at positions of the defects,
reflecting the symmetry of the grating. Only this solution can be found at low to
moderate optical energies trapped inside the grating.

Figure 2b shows an asymmetric solution that has been found at energies above
the threshold, eth ¼ 1:5 (it corresponds to the branch labeled with ‘‘2’’ in Fig. 3).
The branch of the asymmetric eigenstates splits off from the low-frequency
(symmetric) one at e ¼ eth. For the solution shown in Fig. 2b most of light is
captured by the right-hand defect. Of course, there also exists its left-hand
counterpart (specular image) with the maximum localization at the left-hand
defect. It is worth noticing that we did not find any asymmetric states corre-
sponding to the higher-frequency trapped modes [i.e., the nonlinear extension of
the eigenmodes corresponding to the upper sign in Eq. (13)]. This suggests that the
SSB does not occur for them, an analytic proof of which can also be made.

The energy threshold, eth, at which the SSB takes place strongly depends on
separation L between the defects, and on the coupling coefficient, j. The larger the
product jL, the faster the fields decay away from the defects and the weaker is
the coupling between the defects. Therefore, less energy is required to break the
coupling and to localize the field chiefly at one of the defects, due to the Kerr
nonlinearity. Figure 4 shows the map of the bound states for two gratings, with
jL ¼ 3 and jL ¼ 2 respectively. It is clearly seen that the grating with a smaller
product ðjL ¼ 2Þ has a substantially larger bifurcation threshold.

Next, in Fig. 5 we plot the asymmetry parameter, X [see Eq. (16)], for all the
eigenstates that have been found above. Black and red symbols correspond,
respectively, to the gratings with jL ¼ 3 and jL ¼ 2. The curves in Fig. 5
demonstrate the familiar supercritical pitchfork bifurcation [87], for both gratings.
Similar symmetry-breaking bifurcations were found in many other nonlinear
double-well, dual-core, and double-defect systems [10, 11, 15, 16, 18, 22–26],
[41–55]. As mentioned before, the bifurcation point for the grating with jL ¼ 2 is
located at a higher energy.
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4.2 Stability of Nonlinear Solutions

The stability of the modes displayed in Figs. 3 and 4 was studied by means of the
numerical algorithm briefly described in Sect. 3.2 Initial condition for the field
were taken as the steady-state numerical solutions presented in Fig. 2a, b. In the
course of the simulated evolution, the solutions are perturbed by the noise induced
by the numerical truncation. This weak perturbation is sufficient to cause a
breakdown of unstable eigenstates.

We have thus found that, below the threshold value, eth, of energy (15), both the
lower- and higher-frequency eigenstates [the ones corresponding to the two signs
in Eq. (13)] are stable, maintaining their shapes in the course of long simulations.

Fig. 4 The map of the trapped modes for two gratings with jL ¼ 3 and jL ¼ 2. Parameter X
[see Eq. (16)] represents asymmetry of the solution, so that X ¼ 0 corresponds to the symmetric
solution, and X 6¼ 0 to an asymmetric one

Fig. 5 The evolution of the
eigenstate’s asymmetry ðXÞ
with the energy for the
gratings with jL ¼ 3 (black
markers) and jL ¼ 2 (the red
solid curve)
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Above the threshold, the lower-frequency branch splits, as discussed above, into
two sub-branches corresponding to the symmetric and asymmetric solutions.
Figure 6a, b summarizes results of the stability analysis, and display the time
evolution of the two arbitrary chosen eigenstates, which are labeled by 1 and 2 in
Fig. 3, belonging to each of the sub-branches above the threshold.

It is clearly observed in Fig. 6a that the symmetric solution is destabilized by a
symmetry-breaking perturbations by time t ¼ t1. Although the SSB is obvious in
this case, the field does not relax to a stationary asymmetric mode, but rather
performs oscillations between the two defects, similar to Josephson oscillations,
which are well known in bosonic junctions studied in BEC [41–45]. The oscil-
lations give rise to leakage of the field, and eventually [on a time scale essentially
longer than that shown in Fig. 6a], all of the energy escapes.

On the other hand, the asymmetric mode is clearly stable in Fig. 6b. Testing the
solutions for gratings with different values of jL, we have concluded that the
stability diagram for each grating is similar to that shown in Fig. 7: all the states
below the threshold are stable, whereas above it the lower-frequency symmetric

Fig. 6 The time evolution of the eigenstates labeled by 1 and 2 in Fig. 3: a a symmetric mode,
b an asymmetric one. The intensity distribution are normalized to their maxima

Fig. 7 The stability diagram
for a grating with jL ¼ 3
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state becomes unstable, while the asymmetric modes emerge as stable ones. On the
other hand, the higher-frequency branch does not undergo any bifurcation and is
completely stable.

5 Implications for Light Switching

We have demonstrated how the symmetry of the light distribution in a 1D periodic
structure with the embedded pair of defects can be manipulated through the
nonlinear light-matter interaction, depending on the strength of the coupling
between the defects. Since the field distribution is drastically changed by the SSB,
it can be employed for all-optical switching. For example, one can implement an
optical switch with two states, i.e., ‘‘on’’ or ‘‘off’’, which are encoded into the ratio
of the peak intensity at the two defects, via parameter X, see Eq. (16). Such a
switch flips its state at the SSB point. However, it may not be easy to realize such a
practical device, because it is impossible to measure the intensity distribution
inside the grating without destroying it.

This problem can be overcome if surface gratings are used. However, they
cannot be described by the ‘‘shallow grating’’ model, as the refractive-index
contrast between the dielectric material and air is � 1. This fact may strongly
affect the dynamics in the nonlinear regime, and has to be studied separately,
cf. [88]. Discrete arrays with embedded defects may provide a better experimental
implementation for the switching device based on the SSB principle, as they admit
straightforward access to measuring the power of localized states [89].

Thus, the study presented in this chapter provides a clear illustration of the SSB
phenomenon in periodic media with the cubic nonlinearity. Further studies are
necessary to transform these fundamental effects into practically usable photonic
devices.
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1 Introduction

Dissipative solitons appear in various systems and physical settings, including
optics, hydrodynamics, plasmas, and plasmonics, to name just a few. Optical
dissipative solitons belong to a special class of self-sustained nonlinear excitations
that, on the one hand, exist due to the mutual balance between nonlinearity and
diffraction (or dispersion) and, on the other hand, due to the balance between gain
and dissipation acting in the system [2, 3, 48]. Due to this double balance the
dissipative solitons usually do not exist as families, parameterized solely by the
propagation constant, as it occurs in conservative settings [30]. Instead, all
parameters of dissipative solitons are usually uniquely determined by the amount
of gain and losses acting in the system. Stability is a fundamental issue for such
solitons, because losses in the medium must be compensated by gain. The classical
stable dissipative soliton is the attractor of the system, i.e. it can be excited from
the relatively broad spectrum of initial conditions (known as a basin of attraction).

Dissipative solitons may form in a variety of settings, including systems gov-
erned by the cubic-quintic Ginzburg-Landau equation [2, 3, 11, 12, 39, 43, 46, 47,
50, 51, 59] laser amplifiers with saturable gain and absorption [15, 48, 49], driven
nonlinear optical cavities [9, 16, 18, 35, 55], medium with narrow ‘‘hot spots’’ [61]
etc. The experimental observation of dissipative solitons was reported, for
example, in semiconductor microcavities [6, 58] and electrically pumped semi-
conductor amplifiers [62]. Since uniform linear gain usually destabilizes any
localized wavepacket by making the background around it unstable, stable dissi-
pative solitons were obtained mostly in systems with nonlinear gain acting in a
combination with stabilizing linear and higher-order nonlinear absorption (as it
occurs in conventional complex cubic-quintic Ginzburg-Landau equation). It is
relevant to mention that dissipative solitons also can be stabilized in a dual-core
system with only cubic nonlinearity, where the stability of the zero background is
provided by the additional linearly coupled lossy subsystem [5, 40].

However, the instability of the background that is unavoidable in the system
with uniform gain [19] can be suppressed if the gain acts only in a limited spatial
domain. Such spatially localized gain, when combined with suitable linear or
nonlinear absorption, may result in the formation of stable one- and two-dimen-
sional dissipative solitons. The effect of spatially localized gain was analyzed first
for the existence and interaction of gap solitons in shallow fiber Bragg gratings
with uniform background linear losses [36], for interaction of optical pulses in an
one-dimensional, resonant photonic crystal with the defect produced by a coherent
pump [42], and for dynamic emission of conservative moving lattice solitons from
the domain with gain [22]. The modification of complex Ginzburg-Landau
equation with background linear and nonlinear losses and gain acting in only one
spatial point or in finite, but narrow domain was introduced in [52]. The compe-
tition between localized gain and losses in this system was shown to lead to the
formation of stable cusp-like solitons in delta-shaped gain landscapes or breathers
in gain landscapes of finite width. The modification of this model to the case of
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delta-shaped Kerr nonlinearity and nonlinear losses was suggested in [60]. We also
notice that spatially inhomogeneous gain can be realized not only in optics, but
also in the field of matter waves. The nonlinear eigenstates of complex periodic
and parabolic external potentials were obtained in [1, 65, 66].

It turns out that even in the case of delta-shaped gain landscapes the resulting
dissipative solitons are characterized by the complex internal energy flows that are
usually directed from the domain with gain into domain with losses and that
dramatically impact the soliton’s intensity distribution and its localization.
Therefore, not only the strength of the gain, but also the very shape of the gain
landscape should strongly affect the properties of solitons in such systems as we
will show below. Among the most striking phenomena which can be observed in
the presence of localized gain we mention the possibility of symmetry breaking in
localized gain landscapes, as well as the existence and stability of multidimen-
sional fundamental and more complex vortex soliton states.

In this chapter we will present an overview of our results on dissipative solitons
supported by localized gain landscapes in both one- and two-dimensional settings
in focusing and defocusing media with (or without) nonlinear two-photon
absorption. In particular, we will show that a localized gain imprinted in the
material with background losses and defocusing nonlinearity can support stable
one-dimensional solitons not only for particular value of linear gain (as it occurs in
conventional gain guiding), but for a broad range of gain coefficients [67]. Among
the unique properties of this system is the possibility of formation of localized
states with negative propagation constants. We will show that the symmetry
breaking can occur even in systems with bell-shaped gain landscapes and focusing
nonlinearity that start supporting highly asymmetric solitons for sufficiently high
gain levels, where symmetric states become unstable [28]. When placed into a
lattice created by periodic modulation of linear refractive index [25], the localized
gain supports dissipative lattice solitons whose localization and stability properties
are dictated by the location of propagation constant depending on the values of
gain and losses in the band-gap spectrum of the conservative lattice, by analogy
with conservative lattice solitons (for recent reviews on optical lattice solitons see
[23, 33]). Dissipative surface solitons may form when gain is concentrated in the
near-surface channel of truncated one-dimensional periodic lattice [24]. Like their
conservative counterparts introduced in [37] and observed in both one- and two-
dimensional geometries [56, 57, 63], the dissipative surface lattice solitons exist
above the threshold energy flow and require certain minimal gain for their exis-
tence. Notice that dissipative surface solitons were studied before only in the
truncated discrete systems governed by Ginzburg–Landau equation with uniform
nonlinear gain [44].

An especially interesting problem is the possibility of stabilization of multi-
dimensional solitons due to the interplay between the localized gain and
two-photon absorption. We will show that such an interplay can stabilize even
two-dimensional solitons [27] in cubic nonlinear media where conservative
solitons suffer from collapse [7]. Notice that such two-dimensional solitons may
also experience symmetry breaking resulting in the transformation of radially

Guided Modes and Symmetry Breaking Supported by Localized Gain 169



symmetric solitons into stable elliptical states supported by the system despite the
fact that all its parameters are either uniform or radially symmetric. The impact of
localized gain on multidimensional solitons was also considered in planar wave-
guide arrays where spatially inhomogeneous electric pumping can be used to route
solitons along predetermined trajectories [64]. Spatially localized gain allows for
excitation of not only simplest fundamental solitons, but also vortex solitons.
Vortex solitons, being higher-order excited states of the system are prone to azi-
muthal modulational instabilities [14]. However, the interplay between gain and
two-photon absorption in ring-like gain landscapes renders vortex solitons com-
pletely stable [34]. Moreover, if the gain landscape is azimuthally modulated, the
necklace-like vortex states may form that can carry only specific topological
charges dictated by the topology of gain landscape (the effect is somehow anal-
ogous to restrictions on topological charges arising in lattices produced by
refractive index modulation [17, 20, 32, 38, 45]). Finally, localized gain imple-
mented in selected channels of periodic conservative lattice supports vortex lattice
solitons emerging from different gaps of lattice spectrum that will be discussed
below [26]. The coincidence of the discrete rotational symmetries of the gain
landscape and refractive index distribution is a necessary condition for excitation
of such vortex solitons, which otherwise transform into stable dissipative multi-
poles. Finally, one should stress that while this chapter focuses on the impact of
spatially inhomogeneous gain on various dissipative solitons, the transversally
inhomogeneous losses also may dramatically affect the symmetries and stability of
available solitons. One such example was reported very recently in the frames of
the model governed by Ginzburg–Landau equation with radially inhomogeneous
linear losses [54].

2 Localized Gain in One-Dimensional Problems

2.1 Some General Comments

We start by considering the one-dimensional (1D) model

iqn ¼ � 1
2

qgg � i½c0 � cðgÞ�q þ ðr � iaÞjqj2q; ð1Þ

where r ¼ 1 (r ¼ �1) corresponds to defocusing (focusing) nonlinearity, cðgÞ
describes a localized gain concentrated in the domain (or domains) having a
characteristic width d; c0 and a denote linear and nonlinear dissipation respectively.

We mention that from the experimental point of view Eq. (1) can be used to
describe the nonlinear response of semiconductor materials where soliton
formation occurs for wavelengths below half the band-gap and the two-photon
absorption dominates [29]. Such semiconductor materials are used for fabrication
of optical amplifiers with high optical gain [10].
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In the typical optical applications (we bear in mind through the whole Chapter)
the dimensionless variables are defined as g ¼ x=x0 and n ¼ z=Ldif ; where x0 is
the characteristic transverse beam width, Ldif ¼ kx2

0 is the diffraction length,
k ¼ 2pn0=k; k is the wavenumber, and n0 is the unperturbed refractive index. For
the linear gain coefficient one has pi ¼ Ldif =Lgain; Lnl ¼ n0=kn2I0 is the nonlinear
self-action length, I0 is the characteristic intensity, and Lgain is the amplification
length. Finally, for the coefficient of nonlinear losses we have a ¼ Ldif =Lloss;

where Lloss ¼ 1=a2I0 characterizes the length of two-photon absorption.
Now we focus on stationary spatially localized solutions which can be written

down as follows

qðn; gÞ ¼ eibnwðgÞ; wðgÞ ¼ wrðgÞ þ iwiðgÞ ¼ eihðgÞuðgÞ ð2Þ

with uðgÞ� 0 and hðgÞ being real functions. Localized solutions obey zero
boundary conditions limjgj!1 jqðn; gÞj ¼ limjgj!1 uðgÞ ¼ 0: The constant b will
be referred to as the propagation constant. It is straightforward to show that for the
stationary mode Eq. (1) can be rewritten either in the complex form

1
2

wgg � bw þ i½c0 � cðgÞ�w � ðr � iaÞjwj2w ¼ 0; ð3Þ

or in the form of the system

1
2

ugg � bu � ru3 � j2

u3
¼ 0;

1
2

jg þ ½c0 � cðgÞ�u2 þ au4 ¼ 0: ð4Þ

where we have introduced the current density jðgÞ � hgu2.
Throughout this Chapter the localized gain will be presented in the form cðgÞ ¼

piGðgÞ; where pi [ 1 characterizes the gain strength (amplitude), while GðgÞ
describes the gain profile and is considered normalized to a fixed constant of order
one.

The second of Eqs. (4) allows one to obtain the condition of balance between
the dissipation and gain. It reads

c0U ¼
Z

cðgÞu2dg � a
Z

u4 dg ð5Þ

where we have introduced the energy flow

U ¼
Z

u2 dg ð6Þ

The equations of balance between the nonlinearity and diffraction

bU ¼ � 1
2

Z
jwgj2dg � r

Z
jwj4dg ¼ � 1

2

Z
u2

gdg �
Z

j2

u2
dg þ

Z
u4dg ð7Þ

are obtained from the first of Eqs. (4).
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2.2 Localized Gain and Linear Dissipation

The first problem we address, is the case where only linear dissipation is present,
i.e. a ¼ 0: Without loss of generality we rescale the background dissipation to the
unity value, i.e. set c0 ¼ 1; and consider the situation where maxg cðgÞ[ 1: In
order to establish the domain of possible variation of the propagation constant b;
we consider the limit g ! 1 and focus on the exponentially decaying solutions,
i.e. we assume u�Ce�lg; where C and l are positive constants. From the second
of Eqs. (4) it readily follows that in this limit j�C2e�2lg=l: This suggests that in
the first of Eqs. (4) the term ru3 can be neglected in the limit g ! 1; while
substituting the asymptotic values of u and j in the terms which are left we obtain
b ¼ l2=2 � 1=l2. It follows from this formula that the propagation constant for
localized solutions can be either positive or negative even if the nonlinearity is
focusing (contrary to what happens in uniform conservative systems or in dissi-
pative systems [25–27, 31]). If b ! þ1 then l ! þ1 while if b ! �1 then
l ! þ0: Respectively, there must exist localized modes with l [ 0 even at b ¼ 0
while the spatial delocalization occurs in the limit b ! �1.

According to (7), for zero propagation constant the mode should decay with the

exponent l ¼ 21=4; i.e. jwgj2 6� 0: Hence for b ¼ 0 Eq. (7) can be satisfied only in
the focusing medium (i.e. at r ¼ �1). Thus the linear limit of the problem (i.e.
U ! 0) corresponds to a localized mode with b ¼ bð0Þ\0 [indeed, in this caseR
jwj4dg=U � max jwj2 ! 0 and can be neglected in (7)]. In the defocusing

medium exponentially localized solutions exist only if b\bð0Þ while in the
focusing medium dissipative solitons can exist with both positive and negative
propagation constants, i.e. at b [ bð0Þ.

We start with the case of the gain localized in one spatial domain, setting

GðgÞ ¼ e�g2=d2
and pi [ 1: By fixing the width of the gain landscape d and

changing pi we obtain the dependencies bðpiÞ and UðpiÞ; which are depicted in
Fig. 1a, b for d ¼ 1=

ffiffiffi
2

p
: These dependencies bifurcate from the linear limit

corresponding to U ¼ 0 and to bð0Þ � �0:61. The very fact of existence of
localized linear modes with b ¼ bð0Þ in inhomogeneous gain landscapes is known
as the gain-guiding effect (see e.g. [53]). In the linear case the guiding occurs for a

particular value of pi ¼ pð0Þ
i � 1:98: Focusing nonlinearity diminishes gain at

which localization occurs, while in a defocusing medium a higher gain is required
for localization (Fig. 1). In Fig. 1c we also show an example of a nonlinear mode.
Increase of the gain results in decrease of U in the focusing medium, that is also
accompanied by the expansion of the soliton. In the defocusing medium the
growth of pi results in increase of the energy flow and progressive expansion of the
soliton outwards the gain domain. Solitons are exponentially localized in both
focusing and defocusing media, as predicted by the analysis of (4), which also
shows that the current results in effective renormalization of the propagation
constant. Physical understanding of the exponential localization in the defocusing
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medium, comes also form the observation that the current results in the effective
self-focusing of the beam, what stems form the negative sign in front of j2=u3 [see
the first of Eqs. (4)].

Linear stability analysis (confirmed by the direct propagation) indicates that the
solitons in the focusing medium are unstable while in the defocusing medium they
are attractors and can be excited with a variety of inputs, ranging from noisy to
localized patterns. This difference in the stability can be understood from Eqs. (4).
The solution represents a flow outwards the ‘‘source’’ (i.e. the gain domain). The
defocusing nonlinearity enhances the outflow from the high intensity region thus
contributing to the stability, while the focusing medium enhances the field con-
centration in the gain domain, what stimulates further growth of the peak
amplitude.

Next we study the case of the gain landscape with two maxima at g ¼ 	g0

considering GðgÞ ¼ e�ðg�g0Þ2=d2 þ e�ðgþg0Þ2=d2
. Here one also can obtain modes

both for focusing and defocusing media. In Fig. 1d, e we present the branches of
symmetric (even) and antisymmetric (odd) modes for d ¼ 1=

ffiffiffi
2

p
: Both types of

solutions bifurcate from the linear limit. The values of parameters pi and b at

Fig. 1 Propagation constant (a) and energy flow (b) vs pi for solitons supported by single gain
channel. Red and black curves correspond to focusing and defocusing media. The solitons are
stable in the decocusing medium and are stable in the focusing medium. Vertical dashed line
indicates pi value corresponding to the linear limit. (c) Profile of a stable soliton (c) and current
density in defocusing medium at pi ¼ 2:5 corresponding to the circles in (a) and (b). (d) and
(e) The same as (a) and (b) but for two gain channels; while the solitons are unstable in the
focusing medium, they can be either stable or unstable in the focusing medium. (f) Profile of a
stable soliton and current density in defocusing medium at pi ¼ 2:6.
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which bifurcations take place are very close (bð0Þ
s � �0:61; pð0Þ

i;s � 1:99 for sym-

metric, and bð0Þ
a � �0:60; pð0Þ

i;a � 1:98 for antisymmetric solitons). Closely to the
linear limit and in the focusing medium the UðpiÞ curves for the symmetric and
antisymmetric solitons are almost indistinguishable, while in the defocusing
medium their energy flows may differ considerably.

Linear stability analysis reveals multiple alternating stability and instability
domains (in pi) for both symmetric and antisymmetric modes. A remarkable fact is
that stable symmetric and antisymmetric modes can co-exist at the same param-
eters of the system. By considering dynamical excitation of the modes discussed
above we found that for certain values of pi even input beams evolve into the
symmetric stationary mode while odd input beams evolve into the antisymmetric
mode, see panels (a) and (b) of Fig. 2. When one of the modes is unstable it
usually evolves into a stable mode or into pulsating mode (dissipative breather).
An example of such behavior is shown in Fig. 2c where perturbed unstable anti-
symmetric mode transforms into the pulsating soliton.

2.3 Guiding the Dissipative Modes

Stable nonlinear modes reported above represent attractors with large basins. This
fact allows one to guide stable modes by designing the shape of localized gain
channels in a desirable manner.

As a first example we consider a gain channel which at some propagation

distance, say n ¼ ~n; branches out into two new channels. This situation is
described by gain function

cðg; nÞ ¼ pi
1 � tanh2½

ffiffiffi
2

p
g�; if 0� n\~n;

1 � tanh2½
ffiffiffi
2

p
ðg � g0Þ� tanh2½

ffiffiffi
2

p
ðg þ g0Þ�; if n[ ~n:

�
ð8Þ

Fig. 2 Excitation of a stable symmetric (a) and antisymmetric (b) solitons by symmetric and
antisymmetric input beams in the system with two gain channels for pi ¼ 2:391: c Excitation of a
breather at pi ¼ 2:61 starting with the unstable antisymmetric soliton
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In this example at n ¼ ~n the ‘‘switch’’ between single channel and two channels is
abrupt. Corresponding solution qðg; nÞ is illustrated on the left panel of Fig. 3. A
symmetric input initial profile rapidly evolves to the nonlinear mode since the
latter is an attractor. Right after the switching point the peak amplitude and energy
of the solution abruptly decrease. But for some larger n the solution evolves to a
symmetric mode for the two-channels system.

As another example let us consider a situation when the switching from the
single-channel gain to the two-channel one occurs smoothly over the transition

region of the length ‘: In other words, for n[ ~n the distance-dependent localized
gain reads

cðg; nÞ ¼ pi 1 � tanh2
ffiffiffi
2

p
g � g0 tanh

n � ~n
‘

 ! !" #(


 tanh2
ffiffiffi
2

p
g þ g0 tanh

n � ~n
‘

 ! !" #)

;

ð9Þ

i.e. the switching is performed along a tanh-shaped trajectory. Results are shown
on the right panel of Fig. 3. We note that for the case of finite switching region a
slightly shorter propagation distance is required for the final two-hump profile to
be established.

The splitting of the beams reported above, was based on the fact that each of the
solutions is an attractor and can be excited starting with rather broad range of the
initial conditions. This also means that the described procedure can be easily
extended either to splitting of one beam in a several (more than two) ones, or on
the subsequent splitting of the new born beams in several ones. The inverse
procedure, where several guided beams are ‘‘collected’’ into a single one can be
also easily implemented.

-28 -28

28

100

28

Fig. 3 Propagation of the initial profile qðg; 0Þ ¼ 1:18e�2g2
for abrupt gain switching from

single-channel to two-channel (left panel) and for switching with finite velocity ‘ ¼ 2 (right

panel). Other parameters: pi ¼ 2:2; g0 ¼ 7; ~n ¼ 50
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2.4 Symmetry Breaking in a Medium with Nonlinear Losses

In addition to standard constraints imposed by the balance between the dissipation
and gain (5), a localized gain introduces a new spatial scale—the width of the gain
domain. This suggests a possibility of existence of more sophisticated structures
than the simplest symmetric and/or anti-symmetric dissipative solitons, considered
above. One of such phenomena is the symmetry breaking. It is considered in
this section, following [28], within the framework of the model (1) with
r ¼ �1 and c0 ¼ 0. It will be assumed that the gain landscape contains an integer
number n of periods of cos2 g: This allows us to write down

GðgÞ ¼ cos2 Xgð Þ; for jgj � gn ¼ np=ð2XÞ
0 otherwise

�
ð10Þ

More specifically, in this subsection we set X ¼ 1 and vary pi; a and n: Eqs. (4)
can be written now in the form:

bu ¼ ugg

2
þ u3 � j2

2u3
; jg ¼ 2piGðgÞu2 � 2au4; ð11Þ

and the decaying asymptotics imply that u� e�
ffiffiffiffi
2b

p
jgj and j� e�4

ffiffiffiffi
2b

p
jgj.

Let us now use scaling arguments to argue that in the limit of large amplifi-
cation pi ! 1 there can exist more than one stationary state. Assuming that the
solution amplitude A ¼ maxfug grows and the width ‘ decreases, Eq. (5) with

c0 ¼ 0 suggests the scaling A� 1=‘�
ffiffiffiffiffiffiffiffiffi
pi=a

p
: This allows us to deduce the

estimate U � ða=piÞ
R

u4dg�
ffiffiffiffiffiffiffiffiffi
pi=a

p
; valid subject to the assumption that the

soliton maximum is placed exactly at g ¼ 0 where the pump has the maximal
value, i.e. valid for a symmetric mode. On the other hand assuming the solution
wide enough, i.e. ‘ � g0 ¼ p; we obtain the estimates pi � aA2‘ and U �A2‘;
i.e. U � pi=a: Now we are restricted neither by the position of the maximum of the
mode, nor by the symmetry of its shape. Moreover, in the corresponding solution,
the diffraction term ugg �A=‘2 cannot be compensated by the Kerr nonlinearity
u3 �A3 alone, and the role of the current distribution, i.e. of j2=u3; becomes
crucial. The major influence of the current occurs not at the origin but at some
intermediate point g� defined by the condition jgðg�Þ ¼ 0: Thus if a solution with
the suggested scaling exists, it should have asymmetric shape, with the maximum
located in the vicinity of the point g�.

The above prediction of symmetric and asymmetric modes is confirmed in simulations
[Fig. 4]. We observe that while the growth of zero background is suppressed at large g;
the light concentrates inside the amplifying channels. Strictly speaking this feature is
typical for symmetric modes. A maximum of an asymmetric mode is shifted from the
gain peak and the width of the mode grows with pi; according to the estimates
presented above. This broadening of the soliton leads to the situation where an
appreciable part of the light energy concentrates outside the gain channel for large pi.
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The existence of asymmetric states in a system where gain landscape is
symmetric and all other parameters are uniform, i.e. the symmetry breaking, is an
unexpected result. Indeed, unlike in conservative systems, the understanding of the
phenomenon cannot be related to the energetic arguments. Our system also does
not allow for reduction to a simpler discrete model, as this happens, say, in the case
of a double-well potential. Moreover, in our case the symmetry breaking occurs
even for a single gain channel in contrast to conservative systems (where at least
two potential minima are required).

We performed numerical study of the entire branches of the solutions and
studied their stability [Fig. 4]. In Fig. 4e, f for n ¼ 1 we observe two branches of
the solutions, one of them corresponding to the symmetric solitons, and another
one, bifurcating form the symmetric branch at certain value pi ¼ pcr

i ; that corre-
sponds to the asymmetric solutions (having smaller amplitudes and larger widths
as compared to the symmetric ones). The dependences UðpiÞ and bðpiÞ for both
branches well reproduce the estimates presented above. The linear stability
analysis of the modes is performed by plugging in the perturbed field
q ¼ w þ veidn

� �
eibn into Eq. (1) with c0 ¼ 0 and performing linearization around

w. For odd numbers of amplifying channels, exactly at the bifurcation point pcr
i

Fig. 4 Profiles of unstable symmetric (a) and stable asymmetric (b) one-hump solitons at n ¼ 1;
pi ¼ 3:5; a ¼ 1:2 and profiles of unstable symmetric (c) and stable asymmetric (d) two-hump
solitons at n ¼ 2; pi ¼ 2:5; a ¼ 1:8: The energy flow (e) and propagation constant (f) versus pi

for symmetric ‘‘s’’ and asymmetric ‘‘a’’ families of one-hump solitons at n ¼ 1; a ¼ 1:2: Vertical
dashed lines in (e) and (f) indicate the borders of stability domains pi ¼ pcr

i for symmetric modes.
Asymmetric solitons addressed in the panels (e) and (f) are stable. The profiles in panels (a) and
(b) correspond to circles in panels (e) and (f)
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the branch of symmetric solutions looses its stability, while the stable asymmetric
branch emerges. Since the asymmetric modes appear in pairs (corresponding to the
left and right shifts of the maximum outwards the origin) at the point where the
symmetric mode becomes unstable we deal with the pitchfork bifurcation.

For small pi symmetric solitons broaden dramatically and may expand far
beyond the region with gain. Increase of pi results in growth of the peak amplitude
and progressive localization of the soliton inside the amplifying domains. For
small values of a the symmetric one-hump solitons can be found even for pi ! 0;
for moderate and high values of a such solitons exist only above certain minimal
value of gain coefficient plow

i [see Fig. 5a].
For even n the symmetric modes appear unstable in the whole domain of

existence, and the only stable modes are asymmetric ones. In this case the
dependencies UðpiÞ for symmetric and asymmetric modes do not overlap and no
bifurcations occur. Except for stability, other properties of modes supported by
even and odd number of amplifying channels are similar.

In dissipative multi-hump solitons both real and imaginary parts of the field
wr and wi change their signs in neighboring channels with gain, while the field
amplitude u is nonzero even in the regions between the channels [see Fig. 4c, d].
Indeed, let us assume that at some point ~g the field is zero, i.e. uð~gÞ ¼ 0: Since uðgÞ is

nonnegative, in the vicinity of ~g we have: uðgÞ ¼ Oððg � ~gÞ2Þ and jg ¼ Oððg � ~gÞ4Þ:
Expanding uðgÞ and jðgÞ in the Taylor series in the vicinity of ~g; from Eqs. (11)
we find subsequently that all the expansion coefficients are zero, what means that if
u becomes zero at some point, then uðgÞ � 0 and jðgÞ � 0.

The critical gain, at which the bifurcation of asymmetric mode from symmetric
branch occurs, increases almost linearly with a; so that the domain of stability of
symmetric solitons pcr

i � pi � plow
i expands with a (Fig. 5a). The stability domain of

symmetric three-hump soliton expands almost linearly with increase of a (Fig. 5b).
With increase of the number of the gain channels the picture becomes even

richer. When the number of channels is odd, the number of asymmetric modes that
can be stable all together for fixed pi and a values increases. This feature indicates
on the presence of several stable attractors (multistability) in multichannel

Fig. 5 The domain of existence (pi � plow
i ) and stability domain (pcr

i � pi � plow
i ) for one-hump

(a) and three-hump (b) solitons on the plane (a; pi)
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landscapes. The critical value of the gain coefficient (i.e. the bifurcation point) pcr
i

also grows with n; reaching however certain saturation value. In particular, for
a ¼ 1:5 this value is about 2:59 and it is reached already at n ¼ 7.

3 Localized Gain and Nonlinear Dissipation with Lattice

Now, following [25] we turn to the existence and stability of dissipative defect
modes in periodic optical lattices. The problem is described by the NLS equation

iqn ¼ � 1
2

qgg � RðgÞq þ icðgÞq þ ðr � iaÞjqj2q; ð12Þ

where RðgÞ is a periodic function with the period a; i:e: RðgÞ ¼ Rðg þ aÞ: In this
section we concentrate on the gain which is nonzero only in a finite domain. More
specifically we choose

cðgÞ � 0 for jgj[ a=2: ð13Þ

Now Eqs. (4) should be rewritten as

bu ¼ ugg

2
� j2

2u3
� ru3 þ Ru; jg ¼ 2cu2 � 2au4 ð14Þ

The propagation constant of an exponentially localized mode must belong to a
gap in the spectrum of the periodic ‘‘potential’’ RðgÞ; i.e. to an empty domain in
Fig. 6a. Indeed, let us consider the limit g ! 1: From the second of Eqs. (14) and
(13) it follows that j ¼ 2a

R1
g w4dg for g[ g0: Thus (i) there exists an energy flow

outwards the impurity, j [ 0; and (ii) the following relation (obtained using
l’Hôpital’s rule) limg!1 j=u2 ¼ �a limg!1 u3=ug holds. For localized modes with
a finite energy flow U; i.e. with u2 decaying more rapidly than 1=g; one obtains
that the above mentioned limit is zero as long as ug does not acquire zero values
[indeed, in this case u3=ug ¼ �1=ð2u�2Þg ¼ oðg�1Þ]. Otherwise, if ug changes sign
at large g; one also verifies that the established condition j [ 0 can hold only if the
above mentioned limit is zero. Hence, j2=u3 decays faster than u and can be
neglected at g ! 1 and b satisfies the Hill equation

b~u ¼ 1
2
~ugg þ RðgÞ~u: ð15Þ

Thus, to guarantee the decaying asymptotic of the mode b must belong to a gap of
the lattice spectrum. We emphasize the importance of the sufficiently fast decay of
the coefficient of linear dissipation.

For numerical study of the modes, we chose RðgÞ ¼ pr cos2ð2gÞ to model the
lattice, whose spectrum is shown in Fig. 6a and assume that cðgÞ / RðgÞ on one or
several periods of RðgÞ: For instance, if amplification is realized only in one
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period, then cðgÞ ¼ pi cos2ð2gÞ for jgj � a=2 ¼ p=4 and c � 0 for jgj[ a=2:
Further we set pr ¼ 5 and vary pi and a.

When the propagation constant belongs to the semi-infinite gap (i.e. lies above
all gray domains in Fig. 6a), the defect modes can be obtained in focusing medium
only. The emerging branches of the modes are shown in Fig. 6b, while examples
of their profiles are presented in the lower row of the figure. Now b is determined
by the gain/loss as shown in Fig. 6c. Notice that depending on whether the gain is
applied to one or to two channels the attractor is a one-hump [panels (d) and (f)] or
a two-hump [panel (e)] mode.

For b in the first finite gap we have found the stable defect modes in the
defocusing medium. The dependence bðpiÞ for such modes is shown in Fig. 6c,
and an example of the profile of such mode is given in the panel (f).

Like in the conservative case, when the propagation constant approaches a gap
edge the defect modes extend far beyond the lattice channels where amplification
is applied, exhibiting pronounced shape oscillations which approach properly
normalized Bloch states ~w bordering the respective gap edge. At fixed a in a
focusing medium increase of the gain pi results in progressive increase of the mode
peak intensity and in gradual contraction of light into the amplifying channel
(Fig. 6d). In defocusing medium the peak amplitude also grows with pi but the
modes possess strongest localization at intermediate values of pi and may extend

Fig. 6 (a) Band spectrum of RðgÞ: Gray (white) regions indicate the allowed bands (gaps).
(b) Energy flow vs gain parameter for the one-hump (curve 1) and two-hump (curve 2) modes in
focusing medium. (c) Propagation constant vs gain parameter for one-hump modes in focusing
(curve 1) and defocusing (curve 2) media. Circles in (b) and (c) correspond to modes shown in
panels (d–f). In all cases a ¼ 1 and pr ¼ 5. All shown modes are stable
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dramatically across the lattice when the gain intensity becomes too high (Fig. 6f).
The energy flow U monotonically grows with pi (Fig. 6b). For sufficiently small
and moderate nonlinear losses one-hump modes exist even at pi ! 0 in both
focusing and defocusing media. In this limit the b value approaches the band-edge,
the amplitude of the mode becomes small and its width grows dramatically. The
nonlinear losses diminish as well, and the balance between gain and losses requires
the linear gain to go to zero.

Higher-order modes possess energy flow threshold for their existence (curve 2
in Fig. 6b). Increase of pi results in monotonic growth of b in focusing medium
accompanying mode contraction (Fig. 6c, curve 1) and decrease of b in defocusing
medium resulting in mode expansion across the lattice when b reaches the lower
edge of the gap at sufficiently large pi (Fig. 6c, curve 2).

The domains of existence of dissipative lattice modes on the plane ða; piÞ are
shown in Fig. 7. In the focusing medium one-hump modes exist for all values of pi

above curve 1 in Fig. 7c, while two-hump modes are found for pi values above
curve 2 (the minimal value of pi necessary for existence of two-hump modes
grows almost linearly with a). The situation is more complicated in defocusing
medium where one-hump (Fig. 7a) and two-hump (Fig. 7b) modes exist only in a
finite domain of pi between curves 1 and 2. The presence of upper limit for the
linear gain is connected with delocalization of high-power modes whose propa-
gation constants approach lower edge of first finite gap with increase of pi.

4 Gain at a Surface

Now we turn to the impact of non-conservative surfaces on the existence and
properties of the localized modes. More specifically, following Ref. [24] we
address the properties of truly stationary dissipative solitons forming at the edge

Fig. 7 Domains of existence for stable one-hump and two-hump modes (boundaries denoted by
circles and pentagons, respectively) in defocusing (a, b) and focusing (c) media. In the
defocusing medium either one-hump (a) or two-hump (b) modes modes exist between the curves
1 and 2. In the focusing medium one-hump and two-hump modes exist above the curves 1 and 2,
respectively
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of semi-infinite lattice and existing due to the balance between localized gain in a
near-surface lattice channel and strong two-photon absorption in a cubic medium.
The model describing such modes reads

iqn ¼ � 1
2

qgg � RðgÞ � icðgÞ½ �q þ ðr � iaÞjqj2q; ð16Þ

where

RðgÞ ¼ pr sin2ð2gÞ for g[ 0
0 for g� 0

�
ð17Þ

with pr being the depth of the lattice. We suppose that the localized gain,
whose profile is described by the function cðgÞ; is realized in the vicinity of a
near-surface lattice channel. In the simplest case we consider cðgÞ exactly coinciding
with RðgÞ in the first channel of the lattice [c.f. (10)] i.e. cðgÞ ¼ pi sin2ð2gÞ
in the first channel cðgÞ � 0 otherwise.

Exponentially localized modes in periodic media [4] and conservative surface
modes [21, 37, 56] emerge when the propagation constant b falls into one of the
gaps of spectrum of periodic guiding structure. It turns out that this is also true in
the case of dissipative surface solitons. To prove this, we rewrite Eq. (16) in terms
of the real functions uðgÞ and vðgÞ � hg:

ugg � 2bu � v2u � 2ru3 þ 2Ru ¼ 0; ðvu2Þg � 2cu2 þ 2au4 ¼ 0 ð18Þ

and consider first the limit g ! �1: Since in this limit R � 0; one finds the
explicit asymptotics

u ¼ A�e
ffiffiffiffi
2b

p
g þ rA3

�e3
ffiffiffiffi
2b

p
g=ð8bÞ þ Oðe5

ffiffiffiffi
2b

p
gÞ ð19aÞ

v ¼ �aA2
�e2

ffiffiffiffi
2b

p
g=ð2

ffiffiffiffiffi
2b

p
Þ þ Oðe4

ffiffiffiffi
2b

p
gÞ ð19bÞ

where A� is a real constant. The first consequence of the obtained asymptotics is
that localized solutions exist only in domains outside the linear spectrum, i.e. at
b [ 0: The second conclusion is that in the asymptotic region v2u� expð5

ffiffiffiffiffi
2b

p
gÞ;

i.e. decays faster than u3: Thus, at g ! �1 the solution qðg; nÞ exponentially
approaches the standard stationary NLS soliton.

Similar, but more sophisticated, analysis can be performed for the limit g ! 1;

where the linear lattice is present. One still can prove that v2u decays faster than
u3; and thus the leading order for the field amplitude is given by the Floquet
theorem: u ¼ Aþ expð�lgÞPnðgÞ where PnðgÞ is p=2 or p periodic function, l is
the Floquet exponent which is determined by the detuning of the propagation
constant from the band-edge towards the n-th stop gap (the lower and upper
boundary of n-th gap will be designated by b�

n and bþ
n ; respectively, the number of

the first finite gap is set to be n ¼ 1; while the semi-infinite gap is denoted by
n ¼ 0), and Aþ is the normalization constant (see e.g. [4] for more details).
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Thus, for the existence of a localized surface mode one has to require that the
propagation constant simultaneously lies beyond the allowed band of the linear
spectrum of the uniform medium and belongs to a gap of the periodic structure.
The respective domains will be termed total gaps (to distinguish them form the
own gaps of the lattice). For example, for the case of pr ¼ 5; studied below in
details, there are only two total gaps: the semi-infinite total gap b 2 ð2:875;1Þ
and the total finite gap ð0; 1:840Þ while the lattice gaps, are given by ð2:875;1Þ;
ð�0:645; 1:840Þ; etc. i.e. b�

0 ¼ 2:875; bþ
1 ¼ 1:840; b�

1 ¼ �0:645 etc. (notice that
the band-gap structure of our lattice is identical to the one shown in Fig. 6a where
b must be substituted by b þ pr.)

The established constrains on b; impose limitations on the possibility of the
excitation of the surface modes. The mismatch between the boundaries of the gaps in
the left and right hand structures implies the existence of a threshold of the energy
flow Ucut: Indeed let us consider a mode with b belonging to the total semi-infinite
gap and approaching b�

0 ; i.e. 0\b � b�
0  1: Considering g[ 0; we observe that

when b ! b�
0 the maximum of the amplitude u tends to zero: umax ! 0 (see e.g.

[13]). On the other hand, considering (4) at g\0 as an ODE defining the shape of the
soliton, the smallness of u means that the terms v2u in Eqs. (18) can be neglected and
the asymptotic behavior is described by the conservative NLS equation, i.e. by (19a).
Since, b does not go to zero (due to finite value of b�

0 ), also the nonlinear term u3 can
be neglected and the field behavior is described by the linear equation ugg ¼ 2bu:
Thus the function u must be exponentially decaying, what for the linear ODE at hand
is possible only if ugð0Þ ¼

ffiffiffiffiffi
2b

p
uð0Þ: This is an extra condition, in addition to the

continuity of q and qg; which must be satisfied at the boundary, i.e. at g ¼ 0: In a
general situation this is impossible with only two available constants Aþ and A�;
which are determined by the total energy U and by the properties of the linear lattice
at g[ 0: In other words, by assuming that the amplitude of the mode can go to zero
we have arrived at a contradiction. Thus, there exists a minimal threshold value of
umax above which surface modes can exist.

Typical profiles of dissipative surface solitons in a focusing medium are shown
in Fig. 8d. For low values of pi the surface solitons expand considerably into the
lattice region and acquire shape reminiscent to shape of Bloch state bordering the
respective gap edge. We notice that solitons may also form in the near-surface
lattice channel even when the gain is displaced by a distance gs with respect to the
first maximum of the lattice. The energy flow of surface solitons first decreases
with gs; and then increases when shift approaches maximal value beyond which
surface soliton can not form in the first lattice channel (Fig. 8b). The maximal
possible shift of gain landscape quickly increases with pi and saturates already at
pi ¼ 3 (see Fig. 8c). Remarkably, surface solitons may form not only when gain
profile is shifted into the depth of the lattice (positive gs), but also when gain is
shifted into uniform medium (negative gs). When shift gs becomes sufficiently
large solitons may form in second, third, etc, channels of the lattice.

In the case of defocusing medium localized gain can support dissipative gap
solitons featuring characteristic oscillating tails (inside the lattice, see Fig. 8e, f).
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The propagation constant of such solitons falls into the finite total gap, b 2 ð0; bþ
1 Þ

and decreases with pi: Like their counterparts in focusing medium, now the sol-
itons emerging from the finite total gap exist above the minimal value of gain
coefficient plow

i : However, due to finiteness of the gap, there exists also the upper
limit for the linear gain pupp

i at which b reaches zero value, i.e. dissipative gap
solitons can be found for plow

i � p� pupp
i : Respectively, the energy flow takes on

the values from the finite interval, where it is the increasing function of pi: When
pi ! plow

i gap surface solitons expand dramatically into lattice region (Fig. 8e),
but remain well localized inside uniform medium in accordance with the
asymptotics (19). The best overall localization is achieved for intermediate pi

values. When b approaches zero (respectively pi approaches pupp
i ) the gap surface

solitons again become poorly localized due to appearance of long tails in the
uniform medium (see Fig. 8f). The domains of existence of dissipative surface
solitons in both focusing and defocusing media on the ða; piÞ-plane are shown in
Fig. 9. Minimal gain plow

i required for the existence of solitons in uniform medium,
as well as the width pupp

i � plow
i of the band of gain coefficients where solitons exist

in defocusing medium, increase with nonlinear losses a.

Fig. 8 (a) Energy flow of surface soliton vs pi in focusing medium. Circles correspond to
solitons in (d). (b) Energy flow of surface soliton in focusing medium vs gs at a ¼ 0:5:
(c) Maximal positive (gþs ) and negative (g�s ) shifts of amplifying domain with respect to RðgÞ at
which surface solitons still exist vs pi at a ¼ 0:5: (e) and (f) show profiles of gap surface solitons
in defocusing medium at a ¼ 1: All shown modes are stable
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Finally, we analyzed stability of obtained soliton solutions and verified that
they are exceptionally robust and can withstand even strong shape deformations
almost in the entire existence domain (we considered the lowest branches only).

5 Symmetry Breaking in Homogeneous Two-Dimensional
Media

In the above sections we have considered several types of dissipative solitons
supported by the localized gain in 1D systems. It turns out that a localized source
in the presence of nonlinear losses allows one to obtain stable dissipative solitons
also in a 2D dissipative NLS equation. Following [27], we consider the model

iqn ¼ � 1
2
r2q þ icðrÞq � jqj2q � iajqj2q; ð20Þ

where r ¼ ðg; fÞ is a vector in the transverse plane, r � o=og; o=ofð Þ; the
localized gain cðrÞ is a real decaying function of r ¼ jrj; and other notation are
identical to ones, used above for 1D settings. It will be convenient to represent
c � pif ðrÞ; where pi is the gain coefficient and f ðrÞ is a real decaying function with
maxff ðrÞg ¼ f ð0Þ ¼ 1.

Solutions of Eq. (20) predicting dissipative solitons are searched in the form

q ¼ wðrÞeibn; wðrÞ ¼ wr þ iwi ¼ uðrÞeihðrÞ; ð21Þ

where, as well as in the 1D case, b is the propagation constant. Now Eqs. (4) are
replaced by

�2bu þr2u � uv2 þ 2u3 ¼ 0; r � ðu2vÞ þ 2cðrÞu2 � 2au4 ¼ 0; ð22Þ

where v ¼ rh: We are interested in the localized solutions with zero asymptotics:
u; jvj ! 0 at r ! 1.

Fig. 9 Domains of existence of surface solitons in focusing (a) and defocusing (b) media. In the
focusing medium surface solitons exist for all pi exceeding lower value plow

i , while in defocusing
medium surface solitons exist between lower plow

i and upper pupp
i values of gain coefficient
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First of all we observe that by properly choosing the gain one can construct an
exact solution of Eqs. (22). To this end we notice that for v ¼ 0 the first of
Eqs. (22) has the well known radially symmetric Townes soliton solution, which
we denote as w TðrÞ: Then, in order to support the existence of the dissipative
Townes soliton, the gain must be chosen in the form c TðrÞ ¼ aw2

TðrÞ: This also
leads us to the conclusion that for any cðrÞ 6¼ c TðrÞ dissipative solitons with a
trivial phase do not exist.

When v is not necessarily zero, stationary localized solutions exist only for
b [ 0; what follows from the limit r ! 1; where one can neglect both nonlinear
terms (i.e. v2 and u3) in Eqs. (22). From (20) one readily obtains the equation for
the balance between conservative terms

bU þ 1
2

Z
jrwj2dr ¼

Z
jwj4dr; U ¼

Z
u2dr ð23Þ

On the other hand, the balance between gain and dissipation is expressed by
Z

cðrÞjwj2dr ¼ a
Z

jwj4dr: ð24Þ

This condition imposes restrictions on the range of variation of b: Indeed, from
Eqs. (24) and (23), combined with the estimate

R
cu2dr� piU; we obtain

R
jrwj2dr� pi=a � bð ÞU: Hence b 2 ð0; pi=aÞ.
We consider the simplest Gaussian gain profile cðrÞ ¼ pie�r2=d2

: Typical shapes
of the simplest radially symmetric dissipative solitons obtained with the relaxation
method are shown in Fig. 10a. For a given a; the soliton parameters (including b) are
dictated by the gain coefficient. When pi is sufficiently small the solitons are broad.
The field can expand far beyond the spatial region where the gain is realized due to
the energy flow outward the amplifying domain. Growth of pi is accompanied by
progressively increasing localization. For aJ2 with increase of pi the soliton shape
takes on the form of a narrow peak superimposed on broader beam (Fig. 10a).

The energy flow U of a dissipative soliton is a nonmonotonic function of the
gain coefficient pi (Fig. 10b). For small and moderate nonlinear losses the initial
decrease of U is followed by its growth, and then again replaced by decrease as pi

increases. In the cutoff point pco
i the tangential line to UðpÞ is vertical, but the

value Uco ¼ Uðpco
i Þ remains finite. We notice that it is possible to find the second

branch of solutions vanishing in the same point ðpco
i ;UcoÞ for which energy flow

increases with pi in the vicinity of cutoff, i.e. in ðpco
i ;UcoÞ two soliton families

smoothly join, rather than one family terminates. However, this second branch is
unstable as the linear stability analysis predicts. The character of UðpiÞ depen-
dence changes dramatically when a is sufficiently large (c.f. the curves with a ¼
1:4 with ones with a ¼ 1:6 and a ¼ 1:9 in Fig. 10b). In this case U grows with pi

everywhere except for a region close to the cutoff. Interestingly, this change in the
behavior of UðpiÞ accompanies the tendency for development of a narrow peak in
the center of soliton. The propagation constant b increases monotonically with pi

186 Y. V. Kartashov et al.



for small and moderate values of a; but when a approaches 2 the dependence bðpiÞ
becomes nonmonotonic. At a fixed width of the amplifying domain, pco

i grows
almost linearly with increase of nonlinear losses (Fig. 10d). Meantime, pco

i

diminishes with increase of d; so that at d ! 1 we naturally recover the case of
medium with uniform gain where solitons can be found for any pi.

The stabilization of 2D solitons means that for the respective initial conditions the
localized gain does not induce collapse, which is arrested by the nonlinear dissipa-
tion. On the other hand the spatial localization of gain prevents growth of the
background noise in domains outside amplifying channel. This is in contrast to the
case of Kerr medium with uniform gain and two-photon absorption where solitons
are unstable even in 1D geometries [41]. These facts have been numerically verified
by the linear stability analysis with the ansatz q ¼ ½w þ v1ednþinu þ v�2ed�n�inu�;
where n is an integer azimuthal index. Solution of the respective linearized equations
reveals a surprising result: the most destructive perturbations correspond to n ¼ 1;
rather than to n ¼ 0:The typical dependencies of real part of perturbation growth rate
dr on pi for n ¼ 1 are shown in Fig. 10c. For small and moderate nonlinear losses dr

vanishes for any n when pco
i \pi\pcr

i ; where pcr
i is some critical value. Thus the

dissipative solitons are linearly stable in the region adjacent to the cutoff pco
i :

The stability domain slowly expands with increase of a (Fig. 10d) and broadens

Fig. 10 (a) Profile of stable radially symmetric dissipative solitons at pi ¼ 4; a ¼ 1:9: Real,
imaginary parts of the field, and field modulus are shown with black, red, and green lines,
respectively. Energy flow (b) and real part of perturbation growth rate (c) of radially symmetric
solitons vs pi: (d) The domain of stability on the plane (a; pi). (e) Bifurcation of asymmetric
soliton family from symmetric one at a ¼ 1:9: (f) dg;f vs pi for asymmetric soliton family. In all
cases d ¼ 1:5
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considerably with decrease of the width d of amplifying domain. At small and
moderate a inside the instability domain dr increases monotonically with pi; but for
sufficiently high nonlinear losses the character of this dependence changes (Fig. 10d)
and another stability domain appears also at high pi values. This stability domain is
limited since with further increase of pi the perturbations with n ¼ 2 become
destructive. Results of linear stability analysis are supported by direct propagation of
perturbed radially-symmetric dissipative solitons. Stable propagation of a relatively
broad soliton taken from stability domain adjacent to pco

i is shown in Fig. 11a.
Surprisingly, the development of instability for perturbed unstable radially

symmetric solitons results in their transformation into strongly asymmetric non-
rotating dissipative soliton whose center is slightly displaced from the origin
towards the periphery of amplifying domain (Fig. 11b). Such states can be excited
with Gaussian beams too, i.e. they are attractors with large basin. The energy flow
and propagation constant of the asymmetric soliton remain the same as long as
pi; d; and a are fixed and only the beam orientation changes for different inputs
and noise realizations. Thus the medium with localized gain and nonlinear losses
can support strongly asymmetric dissipative solitons despite the fact that all
parameters in the system are either uniform (diffraction, nonlinearity, and losses)
or radially symmetric (gain). The asymmetric solitons are characterized by a
specific phase distribution (Fig. 11c) that is asymmetric along longer axis of the
beam and symmetric along its shorter axis.

Fig. 11 Stable propagation of radially-symmetric solitons at (a) pi ¼ 0:8; a ¼ 1:2, and (b) trans-
formation of unstable radially-symmetric soliton into asymmetric stable state at pi ¼ 2:0; a ¼ 1:2:
(c) Field modulus (top) and phase (bottom) distributions in stable asymmetric dissipative soliton at
pi ¼ 2:9 and a ¼ 1:9: In all cases d ¼ 1:5
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Using a method of direct propagation we obtained the entire family of asymmetric
solitons. The dependencies of energy flow and integral widths

dg ¼ 2
1
U

Z
g2jqj2dr

� �1=2

; df ¼ 2
1
U

Z
f2jqj2dr

� �1=2

ð25Þ

on pi are shown in Fig. 10e, f, respectively. The family of asymmetric solitons
bifurcates from the family of radially symmetric solitons with increase of pi: The
bifurcation occurs exactly in the point pcr

i where the radially symmetric solitons
become unstable. With increase of pi the asymmetry of soliton shape increases.
The obtained asymmetric solitons propagate stably in the presence of small-scale
input noise.

6 Radially Symmetric, Rotating, and Azimuthally Modulated
Vortex Solitons Supported by Localized Gain

Vortex solitons are self-sustained excitations carrying a nonzero angular
momentum and topological phase singularities [14]. In uniform focusing local
media, vortex solitons exhibit ring-like profiles, a property that makes them prone
to azimuthal modulation instabilities. Such instability can be suppressed in dis-
sipative media by various mechanisms. Stable vortex solitons have been found in
laser amplifiers with saturable gain and absorption and in systems described by the
complex cubic-quintic Ginzburg-Landau equation.

In this section, we present a rich variety of stable vortex solitons and vortex
complexes existing in media with suitably shaped gain landscapes, cubic nonlin-
earity, and two-photon absorption. Following [26], we consider a model

iqn ¼ � 1
2
r2q þ RðrÞq þ icðrÞq þ ðr � iaÞjqj2q; ð26Þ

which is a generalization of the model (20). In the latter equation RðrÞ stands for
possible refractive index modulation, cðrÞ is not required to be necessarily radially
symmetric, and other notations are as defined above.

6.1 Vortex Solitons in the Square Photonic Lattices
with Amplifying Channels

Now we show that stable vortex solitons in focusing and even defocusing Kerr
media with imprinted refractive index periodicity (an optical lattice) can be sup-
ported by properly engineered localized gain landscapes. More specifically we
consider the infinite harmonic lattice of the form:

RðrÞ ¼ �pr cos2ðpg=aÞ cos2ðpf=aÞ ð27Þ
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characterized by its depth pr; and the spatial period a: The gain term appears as
superposition of a few amplifying channels: cðrÞ ¼ pi

P
aj

R0ðr þ ajÞ; where

R0ðrÞ � RðrÞ inside the single period 0\g; f\a and vanishes outside it; the lat-
tice vectors in the ðg; fÞ-plane are introduced as a1 ¼ ða; 0Þ; a2 ¼ ð0; aÞ; and pi is
the gain parameter.

Using the ansatz (21) in Eq. (26), in the presence of the optical lattice we
rewrite the equations of the balance between the gain and dissipation, as well as
between diffraction and nonlinearity in the form [c.f. (23) and (24)]

2Ub ¼
Z

�rjwj4 � 2r � vD� jwj2r � rRðrÞ
h i

dr ð28Þ

2Ub ¼
Z

�2rjwj4 � 2Rjwj2 � jrwj2
� 	

dr ð29Þ

where DðrÞ � ajwj4 � cðrÞjwj2: From the diffraction-nonlinearity balance (29)
one can expect that the simplest vortex solitons in a focusing medium will form in
the semi-infinite gap of the lattice spectrum, while in a defocusing medium, such
solutions will emerge only in finite gaps, provided that the lattice is deep enough
and at least one finite gap exists.

In computer simulations we used pr ¼ 16 and a ¼ p=2; which guarantee the
existence of the first finite gap. Then the branch of vortex solitons in a focusing
medium may emerge from the semi-infinite gap b [ 6:81; while the propagation
constant should belong to the finite gap ð0:811; 6:029Þ in a defocusing medium
(Fig. 12c).

Examples of the vortex soliton profiles are shown in Fig. 13. The numerical
simulations were performed by the direct propagation method with the input beam
carrying the unit topological charge: qjn¼0 ¼ Ar expð�r2=r2

0Þ expðiuÞ; where
parameters A and r0 describe the input beam amplitude and width. The beams were

Fig. 12 Energy flow of off-site dissipative vortex solitons versus pi in focusing (a) and
defocusing (b) media. Points marked by circles correspond to solitons shown in Figs. 13 (a–d).
(c) Propagation constant versus pi for solitons in focusing (curve 1) and defocusing (curve 2)
media at a ¼ 1: Dashed lines indicate gap edges. All solitons, which belong to the curves shown
in panels (a–c), are stable

190 Y. V. Kartashov et al.



propagated up to the huge distance (n ¼ 103), ensuring that the obtained vortex
solitons are stable. We explored a large domain of the input beam parameters
resulting, however, in the same output profile. Thus, the output beam is an attractor
with a large basin. The stability was additionally tested by propagating the
obtained solitons in the presence of small input random perturbations.

Upon selection of the gain profile we supposed that there exist four gain
channels described by a square-like gain landscape:

c1ðg; fÞ ¼ R0ðrÞ þ R0ðr þ a1Þ þ R0ðr þ a2Þ þ R0ðr þ a1 þ a2Þ ð30Þ

since it favors formation of the off-site vortex solitons (Fig. 13a–d), or by

c2ðg; fÞ ¼ R0ðrÞ þ R0ðr þ a1 þ a2Þ þ R0ðr þ a1 � a2Þ þ R0ðr þ 2a1Þ ð31Þ

Fig. 13 Profiles of stable off-site vortex solitons in focusing medium at a ¼ 1 (a) and (b), and in
defocusing medium at a ¼ 0:5 (c) and (d). (e), (f): Profiles of stable on-site vortex solitons in
focusing medium at a ¼ 0:1: Top panels show field modulus, while bottom panels show phase
distribution. The values of gain coefficient are indicated on the plots
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since such cross-like configuration is favorable for the formation of the on-site
vortices (Fig. 13e, f). In all the cases, the field maxima coincide with the local
maxima of the gain and vortex solitons feature four pronounced bright spots.

For both focusing and defocusing media, there exist cutoff values of the energy
flow, below which stable dissipative vortex solitons do not exist (Fig. 12a, b). In a
focusing medium, increasing gain results in monotonic growth of the peak amplitude
of a vortex soliton and its contraction to the four amplifying lattice sites (Fig. 13a, b).
With growth of pi the propagation constant shifts deeper into the semi-infinite gap. In
contrast, for gap vortex solitons in a defocusing medium, increasing pi results in
diminishing of the propagation constant (Fig. 12c). Gap vortex solitons display the
strongest localization for the intermediate pi values b located in the middle of the gap;
panels (c) and (d) in Fig. 13. In very deep lattices, the shape of the gap vortex
approaches four well-localized bright spots with proper phase distribution imprinted
on the top of them, while in shallow lattices, the vortex always extends considerably
across the lattice. Expectably, the domain of existence of stable vortex solitons
expands remarkably with growth of pr: Notice, that if a topological charge of the
input beam is bigger than one, the same gain landscape results in excitation of stable
multipole solitons. If the gain distribution does not fit the lattice symmetry (for
instance, only three channels are amplifying) any input also results in excitation of a
multipole soliton occupying three lattice sites (see [26] for details).

6.2 Radially-Symmetric Vortex Solitons

In the setting discussed previously the presence of the optical lattice (or refractive
index modulation) is essential for the formation of stable vortex states. Now,
following [34], we consider the case in which stable vortices emerge in the absence of
refractive index modulation, i.e. when Rðg; fÞ ¼ 0: First we address vortex solitons

supported by a single amplifying ring cðrÞ ¼ pi exp½�ðr � rcÞ2=d2�; where d and rc

are the ring width and radius, respectively. Nonlinearity is supposed to be focusing
(r ¼ �1). In computer simulations we set rc ¼ 5:25; d ¼ 1:75; and search for the
spinning vortex solitons of the form q ¼ wðrÞ exp½iðbn þ muÞ�: A first important
result, which was revealed in computer simulations, is that Eq. (26) does admit
solutions in the form of stable radially symmetric vortex solitons, which means that
the competition between localized ring-like gain and nonlinear losses results in
simultaneous suppression of collapse and azimuthal modulation instabilities.
We found that vortex solitons with charges at least up to m ¼ 6 can be excited in
ring-like gain landscapes, although vortices with high charges require higher gain
levels for their formation. Typical shapes of stable symmetric vortex solitons with
different topological charges (m ¼ 1; 2; 3) are shown in Fig. 14.

The propagation constant, as well as all other soliton parameters, are determined
by the gain and nonlinear loss coefficients pi and a: Interestingly, for fixed values of
pi and a; stable vortex solitons with different charges can coexist (Fig. 14), but the
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ones with higher topological charges are somewhat broader. The dependencies of
the steady-state energy flow U and the n-component of the angular momentum

L ¼
R R1

�1 Im gq� oq
of þ fq� oq

og

h i
dgdf on the gain parameter are shown in Fig. 15a.

Both U and L are monotonically growing functions of pi and in the considered case
of radial symmetry one has the simple relation: L ¼ mU: At fixed pi the energy flow
only slightly increases with growth of topological charge. One finds that below a
threshold pi value, symmetric vortex solitons become unstable (the dependencies
UðpiÞ and LðpiÞ terminate in the corresponding points in Fig. 15a). Notice that the
threshold value of gain coefficient increases with growth of a; at least for a[ 1:5
(Fig. 15b) and diminishes with growth of the radius and the width of the amplifying
ring. Expectably, the vortices with higher topological charges require higher gain
levels for their stabilization, and the threshold gain of vortex with m ¼ 3 increases
with a much faster than the threshold gain for vortex with m ¼ 1.

6.3 Rotating Vortex Structures

Besides radially symmetric vortex solitons, ring-like gain landscapes can support a
rich variety of nonconventional rotating vortex states [8]. In all such states, the
phase singularities are embedded in a single vortex core and perform persistent
rotation around the center of the gain ring. Illustrative examples of the simplest

Fig. 14 Field modulus (top) and phase distribution (bottom) for stable vortex solitons with
(a) m ¼ 1, (b) m ¼ 2, and (c) m ¼ 3 at a ¼ 2; pi ¼ 3: White circles indicate maximum of gain ring
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rotating structures with one, two, or three phase singularities are presented in
Fig. 16. Notice that all such states emerge from the ring input beams, carrying
singularities with winding numbers m ¼ 1; 2; 3; but under the condition that their
centers are strongly displaced from the center of the amplifying ring. All rotating
vortex solutions exhibit azimuthal modulation of the intensity distributions, in
spite of the radial symmetry of the gain landscape. The depth of this modulation
depends on the magnitude of the gain parameter pi: We observed that, as a rule, the
azimuthal modulation is most pronounced in the center of the existence domain (in
terms of pi) and decreases when approaching the upper boundary of this domain.
The diminishing of the azimuthal modulation is usually accompanied by a
decrease of separation between the phase singularities nested in the vortex core.
Expectably, the phase singularities in the simplest rotating vortex complex are
located symmetrically with respect to the propagation axis, but we found that
vortex states with an asymmetric arrangement of the singularities might be gen-
erated, too.

The existence domains of the rotating vortex solitons with two and three phase
singularities are presented in Fig. 17. These domains were calculated using the
small-step variations of the gain parameter until either transformation into radially
symmetric vortex states (this scenario is typical for high pi values) or the

Fig. 15 (a) Energy flow and angular momentum of m ¼ 2 vortex soliton supported by ring-like
gain landscape versus gain parameter at a ¼ 2: (b) Minimal gain required for existence of stable
ring-like vortex solitons with m ¼ 1 and m ¼ 3 vs a: Energy flow (c) and angular momentum
(d) of azimuthally modulated vortex solitons with m ¼ 2 versus gain parameter at a ¼ 2:
e Minimal gain required for existence of stable azimuthally modulated vortex solitons with m ¼ 2
vs a: All solitons, which belong to the curves shown in panels (a), (c) and (d), are stable
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development of instabilities is achieved. Therefore, the domains shown in Fig. 17
correspond to the parameter range, where the rotating vortex complexes are stable.
For a fixed strength of the two-photon absorption, the stable rotating vortex sol-
itons exist inside a limited range of values of the gain coefficient plow

i � pi � pupp
i

and the growth of a shifts this domain to higher gain values. According to our
observations, higher gain values allow generation of more complex rotating
vortex structures with larger number of singularities, although, for instance, the
existence domains for solitons with two and three singularities may overlap
slightly. Notice, that the domains of existence of rotating vortices may overlap
with that of radially symmetric states, i.e. several stable attractors coexist for the
same set of parameters clearly indicating on the multistability phenomena.

Fig. 16 Field modulus (top) and phase distributions (bottom) for stable rotating vortex solitons
having (a) one phase singularity at pi ¼ 1:7, (b) two singularities at pi ¼ 2:0, and (c) three
singularities at pi ¼ 2:8: In all cases a ¼ 2:0

Fig. 17 Domains of
existence of stable rotating
vortex solitons with (a) two
and (b) three singularities on
the plane ða; piÞ
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6.4 Necklace Vortex States in the Azimuthally Modulated Gain
Landscapes

The available new phenomena become even richer if the gain landscape is
azimuthally modulated [34]. In order to illustrate this we set

c ¼ pi

Xn

k¼1

exp½�ðg � rc cos ukÞ2=d2 � ðf � rc sin ukÞ2=d2�; ð32Þ

where uk ¼ 2pðk � 1Þ=n: Such gain landscape consists of n amplifying Gaussian
channels of the width d ¼ 1:0 arranged into a necklace structure of the radius
rc ¼ 0:7n: We found that such gain landscapes support stable vortex solitons,
which are strongly azimuthally modulated (typical shapes are depicted in Fig. 18).

Importantly, the azimuthal modulation of the gain landscape imposes restric-
tions on the maximal charge of the stable vortex structures. This means that gain
landscapes with certain discrete rotational symmetry affect the topology of
the dissipative vortices, somehow mimicking how optical lattices determine the
topology of vortex solitons (Fig. 13). The comprehensive simulations that we
performed, using a variety of inputs, lead to the conclusion that an azimuthally
modulated gain landscape with n amplifying channels can support vortex solitons
with topological charges m� int½ðn � 1Þ=2�; where the function intðxÞ stands for
the integer part of the argument. Thus, landscapes with n ¼ 3; 4 support vortex
solitons with charge m ¼ 1; landscapes with n ¼ 5; 6 support vortex solitons with
m ¼ 1; 2; while for n ¼ 7; 8 one gets m ¼ 1; 2; 3; etc. The minimal number of
amplifying channels that can support azimuthally modulated vortex solitons is
n ¼ 3: At low amplification level, the azimuthally modulated vortex solitons
are extended and the light field penetrates considerably into the absorbing domain;
the bright spots in such low-amplitude vortices are symmetric (see Fig. 18a, c, e.
However, with growth of pi the symmetry breaking occurs, with individual bright
spots in the vortex profile becoming asymmetric. This happens because at high
amplification level, a branch of asymmetric solitons bifurcates from the branch of
symmetric states even in a single gain channel, making individual fragments
unstable to perturbations with the unit azimuthal index. In this case the maxima of
bright spots shift from the centers of the amplifying channels, while the spots
experience considerable reorientation with respect to the axes connecting the
centers of the amplifying channels and the center of the entire structure at g; f ¼ 0
(see Fig. 18b, d, f). Therefore, azimuthally modulated gain landscapes can support
stable vortex solitons with multi-hump intensity profiles, which are composed of
highly asymmetric fragments. Notice, that the asymmetry becomes more pro-
nounced with increasing gain.

Interestingly, not all vortex structures whose charges satisfy the above men-
tioned charge rule are stable. We found that vortices with highest charges can be
stable, while vortices with lowest charges are usually unstable. Thus, for modu-
lation indices n ¼ 3; 4 the only existing vortex with m ¼ 1 can be stable. For

196 Y. V. Kartashov et al.



n ¼ 5; 6 the vortex with m ¼ 2 can be stable, but vortex with m ¼ 1 was unstable
for all parameters that we considered. A typical dependence of the angular
momentum L on gain parameter pi is shown in Fig. 15d. Interestingly, for n ¼ 6
the angular momentum, which monotonically decreases with decrease of pi; may

Fig. 18 Field modulus (top) and phase distribution (bottom) for stable vortex solitons with (a),
(b) n ¼ 3;m ¼ 1, (c), (d) n ¼ 5;m ¼ 2, and (e), (f) n ¼ 6;m ¼ 2: Panels (a), (c), (e) correspond
to pi ¼ 3:2, while panels (b), (d), (f) correspond to pi ¼ 5:5: In all cases a ¼ 2
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change its sign. This occurs due to the symmetry breaking, when the local energy
flows, circulating inside of each asymmetric bright spot, start contributing to the
global angular momentum. Stable azimuthally modulated vortex structures exist
above the threshold gain level Fig. 15e, and the minimal gain, required for their
existence, rapidly increases with growth of the nonlinear losses.

7 Conclusions and Perspectives

To conclude, in this Chapter we have presented a variety of stable spatially
localized nonlinear modes (we also call then dissipative solitons), which can exist
in nonlinear media and can be supported by a localized gain. Among such objects
we mention one- and two-dimensional solitons, vortex solitons, surface modes,
dissipative breathers, and localized lattice solitons and vortices.

The localized gain introduces two important physical factors in the problem.
First, it requires satisfying the balance between the gain and dissipation (what is
typical to the known situation with the dissipative solitons in continuum medium).
Second, a localized gain introduces a new spatial scale in the problem, which in
particular appears to be responsible for possibility of observing the phenomenon
of the symmetry breaking in such systems, either in one or in two-dimensional
settings.

The results reported in the present chapter illustrate that either increasing the
number of localized impurities or increasing the dimensionality of the problem
results in qualitatively new phenomena. This suggests one of the lines for further
studies. In particular, we mention such problems as solutions (attractors) in sys-
tems with multiple localized hot spots and in a limit with gain lattices; focusing of
light in Kerr media with localized gain; the existence of localized modes in three-
dimensional media with localized gain; possibility of obtaining stable rotating
asymmetric fundamental solitons in two-dimensional setting. Above we have
considered only solutions decaying at the infinity. The presented theory can also be
further extended by including into consideration stationary solutions obeying
different boundary conditions, like modes (or currents) on a nonzero background.
Finally, one can consider more sophisticated systems involving both localized gain
and localized dissipation.

From the point of view of practical applications the reported models besides
the nonlinear optics of active media, can be highly relevant to the theory of
Bose–Einstein condensate of quasi-particles, like exciton-polaritons, magnons or
photons. In optics, dissipative solitons supported by the localized gain can be used
for several practical purposes, including guiding beams, splinting an input beam in
a series of beams with desired properties, etc.
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Analytical Solitary Wave Solutions
of a Nonlinear Kronig-Penney Model
for Photonic Structures Consisting
of Linear and Nonlinear Layers

Yannis Kominis and Kyriakos Hizanidis

Abstract In this chapter we review some recent results for the construction of
analytical solutions for a class of systems consisting of interlaced linear and
nonlinear parts. Periodic waveguide arrays as well as structures consisting of semi-
infinite waveguide arrays and their interfaces have been studied, while the method
presented here can be applied to even larger classes of systems including com-
binations of parts of waveguide arrays, homogeneous parts and defects as well as
different types of nonlinearities. The method utilizes the phase space description of
the system for the construction of analytical solutions. Such solutions can serve as
starting points for the exploration of even larger classes of solutions and systems
with the utilization of perturbation methods. Moreover, the method provides
physical intuition for the formation of solitary waves in such structures.

1 Introduction

Periodic photonic structures fabricated in nonlinear dielectric media became
recently a subject of major importance for photonic applications. Such structures
are very promising for applications in integrated photonic devices, such as mul-
tiport beam coupling, steering and switching. Therefore, the study of self-trapped,
spatially localized modes in periodic optical structures, consisting of arrays of
nonlinear optical waveguides, has been a field of continuously increasing research
interest from both the experimental and the theoretical point of view [1–6]. These
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modes have the form of gap solitons inside the photonic gaps of the periodic
structure and result from the dynamical balancing between the nonlinearity and the
diffraction. In contrast to the case of homogeneous structures, where the corre-
sponding models can be integrable and soliton propagation occurs, periodically
inhomogeneous systems are typically nonintegrable. This fact excludes the pos-
sibility of pure soliton existence (in the strict mathematical sense, this prerequisites
complete integrability), but also gives rise to the potentiality of existence of a
plethora of solitary waves which do not have a counterpart in the homogeneous
cases. Although, these structures are not solitons, they can exhibit a quite robust
behavior under propagation, a property that considerably facilitates their experi-
mental observation.

The transverse inhomogeneity of a photonic structure results in breaking of the
translational invariance. Thus, the existence of traveling waves is generally not
ensured, while wave localization can take place in specific positions with respect
to the underlying structure. Depending on the complexity of the structure, the
position and stability of a solitary wave may additionally depend on wave’s power
and width [7–10]. The relative soliton immobility in inhomogeneous structures has
led to an extensive study of the existence and the stability of stationary wave
solutions in a variety of configurations. On the other hand, it is well known that
solitary waves can travel, without significant radiation emission, across an inho-
mogeneous structure under certain conditions for which the effective potential seen
by the wave is weak. Therefore solitary wave dynamics emerges as a field of open
research problems. [5, 10–13].

From the theoretical point of view, in order to study these structures, a variety of
models and different approaches has been considered, including: the tight-binding
approximation, based on the assumption of weakly coupled waveguides and leading
to a Discrete Nonlinear Schrödinger Equation (D-NLSE) [14], and the coupled-
mode theory, based on the assumption of strong coupling and resulting to a set of
coupled equations governing the forward and backward wave propagation [15]. On
the basis of these approaches the existence of various solitary wave modes has been
shown, and their propagation has been studied [1–6]. However, both methods are
strongly restricted to specific limits of the configuration parameter range [16]. In
order to overcome these restrictions and study the solitary wave formation in a
unified model, the original NLSE, with periodically varying coefficients, modeling
the waveguide array structure, has to be considered:

i
ow
oz

þ o2w
ox2

þ �ðxÞw þ gðx; jwj2Þw ¼ 0 ð1Þ

where z; x and w are the normalized propagation distance, transverse dimension
and electric field, respectively. When x is normalized to X0; z is normalized to
Z0 ¼ 4pn0X2

0=k and u is normalized to U0 ¼ k=ð2pX0
ffiffiffiffiffiffiffiffiffi
n0n2

p Þ; where k is the
wavelength and n0; n2 are the linear and nonlinear refractive index coefficients.
A normalized propagation distance zmax ¼ 100; corresponds to an actual propa-
gation length of 10:7 � 24:3 mm; for the case of a nonlinear material of AlGaAs
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type, and 22:3 � 50 mm for the case of LiNbO3; when the transverse coordinate is
normalized to X0 ¼ 2 � 3 lm: The periodic transverse variation of the linear
refractive index is given by �ðxÞ; while the spatial and intensity dependence of the

nonlinear refractive index is provided through gðx; jwj2Þ: This improved model has
been studied in cases where the periodic transverse inhomogeneity is related either
to the linear [3, 17–20] or the nonlinear refractive index [21] while the transverse
profile of the inhomogeneity has been assumed to have the form of the so-called
Dirac comb. Within this approach the linear band structure of the model has been
shown and localized modes with various symmetries have been provided. How-
ever, it is obvious that a Dirac comb description of the spatial dependence of the
nonlinearity, can render only qualitative results and is far from being generic and
adequate for describing realistic configurations.

In this work, we review some recent analytical results for the case of a realistic
model described by Eq. (1) with piecewise-constant coefficients [22–30], namely a
nonlinear Kronig-Penney type of model [31]. This model is more general than the
aforementioned ones, which are contained as limiting cases of the model in hand.
More specifically, we consider a large variety of photonic structures consisting of
interlaced linear and nonlinear layers which can be either self-focusing or self-
defocusing, while the geometry of the structures can be either infinite periodic, as
in the case of a periodic waveguide array, or semi-infinite periodic, as in the cases
of interfaces between waveguide arrays and homogeneous linear or nonlinear
media as well as between two dissimilar waveguide arrays. More complex
geometries consisting of linear/nonlinear, self-focusing/defocusing and homoge-
neous/periodic parts and defects can also be considered in the same context.
Although we focus on cases of Kerr-type of nonlinearity, other types of nonlin-
earities can also be treated under the same approach. On the other hand, the
method presented in this work applies directly to the closely related field of Bose–
Einstein condensates loaded in optical lattices [32–34] for cases of both attractive
and repulsive interatomic interactions, since the underlying models are identical.

A phase space method is employed for the construction of analytical solitary
wave solutions supported by the aforementioned photonic structures. The method
provides physical insight on the formation of spatially localized waves. The var-
ious classes of solutions are obtained under quite generic conditions and include
symmetric, anti-symmetric and asymmetric forms corresponding to bright, dark
and anti-dark solitary waves as well as solitary waves with semi-infinite periodic
pedestal for the cases of semi-infinite periodic structures. It is worth mentioning
that knowledge of analytical solutions is extremely rare for inhomogeneous non-
linear wave models and can serve as the basis for further investigations of the
configurations considered in this work as well similar ones, either in the context of
analytical perturbation methods or numerical continuation methods.
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2 Phase Space Method for the Construction
of Analytical Solutions

The stationary wave solutions of Eq. (1) have the form

wðx; zÞ ¼ uðx; bÞeibz; ð2Þ

and satisfy the nonlinear ordinary differential equation

d2u

dx2
þ �ðxÞ � b½ �u þ gðx; u2Þu ¼ 0 ð3Þ

where b is the propagation constant and uðx;bÞ is the real transverse wave profile.
Equation (3) describes a nonautonomous nonlinear dynamical system (with the
spatial variable x playing the role of time) which is in general nonintegrable.

The complexity of the dynamical system is evident, even in the limiting case
where the transverse variation of the linear and nonlinear refractive index is
considered as a small perturbation to an autonomous system with constant coef-
ficients, corresponding to the mean values of �ðxÞ and gðx; u2Þ: The explicit
dependence of a dynamical system on the evolution variable (time or space) results
in an additional dimension in the phase space of the system (extended phase
space). In most cases this explicit dependence leads to chaotic dynamics. Indeed,
even within the class of integrable Hamiltonian systems, it is well known that
small nonautonomous perturbations lead, in general, to nonintegrability and
irregular dynamics. Perturbative approaches, on the other hand, allow for the
investigation of the relation between the dynamics of the autonomous integrable
system and the nonautonomous perturbed system. The Poincare-Birkhoff theorem
as well as Melnikov’s theory for periodic orbits [35] predict that when certain
resonance conditions between the unperturbed system and the time-dependent
perturbation are satisfied, a finite discrete family of periodic solutions persist under
perturbation. Additionally, Melnikov’s theory for homoclinic/heteroclinic orbits
[35] relates the existence of an unperturbed homoclinic/heteroclinic orbit to fixed
points with the persistence of a discrete number of orbits homoclinic/heteroclinic
to periodic orbits and predicts the formation of homoclinic/heteroclinic tangles and
the presence of chaos, resulting in a complex transverse profile for the stationary
solitary wave.

The case of a nonlinear Kronig-Penney model for photonic structures consisting
of linear and nonlinear layers corresponds to Eq. (3) with �ðxÞ and gðx; u2Þ being
piecewise constant with gðx; u2Þ equal to zero in the linear layers of the structure.
This system belongs to a class of nonautonomous dynamical systems consisting of
an autonomous nonlinear system and an autonomous linear periodic system, each
acting alone at different intervals. It has been shown that under certain conditions
for the lengths of the linear intervals, the behavior of the nonautonomous piece-
wise linear system is closely connected with the dynamics of its nonlinear
autonomous component. In particular, it has been proved that, under certain
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conditions, a Poincare surface of section of the nonautonomous system is identical
to the phase space of the autonomous nonlinear system. This result applies to a
general class of dynamical systems including dissipative, integrable and nonin-
tegrable Hamiltonian systems. [36]

In each part of the photonic structure the wave profile is described by the
following equations:

d2u

dx2
þ �N;i � b
� �

u þ Nðu2Þu ¼ 0; x 2 XN;i; ði ¼ 1; 2; . . .Þ

d2u

dx2
þ �L;i � b
� �

u ¼ 0; x 2 XL;j; ðj ¼ 1; 2; . . .Þ
ð4Þ

where �N;i and �L;j are the values of the linear refractive index in the nonlinear
ðXN;iÞ and linear ðXL;jÞ layers, respectively, and Nðu2Þ is the nonlinearity function.
Although the overall system is nonautonomous, in each part of the structure the
wave formation is described by an autonomous system. The form of the respective
phase spaces depend on the sign of the nonlinearity as well as on the propagation
constant b and are shown in Fig. 1. The stationary solutions of the system of
Eq. (4) can be provided by composing solutions of these two systems, which have
matched conditions for u and its derivative, at the boundaries between different
layers. For specific values of the propagation constants b these conditions can be
fulfilled simultaneously and analytical solutions can be obtained. In the following

0

0

u

du
/d

x
(a)

0

0

u

du
/d

x

(b)

0

0 u

du
/d

x

(c)

0

0

u

du
/d

x

(d)

Fig. 1 Phase space for each part of the system Eq. (4): a nonlinear part with Nðu2Þ ¼ 2u2 for
b[ �N ; b nonlinear part with Nðu2Þ ¼ �2u2 for b\�N ; c linear part for b\�L and, d linear part
for b[ �N
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sections, we demonstrate the application of this method on three basic examples of
photonic structures having fundamental importance.

3 Waveguide Arrays with Self-Focusing Nonlinearity

We consider the case of an infinite periodic photonic structure consisting of linear
and nonlinear self-focusing layers as shown in Fig. 2 [23]. The linear and the
nonlinear refractive index are given by

�ðxÞ; gðx; u2Þ
� �

¼ �N ;Nðu2Þ½ �; x 2 UN

�L; 0½ �; x 2 UL

�
ð5Þ

where UN ¼
S

k½kT � N=2; kT þ N=2Þ; UL ¼
S

k½kT þ N=2; ðk þ 1ÞT � N=2Þ; L
and N are the lengths of the linear and the nonlinear layers, respectively, and
T ¼ L þ N is the spatial period of the structure.

3.1 Model and Analytical Solutions

In each part of the photonic structure the wave profile is described by the following
equations:

d2u

dx2
þ �N � bð Þu þ Nðu2Þu ¼ 0; x 2 UN

d2u

dx2
þ �L � bð Þu ¼ 0; x 2 UL

ð6Þ

The stationary solutions of the system of Eq. (6) can be provided by composing
solutions of these two systems, which have matched conditions for u and its
derivative, at the interfaces. Furthermore, we assume that the propagation constant
b is such that:

1. The linear system has periodic (sinusoidal) solutions [phase space as in
Fig. 1c].

εN εN εN εN εNεL εL εL εL εL

z

x

Fig. 2 Geometry of the
periodic structure consisting
of linear ð�LÞ and nonlinear
ð�NÞ layers
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2. The nonlinear system has a homoclinic orbit, tending to the origin for x ! �1
and being symmetric with respect to the origin [phase space as in Fig. 1a].

For a propagation constant corresponding to the case where an integer number
of half-periods of the solution of the linear system is contained in the linear part of
length L; i.e.

bn ¼ �L �
np
L

� 	2
; n ¼ 1; 2; . . . ð7Þ

the continuity conditions are met simultaneously in all boundaries: any solution of
Eq. (6) starting from a point of the homoclinic orbit inside the nonlinear part at
some x; returns to the homoclinic orbit after evolving in the linear part and sub-
sequently evolves again according to the homoclinic orbit. Thus, the solution
approaches the origin asymptotically as x ! þ1; moving on the homoclinic orbit
but interrupted periodically due to the linear part of the structure. The same
argument holds for the evolution of the stationary solution as x ! �1: These
arguments are illustrated in Fig. 3, where the phase space representation of the
homoclinic orbit and the phase space of the linear system have been superimposed.
The branches of solutions are shown to coincide with parts of the (nonlinear)
homoclinic orbit and parts of the (linear) periodic ellipsoid orbits. Several prop-
erties and symmetries of the solutions can be derived from their phase space
representation: for odd n (Fig. 3a), the solutions lie in both branches of the ho-
moclinic orbit so that u has an alternating sign between neighboring nonlinear
layers, while modes with constant sign of u; lying exclusively in one branch, are
obtained for even n (Fig. 3b). Following the same arguments, not only asymptotic
(solitary) solutions, but also nonlinear periodic stationary solutions can be gen-
erated. In fact, for b ¼ bn the entire Poincare surface of section (including both
asymptotic and periodic orbits) of the system (6) as defined stroboscopically (with
respect to xÞ is identical to the phase space of the nonlinear system, while for
b 6¼ bn the Poincare surface of section appears chaotic. [36] This abrupt change of
the phase space topology for the specific values of b; has a form of a global
bifurcation. More specifically, for the asymptotic solutions, bn are values for
which a complete homoclinic tangency occurs, resulting in an infinite set of
solutions, each one starting from a different point of the homoclinic orbit; for
b 6¼ bn it is expected that the stable and unstable manifolds intersect transversely
[35] and only some of these solutions, corresponding to intersection points, persist.

The solitary wave stationary solutions corresponding to bn can be given ana-
lytically in the following form

uðx; bn; x0Þ ¼ ð�1Þnkvðx � kL; bn; x0Þ x 2 UN

ak sinð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�l � bn

p
x þ /kÞ x 2 UL

�
ð8Þ

where vðx; b; x0Þ is the homoclinic solution of the nonlinear system (4) and ðak;/kÞ
are directly obtained from the continuity conditions of u and its derivative at the
interfaces. The homoclinic solution, in general, is given by
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x � x0 ¼ �
Z v

vm

dv0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb � �nÞv02 � Fðv0Þ

p ð9Þ

with F being defined by dF=du ¼ 2Nðu2Þu; and vm is the nonzero root of the
denominator in the integrand, corresponding to the extreme value of the solution,
which is placed at x0:

3.2 Results and Discussion

Although the method, presented in the previous section, applies in a general class
of nonlinearities, for illustrative purposes, in the following we consider the case of
a Kerr-type self-focusing nonlinearity, Nðu2Þ ¼ 2u2: In this case, the second
assumption of the existence of a homoclinic orbit results in the condition

bn [ �N ð10Þ

and the homoclinic solution is vðx; b; x0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b � �N

p
sech ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b � �N

p
ðx � x0ÞÞ:

As it can be seen from Eqs. (7) and (10) the conditions for existence of the
aforementioned solutions are quite generic: solutions of the form of Eq. (8) exist
for a positive linear refractive index difference D� � �L � �N ; and for discrete
values of the propagation constant.

In general, the geometry of the structure is crucial for both the existence and the
form of the localized modes. The number of modes for a given D� depends on the
length ðLÞ of the linear part of the periodic structure: for increasing L; the number
and the density of the modes bn 2 ð�N ; �LÞ; also increase. Each value bn is located
inside a finite band gap, of the spectral band structure of the linearized system
associated to (1), which corresponds to a resonant Bragg-type reflection from
the periodic structure. On the other hand, the length N of the nonlinear layer

0

0

·
·

·
· ··

du
/d

x

u 0

0 ·
·

·

du
/d

x

u

Fig. 3 Phase space construction of asymptotic (solitary) solutions of Eq. (6) for n, odd (left),
and n; even (right). Black dots depict transition at the boundary between a linear and a nonlinear
layer
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determines the spatial width of the solution, since for large N the solutions are
strongly localized in the nonlinear layer, and only small side-lobes appear in the
neighboring linear layers.

As an example, we consider the case of a linear refractive index difference
D� ¼ 0:7; where we have set �N ¼ 0; without loss of generality, since a nonzero �N

results only in a shift in the values of bn; as obtained from Eqs. (7) and (10). The
length of the linear and nonlinear layers are L ¼ 4p and N ¼ 2p; respectively.
According to the existence conditions [Eqs. (7) and (10)], for this parameter set,
three families of solutions, corresponding to n ¼ 1; 2; 3; are found. The location of
bn in the band structure of the linear system is illustrated in Fig. 4, where it is
shown that each bn is representative for a finite gap. Each family of localized
solutions, corresponding to bn; is parameterized by the location of the maximum of
the homoclinic part of the solution in the nonlinear layer, x0 2 ½�N=2;N=2�: Due
to symmetry of the structure with respect to x ¼ 0; we can restrict our analysis to
solutions with x0 2 ½0;N=2�: In Fig. 5, we show the profiles of several stationary
localized solutions, corresponding to n ¼ 1; 2; 3 and x0 ¼ 0;N=4;N=2: The mode
number n; determines the number of nodes of the solution in the linear parts of the
structure, as well as the constancy ðn; even) or the alternation ðn; odd) of the sign
of u in the nonlinear parts. On the other hand, x0 determines the symmetry of the
solutions. Thus, for x0 ¼ 0; we have modes which are symmetric with respect to
the center of the nonlinear layer (Fig. 5, top row), while for x0 ¼ N=2; the modes
can be either symmetric ðn; even) or antisymmetric ðn; odd), with respect to the
center of the linear layer (Fig. 5, bottom row). For x0 6¼ 0;N=2; we can have a
general class of asymmetric localized modes (Fig. 5, middle row).

The evolution of several characteristic localized modes, obtained analytically
with the aforementioned method, is depicted in Fig. 6. The propagation has been
simulated using the standard beam propagation method for the numerical solution
of Eq. (1). In all numerical simulations, a random noise of the order of 10�2 (with
respect to the maximum of the stationary solution) has been superimposed to the
solution. It is shown that modes corresponding to n ¼ 2; 3 are quite robust under
propagation, while for n ¼ 1 the mode corresponding to x0 ¼ N=2; is unstable.
This kind of instability is typical for gap solitons in lattices and periodic media and
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Fig. 4 Band structure of the
linearized system
(propagation constant b
versus Bloch wavenumber qÞ
for a photonic structure having
L ¼ 4p; N ¼ 2p; �N ¼ 0 and
D� ¼ 0:7: Black dots depict
the location of the analytically
obtained localized modes for
n ¼ 1; 2; 3
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occurs when b is large enough so that an internal (discrete) mode [37] of the linear
spectrum of the solution crosses into a linear transmission band (shown in Fig. 4)
and resonates with the linear Bloch waves. Such instabilities can trigger various
types of spatial dynamics including the symmetry breaking and oscillatory insta-
bilities, as well as mode transformation scenarios according to which an unstable
localized mode evolves (transforms) to a stable one. [38] However, it is worth
mentioning that in experimental configurations, even if some kind of instability
occurs, the laminar propagation distance in several cases is much larger than the
actual length of the device (as for the aforementioned case of an AlGaAs type of
nonlinear material). This fact is quite promising for potential applications.

Finally, it is useful to locate the analytically obtained solutions in the low
dimensional space of specific conserved quantities. The energy Q and Hamiltonian
H functionals

Q ¼
Z þ1

�1
jwj2dx ð11Þ
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Fig. 5 Analytically obtained profiles of solitary wave solutions, for n ¼ 1; 2; 3 (left to right).
Shaded areas correspond to nonlinear layers. The first and third row depict solutions having a
symmetry with respect to the center of the nonlinear ðx0 ¼ 0Þ and the linear ðx0 ¼ N=2Þ layer,
respectively. The middle row depicts asymmetric solutions ðx0 ¼ N=4Þ: All parameters are the
same as in Fig. 4. The solution depicted in first column, third row is unstable as shown in Fig. 6
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H ¼
Z þ1

�1
jwxj

2 � �ðxÞjwj2 � gðx; jwj2Þ jwj
2

2

 !

dx ð12Þ

are calculated for each family of solutions as shown in Fig. 7a. The representation
(projection) of the families of solutions in the Hamiltonian-Energy plane is depicted
in Fig. 7b, and can be used for providing an overview of the analytically obtained
solutions. It is shown that, solutions having the same bn and different x0 lie on the
same straight line with slope dH=dQ ¼ �bn; in accordance with Ref. [38].

4 Waveguide Arrays with Self-Defocusing Nonlinearity

In this section, we utilize the same approach in order to provide analytical solu-
tions of (1) for the case of waveguide arrays as those shown in Fig. 2, but with a
self-defocusing nonlinearity (corresponding to repulsive interatomic interactions
for the case of Bose-Einstein condensates). These solutions correspond to localized
excitations on a finite periodic background, having the form of dark and anti-dark
solitary waves. [24, 39, 40]
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Fig. 6 Propagation of solitary wave solutions shown in Fig. 5. The solutions correspond to
n ¼ 1; 2; 3 (left to right) and x0 ¼ 0;N=4;N=2 (top to bottom)
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4.1 Model and Analytical Solutions

The stationary solutions of Eq. (1) having the form wðx; zÞ ¼ uðx; bÞeibz; satisfy the
nonlinear ordinary differential Eq. (6) with Nðu2Þ ¼ �2u2; where the minus sign
corresponds to as self-defocusing nonlinearity.

We assume that the propagation constant b is such that:

1. The linear system has periodic (sinusoidal) solutions, i.e. b\�L (phase space as
in Fig. 1c).

2. The nonlinear system has a heteroclinic orbit vðx; b; x0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�N � bÞ=2

p
tanh

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�N � bÞ=2

p
ðx � x0ÞÞ; connecting the saddle points ðu; du=dxÞ ¼

ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�N � bÞ=2

p
; 0Þ; i.e. b\�N [phase space as in Fig. 1b].

For a propagation constant corresponding to the case where an integer number
of half-periods of the solution of the linear system is contained in the linear part of
length L; i.e.

bn ¼ �L �
np
L

� 	2
; n ¼ 1; 2; . . . ð13Þ

any solution of Eq. (6), starting from a point of the heteroclinic orbit inside the
nonlinear part at some x; returns to the heteroclinic orbit after evolving in the
linear part; subsequently, it evolves again according to the heteroclinic orbit. Thus,
the solution tends asymptotically to the saddle points for x ! �1: The repre-
sentation of the composite solutions in the phase space of the system ðu; uxÞ is
depicted in Fig. 8, for the case of an odd (even) n where the solution lays on both
(one of the) heteroclinic branches. The localized stationary solutions corre-
sponding to bn can be given analytically in the following form
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Fig. 7 a Energy Q (solid lines) and Hamiltonian H (dashed lines) versus x0: b Hamiltonian
versus energy diagram. All parameters are the same as in Fig. 4

212 Y. Kominis and K. Hizanidis



uðx; bn; x0Þ ¼
ð�1Þnk

ffiffiffiffiffiffiffiffiffiffi
�N�bn

2

q
tanh

ffiffiffiffiffiffiffiffiffiffi
�N�bn

2

q
ðx � x0 � kLÞ


 �
; x 2 UN

ak sinð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�L � bn

p
x þ /kÞ; x 2 UL

8
<

:
ð14Þ

where ðak;/kÞ are directly obtained from the continuity conditions of u and its
derivative at the interfaces. It is worth mentioning that, in contrast to the case of a
self-focusing nonlinearity, studied in the previous section, for the present case and
for any parameter set there exists an infinite number of bns and solutions can be
found for �L ¼ �N ; as well.

For each bn a family consisting of an infinite number of solutions parameterized
by x0 2 ½�N=2;N=2� is obtained. Due to the symmetry of the periodic structure the
analysis is restricted to solutions with x0 2 ½0;N=2�: The solutions are symmetric
or anti-symmetric with respect to the center of the nonlinear or the linear layer for
x0 ¼ 0;N=2; respectively, while they are in general asymmetric for x0 6¼ 0;N=2:
In Fig. 9 several spatial profiles are shown for x0 ¼ 0;N=2 for the case of a
periodic structure having L ¼ 4p and N ¼ p and �N ¼ 0: For a D� � �L � �N [ 0
[Fig. 9(left)], one obtains dark solitary wave profiles formed as localized dips on a
finite periodic background for n ¼ 2: For a negative D�; anti-dark solitary wave
profiles are obtained for n ¼ 1 [Fig. 9(middle)], while for n ¼ 2 the profile
changes from (slightly) dark to anti-dark when x0 increases from zero to N=2
[Fig. 9(right)].

A characteristic parameter for the form of a profile is the contrast C with respect
to the background. It is defined as the ratio between the maximum field value in
the linear layer x 2 ½N=2;N=2 þ L� to the absolute field value on a nonlinear layer
for large x [i.e. the saddle point of the nonlinear system (4)]. It can be readily
calculated analytically and its dependence on x0 is shown in Fig. 10. It is shown
that for the case D� ¼ 0:1 only dark localized modes exist ðC\1Þ; while for
D� ¼ �0:5 both dark ðC\1Þ and anti-dark ðC [ 1Þ modes exist. Note that in both
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0 x x 
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0

Fig. 8 Phase space representation of the stationary solutions (thick line) for the case of n; odd
(left), and n; even (right). The phase space of the linear system (elliptic curves) and the
heteroclinic orbit connecting the saddle points (X) of the nonlinear system, are shown
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configurations a dark solitary wave is formed for large n and for values of x0 close
to N=2; while a x0 close to zero results to C ¼ 1:

The location of the bn corresponding to solutions (14) in the linear band
structure (propagation constant b versus Bloch wavenumber qÞ of the system is
depicted in Fig. 11 for D� ¼ 0:1;�0:5: The band structure has been obtained by
linearizing (4) around its fixed points (saddles). It is shown that all bn’s corre-
sponding to solutions are located inside the gaps of the band structure. For the case
of D� ¼ 0:1; b1 [as obtained from (13)], does not fulfill the existence condition (ii)
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ðb\�NÞ: It is noticeable that this value [marked as x in Fig. 11(left)] is located
within the linear transmission band where, in principle, solitary waves are not
expected to exist. The evolution of the stationary solutions, corresponding to Fig. 9
(first row, left) and (second row, middle), is shown in Fig. 12. The stationary
solutions undergo robust evolution, which is quite promising for potential optical
applications.

5 Interfaces Between Waveguide Arrays and Homogeneous
Media or Dissimilar Waveguide Arrays

Surface waves appear in diverse areas of physics, chemistry, biology, and display
properties that have no counterpart in the bulk [41]. Surface waves have been
originally considered in the context of solid state and condensed matter physics,
where a Kronig-Penney model was introduced to demonstrate the band structure of
electronic states in crystals. This model has been used by Tamm [42] who showed
that at a semi-infinite Kronig-Penney potential, the formation of surface states
(also known as Tamm states) is possible under certain conditions, while the case of
a more general one-dimensional potential was examined by Shockley [43].

In linear optics, the utilization of periodic layered media in guided wave optical
applications has been a subject of theoretical and experimental investigations for a
few decades. Among these studies of particular interest is the investigation of the
wave guiding properties of the interface between such a periodic medium and a
homogeneous medium and the formation of the surface waves. [44] In the context
of nonlinear optics, the combination of nonlinearity and periodicity have allowed
for overcoming the experimental limitations of the homogeneous cases, mainly
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Fig. 11 Band structure (propagation constant b versus Bloch wavenumber qÞ and location of the
propagation constants bn of the analytically obtained stationary solutions (x: no analytical
solution exists). The parameters are: L ¼ 4p; N ¼ p and �N ¼ 0 and �L ¼ 0:1 (left column),
�L ¼ �0:5 (right column)
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related to high power thresholds required for proper excitation. The latter resulted
in the recent renewal of the interest for the study of surface waves in the interfaces
of such photonic structures. The formation of surface solitons was predicted and
almost directly observed in 2006 for the cases of discrete surface solitons [45–51]
and surface gap solitons [52–54]. Moreover, surface lattice solitons have been
theoretically predicted for the case of the heterointerface between two different
semi-infinite waveguide arrays [55–57], as well as at the boundaries of two-
dimensional nonlinear lattices [55, 58].

In this section we apply the phase space method for the construction of ana-
lytical solitary wave solutions located at the interface of a nonlinear (Kerr) Kronig-
Penney lattice with a homogeneous linear or nonlinear medium as well as at the
interface between two dissimilar nonlinear lattices. [25] We consider the case of a
photonic structure consisting of two parts: either a nonlinear lattice and a homo-
geneous (linear or nonlinear) medium or two dissimilar nonlinear lattices having
different widths of the corresponding nonlinear parts. The geometry of the con-
figurations is shown in Fig. 13.
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5.1 Model and Analytical Solutions

The stationary wave solutions are given by Eq. (3) with the functions �ðxÞ and gðxÞ
defined as follows

�ðxÞ; gðxÞð Þ ¼
ð�1; 2Þ; x 2 D1

ð�2; 0Þ; x 2 D2

ð�3; 0Þ; x 2 D3

8
<

:
ð15Þ

In each part Eq. (3) is integrable with corresponding phase spaces such as those
shown in Fig. 1. The phase space corresponding to the nonlinear part is shown in
Fig. 1a, for the case b[ �1; where a homoclinic solution exist. For a linear part the
phase space is shown in Fig. 1c and (d) for b\�i and b[ �i ði ¼ 2 or 3Þ;
respectively. The stationary solutions of (3) can be provided by composing solu-
tions of these systems, which have matched conditions for u and its derivative, at
the interfaces. Following arguments similar to those of previous sections, for a
propagation constant

bn ¼ �2 �
np
L

� 	2
; n ¼ 1; 2; . . . ð16Þ

corresponding to the case where an integer number of half-periods of the solution
in the linear part ðD2Þ is contained in the length L; the continuity conditions are
met simultaneously in all boundaries, for x [ 0: Any solution of Eq. (3) starting
from a point of the homoclinic orbit inside the nonlinear part ðD1Þ at some x;
returns to the homoclinic orbit after evolving in the linear part ðD2Þ and subse-
quently evolves again according to the homoclinic orbit. Thus, the solution
approaches the origin asymptotically as x ! þ1; moving on the homoclinic orbit
but interrupted periodically due to the linear part of the structure. For the case of a
nonlinear homogeneous part [Fig. 13 (a)] (for simplicity we consider that the
medium characteristics are identical with those of the nonlinear part of the lattice
ðD1Þ), the solution moves on the same homocinic orbit for x\ � N1=2;
approaching the origin as x ! �1 (Fig. 14a). The resulting solutions form a
family, parameterized by the position of the maximum of the homoclinic orbit x0;
corresponding to solitary wave profiles zero asymptotic values. For the case of a
linear homogeneous medium (Fig. 13b) we can distinguish two different cases
depending on the value of the propagation constant b with respect to the value of
the linear refractive index �3: (i) For a b\�3 any solution (for every x0Þ con-
structed in the aforementioned way for the lattice part of the structure meets at
x ¼ �N1=2 one of the elliptical curves of the phase space shown in Fig. 1c and
then evolves periodically for x 2 ½�N1=2;�1Þ (Fig. 14b). This family of solutions
correspond to solitary wave profiles with a zero asymptotic value for x ! þ1 and a
finite periodic (sinusoidal) pedestal for x ! �1: (ii) For every b[ �3 there exist a
solution (for a particular x0Þ for which the part of the homoclinic orbit comprising
the lattice part of the solution in x 2 ½�N1=2;N1=2� intersects one of the straight
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lines tending to the origin as x ! þ1 of the phase space shown in Fig. 1d (this
having u [ 0; without loss of generality), at the boundary x ¼ �N1=2: This solution
correspond to a solitary wave profile with zero asymptotic values [Fig. 14c]. Finally,
for the case of two dissimilar lattices [Fig. 13c], the solution evolves in the the left
lattice, similarly to the right lattice, tending to the origin as x ! �1: Note that in
Fig. 14, the case of an even n is shown, so that the solution in the lattice part lays on a
single branch of the homoclinic; in the case of n odd, the solution in the lattice part
lays on both branches of the homoclinic.

In all cases, the solitary wave stationary solutions corresponding to bn can be
given analyticaly in the following form

uðx; bn; x0Þ ¼
vðx; bn; x0Þ x 2 D1

ak sinð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2;3 � bn

p
x þ /kÞ x 2 D2;D3

�
ð17Þ

where vðx; b; x0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b � �1

p
sech ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b � �1

p
ðx � x0ÞÞ is the homoclinic solution

of the nonlinear part ðD1Þ of the structure (Fig. 1a), and ðak;/kÞ are directly
obtained from the continuity conditions of u and its derivative at the interfaces.

5.2 Results and Discussion

In the following we apply the phase space method for the construction of surface
localized solutions for the case of a lattice having a linear refractive index profile
with parameters �1 ¼ 0; �2 ¼ 0:3; N1 ¼ 2p; L ¼ 4p: For this case the condition
for the existence of the aforementioned family of solutions ð�1\b\�2Þ are met for
propagation constants bn given by Eq. (16) for n ¼ 1; 2: Each one of these values
bn is located in a different finite gap of the linear band structure of the infinite
lattices, as shown in Fig. 15.
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Fig. 14 Phase space representation of the constructed solutions for n even. a Nonlinear
homogeneous part, b Linear homogeneous part having b\�3; and c Linear homogeneous part
having b [ �3: Dotted line denotes the solution in the lattice part and solid line denotes the
solution in the homogeneous part. Black dots depict transition at the boundary between different
layers
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5.2.1 Nonlinear Homogeneous Medium

We consider the case where the nonlinear homogeneous medium has the same
material characteristics with the nonlinear part of the lattice. In this case there exist
an infinite number of solutions corresponding to different x0 for each bn: The phase
space representation of a typical solution is shown in Fig. 14a, while their profiles
for some characteristic cases of x0 are shown in Fig. 16. Solitary wave profiles can
attain their maximum amplitude inside the homogeneous medium [Fig. 16(left)],
in the linear part of the lattice [Fig. 5(middle)], or in the first nonlinear part of the
lattice [Fig. 16(right)].

The propagation of the analytically obtained solitary wave profiles of Fig. 16 is
illustrated in Fig. 17. It is shown that the solutions corresponding to n ¼ 1
[Fig. 17(top)], under propagation, break in two parts: one traveling inside the
homogeneous part and one which is localized close to the interface. The latter
corresponds to a surface mode having different x0 and/or b: Such mode transfor-
mations are characterized by evolution of an initial mode to a more stable mode
having lower values of Hamiltonian and Energy [38] as discussed in previous
section: the initial solution emits part of its energy as a wave traveling inside the
homogeneous energy, in order to evolve to the new localized mode. It is
remarkable that this transformation process can be quite slow [Fig. 17(top, right)],
and become apparent for large propagation distances. Depending on the length of
an actual experimental configuration some these cases can also be considered as
robust, since the laminar propagation distance can be larger than the actual
propagation length. Also, the mode transformation process itself can also be
potentially useful in applications. On the other hand, as shown in Fig. 17(bottom)
the solutions corresponding to n ¼ 2 are remarkably stable.
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Fig. 15 Band structure of the
linearized system
(propagation constant b vs
Bloch wave number qÞ for the
two lattices having
�1 ¼ 0; �2 ¼ 0:3; L ¼ 4p and
N1 ¼ 2p (blue line), N2 ¼ p
(red line). Ti ¼ L þ Ni; i ¼
1; 2 is the period of each
lattice. Circles depict the
location of the analytically
obtained localized modes for
n ¼ 1; 2
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5.2.2 Linear Homogeneous Medium

In this case we consider a homogeneous linear medium having �3 ¼ 0:1: For the
formation of surface waves in the interface between the lattice and a linear
homogeneous medium, we can distinguish between two qualitatively different
cases:

Case b\�3
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Fig. 16 Profiles of stationary surface lattice solutions for the case of a nonlinear homogeneous
medium having the same material characteristics with the nonlinear part of the lattice, for
n ¼ 1; 2 (top to bottom) and x0 ¼ 0;p; 2p (left to right). The solutions depicted in the first
(second) row are unstable (stable) as shown in Fig. 17

Fig. 17 Propagation of the stationary solutions shown in Fig. 16
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In this case, for each bn there exist a infinite number of solutions, characterized by
a different x0: Their phase space representation has been shown in Fig. 14b and
their profiles for some characteristic values of x0 are shown in Fig. 18(bottom),
corresponding to n ¼ 2; for which b2\�3 (for the specific values of the linear
refractive indices used in our example). It is shown that for x0 2 ½�N1=2;N1=2� the
maximum of the solution is located inside the first nonlinear waveguide while the
amplitude of the periodic pedestal in the linear homogeneous medium decreases as
x0 moves from the left boundary of the nonlinear part to the right. An increasing
width of the nonlinear part N1 would also results in decreasing pedestal. Also,
solutions having their maxima located in other than the first nonlinear waveguide,
can be constructed. Figure 19(bottom) shows a stable evolution of these stationary
solutions under propagation.

Case b[ �3

In this case, for each value of bn; there exist one solution for a particular x0; given
by

x0 ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b � �1

p sech�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3 � �1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b � �1

p

 �

� N1

2
ð18Þ

The phase space representation of the solutions is shown in Fig. 14c. For our
example, this case corresponds to n ¼ 1: The profile of such a solution is shown in
Fig. 18(top), while its propagation is illustrated in Fig. 19(top), where a large
distance of laminar propagation is shown, with the part in the right slightly moving
to the right for z [ 60:

−40 0 40 80
−0.6

0

0.6

u

x

−40 0 40 80
−0.4

0

0.4

u

x
−40 0 40 80

−0.4

0

0.4

u

x
−40 0 40 80

−0.4

0

0.4

u

x

Fig. 18 Profiles of stationary surface lattice solutions for the case of a linear homogeneous
medium having �3 ¼ 0:1; for n ¼ 1; 2 (top to bottom) and x0 ¼ �p; 0;p (left to right). The
solutions depicted in the first (second) row are unstable (stable) as shown in Fig. 19
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5.2.3 Two Dissimilar Nonlinear Waveguide Arrays

We consider the configuration shown in Fig. 13c, with N2 ¼ p: The profiles of
the analytically obtained solutions are shown in Fig. 20, for the case where the
maximum of the solution is located at the center of the first nonlinear part of the
right lattice ðx0 ¼ 0Þ; at the linear part between the two lattices ðx0 ¼ �pÞ and at
the center of the first nonlinear part of the left lattice ðx0 ¼ �3p=2Þ: It is shown
that the solitary wave is more extended inside the array with the narrower non-
linear part. The propagation of these solutions is shown in Fig. 21, with the
solutions corresponding to n ¼ 2 [Fig. 21(bottom)], having stable evolution under
propagation. Note that the values of the propagation constants b1;2 corresponding
to the analytically obtained solutions are located within the finite band gaps of both
lattices, as shown in Fig. 15.

6 Concluding remarks

The study of the formation and dynamics of solitary waves in photonic structures
is a field of continuously increasing research interest from both theoretical and
experimental point of view. The spatial inhomogeneity and nonlinearity of such
structures result to unique properties of solitary wave propagation. Appropriate
design can provide useful widespread technological applications in optical tele-
communications, medicine and biotechnology. In accordance with numerous other
cases of related physical or man-made systems, the nonlinear effects and the
accompanying complexity of the wave dynamics and interactions have been rec-
ognized as effective potential mechanisms for light control. Therefore it is possible

Fig. 19 Propagation of the stationary solutions shown in Fig. 18
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to design photonic structures having desirable features and properties. The latter
are expected to provide optical devices for ‘‘all-optical circuitry’’ for switching,
routing, information processing and computing beyond the limitations of elec-
tronics-based systems. It is also worth noting that the aforementioned concepts are
directly connected to other domains of nonlinear physics such as the formation of
spin waves in magnetic films and the rapidly developing field of coherent matter
waves and nonlinear atom optics. Theoretical studies in these fields proceed in
parallel due to similarities between the underlying models allowing for transfer of
intuition and novel ideas between them.
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Fig. 20 Profiles of stationary surface lattice solutions for the case of the interface between two
dissimilar nonlinear waveguide arrays, for n ¼ 1; 2 (top to bottom), and x0 ¼ 0;�p;�3p=2 (left
to right). The solutions depicted in the first (second) row are unstable (stable) as shown in Fig. 21

Fig. 21 Propagation of the stationary solutions shown in Fig. 20
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Spatial inhomogeneity and nonlinearity result, in general, in nonintegrability of
the underlying models and lack of knowledge for analytical solutions. In this work
we have considered a class of systems consisting of interlaced linear and nonlinear
parts. Periodic waveguide arrays as well as structures consisting of semi-infinite
waveguide arrays and their interfaces have been studied, while the method pre-
sented here can be applied to even larger classes of systems including combina-
tions of parts of waveguide arrays, homogeneous parts and defects as well as
different types of nonlinearities. The method utilizes the phase space description of
the system for the construction of analytical solutions. Such solutions can serve as
starting points for the exploration of even larger classes of solutions and systems
with the utilization of perturbation methods. Moreover, the method provides
physical intuition for the formation of solitary waves in such structures.
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Trapping Polarization of Light
in Nonlinear Optical Fibers: An Ideal
Raman Polarizer

Victor V. Kozlov, Javier Nuño, Juan Diego Ania-Castañón
and Stefan Wabnitz

Abstract The main subject of this contribution is the all-optical control over the
state of polarization (SOP) of light, understood as the control over the SOP of a
signal beam by the SOP of a pump beam. We will show how the possibility of such
control arises naturally from a vectorial study of pump-probe Raman interactions
in optical fibers. Most studies on the Raman effect in optical fibers assume a scalar
model, which is only valid for high-PMD fibers (here, PMD stands for the
polarization-mode dispersion). Modern technology enables manufacturing of low-
PMD fibers, the description of which requires a full vectorial model. Within this
model we gain full control over the SOP of the signal beam. In particular we show
how the signal SOP is pulled towards and trapped by the pump SOP. The isotropic
symmetry of the fiber is broken by the presence of the polarized pump. This
trapping effect is used in experiments for the design of new nonlinear optical
devices named Raman polarizers. Along with the property of improved signal
amplification, these devices transform an arbitrary input SOP of the signal beam
into one and the same SOP towards the output end. This output SOP is fully
controlled by the SOP of the pump beam. We overview the state-of-the-art of the
subject and introduce the notion of an ‘‘ideal Raman polarizer.’’
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1 Introduction

Over the past few years, the possibility of utilizing the Raman effect in optical
waveguides as the basis for the development of non-linear polarizers has opened
the way to an interesting range of potential applications, such as multi-channel
repolarization in optical fibers, enhanced amplification and even the possibility of
developing silicon-based Raman polarizers [1–5].

Raman-based polarization attraction falls into a broad class of potentially game-
changing effects related to light-by-light control in optical waveguides. Models for
such control are essentially nonlinear and usually imply the use of a high-intensity
beam to modify the properties of the medium (for instance its refractive index or
absorption coefficient) such that propagation of a weaker probe beam through the
nonlinearly modified medium is affected in a substantial and controllable way. The
possibility of achieving nonlinear polarization control is rooted in soliton theory,
namely in conservative structures such as the polarization domain wall solitons
[6–11]. However conclusions extracted from soliton theories involving a medium
of infinite extension can be misleading for counterpropagating waves in a medium
of finite length. In this case the presence of boundary conditions may lead to
solitons with a finite lifetime [12]. In such situation, other so-called polarization
attractors representing the unique distribution of SOPs of the two beams inside the
medium play a key role in the process of trapping polarization of light [12, 13].

Different mechanisms such as photorefractive two-beam coupling [14] or Kerr
nonlinearity [10, 15] have, over the years, proven to be capable of producing
nonlinear polarization attraction. In their initial demonstrations, all of these
methods were subject to limitations in their application in telecommunication
links: their response time, in the case of photorefractive materials, or the
requirement of extremely high beam powers. Only recently results of practical
relevance have emerged, with non-conservative schemes based on stimulated
Raman [16] or Brillouin scattering [17], as well as the first low-power lossless
polarizer, consisting of a 20 km randomly weakly birefringent fiber pumped by an
incoherent counter-propagating beam [18].

As mentioned above, here we will focus on the particular and very promising
case of Raman polarizers, in which the pump and signal beam propagate through a
Raman-active medium. By way of interacting with this medium, the pump beam
induces a phonon-mediated gain for a frequency down-shifted (Stokes) signal
beam. The signal beam, co- or counter-propagating with the pump beam, is then
gradually amplified. This amplification mechanism lies at the heart of Raman
amplifiers. One degree of control exerted by the pump beam over the signal beam
is the total gain experienced by the signal from input to the output. This degree of
control is well studied in literature and widely used in practice. Much less known
is another degree of control—over the state of polarization (SOP) of the signal
beam. The main subject of this study are polarization-sensitive Raman amplifiers,
in which polarization-dependent gain (PDG), an intrinsic characteristic of the
Raman effect which is usually considered an undesirable feature in amplification
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applications, can be turned into an advantage by selectively amplifying only one
polarization mode of the input beam.

Signal and pump fields considered in this study are continuous waves (CW) or
relatively long pulses, such that the response of the Raman-active medium is
virtually instantaneous, and as such it is described by the instantaneous dissipative
cubic nonlinearity. Mostly, our theoretical study is developed for silica single-
mode fibers, though extensions to other Raman-active media, such as silicon are
also possible [5]. We shall demonstrate how polarization-sensitive Raman
amplifiers operate in the regime of Raman polarizers. These Raman polarizers are
devices that along with the function of amplification of light, also re-polarize the
beam: the SOP of the outcoming signal beam is defined by the SOP of the pump
beam, independently of what SOP the signal beam had at the input. In other words,
the signal SOP is attracted (trapped) by the pump SOP. By changing the polari-
zation of the pump we thereby change the signal SOP. In this way we exercise an
all-optical control over the signal SOP.

In this chapter we will present the theory of Raman polarizers with an emphasis
on randomly birefringent fibers, such as the ones used in the telecom industry. We
shall identify the conditions that are necessary for a traditional Raman amplifier to
function as Raman polarizer, and characterize its performance.

2 Model

In short, we shall consider the simultaneous propagation of two beams in a Raman-
active medium. In our case the Raman active medium is a few kilometers long
span of a telecom fiber. The fiber is linearly birefringent, and also characterized by
both conservative and dissipative cubic nonlinearities. The main feature that
makes our theory different from most previous studies on fiber-optic Raman
amplifiers is its vectorial nature. Thus, we carefully consider the propagation
dynamics of two polarization components of each of the two beams. In total, the
number of field components is four, and they all interact with each other via cubic
nonlinearity. The first vectorial theory of Raman effect in randomly birefringent
optical fibers was developed by Lin and Agrawal in Ref. [19] and applied to the
regime of interaction characteristic to what we call here ‘‘standard Raman
amplifiers.’’ Here we are interested in a totally different regime, namely the regime
of Raman polarizer. The difference between the two regimes is explained below, in
the beginning of Sect. 2.

We start from the equation of motion for the signal field, written for the two-

component field vector Us ¼ ðusx; usyÞT ; where usx and usy are the amplitudes of
the normal polarization modes ex and ey of the fiber: Us ¼ usxex þ usyey: This
equation is derived under the (as usual for nonlinear optics) unidirectional and
slowly varying approximations, see for instance [19, 20], and reads
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iozUs þ ib0ðxpÞotUs þ DBðxsÞUs

þ css
2
3
ðU�

s � UsÞUs þ
1
3
ðUs � UsÞU�

s

� �

þ 2
3
csp ðU�

p � UpÞUs þ ðUp � UsÞU�
p þ ðUs � U�

pÞUp

h i

þ i�sgðU�
p � UsÞUp ¼ 0:

ð1Þ

A similar equation (with indices p and s interchanged) arises for the pump beam,
which is characterized by the field vector Up: Here css and csp are self- and cross-
modulation coefficients, whose values depend on frequency, and therefore in
principle are different for the signal and pump beams. They are equal to the
frequency-dependent Kerr coefficient of the fiber. For simplicity we assume
css ¼ cpp ¼ cps � c; b0ðxp;sÞ is the inverse group velocity of the pump/signal beam.
�s ¼ 1; �p ¼ �xs=xp;DBðxp;sÞ is the birefringence tensor. For a linearly bire-
fringent fiber it takes the form DBðxp;sÞ ¼ Dbðxp;sÞ cos hr3 þ sin hr1ð Þ; where
Dbðxp;sÞ is the value of birefringence at frequency xp;s; and h the angle of ori-
entation of the axis of the birefringence with respect to the reference frame defined
by polarization modes ex and ey: r3 and r1 are the usual Pauli matrices.

The orientation angle h is randomly varying in fibers. In principle, the mag-
nitude of the birefringence Db also varies stochastically. However, as noticed in
Ref. [21], the two approaches, one in which h is the only stochastic variable, and
the second, where both h and Db are stochastic variables, produce nearly identical
results. Thus, here we shall develop our theory by assuming the single stochastic
variable h: Our theory can be seen as a generalization of the one beam linearly
birefringent theory of Wai and Menyuk from Ref. [21] to the case of two beams
interacting via the Kerr and Raman nonlinearity in a fiber. The angle h is driven by
a white noise process ozh ¼ ghðzÞ; where hghðzÞi ¼ 0 and hghðzÞghðz0Þi ¼
2L�1

c dðz � z0Þ: Here Lc is the correlation length, that characterizes the typical
distance at which h changes randomly.

Details of the theory are presented in Refs. [2, 3]. Here we quickly drive
through the major steps of this theory and show how to obtain the final result—a
set of four coupled first-order ordinary differential equations, one equation for each
polarization component of two beams. It is instructive to present these four
equations as two vectorial equations for the Stokes vectors of the pump and
signal beams. Each Stokes vector has three components. Namely, the pump Stokes

vector SðpÞ ¼ SðpÞ
1 ; SðpÞ

2 ; SðpÞ
3

� �
has components SðpÞ

1 ¼ W�
p1Wp2 þ Wp1W

�
p2; SðpÞ

2 ¼

i W�
p1Wp2�

�
Wp1W

�
p2Þ; SðpÞ

3 ¼ jWp1j2 � jWp2j2; and power SðpÞ
0 ¼ jSðpÞj: Similar

expressions define the signal Stokes vector SðsÞ: Here the field vector W is related
to the original Jones field vector U by the relation Wp;s ¼ Tp;sUp;s; where the 2 � 2
matrices Tp;s with elements
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TpðzÞ ¼
a1 a2

�a�
2 a�

1

� �
; ð2Þ

TsðzÞ ¼
b1 b2

�b�
2 b�

1

� �
: ð3Þ

obey the stochastic differential equations

�iozTp þ DBðxpÞTp ¼ 0; ð4Þ

iozTs þ DBðxsÞTs ¼ 0; ð5Þ

where plus (minus) sign stands for the co- (counter-) propagating regime of
propagation of the two beams, and

DBðxpÞ ¼
DbðxpÞ � i

2hz

� i
2hz �DbðxpÞ

� �
; ð6Þ

DBðxsÞ ¼
DbðxsÞ � i

2hz
i
2hz �DbðxsÞ

� �
: ð7Þ

Here, hz is the derivative of h with respect to z: It is different from zero owing to
the random changes of orientation of the birefringence axes. Now the polarization
components of each beam appear to be defined with respect to the local bire-
fringence axes, while these axes rotate stochastically along the fiber length driven
by the noise source ghðzÞ:

These transformations eliminate the birefringence terms from the equations of
motion of Wp and Ws and bring about a vast number of cubic terms composed of
different combinations of Wp1;Wp2;Ws1;Ws2 and their complex conjugates. Factors
in front of these terms are products of two coefficients of the form umun; or u�

mun;
or u�

mu�
n; where m; n ¼ 1; . . .; 14: Products with m ¼ n we shall call self-products,

while with m 6¼ n cross-products. Here, u1 ¼ ja1j2 � ja2j2; u2 ¼ �ða1a2 þ a�
1a�

2Þ;
u3 ¼ iða1a2 �a�

1a�
2Þ;u4 ¼ 2a1a�

2;u5 ¼ a2
1 � a�

2
2;u6 ¼�iða2

1 þa�
2

2Þ; u7 ¼ a�
1b1 �a2b�

2;
u8 ¼�ðb1a2 þ b�

2a�
1Þ; u9 ¼ iðb1a2 �a�

1b�
2Þ;u10 ¼�iða�

1b1 þa2b�
2Þ;u11 ¼ a1b�

2 þ
b1a�

2; u12 ¼ a1b1 �a�
2b�

2;u13 ¼�iða1b1 þa�
2b�

2Þ;u14 ¼ iða1b�
2 �a�

2b1Þ:
In the thus obtained equations of motion for Wp and Ws we perform the

ensemble average (over different realizations of the random process which
describes linear birefringence). Thus, we write humuni instead of umun: This
change holds true only in the limit when the stochastic variations are faster than
the nonlinear beam evolution. This is exactly the place in the derivation where our
single approximation comes into play. At this point we also need to apply the
ergodic theorem

hf i ¼ lim
z!1

1
z

Z z

0
dz0f ðz0Þ: ð8Þ
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Our goal is to calculate ensemble averages of all necessary self- and cross-
products: in this way we may complete the derivation of the differential equations
for Wp and Ws:

The equations of motion for un with n ¼ 1; . . .; 14 can be easily formulated
basing ourselves on Eqs. (4) and (5). As these equations are linear, in order to find
an ensemble average of any function of these coefficients (in our case pair prod-
ucts) we need to construct a generator. We refer to the Appendix in Ref. [21] for
details of this procedure, and only give here the final result. With this generator we
are able to formulate the equations of motion for the ensemble averages of the
products of the coefficients. Thus the solutions to the equations of motion

ozG1 ¼ �2L�1
c ðG1 � G2Þ; ð9Þ

ozG2 ¼ 2L�1
c ðG1 � G2Þ � 4DbðxpÞG4; ð10Þ

ozG3 ¼ �4DbðxpÞG4; ð11Þ

ozG4 ¼ �L�1
c G4 � 2DbðxpÞðG2 � G3Þ ð12Þ

yield the result for the self-products fhu2
1i; hu2

2i; hu2
3ig; fhRe2ðu4Þi; hRe2ðu5Þi;

hRe2ðu6Þig; and fhIm2ðu4Þi; hIm2ðu5Þi; hIm2ðu6Þig; if we associate them with
fG1;G2;G3g with initial conditions given as ð1; 0; 0Þ; ð0; 1; 0Þ; and ð0; 0; 1Þ;
respectively.

The remaining self-products fhRe2ðu7Þi; hRe2ðu8Þi; hRe2ðu9Þ; hRe2ðu10Þig;
fhIm2ðu7Þi; hIm2ðu8Þi; hIm2ðu9Þ; hIm2ðu10Þig; fhRe2ðu11Þi; hRe2ðu12Þi; hRe2ðu13Þ;
hRe2ðu14Þig; and fhIm2ðu11Þi; hIm2ðu12Þi; hIm2ðu13Þ; hIm2ðu14Þig; can be found
from the equations

ozG1 ¼ �2L�1
c ðG1 � G2Þ þ 2D�G5; ð13Þ

ozG2 ¼ 2L�1
c ðG1 � G2Þ � 2D�G6; ð14Þ

ozG3 ¼ 2D�G6; ð15Þ

ozG4 ¼ �2D�G5; ð16Þ

ozG5 ¼ D�ðG4 � G1Þ � L�1
c G5; ð17Þ

ozG6 ¼ D�ðG2 � G3Þ � L�1
c G6; ð18Þ

when we associate them with fG1;G2;G3;G4g; with initial conditions as ð1; 0;
0; 0Þ; ð0; 0; 0; 1Þ; ð0; 1; 0; 0Þ; and ð0; 0; 1; 0Þ; respectively. Here D� � �DbðxpÞ

�

�DbðxsÞ	:
In order to find the cross-products we constructed appropriate generators and

found that all the cross-products that are of interest to us turn out to be equal to
zero. Similarly, terms of the form ReðunÞImðunÞ also vanish. Thus, many SPM,
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XPM, and Raman terms in the final equations of motion disappear. The thus found
equations of motion for the fields are conveniently formulated in Stokes space.
They read as

�oz þ b0ðxpÞot

	 

SðpÞ ¼ c SðpÞ � JðpÞs ðzÞSðpÞ þ SðpÞ � JxðzÞSðsÞ

� �

þ �pðg=2Þ SðsÞ
0 JR0SðpÞ þ SðpÞ

0 JRðzÞSðsÞ
� �

;
ð19Þ

oz þ b0ðxsÞotð ÞSðsÞ ¼ c SðsÞ � JðsÞs ðzÞSðsÞ þ SðsÞ � JxðzÞSðpÞ
� �

þ ðg=2Þ SðpÞ
0 JR0SðsÞ þ SðsÞ

0 JRðzÞSðpÞ
� �

:
ð20Þ

Matrices in Eqs. (19) and (20) are all diagonal with elements JR ¼
diagðJR1; JR2; JR3Þ; Jx ¼ diagðJx1; Jx2; Jx3Þ; Js ¼ diagðJs1; Js2; Js3Þ: These elements
are different for the counter-propagating and the co-propagating interaction
geometries.

In order to complete our theory, we need to express all elements in these
matrices in terms of ensemble averages of self-products:

JR1 ¼ hReðu2
14 � u2

10Þi; ð21Þ

JR2 ¼ �hReðu2
14 þ u2

10Þi; ð22Þ

JR3 ¼ �hju14j2 � ju10j2i; ð23Þ

Jx1 ¼ 2
3
hReðu2

10 þ u2
13 � u2

9 � u2
14Þi; ð24Þ

Jx2 ¼ 2
3
hReðu2

10 þ u2
14 � u2

9 � u2
13Þi; ð25Þ

Jx3 ¼ 2
3
hju9j2 þ ju14j2 � ju13j2 � ju10j2i; ð26Þ

Js1 ¼ 1
3
hReðu2

6Þi; ð27Þ

Js2 ¼ �1
3
hReðu2

6Þi; ð28Þ

Js3 ¼ 1
3

3hu2
3i � 1

� �
; ð29Þ

and also JR0 ¼ hju10j2 þ ju14j2i: Note that our model reduces to the one-beam
theory of Wai and Menyuk when the coefficients u7 through u14 are set to zero.

The Stokes representation is particularly appealing in the context of the prob-
lem that we are considering. As we are interested in the polarization properties
of the outcoming signal beam, the Stokes vector quite clearly presents the
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polarization vector on the Poincaré sphere. The evolution of the Stokes vector
draws a trajectory of its tip on the sphere. Another quantity of interest is the degree
of polarization (DOP). In those cases where we are dealing with an ensemble of
beams, the DOP characterizes the length of the average Stokes vector. Here again
the Stokes representation appears to be rather useful.

Thus, the equation of motion for the Stokes vector of a CW signal beam is

ozS
ðsÞ ¼ cSðsÞ � JsðzÞSðsÞ þ cSðsÞ � JxðzÞSðpÞ

þ �pðg=2Þ SðpÞ
0 SðsÞ þ SðsÞ

0 JRðzÞSðpÞ
h i

:
ð30Þ

(With JR0 ¼ 1; which is the case for all situations considered below). Here Js is the
self-polarization modulation (SPolM) tensor, Jx—cross-polarization (XPolM)
modulation tensor, JR—Raman tensor. All they are diagonal. Elements of these
tensors are dependent on the magnitude of the birefringence both at signal and
pump carrier frequencies, that is on the beat lengths LBðxsÞ and LBðxpÞ; and also
on the correlation length Lc: All these three lengths do not exceed 100 m in
conventional telecom fibers. The physical meaning of each tensor follows from its
definition. Thus, the SPolM tensor defines how two polarization components
belonging to the same beam interact in the Kerr medium, and thereby rotate the
Stokes vector. The XPolM tensor has similar meaning, but now the rotation is due
to the interaction of polarization components belonging to different beams. Finally,
the Raman tensor defines polarization-sensitive amplification of amplifier. This
tensor is of particular importance to us. For instance, when all elements of this
tensor vanish, the Raman amplifier becomes insensitive to the SOP of the pump
beam, so that we are dealing essentially with a scalar model. Conversely, when the
diagonal elements of the Raman tensor have appreciable values, then the theory
must be necessary vectorial.

Certainly, the evolution of the Stokes vector sensitively depends on how the
elements of these tensors evolve with distance. In order to find their dynamics it is
necessary to solve the set of linear ordinary differential equations which is given
above, see also Refs. [2, 3]. Instead of writing them down here, we present their
approximate analytical solutions. Figure 1a, b, c shows how well these analytical
solutions reproduce the exact situation. Figure 1a shows that the elements of the
SPolM tensor drop very fast and already vanish within the first 10 m of the fiber.
Given, that the length of the Raman amplifier exceeds 1 
 2 km; we can safely set

Js ¼ diagð0; 0; 0Þ: ð31Þ

The elements of the other two tensors also deceases with distance, however much
slower, namely as

Jx ¼ � 8
9

diagð1; 1; 1Þ expð�z=LdÞ; ð32Þ

JR ¼ diagð1; 1; 1Þ expð�z=LdÞ: ð33Þ
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(a)

(b)

(c)

Fig. 1 Three diagonal
elements of the a (1/3)
SPolM, b XPolM, and
c Raman tensors. In b, c all
three curves visually
coincide; the blue curve is the
analytical result showing the
exponential decay: /
expð�z=LdÞ: Parameters are:
Lc ¼ 1 m; LBðxsÞ ¼ 10 m;
xp � xs ¼ 13:2 THz; ks ¼
1:55 lm; and kp ¼ 1:45 lm:
The PMD diffusion length is
Ld ¼ 870 m: Note that a brief
transient in b is not resolved
on the chosen scale
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As demonstrated in Fig. 1b, c the decay distance is indeed determined by the

characteristic length Ld; which is called the PMD diffusion length: L�1
d ¼

1
3ðDpDxÞ2; where Dp ¼ 2

ffiffiffi
2

p
p

ffiffiffiffiffi
Lc

p
=ðLBxpÞ is the PMD coefficient, [21], and

throughout the paper Dx ¼ xp � xs is taken to be equal to the Raman shift DxR

in the germanium-doped silica fibers, that is 13.2 THz. The theory that we are
developing here is strictly valid only in two limits – the limit which we call here
Manakov limit ðLNL; LR � LdÞ and diffusion limit ðLNL; LR � LdÞ; where LNL is
nonlinear length, and LR characteristic amplification length.

3 Raman Amplifiers Versus Raman Polarizers

Raman amplifiers, which we call here standard Raman amplifiers, operate in the
diffusion limit, as they are based on fibers with large PMD coefficients. Thus, for
Dp ¼ 0:2 ps=

ffiffiffiffiffiffiffi
km

p
and Dx ¼ DxR ¼ 13:2 THz; the PMD diffusion length Ld is

less than 10 m. Taking into account that standard Raman amplifiers are 10 or more
kilometers long, the contribution of the polarization-dependent gain [second term
in brackets in Eq. (30)] to the total gain [both terms in brackets in Eq. (30) taken
together] is totally negligible. The model equation for the signal beam is then

ozS
ðsÞ ¼ ðg=2ÞSðpÞ

0 SðsÞ: ð34Þ

Thus, each component of the Stokes vector is amplified independently and equally
with the other components. For such Raman amplifier there is no preferentially
amplified polarization mode. The model is essentially a scalar one.

A different situation arises in the Manakov limit. For PMD coefficients less than
0:02 ps=

ffiffiffiffiffiffiffi
km

p
; the PMD diffusion length becomes greater than 1 km. In this case

we can write the model equation for the signal Stokes vector in the form

ozS
ðsÞ ¼ � �cSðsÞ � SðpÞ

þ ðg=2Þ SðpÞ
0 SðsÞ þ SðsÞ

0 SðpÞ
h i

;
ð35Þ

with �c ¼ 8
9c: In this limit ðLd ! 1Þ we deal with an ideal Raman polarizer. The

equation above includes two contributions. The XPolM contribution is a cross-
phase modulation (XPM) part of the Manakov equation, in which the factor of 8

9

appears as the result of averaging of fast stochastic polarization dynamics of each
Stokes vector. Quite to the contrary, the Raman contribution appears exactly as in
the case of isotropic fibers (i.e. in absence of the birefringence, and its stochas-
ticity), because the mutual polarization scrambling of the relative orientations of
the pump and Stokes vectors is very inefficient when the PMD diffusion length Ld

is long. In other words, Raman amplification is insensitive to the absolute orien-
tation of the individual SOPs of the signal and pump beams in the laboratory
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frame. It is however sensitive to their mutual orientation. In the case of standard
Raman amplifiers, the signal Stokes vector rotates rapidly around the pump Stokes
vector, and therefore on average ‘‘feels’’ no polarization dependence. In the case of
Raman polarizers, still the two vectors stochastically rotate in the laboratory
frame, but they do it now in unison, so that their mutual orientation is almost
‘‘frozen.’’

4 An Ideal Raman Polarizer

As characteristic to isotropic fibers, the signal experiences maximal gain when its
Stokes vector is aligned along the pump Stokes vector. To show this we can
choose (without loss of generality) the pump Stokes vector be aligned along its

first component: SðpÞ ¼ SðpÞ
0 ð1; 0; 0Þ: Then, we may write for the signal first Stokes

component:

ozS
ðsÞ
1 ¼ ðg=2ÞSðpÞ

0 SðsÞ
0 þ SðsÞ

1

h i
: ð36Þ

If initially the signal Stokes vector is also aligned with its first component, then the
signal amplification coefficient is g: This value should be contrasted to the value of
g=2; which is characteristic to standard Raman amplifiers, see Eq. (34).

The other two components of the signal Stokes vector are amplified less
efficiently than the first component. Indeed, their equations of motion are:

ozS
ðsÞ
2 ¼ ��cSðpÞ

0 SðsÞ
3 þ ðg=2ÞSðpÞ

0 SðsÞ
2 ; ð37Þ

ozS
ðsÞ
3 ¼ �cSðpÞ

0 SðsÞ
2 þ ðg=2ÞSðpÞ

0 SðsÞ
3 : ð38Þ

Here, the gain is only g=2:
The observations derived from Eqs. (36–38) explain the ability of a Raman

polarizer to re-polarize light. They demonstrate that only the Stokes component of
the signal aligned with the pump Stokes vector is dominantly amplified. In a high-
gain Raman amplifier, the difference in gain for polarization components may
become so large that the polarization of the outcoming beam is almost perfectly
aligned with the pump SOP. This effect of alignment is called polarization
attraction, or polarization trapping. Shortly, we shall quantify effect of the
polarization attraction in terms of the DOP, the so-called alignment parameter, and
some other parameters, while now we comment on the output SOP of the out-
coming signal beam measured with respect of the laboratory frame.

As we have seen, the Raman tensor decays as the distance grows larger, see
Eq. (33). Therefore, it is preferable to decrease the total fiber length at the price of
increasing the pump power. Indeed, the first proof-of-principle experiment
reported in Ref. Martinelli et. al. [16], was carried out with a dispersion-shifted
fiber of only 2; 1 km and an average pump power as high as 2:2 W:
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Most theories of Raman polarizers reported so far, see Refs. [2, 3, 16, 22, 23],
are based on numerical simulations of the stochastic equations which properly take
into account the randomness of the fiber birefringence (the total fiber span is
divided into short segments, with each segment extended over one correlation
length; the orientation of the birefringence axes is fixed within each segment,
while it varies randomly when going from one segment to the next one). Such an
approach is indeed necessary when the PMD diffusion length is comparable with
the amplification length, a case which is in the middle between the Manakov limit
and the diffusion limit. In this case, the Raman polarizer has non-optimal per-
formances, yielding a DOP which is significantly below unity. So, this case is not
advantageous in practice. In order to realize a ‘‘good’’ Raman polarizer, one should
choose to work in the Manakov limit. As we have indicated above, working in this
limit allows us to get analytical and physically transparent results. In the next
section we shall continue to work with ideal Raman polarizers and provide an even
deeper analytical insight.

5 Evaluation of the Performance of a Raman Polarizer

Equations (36–38) can be solved analytically. We shall limit ourselves to the

undepleted pump approximation, so that the pump power P � SðpÞ
0 ðzÞ ¼ const: Our

model does not include linear losses in the fiber, because we have chosen to work
with relatively short fiber spans, for which losses are relatively small. If necessary,
the losses can be included, though analytics will become less transparent. Solu-
tions to Eqs. (36–38) are:

SðsÞ
0 ðzÞ ¼ 1

2
SðsÞ

0 ð0Þ � SðsÞ
1 ð0Þ

h i

þ 1
2

SðsÞ
0 ð0Þ þ SðsÞ

1 ð0Þ
h i

egPz;

ð39Þ

SðsÞ
1 ðzÞ ¼ � 1

2
SðsÞ

0 ð0Þ � SðsÞ
1 ð0Þ

h i

þ 1
2

SðsÞ
0 ð0Þ þ SðsÞ

1 ð0Þ
h i

egPz;

ð40Þ

SðsÞ
2 ðzÞ ¼

h
SðsÞ

2 ð0Þ cosð�cPzÞ

� SðsÞ
3 ð0Þ sinð�cPzÞ

i
e

1
2gPz;

ð41Þ

SðsÞ
3 ðzÞ ¼

h
SðsÞ

2 ð0Þ sinð�cPzÞ

þ SðsÞ
3 ð0Þ cosð�cPzÞ

i
e

1
2gPz:

ð42Þ
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We are interested in the statistical properties of a Raman polarizer. All quan-
tities of interest can be derived from the above-written solutions. First of all, we
shall calculate the mean quantities. The immediate questions are—what is the SOP
of the outcoming signal beam and how well the beam is polarized? In order to find
an answer to the first question we need to simply get an average of Eqs. (39–42)
given the statistics of the incoming light. We assume that the signal is initially

unpolarized, so that hSðsÞ
1 ð0Þi ¼ hSðsÞ

2 ð0Þi ¼ hSðsÞ
3 ð0Þi ¼ 0: Then, at z ¼ L; where L

is the total length of the fiber, we get

hSðsÞ
0 ðLÞi ¼ 1

2
SðsÞ

0 ð0Þ 1 þ expðgPLÞ½ 	; ð43Þ

hSðsÞ
1 ðLÞi ¼ 1

2
SðsÞ

0 ð0Þ �1 þ expðgPLÞ½ 	; ð44Þ

hSðsÞ
2 ðLÞi ¼ 0; ð45Þ

hSðsÞ
3 ðLÞi ¼ 0: ð46Þ

So, the signal SOP at the output is aligned with the pump SOP. The degree of
alignment is characterized by the DOP, which is calculated as

DOPðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hSðsÞ

1 ðzÞi2 þ hSðsÞ
2 ðzÞi2 þ hSðsÞ

3 ðzÞi2
q

hSðsÞ
0 ðzÞi

: ð47Þ

As usual, a DOP equal to unity means that light if perfectly polarized, a DOP equal
to zero indicates that the light beam is unpolarized, while intermediate values
stand for a partially polarized beam. We say that the Raman polarizer perfoms its

function properly when DOP becomes close to unity. Introducing gain G as G �
hSðsÞ

0 ðLÞi=SðsÞ
0 ð0Þ we get G ¼ 1

2 1 þ expðgPLÞ½ 	 and for the DOP:

DOP ¼ 1 � G�1: ð48Þ

The higher the gain, the larger the DOP. Already 20 dB gain is enough to get a
DOP as high as 0:99:

A short comment is in order on how one should interpret the averaging pro-
cedure, expressed by h. . .i: There are two possible situations. On the one hand, we

can vary the SOP of the signal beam in time, then h. . .i ¼ h. . .iT ¼ T�1
R T

0 . . .dt;
where T is the period of time, sufficiently long to get correct statistical averaging.

hSðsÞ
1 iT ¼ hSðsÞ

2 iT ¼ hSðsÞ
3 iT ¼ 0 means that we are dealing with unpolarized light.

On the other hand, we can imagine an experiment with an ensemble of beams.
Then, h. . .i ¼ h. . .ie means ensemble average over all these beams. If the SOPs of
all beams from the ensemble randomly or uniformly cover the Poincaré sphere,

then, similarly to the time average, we get hSðsÞ
1 ie ¼ hSðsÞ

2 ie ¼ hSðsÞ
3 ie ¼ 0: In this
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situation we say that we are dealing with an ensemble of scrambled beams. In a
case where the time average gives the same statistical information as the ensemble
average, we refer to such system as an ergodic one. The Raman polarizers con-
sidered here are obviously ergodic systems, simply because time does not enter the
equations of motion explicitely. Therefore, our analysis is valid for the scrambled
beams approach as well as for time averaging.

Another important quantity which characterizes a Raman polarizer is the
alignment parameter A""; defined as the cosine of the angle between the output
signal SOP and the output pump SOP:

A"" ¼
hSðsÞ

1 SðpÞ
1 þ SðsÞ

2 SðpÞ
2 þ SðsÞ

3 SðpÞ
3 i

hSðsÞ
0 iSðpÞ

0

: ð49Þ

The closer the alignment parameter to unity, the better the alignment of the output
signal and pump Stokes vectors. Using solutions in Eqs. (43–46) we get

A"" ¼
hSðsÞ

1 ðLÞi
hSðsÞ

0 i
¼ 1 � G�1 ð50Þ

for the value of the alignment parameter at the fiber output. Although this value
coincides with the value of DOP, see Eq. (48), these two quantities have different
physical meanings. For a statistical ensemble of beams, the alignment parameter
shows the average direction of the signal Stokes vector on the Poincaré sphere,
while the DOP measures the breadth of the spot traced by the tips of the signal
Stokes vectors around this average direction.

Yet another quantity of interest is the measure of the polarization-dependent
gain (PDG). It is exactly the PDG which is at the heart of a Raman polarizer.
Different SOPs of the signal beam experience different amplifications. The signal
beam with a SOP parallel to the pump Stokes vector is amplified most efficiently,
while the orthogonal polarization experiences no gain. Indeed, as it follows from
the solution in Eq. (40), Gmax ¼ expðgPLÞ and Gmin ¼ 1: We introduce the PDG
parameter D as D ¼ Gmax � Gmin; and get for the ideal Raman polarizer D ¼
2ðG � 1Þ: The PDG parameter aquires high values for a high-gain Raman pola-
rizer. Note that for an ‘‘ideal Raman amplifier’’ (an amplifier, which is perfectly
described by the scalar theory, or in other words, the amplifier, which works
deeply in the diffusion limit) D ¼ 0:

The high value of the PDG parameter points out that along with the desirable
property of strong re-polarization of the signal beam, this device is characterized
by a high level of unwanted relative intensity noise (RIN). By varying the signal
SOP at the input we get pronounced variations of the intensity at the output, even if
the incoming beam had a steady intensity in time. In order to characterize the
output power fluctuations, let us calculate the variance

r2
s ¼ hS2

0ðLÞi
hS0ðLÞi2 � 1: ð51Þ
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Using solution in Eq. (39) we get

r2
s ¼ ð1 � G�1Þ2=3: ð52Þ

For large G; rs  3�1=2  58%: This level of RIN may be detrimental for some
optical devices, particularly nonlinear ones. Note that an ideal Raman amplifier is
characterized by rs ¼ 0; i.e., by zero RIN, thanks to the efficient polarization
scrambling which is provided by PMD. The price to be paid is the totally sto-
chastic signal SOP at the output fiber end.

A reasonable question to ask is whether it is possible for a Raman polarizer to
keep the useful property of re-polarization and at the same time to suppress RIN
down to an acceptable level. The answer is positive. One possible way to combat
the RIN and at the same time keep the property of re-polarization is to use the
Raman polarizer in the depleted-pump regime, Ref. [24]. In this saturation regime
all input SOPs are amplified to approximately the same level of intensity, actually

up to SðsÞ
0 ðLÞ  P: Strictly speaking, only one signal SOP (the one which is per-

fectly orthogonal to the pump SOP) is not amplified at all. However, the numerous
imperfections of any practical realization of a Raman polarizer, including residual
PMD, may prevent the observation of such a singular behaviour.

So far we have analyzed the main statistical properties of an ideal Raman
polarizer operating in the undepleted-pump regime. If necessary, any other sta-
tistical quantity of interest can be obtained from the exact analytical solutions
given in Eqs. (39–42). In a similar manner, one can characterize the re-polariza-
tion of partially polarized beams. The final quantity which we would like to
comment on is the mean gain of an ideal Raman polarizer. It is well known, that
the gain of an ideal Raman amplifier is equal to g=2: The reason is that in the
course of propagation the signal SOP rotates quickly around the pump SOP, and on
average ‘‘feels’’ the arithmetic mean of the maximal gain ðgÞ when it is parallel to
the pump SOP, and minimal gain ð0Þ when it is orthogonal, yielding g=2 on
average. In terms of available gain, an ideal Raman polarizer performs much
better. As can be seen from Eq. (43), for large values of G;G  expðgPL � ln 2Þ;
so that the gain coefficient is almost twice larger. This property makes Raman
polarizers very efficient Raman amplifiers as well.

6 Counter-Propagating Raman Polarizers

So far, we have been dealing only with the co-propagating geometry. In this
geometry, the pump SOP stochastically changes along the fiber, and its output SOP
depends on the particular realization of the birefringence stochasticity in the
chosen fiber span. Moreover, the stochasticity changes with time, as a result of
variation of the environmental conditions. Therefore the trapping of signal’s SOP
to pump’s SOP does not garantee the absence of fluctuations of signal’s SOP at the
output, even though these fluctuatons closely follow the time-varying pump SOP.

Trapping Polarization of Light in Nonlinear Optical Fibers 241



In other words, the co-propagating Raman polarizer provides the trapping effect in
the stochastic frame, but does not garantee the SOP stabilization in the laborotary
frame.

The desirable stabilization in the laboratory frame can be achieved by imple-
menting a counter-propagating geometry, Refs. [3, 23]. Since the signal’s SOP is
attracted toward the instantaneous position of pump’s Stokes vector, this alignment
holds also at the output end of the fiber. The output pump SOP is defined solely by
the source, and as such it is supposed to be well defined and deterministic. In this
respect the counter-propagating geometry is preferrable. As regarding the theory,
one can repeat derivations with the opposite sign of z-derivative in the equation
governing evolution of the pump beam. As shown in Ref. [3], this reversing of the
sign brings some changes in the components of the XPolM and Raman tensors.
They become

Jcounter
x ¼ � 8

9
diagð1;�1; 1Þ expð�z=LdÞ; ð53Þ

Jcounter
R ¼ 1

3
diagð1;�1; 1Þ expð�z=LdÞ: ð54Þ

The presence of the factor 1
3 in front of the Raman tensor immediately leads us to

the conclusion that the counter-propagating Raman polarizer is significantly less
effective in re-polarization than its co-propagating analog. In order to get similar
performances we need either to increase the pump power or lengthen the fiber, or
both. Let us evaluate the performance of this device.

First of all, we start with the solving the equation of motion (35) in the
undepleted-pump regime. We get

SðsÞ
0 ðzÞ ¼ 1

2
SðsÞ

0 ð0Þ � SðsÞ
1 ð0Þ

h i
e

1
3gPz

þ 1
2

SðsÞ
0 ð0Þ þ SðsÞ

1 ð0Þ
h i

e
2
3gPz;

ð55Þ

SðsÞ
1 ðzÞ ¼ � 1

2
SðsÞ

0 ð0Þ � SðsÞ
1 ð0Þ

h i
e

1
3gPz

þ 1
2

SðsÞ
0 ð0Þ þ SðsÞ

1 ð0Þ
h i

e
2
3gPz;

ð56Þ

SðsÞ
2 ðzÞ ¼

h
SðsÞ

2 ð0Þ cosð�cPzÞ

� SðsÞ
3 ð0Þ sinð�cPzÞ

i
e

1
2gPz;

ð57Þ

SðsÞ
3 ðzÞ ¼

h
SðsÞ

2 ð0Þ sinð�cPzÞ

þ SðsÞ
3 ð0Þ cosð�cPzÞ

i
e

1
2gPz:

ð58Þ
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We immediately observe that the difference in amplification coefficients of the first
Stokes component and the second (and third) Stokes component is given by
2
3g � 1

2g: The contrast is much weaker than for the co-propagating case, where we
had g � 1

2g: The average gain of the counter-propagating Raman polarizer is

G ¼ 1
2

e
2
3gPL þ e

1
3gPL

� �
; ð59Þ

which is significantly smaller than for a Raman polarizer operating in the
co-propagating configuration, although it is still larger than for an ideal Raman
amplifier. For the same value of the product PL; the DOP for the counter-propa-
gating configuration is also smaller:

DOP ¼ 1 � 2 e
1
3gPL þ 1

� ��1

 1 � 2e�
1
3gPLðfor gPL � 1Þ

 1 �
ffiffiffi
2

p
G�1=2:

ð60Þ

For G ¼ 20 dB in the co-propagating case the DOP was as high as 99 %, while in
the counter-propagating configuration it is only 86 %.

It is instructive to compare our model of ideal Raman polarizer with full-scale
numerical simulations of the underlying stochastic equations presented in [23],
where the empirical formula:

DOP ¼ 1 � e�GdB=C; ð61Þ

connecting the DOP with the gain was suggested and tested numerically. Here
GdB ¼ 10 log10 G and C  10:2 for the considered range of PMD coefficients. The
graphical comparison of the results obtained with formula (60) on one hand, and
the results plotted according to the empirical formula (61) on the other hand, is
shown in Fig. 2a. The fit is good. On the same plot we have also shown the results
based on the direct numerical solution of Eq. (30) with XPolM and Raman tensors
in the form of Eqs. (53, 54). Note that we did not use any fitting parameter in this
cross-comparison.

The alignment parameter for the counter-propagating geometry is different
from the co-propagating case. Because of the change of the sign in front of the
second element of the Raman tensor, see Eq. (54), the alignment parameter is now

A"# ¼
hSðsÞ

1 SðpÞ
1 � SðsÞ

2 SðpÞ
2 þ SðsÞ

3 SðpÞ
3 i

hSðsÞ
0 iSðpÞ

0

: ð62Þ

For input unpolarized light, the alignment parameter coincides with the DOP,
namely,
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A"# ¼ 1 � 2 e
1
3gPL þ 1

� ��1

 1 � 2e�
1
3gPLðfor gPL � 1Þ

 1 �
ffiffiffi
2

p
G�1=2:

ð63Þ

The PDG parameter D ¼ Gmax � Gmin is easily calculated, resulting in

D ¼ 1
2

e
2
3gPL � e

1
3gPL

� �
¼ 1

2
1 þ 2G �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 8G

p	 

: ð64Þ

Its value is considerably less in the co-propagating configuration, particularly for
moderate values of gain. This observation again points to the relatively poorer
performances of the counter-propagating Raman polarizer. At the same time, the
RIN is expected to have a lower level. In order to demonstrate this, let us evaluate
the variance of the signal intensity. Formula (51) and solution (55) yield

(a)

(b)

Fig. 2 DOP versus gain G:
Graphical comparison of the
results obtained with
formulae (60) (black solid);
results obtained with
empirical formulae (61)
(green dotted); and results
based on the direct numerical
solution of Eq. (30) with
XPolM and Raman tensors in
the form of Eqs. (53, 54) (red
dashed). Parameters are:
a Lc ¼ 1 m; LB ¼ 45 m;
P ¼ 8 W; Dp ¼ 0:005 ps=ffiffiffiffiffiffiffi

km
p

; and Ld ¼ 17:5 km;
L varies from 0 to 2:5 km;
and C ¼ 10:2; b Lc ¼ 10 m;
LB ¼ 3500 m; P ¼ 8 W;

Dp ¼ 0:0002 ps=
ffiffiffiffiffiffiffi
km

p
; and

Ld ¼ 10914 km; L varies
from 0 to 1.5 km, and
C ¼ 4:3
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r2
s ¼ 1

3
1 � 2 e

1
3gPL þ 1

� ��1
� �2

: ð65Þ

Before concluding this section, one remark is in order about the applicability
domain of these results. SPolM, XPolM and Raman tensors given by Eqs. (31–33,
53), and (54) were calculated in the limit

L � Lbire �
L2

BðxpÞ
8p2Lc

: ð66Þ

This inequality holds for all practical situations. Thus, for Lc as small as 1 m and
LB as large as 100 m we get Lbire as short as 127 m. Fiber-optic Raman amplifiers
are always longer than 1 km, and therefore inequality (66) is not violated. How-
ever, if for some reason inequality (66) is violated, for instance for extremely low
birefringent fibers, the analysis given above must be corrected. Thus, in the limit
LBðxpÞ ! 1; the tensors of interest take the following form:

Jcounter
s ¼ 1

3
diagð�1; 1;�1Þ; ð67Þ

Jcounter
x ¼ 4

3
diagð�1; 0;�1Þ; ð68Þ

Jcounter
R ¼ diagð1; 1; 1Þ: ð69Þ

Figure 2b shows the dependence of DOP on Raman polarizer gain for this case.
Although the performance of the Raman polarizer in this limit is very good, we
will not evaluate it here explicitely because of its little practical interest.

7 Conclusion

We have studied the effect of trapping of the state of polarization of a signal beam
by a pump beam in the model of a Raman polarizer. We have introduced the
notion of the ideal Raman polarizer and quantified its performance it terms of gain,
degree of polarization, polarization-dependent gain parameter, alignment param-
eter, and RIN characteristics. We have studied two different geometries: co- and
counter-propagating configurations, and identified their pros and contras. Possible
applications of Raman polarizers include their potential use in telecom-related
signal processing, where the need of transforming an unpolarized light to a
polarized one is necessary in order to provide an interface between the telecom
link and post-processing polarization-sensitive devices (based, for instance, on
nonlinear crystals).
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Studies of Existence and Stability
of Circularly Polarized Few-Cycle
Solitons Beyond the Slowly-Varying
Envelope Approximation

Hervé Leblond, Dumitru Mihalache and Houria Triki

Abstract In this chapter, we provide an overview of recent studies of theoretical
models which adequately describe the temporal dynamics of circularly polarized
few-cycle optical solitons in both long-wave- and short-wave-approximation
regimes, beyond the framework of slowly varying envelope approximation. In the
long-wave-approximation regime, i.e., when the frequency of the transition is far
above the characteristic wave frequency, by using the multiscale analysis
(reductive perturbation method), we show that propagation of circularly polarized
(vectorial) few-cycle pulses, is described by the nonintegrable complex modified
Korteweg–de Vries equation. In the short-wave-approximation regime, i.e., when
the frequency of the transition is far below the characteristic wave frequency, by
using the multiscale analysis, we derive from the Maxwell-Bloch equations the
governing nonlinear evolution equations for the two polarization components of
the electric field, in the first order of the perturbation approach. In this latter case
we show that propagation of circularly-polarized few-optical-cycle solitons is
described by a system of coupled nonlinear evolution equations, which reduces,
for the particular case of scalar solitons, to the completely integrable sine-Gordon
equation describing the dynamics of linearly polarized few-cycle pulses in the
short-wave-approximation regime. It is seen that, from the slowly varying enve-
lope approximation down to a few cycles, circularly polarized solitons are very
robust, according to rotation symmetry and conservation of the angular momen-
tum. However, in the sub-cycle regime, they become unstable, showing a spon-
taneous breaking of the rotation symmetry.
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1 Introduction

A series of seminal papers on experimental generation and characterization of two-
cycle and even sub-two-cycle pulses from Kerr-lens mode-locked Ti: sapphire
lasers were published by several groups more than one decade ago [1–4]. Since
then interest in intense ultrashort light pulses containing only a few optical cycles
has grown steadily in recent years. This fast growing research area has consid-
erable potential for applications in metrology of ultrafast phenomena, in systems
performing laser ablation (micromachining, etching, microsurgery), etc. It still
presents many exciting open problems from both a fundamental and an applied
point of view. The ultrashort pulses possess extensive applications to the field of
light-matter interactions, high-order harmonic generation, extreme [5] and single-
cycle [6] nonlinear optics, and attosecond physics [7, 8]; see Ref. [9] for a review
of earlier works in this exciting research area. We note that such ultrashort laser
pulses with duration of only a few optical cycles are currently used to study
chemical reactions, molecular vibration, electron in atoms and molecules, etc. The
availability of ultrashort and ultraintense laser pulses generated by the powerful
technique of chirped pulse amplification along with the development of high-
fluence laser materials has opened up the field of optics in the relativistic regime
[10]. Recent activity in the area of realization of future large laser facilities,
namely exawatt-class lasers was overviewed by Mourou and Tajima [11]. Note
that such huge power levels will be obtained by releasing a few kilojoules of
energy into an ultrashort pulse with a duration of only 10 fs.

It is well known that light beams carrying a singularity with a screw-type phase
distribution are associated with optical vortices characterized by a topological
charge (vorticity number) corresponding to the phase dislocation. In fact, the
corresponding momentum flow leads to an orbital angular momentum of the light
field. Recently, strong-field physical phenomena with singular light beams have
been put forward [12] and it was demonstrated that optical vortices can be gen-
erated in extreme ultraviolet domain of the spectrum using high-harmonic gen-
eration techniques; see Ref. [12]. Ultrashort optical-vortex pulse generation in the
few-cycle regime was recently reported by Yamane et al. [13]. It was demon-
strated the generation of a 5.9-fs (2.3-cycle) ultrashort optical-vortex pulse
(ranging from 650 to 950 nm), by using optical parametric amplification. Also,
few-cycle high-contrast vortex beams with pulse durations around 8 fs were
generated from a Ti:sapphire laser oscillator with a single diffractive-refractive
component by Bock et al. [14]. Other recent works on few-cycle pulses (FCPs)
deal with few-cycle light bullets created by femtosecond filaments [15], the study
of ultrashort spatiotemporal optical solitons in quadratic nonlinear media [16, 17],
the ultrashort spatiotemporal optical pulse propagation in cubic (Kerr-like) media
without the use of the slowly varying envelope approximation (SVEA) [18, 19],
single-cycle gap solitons generated in resonant two-level dense media with a
subwavelength structure [20], observation of few-cycle propagating surface plas-
mon polariton wavepackets [21], and the possibility of generating few-cycle
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dissipative optical solitons [22–24]. Kozlov et al. [23] numerically demonstrated
how to use the coherent mode locking technique for the generation of single-cycle
pulses directly from a laser. Recent theoretical studies deal with the ultrafast pulse
propagation in mode-locked laser cavities in the few femtosecond pulse regime
and the derivation of a master mode-locking equation for ultrashort pulses [25].
Another relevant recent theoretical work presents a class of few-cycle elliptically
polarized solitary waves in isotropic Kerr media, proposes a method of producing
multisolitons with different polarization states, and studies their binary-collision
dynamics [26].

In the experimental arena we also mention the comprehensive study of intrinsic
chirp of single-cycle pulses [27]. A proposal of a method to generate extremely
short unipolar half-cycle pulses based on resonant propagation of a few-cycle
pulse through asymmetrical media with periodic subwavelength structure was
advanced by Song et al. [28]. Other relevant recent works report the demonstration
of high quality sub-two-cycle pulses (with duration of about 5 fs) from com-
pression of broadband supercontinuum generated in all-normal dispersion photonic
crystal fibers [29], the realization of essentially dispersion-free and diffraction-
limited focusing of few-cycle pulses (with duration of about 6 fs) through all-
reflective microscope objectives [30], generation of unipolar pulses from non-
unipolar optical pulses in a quadratic nonlinear medium [31], in which case the
phase invariance of the electromagnetic wave is broken due to the non-centro-
symmetry of the material, and the existence of guided optical solitons of femto-
second duration and nanoscopic mode area, that is, femtosecond nanometer-sized
optical solitons [32]. In recent comprehensive numerical simulations performed by
Li et al. [33] it was put forward an efficient and realizable scheme for the gen-
eration of ultrashort isolated attosecond (as) pulses by the optimization of three-
color laser fields. As a result, an isolated 23 as pulse can be obtained directly by
superimposing the supercontinuum harmonics near the cutoff region [33]. This
very short attosecond pulse (23 as) is a bit less than one atomic unit of time (the
time scale of electron motion in atoms), which is about 24 as.

The continuing experimental progress in the study of the wave dynamics of
FCPs in nonlinear optical media has paved the way for the development of new
theoretical approaches to model their propagation in physical systems. Three
classes of main dynamical models for FCPs have been put forward: (i) the
quantum approach [34, 35], (ii) the refinements within the framework of SVEA of
the nonlinear Schrödinger-type envelope equations [36–39], and (iii) the non-
SVEA models [40–48]. Extremely short pulses can be described by solving
directly the Maxwell-Bloch equations for a two-level system; soliton (sech-type)
solutions have been derived by Maimistov and Caputo [49]. The propagation of
FCPs in Kerr media can be described beyond the SVEA by using the modified
Korteweg–de Vries (mKdV) [41, 42], sine-Gordon (sG) [43, 44], or mKdV-sG
equations [45–47]. A reduced Maxwell-Duffing model, very close to the mKdV
equation, for the description of extremely short pulses in nonresonant media was
introduced by Kazantseva et al. [50]. Note that the mKdV and sG equations are
completely integrable by means of the inverse scattering transform method
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[51, 52], whereas the mKdV-sG equation is completely integrable only if some
condition between its coefficients is satisfied [53, 54].

To the best of our knowledge, the necessity of using the non-SVEA approach
for the adequate description of FCPs was put forward in the early seminal work by
Akhmediev, Mel’nikov and Nazarkin published in 1989 [55]. In a subsequent
paper, Belenov and Nazarkin [40] obtained exact solutions of nonlinear optics
equations outside the approximation of slowly varying amplitudes and phases for
light pulses a few wavelengths long and with power densities of the order of
109�1018 W/cm2; clearly stating that traditional SVEA methods ‘‘are becoming
ineffective in describing wave processes at such small spatial and temporal scales
and at such high fields’’. We also mention that in a recent study of ultrafast pulse
propagation in a mode-locked laser cavity in the few femtosecond pulse it was
clearly stated that the standard NLS-based approach of ultrafast pulse propagation,
though has been shown ‘‘to work quantitatively beyond its expected breakdown,
into the tens of femtoseconds regime, and has been used extensively for modeling
supercontinuum generation ... when pushed to the extreme of a few femtosecond
pulses, the NLS description becomes suspect ...‘‘ [25]. However, we would like to
point out that, to the best of our knowledge, the necessity of using models beyond
the traditional SVEA in describing the phenomenon of self-induced transparency
for ultrashort pulses propagating in optical media was advanced by Kujawski [56,
57]; see also the subsequent works by Andreev [58] and by Parkhomenko and
Sazonov [59].

In this chapter, we overview some recent studies of theoretical models which
adequately describe the temporal dynamics of circularly polarized (vector) few-
cycle optical solitons beyond the framework of slowly varying envelope approx-
imation, see also two recent extensive reviews [46, 47]. In the next section we
consider in detail the polarization effects in Kerr media in the long wave
approximation regime and we derive the basic evolution equations for both an
amorphous optical medium and for a crystal-like optical medium. The obtained
complex modified Korteweg–de Vries equation (cmKdV) is analyzed in detail and
robust circularly-polarized few-optical-cycle solitons are put forward. Then, in
Sect. 3, we study the circularly-polarized few-optical-cycle solitons in the short
wave approximation regime. We identify their stability domains in the relevant
parameter space, and typical instability scenarios of such vector few-cycle soli-
tons. Finally, the main results and conclusions are briefly summarized in Sect. 4.

2 Polarization Effects in Kerr Media: Circularly Polarized
Few-Optical-Cycle Solitons in the Long Wave
Approximation Regime

In this section we consider the propagation of circularly polarized few-cycle pulses
in Kerr media beyond the slowly varying envelope approximation, see [62, 63].
We work in the long-wave-approximation regime. Thus, assuming that the
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frequency of the transition is far above the characteristic wave frequency, we show
that propagation of FCPs, taking into account the wave polarization, is described
by the non-integrable complex mKdV equation, which is solved by direct
numerical simulations. We get robust localized solutions to the complex mKdV
equation, which describe circularly polarized few-cycle optical solitons. Note that
such ultrashort solitons strongly differ from the breather soliton solutions of the
mKdV equation, which adequately describes linearly polarized FCP solitons. We
show that the circularly polarized FCP soliton becomes unstable when the angular
frequency is less than 1.5 times the inverse of the pulse length, which is about 0.42
cycles per pulse. The unstable sub-cycle pulse decays into a linearly polarized
half-cycle pulse, whose polarization direction slowly rotates around the propaga-
tion axis, see [62, 63].

2.1 Basic Equations for an Amorphous Optical Medium

As a simple model for a glass system we consider a set of two-level atoms with
Hamiltonian H0; X ¼ xb � xa [ 0 is the frequency of the transition. The atoms
may present some induced dipolar electric momentum ~l; which is oriented ran-
domly in space. Assuming a propagation along the z-axis, we can omit the com-
ponent of ~l along the propagation direction z; and thus~l ¼ l cos h~exþð sin h~eyÞ;~ex

and ~ey being the unitary vectors along the x- and y-axis, respectively, and l is a
2 � 2 matrix

l ¼ 0 l
l� 0

� �
: ð1Þ

The evolution of the electric field ~E is governed by the Maxwell equations
which, in the absence of magnetic effects, and assuming a plane wave propagating
along the z axis, reduce to

o2
z
~E ¼ 1

c2
o2

t ð~E þ 4p~PÞ; ð2Þ

where ~P is the polarization density. It is given by ~P ¼ N Tr q~lð Þh i; where N is the
number of atoms per unit volume, q is the density matrix, and �h i denotes the
averaging over all directions in the x � y plane.

The evolution of the density-matrix is governed by the Schrödinger equation as
written for the density matrix in the quantum statistical mechanics formalism, also
known as the von Neumann equation (it will be referred to below as the Schrö-
dinger-von Neumann equation), i.e., i�hotq ¼ H; q½ �; where H ¼ H0 �~l �~E
describes the coupling between the atoms and the electric field. The relaxation
effects can be neglected here as in the scalar approximation, see [43]. Note that the
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physical values of the relaxation times are in the picosecond range, or even slower,
thus very large with regard to the pulse duration, which allows us to neglect them.

The typical frequency xw of the wave must be far away from the resonance
frequency X because the transparency of the medium is required for soliton
propagation. We therefore consider xw � X (the long-wave approximation
regime). The typical length of the wave, say tw ¼ 1=xw; is very large with respect
to the characteristic time tr ¼ 1=X associated to the transition. Thus we are
working in the long-wave approximation regime, as defined in the framework of
the reductive perturbation method [60, 61]. Next we introduce a small parameter
e ¼ 1= Xtwð Þ; and the slow variables s ¼ e t � z=Vð Þ; f ¼ e3z: The retarded time
variable s describes the pulse shape, propagating at speed V in a first approxi-
mation. Its order of magnitude e gives an account of the long-wave approximation,
so that the corresponding values of retarded time have the same order of magni-
tude as tr=e ¼ tw � tr if s is of the order of unity. The propagation distance is
assumed to be very long with regard to the pulse length ctw; therefore it will have
the same order of magnitude as ctr=en; where n>2: The value of n is determined by
the distance at which dispersion effects occur. According to the general theory of
the derivation of KdV-type equations [60], it is n ¼ 3: The f variable of order e3

describes thus long-distance propagation, according to the same general theory.
The electric field ~E; the polarization density ~P; and the density matrix q are

expanded in power series of e as ~E ¼
P

n>1 en un; vn; 0ð Þ; ~P ¼
P

n>1 en

Pn;Qn; 0ð Þ; q ¼
P

n>0 enqn; in which the triplets of coordinates are given in the
ðx; y; zÞ frame, and the profiles u1; v1; etc., are functions of the slow variables s and
f: The components of q are denoted by

q ¼ qa qt

q�
t qb

� �
: ð3Þ

We assume that, in the absence of wave, all atoms are in the fundamental state ðaÞ;
and hence all elements of q0 are zero except q0a ¼ 1:

At lowest order e1; the Schrödinger-von Neumann equation yields

q1t ¼
l
�hX

u1 cos h þ v1 sin hð Þ: ð4Þ

The polarization density is ~P ¼ ðP;QÞ with

P ¼ N qtl
� cos h þ cch i; Q ¼ N qtl

� sin h þ cch i ð5Þ

where cc denotes the complex conjugate. We get

P1;Q1ð Þ ¼ N lj j2

�hX
u1; v1ð Þ: ð6Þ

252 H. Leblond et al.



The wave equation at leading order e3 gives the value of the velocity, V ¼ c=n;

with the refractive index n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4pN lj j2= �hXð Þ

q
: The expression of n coincides

with that obtained in the scalar model (cf. Ref. [43] and Eq. (24) above) if we take
into account the fact that, for a linear polarization in the present framework, only
one half of the dipoles would be active, being roughly aligned with the electric
field. At the order e2; the Schrödinger-von Neumann equation yields q1a ¼ q1b ¼ 0
and q2t ¼ l= �hXð Þ u2 cos h þ v2 sin hð Þ � il= �hX2

� �
os u1 cos h þ v1 sin hð Þ: Conse-

quently, we get similar expressions for P2 and Q2 as those for P1 and Q1; with the
only difference that u1 and v1 are replaced by u2 and u2: The wave equation at
order e4 is automatically satisfied.

At order e3; the Schrödinger-von Neumann equation gives rise to

q2b � q2a ¼ 2 lj j2

�h2X2 u1 cos h þ v1 sin hð Þ2; ð7Þ

and a corresponding much longer expression for q3t: By using

cos4 h
� �

¼ 3
8
; cos2 h sin2 h
� �

¼ 1
8
; ð8Þ

the expression for the polarization density component P3 is

P3 ¼ N lj j2

�hX
u3 �

N lj j2

�hX3 o2
su1 �

3N lj j4

2�h3X3 u2
1 þ v2

1

� �
u1; ð9Þ

and we get an analogue expression for Q3: Next, the wave equation at order e5

yields the following pair of coupled equations:

ofu1 ¼ Ao3
su1 þ Bos u2

1 þ v2
1

� �
u1

	 

; ð10Þ

ofv1 ¼ Ao3
sv1 þ Bos u2

1 þ v2
1

� �
v1

	 

; ð11Þ

in which we have set A ¼ 2pN lj j2= nc�hX3
� �

;B ¼ 3pN lj j4= nc�h3X3
� �

: The dis-
persion coefficient A has the same expression as derived within the scalar model
[43], if we consider that only one half of the dipoles are contributing. Regarding
the nonlinear coefficient B; the ratio between the corresponding nonlinear coeffi-
cients is a bit smaller, 3=8; which is due to the averaging over h:

Equations (10, 11) can be written in the normalized form as

UZ ¼ UTTT þ U2 þ V2
� �

U
	 


T ; ð12Þ

VZ ¼ VTTT þ U2 þ V2
� �

V
	 


T ; ð13Þ

where the subscripts Z and T denote the derivatives, and the functions and vari-
ables are defined as U ¼ u1=E;V ¼ v1=E; Z ¼ z=L; T ¼ t � z=Vð Þ=tw; with L ¼
2ct3

w=n00; and E ¼ ð1=2twÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nn00=ð�3pvð3ÞÞ

p
:
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Equations (12, 13) are a set of coupled mKdV equations describing the prop-
agation of optical FCPs in an amorphous medium presenting cubic nonlinearity
and dispersion. They can be also seen as describing the interaction of two linearly
polarized FCPs, U and V:

2.2 Basic Equations for a Crystal-Like Optical Medium

A system of two coupled mKdV equations was derived above from a model of a
glass (an amorphous medium). This model involved some induced dipolar electric
momentum ~l; oriented randomly in the transverse plane ðx; yÞ; the polarization
density ~P being averaged over all directions in this plane. In the following we will
show that the same governing equations (12, 13) can be derived from another
model, which would rather correspond to a crystalline structure [62].

We also consider a two-level medium, in which the excited level is twice
degenerated, with the induced dipole oriented either in the x or in the y direction.
The corresponding Hamiltonian is given by

H0 ¼ �h
xa 0 0
0 xb 0
0 0 xb

0

@

1

A; ð14Þ

with X ¼ xb � xa [ 0: The dipolar momentum becomes

~l ¼ lx~ex þ ly~ey; ð15Þ

where ~ex and ~ey are the unitary vectors along the x axis and y axis, respectively,
and

lx ¼
0 l 0
l� 0 0
0 0 0

0

@

1

A; ð16Þ

ly ¼
0 0 l
0 0 0
l� 0 0

0

@

1

A: ð17Þ

The evolution of the electric field ~E is governed by the Maxwell equations
which, in the absence of magnetic effects, and assuming a plane wave propagating
along the z axis, reduce to o2

z
~E ¼ 1=c2ð Þo2

t
~E þ 4p~P
� �

; where ~P ¼ NTr q~lð Þ is the
polarization density, N is the number of atoms per unit volume, and q is the
density matrix. There is no averaging over the transverse orientation of the dipolar
momentum any more.

The evolution of the density-matrix is governed by the equation i�hotq ¼ H;q½ �;
where H ¼ H0 �~l �~E describes the coupling between the atoms and the electric
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field. The relaxation effects can be neglected here as in the scalar approximation;
see Ref. [43]. Notice that the physical values of the relaxation times are indeed in
the picosecond range, or even slower (nanoseconds), thus very large with regard to
the pulse duration, which allows us to neglect them.

As above, we assume that the typical frequency xw of the wave is much lower
than the resonance frequency X;xw � X: Recall that, if xw is in the visible range,
it means that the transition frequency is in the ultraviolet, and that the typical
length of the wave, say tw ¼ 1=xw; is very large with respect to the characteristic
time tr ¼ 1=X associated to the transition. It is thus a long wave approximation, as
defined in the framework of the reductive perturbation method [60, 61]. Still as
above, we introduce a small parameter e; which can be here e ¼ 1= Xtwð Þ � 1; and
the slow variables s ¼ e t � z

V

� �
; f ¼ e3z: The retarded time variable s describes

the pulse shape, propagating at speed V in a first approximation, and the f variable
describes long-distance propagation.

The electric field ~E; the polarization density ~P; and the density matrix q are
expanded in power series of e as

~E ¼
X

n>1

en~En ¼
X

n>1

en un; vn; 0ð Þ; ð18Þ

~P ¼
X

n>1

en Pn;Qn; 0ð Þ; ð19Þ

q ¼
X

n>0

enqn; ð20Þ

in which the triplets of coordinates are given in the ðx; y; zÞ frame, and the profiles
u1; v1; etc., are functions of the slow variables s and f: The components of qn are
denoted by qn

ij:

At lowest order e1; the Schrödinger-von Neumann equation yields

q1
12 ¼ l

�hX
u1; q1

13 ¼ l
�hX

v1; ð21Þ

and consequently

P1 ¼ 2N lj j2

�hX
u1; ð22Þ

Q1 ¼ 2N lj j2

�hX
v1; ð23Þ

which are the same expressions as in the glass model (Eq. (6) and [63]), except
that N is replaced with 2N:

At order e3 in the wave equation, we get an expression of the refractive index
with the same slight change:
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n ¼ 1 þ 8pN lj j2

�hX

 !1
2

; ð24Þ

which exactly coincides with the index found in the scalar model [43].
At order e2 in the Schrödinger-von Neumann equation, we first notice that

osq1
23 ¼ 0 and consequently q1

23 ¼ 0: In the same way, q1
11 ¼ q1

22 ¼ q1
33 ¼ 0: Then

we get

q2
12 ¼ l

�hX
u2 �

il

�hX2 osu1; ð25Þ

q2
13 ¼ l

�hX
v2 �

il

�hX2 osv1; ð26Þ

which are the same expressions as in the case of the glass model [63], with the
orientation angle of the dipolar momentum h ¼ 0 for q2

12 and h ¼ p=2 for q2
13:

Consequently, we get

P2 ¼ 2N lj j2

�hX
u2; ð27Þ

Q2 ¼ 2N lj j2

�hX
v2; ð28Þ

and the wave equation at order e4 is automatically satisfied.
At order e3 in the Schrödinger-von Neumann equation, the populations are

computed as

q2
11 ¼ � lj j2

�h2X2 u2
1 þ v2

1

� �
; ð29Þ

q2
22 ¼ lj j2

�h2X2 u2
1; ð30Þ

q2
33 ¼ lj j2

�h2X2 v2
1: ð31Þ

Notice that a nonzero coherence term between the two excited states appears, it is

q2
23 ¼ lj j2

�h2X2 u1v1: ð32Þ

Consequently, the coherence between the fundamental state and the state
excited in the x direction at next order is
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q3
12 ¼ l

�hX
u3 �

il

�hX2 osu2

� l

�hX3 o
2
su1 �

2l lj j2

�h3X3 u2
1 þ v2

1

� �
u1:

ð33Þ

The analogous expression, permuting u1 and v1; is obtained for the component
q3

13:
The expressions for the polarization density components P3 and Q3 are

obtained, as

P3 ¼ 2N lj j2

�hX
u3 �

2N lj j2

�hX3 o2
su1 �

4N lj j4

�h3X3 u2
1 þ v2

1

� �
u1; ð34Þ

and analogously for Q3: Apart from the change from N to 2N already noticed, the
only discrepancy with respect to the corresponding equations in the glass model
(Eq. (9) and [63]) is a coefficient value 4 instead of 3 in the nonlinear term in
Eq. (34).

The wave equation at order e5 yields the following pair of coupled equations:

ofu1 ¼ Ao3
su1 þ Bos u2

1 þ v2
1

� �
u1

	 

; ð35Þ

ofv1 ¼ Ao3
sv1 þ Bos u2

1 þ v2
1

� �
v1

	 

; ð36Þ

in which we have set

A ¼ 4pN lj j2

nc�hX3 ; ð37Þ

B ¼ 8pN lj j4

nc�h3X3 : ð38Þ

Notice that the structure of the set of Eqs. (35, 36) is the same as in the glass model
(Eqs. (10, 11) and [63]), with very slightly modified coefficients. The expressions
of the two dispersion coefficients coincide (the ratio between the corresponding
dispersion coefficients is therefore 1) if we consider that in the case of the glass
model, only one half of the dipoles are contributing, while all of them are involved
in the crystal model. The same feature is observed in the case of the refractive
index. Regarding the value (Eq. 38) of the coefficient B; the ratio between the
corresponding nonlinear coefficients is a bit smaller, 3=8; which is nothing else but
the average value cos4 h

� �
of cos4 h; which is involved in the averaging of the

nonlinear polarization density over all orientations h of ~l in the glass model
(Eqs. (10, 11) and [63]). In fact, the coefficients A and B have here exactly the
same expressions as in the scalar model [43]. It was shown in [43] that the
nonlinear coefficient can be expressed as
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B ¼ �1
2n0c

vð3Þ; ð39Þ

where vð3Þ is the third order susceptibility, while the dispersion coefficient is

A ¼ 1
6

d3k

dx3

����
x¼0

; ð40Þ

kðxÞ holding for the dispersion relation. Recently we proved that the scalar mKdV
model, with expressions (39) and (40) of the coefficients, is valid for a general
Hamiltonian, with an arbitrary number of energy levels, within the long-wave
approximation [64].

It is worthy to mention that Eqs. (35, 36) in their normalized form coincide to
Eqs. (12, 13) where now the functions and variables are defined as

U ¼ u1

E ; V ¼ v1

E ; Z ¼ z

L ; T ¼ t � z=V

tw
; ð41Þ

with

L ¼ n�hcX3t3
w

2pN lj j2
; ð42Þ

E ¼
ffiffiffi
2
3

r
�h

lj jtw
: ð43Þ

2.3 The Analysis of the cmKdV Equation

Looking for soliton solutions we assume that U and V vanish at infinity, the mKdV
system of coupled partial differential equations (12, 13) has four conserved
quantities [65]:

I1 ¼
Zþ1

�1

UdT ; I2 ¼
Zþ1

�1

VdT; ð44Þ

the momentum of the system

I3 ¼
Zþ1

�1

U2 þ V2
� �

dT ; ð45Þ

and its Hamiltonian
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I4 ¼ 1
2

Zþ1

�1

U2 þ V2
� �2�2 oT Uð Þ2þ oT Vð Þ2

h in o
dT ; ð46Þ

which remain constant with Z:
Setting

f ¼ U þ iV ; ð47Þ

Eqs. (12) and (13) reduce to

oZf ¼ o3
T f þ oT fj j2f

� 
; ð48Þ

which is known as the complex modified Korteweg–de Vries (cmKdV) equation.
Confusion must be avoided between Eq. (48) and the other cmKdV equation

oZf ¼ o3
T f þ fj j2oT f : ð49Þ

Indeed, Eq. (49) is completely integrable [66] while Eq. (48) is not. Equa-
tions (48) and (49) are sometimes referred to as cmKdV I and cmKdV II equa-
tions, respectively. The integrable equation (49) has been extensively studied (see
e.g. [66–69]), while less studies have been devoted to the non-integrable equation
(48) [70, 71]. In Ref. [70], using the Painlevé analysis, it is proved that Eq. (48) is
not integrable, and an exhaustive list of analytical solutions is given. In the frame
of the optics of FCPs, the field f must vanish at infinity. With this condition, there
is no exact analytical solution to Eq. (48) but the solutions of the real mKdV
equation. Indeed, setting f ¼ ueiu; with u ¼ uðZ; TÞ and u a constant, reduces the
complex mKdV equation (48) to the real one. The latter describes FCP solitons in
the scalar model [43]. It is indeed well knwon that the real mKdV equation admits
breather solutions. Recall that the two-soliton solution utwo of the mKdV equation
has the expression [73]

utwo ¼
eg1 þ eg2 þ p1�p2

p1þp2

� 2
eg1

4p2
1
þ eg2

4p2
2

� 
eg1þg2

1 þ e2g1

4p2
1
þ 2eg1þg2

p1þp2ð Þ2 þ e2g2

4p2
2
þ p1�p2

p1þp2

� 4
e2g1þ2g2

16p2
1p2

2

; ð50Þ

with gj ¼ pjs � p3
j f � cj; for j ¼ 1; 2; and becomes a breather soliton if p2 ¼ p�

1:

Here Reðp1Þ is the inverse of the pulse length, and Imðp1Þ is the angular frequency,
as are b and x respectively in Eq. (57) below. The real part of the constant c1 ¼ c�2
determines the position of the center of the pulse, while its imaginary part is a
phase. The breather solution to mKdV adequately describes a FCP, and all linearly
polarized FCP solitons are retrieved in this way. Their stability to a random
perturbation of the polarization can be tested numerically. Thus if we add to the
constant u a random (white) noise (we used an amplitude of 0:1 � 2p), it is
obtained that the pulse is not destroyed, and that its polarization remains linear.
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However, the direction of the linear polarization slowly rotates around the prop-
agation direction.

However, we are here mainly interested in circularly polarized solitons. The
latter would be expected to have the form

f ¼ uðT � wZÞeiðxT�kZÞ: ð51Þ

However, no exact, even numerical, steady state solution of this type do exist. To
be ensured of this, just plug f given by the expression (51) in Eq. (48); separating
real and imaginary parts and integrating once yields

3x2 � w
� �

u ¼ o2
T u þ u3;

x2 � k

x

� �
u ¼ 3o2

T u þ u3;
ð52Þ

which are not compatible. Note that solutions having approximately the form (51)
do exist and are very robust. Such solutions are studied in detail in the next
subsection.

2.4 Robust Circularly Polarized Few-Optical-Cycle Solitons

We will next compute an approximate analytic solution to the cmKdV equation
(48), valid for long pulses, i.e. in the SVEA. Next we introduce again a small
parameter e and the slow variables

n ¼ e2Z; g ¼ eðT � wZÞ; ð53Þ

and expand f as

f ¼ eðf0ðg; nÞ þ ef1ðg; nÞ þ � � �Þei xT�kZð Þ; ð54Þ

and run the perturbative reduction procedure [60].
At leading order e; we get k ¼ x3; at second order, we find the inverse velocity

w ¼ 3x2; and at order e3 we get a nonlinear Schrödinger equation for f0:

ionf0 þ 3xo2
gf0 þ xf0 f0j j2¼ 0: ð55Þ

Let us consider the fundamental soliton solution of the above written NLS
equation:

f0 ¼ p
ffiffiffi
6

p
sechðpgÞei3p2xn: ð56Þ

Coming back to the initial variables, we obtain

f ¼ b
ffiffiffi
6

p
sech b T � 3x2Z

� �	 

eix T� x2�3b2ð ÞZ½ �: ð57Þ
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Thus Eq. (57) gives an approximate solution to the cmKdV equation (48), which is
valid for long pulses (b � x).

The numerical solution of the cmKdV equation was obtained by using the
exponential time differencing second order Runge-Kutta method [72]. Note that
the numerical scheme does not conserve exactly the L2-norm (or energy W) of the
solution, however the error remains small (typically DW=W 	 10�4 for
Z ¼ 10000). Due to the scale invariance of the cmKdV equation, only the ratio
b=x may modify the stability properties of the solution. Note that there is only one
free parameter, which is the number of cycles in the pulse (the ratio x=b being
proportional to the number of optical cycles contained in the ultrashort pulse). For
numerical calculations we fix b ¼ 1 and decrease the frequency x:

Figures 1 and 2 shows the evolution of a FCP of this form, with b ¼ 1 and
x ¼ 2: The propagation of the linearly dispersive FCP is also shown for the sake
of comparison.

Note that the FCP propagates without change in width and maximum amplitude
over at least z ¼ 10000 dimensionless units, however, its shape is somehow dis-
torted after propagation. The propagation speed is also quite different from the
result of the above analytical approximate solution. In fact, since no steady state
with linear phase exists, the pulse is not a true steady state, and consequently its
velocity varies in a quite erratic way; nevertheless, it is a very robust FCP.

In the following we show by numerical simulations that we get quite robust
circularly polarized FCP solitons, see [62]. Notice that the approximate solution
(57) has not a zero mean value, except at the SVEA limit b � x: However the
mean value of the field is conserved. It is likely that the circularly polarized FCP
soliton would have a zero mean value, and hence this would explain the dis-
crepancy between the approximate analytical solution (57) and the direct numer-
ical computation shown on Figs. 1 and 2. In order to check this interpretation, let
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Fig. 1 (Color online) Propagation of a circularly polarized few-cycle pulse. The left panel shows
the nonlinear propagation of the x-polarized component U: Initial data is given by Eq. (57) with
b ¼ 1 and x ¼ 2: The right panel shows the propagation of the linearly dispersive few-cycle
pulse having the same initial profile but with very small amplitude. a Nonlinear, b Linear (after
Ref. [62])
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us consider an input having zero mean value. Such an alternative expression is
found from the breather (or two-soliton) solution of the real mKdV equation, given
by Eq. (50) above. Taking for one polarization component, say U; the breather
solution with c1U ¼ 0; and for the second polarization component V the same
expression, but with a p=2 dephasing, i.e. with c1V ¼ ip=2; we get some expres-
sion which can be used as an input data for solving numerically the cmKdV
equation. This pulse is very close to the approximate analytical solution (57), but
has a zero mean value. Numerical resolution shows that the pulse, apart from small
apparently chaotic oscillations, keeps its shape and characteristics during the
propagation.

2.5 Instability of Circularly Polarized Pulses in the Sub-
Cycle Regime and Spontaneous Symmetry Breaking

In what follows we will study the decay of the unstable circularly polarized FCP
and the corresponding transition to a half-cycle soliton. The value x=b ’ 1:5
appears to be the lower limit for the stability of the circularly polarized FCP
soliton. Note that the ratio x=b is proportional to the number of cycles contained in
the pulse. More precisely, the number of optical cycles Nc is the ratio of the pulse
duration (FWHM ¼ 2 ln 1 þ

ffiffiffi
2

p� �
=b) divided by the optical period 2p=x; i.e.

Nc ’ 0:28x=b: The stability limit of the circularly polarized FCP soliton is thus
about Nc ¼ 0:42: Hence circularly polarized FCP are stable down to the sub-cycle
range. For smaller values of the ratio x=b; the FCP becomes unstable, and decays
into a linearly polarized single-humped (half-cycle) pulse, in the form of a fun-
damental soliton of the real mKdV, thus breaking the rotation symmetry of the
wave.

The transition occurs, for x=b ¼ 1:4; between Z ¼ 19100 and 19200,
for x=b ¼ 1:3; between Z ¼ 9300 and 9400, but for x=b ¼ 1; between between

Fig. 2 (Color online) Initial
(Z ¼ 100) and final
(Z ¼ 10000) profiles of the
few-cycle pulse plotted on
Fig. 1 for the input given by
Eq. (57). Blue (dotted): initial
jf j; light blue (thick gray):
initial U; red (thin solid):
final jf j; pink (dash-dotted):
final U (after Ref. [62])
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Z ¼ 400 and 500. Further, it occurs very abruptly, and involves a strong modifi-
cation of the spectrum; see Ref. [62, 63] for more details.

The transition to a half-cycle soliton is shown in Figs. 3 and 4. It is a single
pulse, whose profile accurately coincides with that of the fundamental soliton
solution to the real mKdV equation

U ¼
ffiffiffi
2

p
b sech bT � b3Z

� �
; ð58Þ

but which slowly rotates around the propagation axis.
It is worthy to mention that half-cycle optical solitons were also put forward in

quadratic nonlinear media; thus a few-cycle pulse launched in a quadratic medium
may result in a half-cycle soliton in the form of a single hump, with no oscillating
tails [74]. However, in that case the symmetry breaking was not spontaneous as in
the present one, but induced by the non-centrosymmetry of the material.

Concluding this section, we point out that the multiscale perturbation analysis
was used in Refs. [62, 63] to derive approximate evolution equations governing the
propagation of circularly polarized femtosecond optical solitons in cubic (Kerr-
like) media beyond the slowly varying envelope approximation. Thus we took into
account the vectorial nature of the electric field and therefore we properly con-
sidered the wave polarization effects. In the long-wave-approximation regime we
have found that the two interacting waveforms corresponding to such vector few-
optical-cycle solitons are adequately described by a coupled pair of cmKdV
equations at the third-order approximation of the perturbation approach. In the
sub-cycle regime instability occurs, which corresponds to a breaking of the axial
symmetry of the FCP soliton.

(a) (b)

Fig. 3 (Color online) Normalized profiles of an unstable circularly polarized few-cycle pulse.
Initial data is defined by the breather soliton with p1 ¼ 1 þ i; i.e. both pulse width and angular
frequency equal to 1, for the polarization component U; and the same with a p=2 dephasing for V :
Light blue (dotted): jf j and �jf j; pink (solid): U ¼ Reðf Þ; green (dashed): V ¼ Imðf Þ: a Initial (at
Z = 100), b Final (at Z = 1300) (after Ref. [62])
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3 Circularly Polarized Few-Optical-Cycle Solitons:
Short-Wave-Approximation Regime

In this section we consider the propagation of few-cycle pulses beyond the slowly
varying envelope approximation and in the short-wave-approximation regime, in
media in which the dynamics of constituent atoms is described by a two-level
Hamiltonian, by taking into account the wave polarization, see [75]. Therefore we
assume that the resonance frequency of the two-level atoms is well below the
inverse of the characteristic duration of the optical pulse, it should thus belong to
the infrared range if the latter is in the visible range. By using the reductive
perturbation method (multiscale analysis) we then derive from the Maxwell-
Bloch-Schrödinger equations the governing evolution equations for the two
polarization components of the electric field in the first order of the perturbation
approach. We show that propagation of circularly polarized few-optical-cycle
solitons is described by a rather complicated system of coupled nonlinear equa-
tions [75], which reduces in the scalar case to the standard sine-Gordon equation
describing the dynamics of linearly polarized FCPs in the short-wave-approxi-
mation regime. We then calculate the lifetime of circularly-polarized FCPs by
using adequate numerical methods and we study the transition to two orthogonally
polarized single-humped pulses as a generic route of their instability; for a com-
prehensive study of this issue see Ref. [75]. It is worthy to notice that other
vectorial non-SVEA models have been also proposed [76, 77], however they were
only built from a direct analogy with common SVEA models. We recall that
circularly polarized short pulse propagation in a system of two-level atoms has
been studied more than two decades ago in the framework of the self-induced
transparency [78] and the existence of localized solutions of Maxwell-Bloch type
systems beyond the SVEA has been considered too [79, 80]. However, not all the
coupling mechanisms between the polarization components were taken into

Fig. 4 (Color online)
Evolution of the polarization
of the unstable circularly
polarized few-cycle pulse
with both angular frequency
and pulse length 1. Blue
(dotted): initial circularly
polarized pulse (at Z ¼ 100),
red (solid): final linearly
polarized pulse (at Z ¼ 1300)
(after Ref. [62])
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account in these earlier studies. However, the authors of Ref. [80] took an essential
coupling term into account through the out-of-phase polarization, which allowed
them to show that the pulse solution valid within the SVEA could not be gen-
eralized beyond it by means of some corrections terms.

3.1 Governing Equations in the Short-Wave Approximation
Regime

We consider a two level model, in which the excited state is degenerated twice,
corresponding to oscillations along the x and y axes. The free Hamiltonian is thus
given by Eq. (14). The resonance angular frequency is X ¼ xb � xa [ 0: The
electric field ~E is coupled with the atoms by the Hamiltonian H ¼ H0 �~l �~E; in
which the dipolar momentum operator is ~l ¼ lx~ex þ ly~ey; lx and lx are given by
Eqs. (16) and (17).

Then the evolution of the atoms is governed by the Schrödinger-von Neumann
equation i�hotq ¼ H; q½ �; in which q is the density matrix, and the evolution of the
electric field ~E is governed by the electromagnetic wave equation o2

z
~E ¼

1=c2ð Þo2
t
~E þ 4p~P
� �

; where c is the speed of light in vacuum and the polarization

density ~P is given by ~P ¼ NTr q~lð Þ:
The short-wave-approximation is performed according to the general theory

developed in Refs. [43, 81, 82]. We denote by ðu; v; 0Þ the components of the
electric field ~E in the ðxyzÞ frame, by ðP;Q; 0Þ the ones of ~P; and by qij; i; j ¼
1; 2; 3; the elements of the Hermitian matrix q: All these quantities are expanded in
power series of a small parameter e as ~E ¼ ~E0 þ e~E1 þ e2~E2 þ � � � ; and so on. We
introduce fast and slow variables s ¼ t � z

V

� �
and f ¼ ez; so that ot ¼ os and

oz ¼ �V�1os þ eof: The above series expansions and fast and slow variables are
reported into the Maxwell and Schrödinger-von Neumann equations and the
perturbative scheme is solved order by order.

The Schrödinger-von Neumann equation at order e0 yields i�hosq0 ¼
� ~l �~E0; q0
	 


; that is,

i�hosq
0
11 ¼ � lq0�

12 � q0
12l

�� �
u0 � lq0�

13 � q0
13l

�� �
v0; ð59Þ

i�hosq
0
22 ¼ � l�q0

12 � q0�
12l

� �
u0; ð60Þ

i�hosq
0
33 ¼ � l�q0

13 � q0�
13l

� �
v0; ð61Þ

i�hosq
0
12 ¼ �l q0

22 � q0
11

� �
u0 � lq0�

23v0; ð62Þ

i�hosq
0
13 ¼ �lq0

23u0 � l q0
33 � q0

11

� �
v0; ð63Þ

i�hosq
0
23 ¼ �l�q0

13u0 þ q0�
12lv0: ð64Þ
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It is easy to check that Eqs. (59–61) satisfy the normalization condition for the
density matrix, i.e. osTrq0 ¼ 0:

Assuming that the electric field components u and v vanish as s tends to �1;
integrating Eqs. (62) and (63), and incorporating them into Eq. (59) we get

osq
0
11 ¼ 2 lj j2

�h2 u0

Zs

�1

w1u0 þ rv0f g þ v0

Zs

�1

ru0 þ w2v0f g

2

4

3

5; ð65Þ

where we have defined the population differences as w1 ¼ q0
22 � q0

11;w2 ¼
q0

33 � q0
11; and we set r ¼ Req0

23:
Then by incorporating Eq. (62) into Eq. (60), we get

osq
0
22 ¼ � 2 lj j2

�h2 u0

Zs

�1

w1u0 þ rv0ð Þ: ð66Þ

Integrating Eq. (63) and incorporating it into Eq. (61) yield

osq
0
33 ¼ � 2 lj j2

�h2 v0

Zs

�1

ru0 þ w2v0ð Þ: ð67Þ

The x and y components P0 and Q0 of the zero order polarization density ~P0 are
given by P0 ¼ N q0

12l
� þ q0�

12l
� �

;Q0 ¼ N q0
13l

� þ q0�
13l

� �
: By integrating Eqs. (62)

and (63), incorporating them into the expressions of P0; and Q0 and setting j ¼
Im q0

23

� �
we get

P0 ¼ 2 lj j2N

�h

Zs

�1

jv0; ð68Þ

Q0 ¼ � 2 lj j2N

�h

Zs

�1

ju0: ð69Þ

By integrating Eqs. (62) and (63), incorporating them into Eq. (64), and sep-
arating real and imaginary parts, we obtain evolution equations for r ¼ Req0

23 and
j ¼ Imq0

23; as

osr ¼ �u0Py � v0Px; ð70Þ

where we have set

Px ¼
lj j2

�h2

Zs

�1

w1u0 þ rv0ð Þ; ð71Þ
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Py ¼
lj j2

�h2

Zs

�1

w2v0 þ ru0ð Þ; ð72Þ

and

osj ¼ � lj j2

�h2 u0

Zs

�1

ju0 þ v0

Zs

�1

jv0

0

@

1

A: ð73Þ

Then a simple analysis shows that j ¼ 0 and consequently, q0
23 is a real quantity.

Thus we find out that ~P0 ¼~0 and incorporating this value into the Maxwell wave
equation at order e0; we get that the wave velocity is V ¼ c at the zero order of the
series expansion in the small parameter e:

We next get the polarization density at order e1 from the Schrödinger-von
Neumann equation at order e1: The polarization density components P1 and Q1

involve the density matrix elements q1
12 and q1

13; respectively and are given by
P1 ¼ N q1

12l
� þ q1�

12l
� �

and Q1 ¼ N q1
13l

� þ q1�
13l

� �
: If we set ĵ ¼ Im q1

23

� �
we get

the following expressions for P1 and Q1:

P1 ¼ � 2 lj j2XN

�h

Zs

�1

Zs

�1

w1u0 þ rv0ð Þ þ 2 lj j2N

�h

Zs

�1

ĵv0; ð74Þ

Q1 ¼ � 2 lj j2XN

�h

Zs

�1

Zs

�1

ru0 þ w2v0ð Þ � 2 lj j2N

�h

Zs

�1

ĵu0: ð75Þ

From the wave equation at order e1 we get the evolution equations for the fields
u0 and v0 as ofu0 ¼ ð�2p=cÞosP1 and ofv0 ¼ ð�2p=cÞosQ1: The equations for
w1;w2 are deduced straightforwardly from the equations for the diagonal elements
of q0; as osw1 ¼ �4u0Px � 2v0Py and osw2 ¼ �2u0Px � 4v0Py: Then we get the
equation for ĵ:

osĵ ¼ �X u0

Zs

�1

Py � v0

Zs

�1

Px

0

@

1

A: ð76Þ

Summarizing the analysis of Maxwell-Schrödinger-von Neumann equations,
we are left with a coupled system of ten nonlinear integro-differential equations for
the dependent variables u0; v0;P1;Q1;Px;Py ĵ;w1;w2; and r; see Ref. [75] for
details.

The coupled system of ten nonlinear integro-differential equations can be
written in its normalized (dimensionless) form by introducing the following
dimensionless functions and variables; see Ref. [75]: ðu; vÞ ¼ u0; v0ð Þ=E0; T ¼
s=T0; Z ¼ f=D; where the reference electric field E0; the reference propagation
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distance D and the reference time T0 are related through T0 ¼ �h=ðjljE0Þ;D ¼
E0c=ð4pNXjljÞ; ðm; nÞ ¼ ð�h=lÞ Px;Py

� �
and ðp; qÞ ¼ ½E0=ð2N�hXÞ� P1;Q1ð Þ: We

note that the short-wave assumption mainly expresses in the fact that the reference
propagation distance D is large. If we set w ¼ ðw1 þ w2Þ=2; r ¼ ðw2 � w1Þ=2; the
system of ten nonlinear integro-differential equations reduces to the dimensionless
form:

oZu ¼ �oT p; ð77Þ

oZv ¼ �oT q; ð78Þ

oTp ¼ �m þ vK; ð79Þ

oT q ¼ �n � uK; ð80Þ

oT m ¼ ðw � rÞu þ Sv; ð81Þ

oT n ¼ ðw þ rÞv þ Su; ð82Þ

oT K ¼ uq � vp; ð83Þ

oT w ¼ �3ðum þ vnÞ; ð84Þ

oT r ¼ um � vn; ð85Þ

oTS ¼ �un � vm: ð86Þ

By defining four new complex quantities P ¼ p þ iq;M ¼ m þ in;U ¼ u þ iv
and s ¼ r � iS; the nonlinear system (77–86) of ten coupled equations reduces to a
more compact system of only six coupled nonlinear equations:

oZU ¼ �PT ð87Þ

oT P ¼ �M � iUK ð88Þ

oT M ¼ wU � sU� ð89Þ

oT K ¼ Im U�Pð Þ ð90Þ

oT s ¼ UM ð91Þ

oT w ¼ �3Re U�Mð Þ ð92Þ

The above nonlinear system of coupled partial differential equations in its nor-
malized form describing vectorial ultrashort solitons in the short-wave propagation
regime can be considered as the natural generalization of the sine-Gordon equa-
tion. We will indeed show below that it reduces to the usual sine-Gordon equation
in the scalar case when the second component v ¼ v0=E0 of the electric field is
equal to zero.
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Now we write down two conservation laws for the above physical system. First,
denoting by I ¼ u2 þ v2 the normalized intensity we straightforwardly get oZI ¼
�ð2=3ÞoT w; that is, when the homogeneous population difference w has its value
corresponding to the thermal equilibrium both before and after the pulse oT w ¼ 0;

the power
Rþ1
�1 Idt is conserved during propagation. This equation for the evolu-

tion of intensity I also shows that the energy transfer inside the pulse is entirely
governed by the homogeneous population difference w: Second, we show that
there is an additional conservation law which can be obtained by mimicking the
obtaining of a second conservation law in the scalar case, when a sine-Gordon
equation is obtained from the above complicated system of ten coupled nonlinear
equations. To this aim let us consider the scalar case v ¼ 0: It is seen that K; S; n; q
are equal to 0 and w ¼ �3r: Then the system (77–86) reduces to

oZu ¼ �oT p; ð93Þ

oT p ¼ �m; ð94Þ

oT m ¼ �4ru; ð95Þ

oT r ¼ um: ð96Þ

The nonlinear system of coupled equations (93–96) reduces to the sine-Gordon
equation as follows [83]. If we set m ¼ A sin h and r ¼ ð�A=2Þ cos h; then a direct
computation shows that oT A ¼ 0; hence A is a constant. From Eqs. (93–95) it is
seen that oZu ¼ A sin h: On the other hand, oZoT u can be computed, either by
taking the T-derivative of oZu; which yields oZoT u ¼ �2roTh; or by combining
Eq. (93) and Eq. (95) which yields oZoT u ¼ �4ru: Comparison between both
expressions shows that u ¼ oTh=2 and we get the sine-Gordon equation

oZoTh ¼ 2A sin h: ð97Þ

From this derivation, it is seen that the reduction of system (93–96) to a sine-
Gordon equation is based on the conservation law oTA2 ¼ oT m2 þ 4r2ð Þ ¼ 0: This
conservation law can be straightforwardly generalized to the vectorial case as
follows: A ¼ m2 þ n2 þ 1

3 w2 þ r2 þ S2 in terms of the normalized real variables,

or equivalently, A ¼ jMj2 þ 1
3 w2 þ jsj2 in terms of the normalized complex ones.

As the mKdV equation, the sine-Gordon equation (97) is completely integrable
[52] and admits breather solutions. A N-soliton solution can be found using either
the inverse scattering transform or the Hirota method. The 2-soliton solution writes
as [52]

u ¼ 2i ln
f �

f

� �
; ð98Þ
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with

f ¼ 1 þ ieg1 þ ieg2 � ðk1 � k2Þ2

ðk1 þ k2Þ2 eg1þg2 ; ð99Þ

where

gj ¼ kjT � 2AZ

kj
þ cj ð100Þ

for j ¼ 1; 2; while k1; k2; c1 and c2 are arbitrary parameters. As in the case of the
mKdV equation, using complex conjugate values of the soliton parameters k1 and
k2 yields a second-order soliton or breather, which is able to describe a FCP
soliton.

The general vectorial model introduced above allows thus to retrieve the linear
polarization model as a particular case of it. In what follows we look for an
approximate expression of circularly polarized pulses. To this aim we note that a
circularly polarized FCP is described by means of the complex system of nonlinear
equations (87–92). An expression of the form U ¼ F T � Z=vg

� �
ei kZ�xTð Þ might be

a solution of this system. However, a direct substitution of this expression into the
system (87–92) shows, that no exact solution of this form exist. It is worthy to
notice that the non-existence of exact non-SVEA circularly polarized pulse solu-
tions to the Maxwell-Bloch equations was already pointed out in [79], although in
the framework of a slightly different model. However, in the following we seek for
an approximate solution of circularly polarized pulses in the limit of large x; i.e.,
in the SVEA limit, by means of a multiscale expansion very similar to the standard
one for deriving a NLS equation model in the SVEA limit [60]. To this aim we
consider some small parameter e; so that 1=e is of the order of magnitude of the
number of optical cycles in the pulse, which is assumed to be large in the SVEA
limit. We expand U in power series U ¼

P
r;n eneiruUr;n; with u ¼ kZ � xT ; and

introduce slow variables s ¼ e t � z=vg

� �
; and f ¼ e2Z: At leading order (e1), we

assume that U1;1 ¼ F is the only nonzero term in this expansion. After a standard
procedure, we are left with a NLS equation for the variable F; from which we
finally get the approximate expression for the circularly polarized soliton, as

U ¼ bei k�b2k
x2

� �
Z�xT

	 

sech b T þ k

x
Z

� �� �
; ð101Þ

in which the soliton parameter b is assumed to be small. As concerning the
stability of the circularly polarized soliton (Eq. 101) within the SVEA, it can be
addressed analytically; see Ref. [75]. A direct consequence of the known prop-
erties of nonlinear Schrödinger solitons implies that the circularly polarized pulses
are stable within the SVEA.
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3.2 Lifetime of Circularly Polarized Few-Cycle Pulses
and Spontaneous Symmetry Breaking

Note that the existence and stability of the circularly polarized FCP within SVEA
does not ensure either its stability or even its existence beyond SVEA [79]. In the
following we study numerically the stability of circularly polarized few-cycle
pulses beyond the SVEA. The Z evolution of u and v is computed by means of a
standard fourth-order Runge-Kutta algorithm, at each step and substep of the
scheme, the eight other components are computed using the same algorithm but
relative to the T variable. We assume that all atoms are initially in the fundamental
state, that is, w ¼ �1 at T ¼ 0: We use the approximate circularly polarized pulse
(Eq. 101) as an input, with x ¼ 5; and vary the pulse duration b: Extensive
numerical simulations show that the input FCP decays into two linearly polarized
single-humped pulses, breaking the rotation symmetry as was observed for the
sub-cycle pulses within the long-wave approximation. In general, two orthogo-
nally polarized pulses with different amplitudes are obtained (see Figs. 5, 6, and
7). For the shortest sub-cycle pulses, the instability occurs very fast, the amplitudes
of the two single humped pulses strongly differ, and the angle between their
polarization directions is not close to p=2: In fact, the single-humped pulses are
fundamental solitons of the sine-Gordon equation (97) to which the system reduces
in the case of linear polarization, i.e., the scalar case. However, no stability
threshold for the circularly polarized FCPs can be evidenced by these numerical
calculations. The lifetime of circularly-polarized FCPs becomes very large when
the number Nc of optical cycles in the pulse is greater than one; see Ref. [75] for a
detailed study of this issue.

We conclude this section devoted to circularly polarized few-cycle solitons in
the short-wave regime by stressing that we took into account the vectorial nature
of the electric field, and therefore we properly considered the wave polarization
effects [75]. We have found that the two interacting waveforms corresponding to
such vector few-optical-cycle solitons are adequately described by a coupled
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Fig. 5 (Color online) The
circularly polarized few-cycle
pulse and its decay into
orthogonally polarized
single-humped pulses.
Parameters: x ¼ 5 and b ¼ 2:
Here Zdisp ¼ 37 (after Ref.
[75])
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system of nonlinear equations at the first-order approximation of the perturbation
approach. By direct numerical simulations we calculated the lifetime of circularly
polarized few-optical-cycle solitons and we studied their decay into two orthog-
onally polarized single-humped pulses as a generic route of their instability [75]. A
challenging extension suggested by these studies is to consider the case of two
transitions, one below and one above the range of propagated wavelengths.
Another interesting open problem is the generalization of this study to one or even
to two spatial transverse dimensions, in addition to time and spatial longitudinal
coordinates, that is, the issue of formation and robustness of vector few-optical-
cycle spatiotemporal solitons, alias ultrashort vector light bullets, beyond the
slowly varying envelope approximation, in both the long- and short-wave regimes;
for recent overviews of a lot of theoretical and experimental studies of spatio-
temporal optical solitons in several relevant physical settings, see [84–86].
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4 Conclusions

Given the rapid growth of theoretical and experimental studies in the past decade
in the area of few-optical-cycle pulses and high field physics and extreme non-
linear optics, one can expect many new and exciting developments over the next
years. No doubt, soon one can expect a maturity of these fast growing research
areas, leading to new and interesting physical phenomena and to the utilization of
their huge technological potential. We focused in this chapter on the vectorial
properties of few-optical-cycle solitons, showing the existence of robust circularly
polarized few-cycle solitons, while in the sub-cycle regime these circularly
polarized pulses are unstable and decay into either one or two linearly polarized
pulses, breaking the rotation symmetry. We conclude with the hope that this
overview on some recent developments in the area of few-optical-cycle solitons
will inspire further theoretical and experimental investigations.
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Defect Modes, Fano Resonances
and Embedded States in Magnetic
Metamaterials

M. I. Molina

Abstract We consider a simplified model of a nonlinear magnetic metamaterial,
consisting of a weakly-coupled, periodic split-ring resonator (SRR) array capable
of nonlinear capacitive response. We analyze three related problems: (a) The
calculation of localized modes around simple magnetoinductive impurities located
at the surface or at the bulk of the array, in closed form for both, linear and
nonlinear cases. (b) The scattering of magnetoinductive waves across internal
(external) capacitive (inductive) defects coupled to the SRR array and the
occurrence of Fano resonances, and how to tune them by changing the external
parameters of the system. (c) Description of a method for building a stable
localized magnetoinductive mode embedded in the linear band of extended states.

1 Introduction

Metamaterials (MMs) are novel artificial materials characterized for having negative
dielectric permittivity and negative magnetic permeability over a finite frequency
range, endowing them with unusual electromagnetic wave propagation properties
[1, 2]. One of the most studied MMs is a metallic composite structure consisting of
arrays of wires and split-ring resonators (SRRs). The theoretical treatment of such
structures relies mainly on the effective-medium approximation where the composite
is treated as a homogeneous and isotropic medium, characterized by effective
macroscopic parameters. The approach is valid, as long as the wavelength of the
electromagnetic field is much larger than the linear dimensions of the MM
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constituents. The magnetic properties of SRR arrays have been explored in a number
of works [3–11].

Among the numerous aspects to explore with a new and promising electro-
magnetic material such as MMs, are its optical transport properties. For a SRR
periodic array, it is only natural to explore the propagation of long-wavelength
excitations, in the presence of one or few ‘‘impurities’’ that break its translational
invariance. In the absence of any defects, the eigenmodes of a linear periodic SRR
array are termed ‘‘magnetoinductive waves’’. The presence of judiciously placed
defects make possible interesting phenomena such as localized linear and/or non-
linear defect modes, or resonance phenomena, such as Fano resonances (FR), where
there is total reflection of plane waves through the impurity region, in an otherwise
periodic potential. In a typical FR system, the wave propagation in the presence of a
periodic scattering potential is characterized by open and closed channels. The open
channel guides the propagating waves as long as the eigenfrequencies of closed
channels do not match the spectrum of linear waves. The total reflection of waves in
the open channel occurs when a localized state originating from one of the closed
channels resonates with the open channel spectrum [12]. The FR effect can be used
to control the optical response in novel, man-made materials, such as magnetic
metamaterials. On the other hand, a judiciously chosen modulation of the resonant
frequency of each resonator in an SRR array, can lead to the creation of a localized
bound state of the SRR array that is embedded in the band of extended states. An
explicit method for building this kind of state in general periodic discrete systems
has been found recently [13], and we will apply it to the SRR array.

2 Simplified Model

Let us consider a one-dimensional, periodic array of split-ring resonators (SRRs),
in the absence of nonlinearity, driving and dissipation. The most simple form of a
split-ring resonator is that of a small, conducting ring with a slit. In general, each
SRR unit in the array can be mapped to a resistor-inductor-capacitor (RLC) circuit
featuring self-inductance L, ohmic resistance R, and capacitance C built across the
slit. In our case, we will consider the case of negligible resistance R. Thus, each
SRR unit possesses a resonant frequency x0 � 1=

ffiffiffiffiffiffi
LC

p
. In the array, each SRR is

coupled to their nearest neighbor via mutual induction [3, 4]. A more accurate
model can be found Ref. [14].

In the absence of driving and dissipation, the evolution equation for the charge
Qn residing on the nth ring is

d2

dt2
LQn þ

X

m 6¼n

MnmQm

 !

þ Qn

C
¼ 0; ð1Þ
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where L is the self-inductance of the nth-ring, and Mnm is the mutual induction
between rings n and m. We cast this equation in dimensionless form by defining
s � x0t, qn � Qn=CU0; knm � Mnm=L, where U0 is a characteristic voltage across
the slits.

The dimensionless evolution equation for the charge qn residing on the nth ring
reads now

d2

ds2
qn þ

X

m 6¼n

knmqm

 !

þ qn ¼ 0; ð2Þ

where knm denotes the ratio of the mutual inductances between the nth and the mth
ring to the self inductance of the rings, and decreases as the inverse cube of the

ring-to-ring distance, knm / jn � mj�3 (m 6¼ n). In the limit of weak coupling
(large distance between SRR units), it is customary to take knm ¼ k dn;m.

The two most simple SRR configurations are shown in Fig. 1. In one of them
(top), all couplings are positive, while for the second (bottom), they are all neg-
ative, as a result of Lenz’s law.

The stationary modes of Eq. (2) are obtained by posing a solution in the form
qnðsÞ ¼ qn expðiXsÞ. This leads to the stationary equations,

�X2 qn þ
X

m 6¼ n

knmqm

 !

þ qn ¼ 0: ð3Þ

Magnetoinductive plane waves of the form qn ¼ A expðiknÞ, lead to the dispersion
relation

X2 ¼ 1
1 þ 2

P
m [ 0 k0m cosðkmÞ ; ð4Þ

where the physical condition X2 [ 0 must be imposed. Using that k0m has the form
k0m ¼ k=m3, one obtains:

� 1
2fð3Þ\k\

2
3fð3Þ ; ð5Þ

Fig. 1 Two typical configurations for the SRR array, containing a single bulk impurity
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or, �0:41595\k\0:554605, where fðsÞ is the Riemann Zeta function
fðsÞ ¼

P1
k¼1 k�s. The limits in condition (5) change a bit when one assumes a

weak coupling limit where few or even only one of the k0m is retained. Figure 2
shows the dispersion relation of the magnetoinductive waves for both, the nearest-
neighbor approximation and the full dipolar-like interaction. As we can see, there
are small differences between them. However, the presence of absence of inter-
action beyond nearest-neighbor interactions will prove important later (Sect. 4)
when considering scattering of plane waves through capacitive defects and Fano
resonances.

3 Localized Modes Around Magnetoinductive Defects

In general, when the discrete translational invariance of a periodic lattice is broken
by the presence of a defect, it usually gives rise to a localized mode that detaches
from the continuous band. The details depend on things such as the dimensionality
of the array, presence or absence of nonlinear effects, type of nonlinearity, etc. It is
commonly observed that in 1D, a localized state is formed for any defect strength,
while at higher dimensions, a minimum defect strength is needed. Simple defects
for a SRR include the capacitive defect, created when the capacitance of one of the
rings is changed by either altering the slit width, or by inserting a (linear) dielectric
in the slit. Another simple defect is the inductive defect, caused by altering the
distance between a single ring and its closest neighbors. A third type of defect is
the nonlinear capacitive defect formed when one inserts a nonlinear (e.g., Kerr)
dielectric inside the ring slit. Other types of defects are, of course, possible, but
they are harder to treat. For instance, if one alters the geometry of a single ring,
that will change the capacitance, self-inductance, and mutual inductance the ring.

Let us consider a one-dimensional, periodic array of linear split-ring resonators
(SRRs), in the absence of driving and dissipation, containing a single, capacitive
impurity, located at n ¼ n0. (The case of few, linear inductive bulk impurities

0 2
0

1

2

K

2

Fig. 2 Dispersion relation
for magnetoinductive waves
for dipolar interaction
(dashed) and nearest-
neighbor approximation
(solid)
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embedded in a SRR array, has already been treated in Ref. [15].) As mentioned
above, in the linear regime, the impurity is due to a change in the slit width of the
n ¼ n0 SRR which causes a change in its capacitance. In the nonlinear impurity
case, all the slit widths are the same, but the n ¼ n0 SRR slit is filled with a
nonlinear dielectric, causing a localized nonlinear capacitive response. In this work
we will consider the linear and nonlinear capacitive impurity cases separately, for
both, bulk impurity (n0 � 0) and surface impurity (n0 ¼ 0).

In the presence of a single defect, Eq. (2) becomes [16, 17]

d2

ds2
ðkqn� 1 þ qn þ kqnþ 1Þ þ ð1 þ dn ; n0DÞqn ¼ 0; ð6Þ

where D ¼ ðx0=xÞ2 � 1, or �vq2
n0 for the linear and nonlinear capacitive defect,

respectively. Parameter k denotes the ratio of the mutual inductances between two
nearest-neighbor rings to the self inductance of the rings, x0=x is the ratio of the
resonant frequency at the impurity ring to that of the background rings, and v is the
nonlinear parameter of the impurity ring, originating in the nonlinear capacitive
response at the impurity ring site. Positive (negative) v values denote the case of a
soft (hard) nonlinearity. Figure 1 shows the most typical two SRRs configurations
containing a single bulk defect.

3.1 Green Functions

A formal approach to solving impurity problems defined on a periodic lattice, such
as (6), is by means of lattice Green functions [18]. In this formalism, the lattice
Green function is defined by the operator GðzÞ � 1=ðz � HÞ, where H is
the Hamiltonian of the system. The poles of G give information concerning the
eigenenergies of the system while the residues of G at the poles give information
about the spatial distribution of the eigenstates. In general is not possible to know
G exactly, except in few, special cases. These include the case when we can
decompose H ¼ H0 þ H1, where H0 is the ‘‘unperturbed’’ part whose eigenvalues
and eigenstates are known to us, while H1 is the ‘‘perturbation’’. After inserting
this into G, one obtains the formal expansion:

G ¼ Gð0Þ þ Gð0ÞH1G0ð0Þ þ Gð0ÞH1Gð0ÞH1Gð0Þ þ � � � ; ð7Þ

where Gð0Þ is the unperturbed Green function. For our impurity case, Eq. (6), we
obtain the equation for the stationary modes by setting qnðsÞ ¼ qn expðiXs þ /Þ:

�X2ðkqn�1 þ qn þ kqnþ1Þ þ ð1 þ dn;n0DÞqn ¼ 0: ð8Þ

After rearranging this equation we can express it as
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kðqnþ1 þ qn�1Þ �
D

X2 dn;n0qn ¼ 1

X2 � 1

� �
qn: ð9Þ

Thus, the system is equivalent to a simple one-band tight-binding model, with
eigenvalue b � ðð1=X2Þ � 1Þ, containing a single renormalized impurity D=X2.
For this type of system, we can express H1 in the Wannier representation as
H1 ¼ �ðD=X2Þjn0 [ \n0j, and series Eq. (7) can be resummed in closed form to
yield

GmnðbÞ ¼ Gð0Þ
mnðbÞ �

ðD=X2ÞGð0Þ
mn0 ðbÞGð0Þ

n0nðbÞ
1 þ ðD=X2ÞGð0Þ

n0n0 ðbÞ
: ð10Þ

The poles of G are given by solving 1 ¼ ðD=X2ÞGð0Þ
n0n0 ðbÞ.

For instance, for the linear capacitive defect case, we obtain after solving for
X2:

X2 ¼ 1 � D2

1 � signðDÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 þ D2ð1 � 4k2Þ

q : ð11Þ

The method can also be applied to isolated, nonlinear defects [19–22]. In this
case, the equation for the pole(s) at the impurity must be combined with the
equation giving the amplitude profile around the defect, to obtain a nonlinear
equation for the localized mode energy (frequency). From this, one or more
localized states might be found, although usually only one of them is stable.

Besides bulk impurities, the Green function method can also be applied to
surface defects, or defects that are at a finite distance from a boundary. The trick
here is the use of the ‘‘method of images’’ [23–25]. For continuous systems with
localized impurities, the reader might want to look at Ref. [26].

Having introduced the Green function method, we will dispense from this
approach from now on and use a more simple heuristic approach that have proven
useful in many (but not all) cases involving impurities. Also, for simplicity, we will
confine ourselves to the simple cases of a linear and nonlinear capacitive impurity.

3.2 Bulk Impurity

Linear Case. We consider a long lattice, �M\n\M, where M � 1. As long as
the defect is placed far away from the sample boundaries, we speak of a bulk
impurity. Without loss of generality, we place the defect at n0 ¼ 0. For v ¼ 0,
Eq. (6) reads:

d2

ds2
ðkqn�1 þ qn þ kqnþ1Þ þ qn þ dn;0ðx02 � 1Þqn ¼ 0; ð12Þ
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where, we have scaled x2
n ¼ 1. When the slit width of the defect ring tends to zero,

the local capacitance goes to infinity, which means x02 ! 0 in (12). On the other
hand, when the slit width is large, the local capacitance goes to zero, implying that
x02 ! 1 in (62). Therefore, the physical range of x02 is 0\x02\1:

We look for a stationary mode solution of the form qnðsÞ ¼ njnj cosðXs þ /Þ,
with jnj\1. After replacing this ansatz into (12), one obtains, after some algebra

n ¼
x02 � 1 þ signðx02 � 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx02 � 1Þ2ð1 � 4k2Þ þ 4k2

q

2kð2 � x02Þ ; ð13Þ

and

X2 ¼ ½1 þ kðn þ ð1=nÞÞ��1: ð14Þ

A quick examination of (63) reveals:

(a) If k ! �k; n ! �n (‘staggered–unstaggered’ transformation).
(b) If x02 ! 0; n2 ! 0. If x02 ! 1; n2 ! 1:
(c) If x02 ! 1, then

n ¼ �1
2k

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2k

� �2

�1

s

: ð15Þ

(d) If x02 ! 2, then n ! �2k.

From (c) and (d), and the condition jnj\1 we see that we must impose
jkj\1=2. Figure 3 shows that, for x02\1, the mode is unstaggered, while for x02

the mode is staggered. The above holds for k[ 0. For k\0, the opposite behavior
is obtained, as can be seen from the staggered–unstaggered symmetry. Note that
for x02 [ 1, the mode has a minimum width, given by (15). Figure 3 also shows
the frequency of the localized mode, which is bounded from below, and some
localized modes for different values of defect frequency and inductive coupling.
Perhaps the most important feature of this mode is that it exists for any nonzero
frequency mismatch value x0, as in many other 1D systems with a single defect.
The mode suffers a discontinuous unstaggered–staggered symmetry transition at
x0 ¼ 1.

Nonlinear case. In this case, all the SRRs are identical, but one of them (at
n0 ¼ 0) has the space between its slits filled with a nonlinear dielectric of the Kerr
type, causing it to have a nonlinear capacitive response. Now, the resonant fre-
quency of the impurity ring depends on how much magnetic energy is residing on
the ring. Equation (6) reads now:

d2

ds2
ðkqn�1 þ qn þ kqnþ1Þ þ ð1 � vdn;0q2

nÞqn ¼ 0; ð16Þ
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for�1\n\1. We look for stationary modes of the form qnðsÞ ¼ qn cosðXs þ /Þ,
and use the rotating-wave approximation (RWA) cosðxÞ3 � ð3=4Þ cosðxÞ. The
rigorous procedure involves finding the nonlinear mode (breather) by numerical
techniques [27]. However, we have found that, in practice, the RWA results agree
quite well with the exact numerical ones in a variety of nonlinear problems involving
arrays of coupled nonlinear SRRs [28–30]. For the case of single impurity, it allows
for a closed form solution. We obtain,

�X2ðkqn�1 þ qn þ kqnþ1Þ þ qn � ð3=4Þvdn0q3
n ¼ 0: ð17Þ

We look for a localized solution of the form qn ¼ Anjnj, where 0\jnj\1. After
inserting this ansatz into Eq. (17), one obtains the equations

X2 ¼ 1 � ð3=4ÞvA2

1 þ 2kn
; ð18Þ

and

X2 ¼ 1
1 þ k n þ ð1=nÞð Þ : ð19Þ

From Eq. (19), the physical condition that X2 [ 0 together with the constraint
jnj\1 imply jkj\1=2. This, in turn implies, from Eq. (18), the restriction jAj\Ac,
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Fig. 3 Linear bulk impurity. a Localized mode amplitude versus defect frequency; b frequency
of localized mode versus defect frequency; c–f spatial profiles of impurity mode for (c) x02 ¼ 0:5,
(d) x02 ¼ 0:9, (e) x02 ¼ 1:2, and (f) x02 ¼ 3. In all cases, k ¼ 0:2
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where Ac � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=4Þv

p
for v [ 0. For v\0 no such restriction is necessary. After

equating (18) and (19), we obtain a quadratic equation for n:

n2 þ Bðk;AÞn � Cðk; nÞ ¼ 0 ð20Þ

with

Bðk; nÞ ¼ ð3=4ÞvA2

kð1 þ ð3=4ÞvA2Þ ; ð21Þ

and

Cðk; nÞ ¼ 1 � ð3=4ÞvA2

1 þ ð3=4ÞvA2
: ð22Þ

We note that, in the limit of small A, B ! 0 and C ! 1, implying n2 ! 1,
converging to an extended mode as expected. On the other hand, for v [ 0 and A
approaching Ac, the equation becomes nðn þ ð1=2kÞÞ ¼ 0, which implies that n ! 0
since jkj\1=2. The mode becomes infinitely localized at the impurity site. Finally,
in the limit of large A (relevant for v\0 only), Eq. (20) reduces to

n2 þ 1
k
þ 1 ¼ 0 ð23Þ

with solution

n ¼ � 1
2k

þ signðkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4k2 � 1

r

: ð24Þ

In this case, the width of the mode converges to a constant value.
On the other hand, from Eq. (19), and the unstaggered–staggered symmetry:

k ! �k () n ! �n, we see that X2 is invariant under a change in sign of the
inductive coupling.

The relevant solution of Eq. (20) is given by

n ¼ 1
2

�Bðk;AÞ þ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðk;AÞ2 þ 4Cðk;AÞ

q� �
; ð25Þ

where r ¼ signðBðk;AÞÞ.
Figure 4 shows results for nonlinear localized modes for the soft and hard

nonlinearity cases. Note that for the soft nonlinearity case, the maximum ampli-

tude at the impurity site is restricted to the interval A 2 ½0; 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=4Þv

p
�. The fre-

quency of the mode is bounded from above (X2 ¼ 1=ð1 � 2kÞ) and from below
(X2 ¼ 0). For the hard nonlinearity case, however, the frequency is only bounded
from below (X2 ¼ 1=ð1 � 2kÞ), but the magnitude of the decay rate jnj has a
minimum value given by Eq. (24). Figure 5 also shows examples of the spatial
profile of nonlinear localized modes for different parameter values.
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3.3 Surface Impurity

Linear case. In this case, the array extends from n ¼ 0 to n ! 1, and the
capacitive defect is placed at the very boundary, n0 ¼ 0. Previous experience with
tight-binding models suggests that a minimum defect strength will needed to place
a localized mode at the edge of the system. The evolution equations have the form

d2

ds2
ðq0 þ kq1Þ þ x02q0 ¼ 0 n ¼ 0;

d2

ds2
ðkqn�1 þ qn þ kqnþ1Þ þ qn ¼ 0 n [ 0:

ð26Þ
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Fig. 4 Nonlinear bulk impurity. Top (bottom) rows correspond to v ¼ 1ð�1Þ. In a and c we
show the decay rate n as a function of maximum amplitude A, for k ¼ 0:2 (solid curve) and
k ¼ �0:2 (dashed curve). In b and d we show the frequency of the localized mode as a function
of maximum mode amplitude for k ¼ �0:2
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Linear and nonlinear (Kerr) defects can also be treated by means of the Green
function technique, and the use of the image method [31, 32]. for simplicity we use
here the same procedure as in Sect. 2, we pose a mode of the form
qðsÞ ¼ nn cosðXs þ /Þ, with jnj\1, and n ¼ 0; 1; 2; . . .. After replacing this
ansatz in Eq. (26), we obtain,

n ¼ � 1
2k

þ signðkÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4k2 �
x02

x02 � 1

s

; ð27Þ

and

X2 ¼ 1
1 þ kðn þ ð1=nÞÞ : ð28Þ

Examination of Eq. (27) under the constraints n 2 R and jnj\1, implies the
condition jkj\1=2, along with ðk � 1Þ=ð2k � 1Þ\x02\ðk þ 1Þ=ð2k þ 1Þ. Fig-
ure 6 shows examples of the localized mode amplitude and the frequency of
localized surface modes as a function of the impurity capacitive mismatch, as well
as some representative mode profiles.

The major difference with the linear bulk case, is the presence of a window of
‘forbidden’ resonant frequency values, below and above the background resonant
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Fig. 5 Nonlinear bulk impurity. Examples of localized mode spatial profile for nonlinearity
v ¼ 1 for k ¼ 0:2 and k ¼ �0:2 (curves a and b), and v ¼ �1 for k ¼ 0:2 and k ¼ �0:2 (curves
c and d)
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frequency, where a localized surface mode cannot be sustained. Modes below the
(allowed) band are unstaggered, while those above it are staggered.

Nonlinear case. Now, the evolution equations have the form

d2

ds2
ðq0 þ kq1Þ þ q0 � vq3

0 ¼ 0 n ¼ 0;

d2

ds2
ðkqn�1 þ qn þ kqnþ1Þ þ qn ¼ 0 n [ 0:

ð29Þ

We look for stationary modes of the form qnðsÞ ¼ qn cosðXs þ /Þ, and use the

rotating-wave approximation (RWA) cosðxÞ3 � ð3=4Þ cosðxÞ. Equation (29)
becomes
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Fig. 6 Linear surface impurity. a Localized mode amplitude versus defect frequency;
b frequency of localized mode versus defect frequency; c–f spatial profiles of impurity mode
for (c) x02 ¼ 0:5, (d) x02 ¼ 0:9, (e) x02 ¼ 1:2, and (f) x02 ¼ 3. In all cases, k ¼ 0:2
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�X2ðq0 þ kq1Þ þ q0 � ð3=4Þvq3
0 ¼ 0 n ¼ 0;

�X2ðkqn�1 þ qn þ kqnþ1Þ þ qn ¼ 0 n [ 0:
ð30Þ

Next, we pose a mode of the form qn ¼ Ann, with jnj\1, and n ¼ 0; 1; 2; . . ..
After replacing this ansatz in Eq. (29), we obtain,

n ¼ � 1
2k

þ signðkÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4k2 � 1 þ ð4=3Þ
vA2

s

; ð31Þ

and

X2 ¼ 1 � ð3=4ÞvA2

1 þ kn
: ð32Þ

Since the system obeys the symmetry, k ! �k () n ! �n, it is enough to
consider k [ 0, and deal with the two possible signs of v. In order to have X2 [ 0

and jnj2\1, one must impose the constraint A1\A\A2, for v [ 0. For v\0, one
needs A [ A3 and, in addition, jkj\1=2, where
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Fig. 7 Nonlinear surface impurity. Top (bottom) rows correspond to v ¼ 1ð�1Þ. In a and c we
show the decay rate n as a function of maximum amplitude A. Solid (dashed) curves refer to k
positive (negative), with k ¼ 1:5 (a) and k ¼ 0:2 (c). In b and d we show the frequency of the
localized mode as a function of maximum mode amplitude for k ¼ �1:5 (b) and k ¼ 0:2 (d)
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A1 � k
1 þ 2k

1
ð3=4Þv

� �1=2

; ð33Þ

A2 � 1
ð3=4Þv ; ð34Þ

A3 � k
1 � 2k

ð4=3Þ
jvj

� �1=2

: ð35Þ

Finally, in Fig. 8 we show some examples of nonlinear localized surface modes
for different values of maximum amplitude and inductive coupling. (Fig. 7)

4 Transmission Across Magnetoinductive Defects
and Fano Resonances

In addition to studying the creation of localized magnetoinductive modes induced
by the presence of single defects, another important issue if the study of the
transport of magnetic energy across simple defects configurations. Some simple,
yet interesting cases, consists on coupling the SRR array to an external defect(s)
consisting of a ring(s) placed outside the SRR array. This affects the value of the
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Fig. 8 Nonlinear surface impurity. Examples of localized mode spatial profile for nonlinearity
v ¼ 1 for A ¼ 1 and k ¼ 1:5 and k ¼ �1:5 (curves a and b), and v ¼ �1 and A ¼ 1:2 for k ¼ 0:2
and k ¼ �0:2 (curves c and d)

290 M. I. Molina



coupling between the SRR and the external ring(s) only. This external type
(inductive) of defect gives rise to a more interesting scattering behavior than a
single embedded (capacitive) defect, unless we allow for interactions beyond next-
nearest neighbors, as we will see below. Perhaps one of the most interesting
scattering effects are Fano resonances (FR). In the FR phenomenon, the eigen-
frequency of a state belonging to the open channel (band of extended states)
resonates with a closed channel state.

4.1 Single Capacitance Impurity

The first case we study is a single capacitance impurity embedded in the array
(Fig. 2), which without loss of generality we place at n ¼ 0. This impurity is
created by changing the slit width of the ring at n ¼ 0. The stationary equation for
this case is

�X2 qn þ
X

m 6¼n

knmqm

 !

þ ð1 þ dn;0DÞqn ¼ 0; ð36Þ

where D is the change in the (dimensionless) resonance frequency at the defect
position. When the slit width tends to zero, its capacitance diverges, making the
resonant frequency approach zero. This implies D ! �1. On the other hand, when
the slit width is large, the local capacitance goes to zero, and the resonant fre-
quency diverges, implying that D ! 1. Thus, �1\D\1.

Usually, embedded defects coupled locally do not lead to Fano Resonance
phenomena (perfect plane-wave reflection). In the SRR array however, the cou-
plings are dipolar and therefore, long-range, and non-local effects have to be
considered. For computational simplicity we will work with couplings to first-and
second nearest neighbors only. The idea is that interference between the path
through nearest neighbors and the one through next-nearest neighbors will give
rise to Fano resonance. Equation (36) becomes:

�X2 qn þ kðqnþ1 þ qn�1Þ þ k0ðqnþ2 þ qn�2Þ½ � þ ð1 þ Dn0Þqn ¼ 0: ð37Þ

where k0 is the coupling among next-nearest neighbors. We pose a plane wave
solution of the form

qn ¼ I eikn þ R e�ikn n\ � 1;
T eikn n [ 1:

�
ð38Þ

After replacing this ansatz into (37), one obtains after a little algebra:
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X2 ¼ 1

1 þ 2k cosðkÞ þ 2k0 cosð2kÞ ð39Þ

and

t � jT=Ij2 ¼ A þ DB

A þ DC

����

����

2

; ð40Þ

where

A ¼ � 2i sinðkÞ½2k03 cosð3kÞ þ 6kk0ðk cosðkÞ þ k0 cosð2kÞÞ
þ kðk2 þ 3k02Þ�;

B ¼ � 2i sinðkÞ½2kk0ðk cosðkÞ þ k0 cosð2kÞÞ þ kk0�;
C ¼ ½ð1 þ 2k cosðkÞ þ 2k0 cosð2kÞÞðk2 þ 2kk0e�ik

� k02 þ 2k03 cosð2kÞÞ�:

ð41Þ

Now, for the SRR case where dipolar interactions fall with the inverse cube of the
distance between SRR units, we have k0 ¼ ð1=8Þk. After inserting this into Eqs. (39)
and (40) and after imposing X2 [ 0, we conclude that �ð4=9Þ\k\ð4=7Þ is the
relevant coupling regime for this SRR configuration. Inside this regime it is possible
to have a relatively weak Fano resonance, as shown in Fig. 9a. As expected, when
coupling to second nearest neighbors is neglected (k0 ¼ 0), there is no FR at all, since
in that case the transmission becomes

t ¼ ð2k sinðkÞÞ2

ð2k sinðkÞÞ2 þ D2ð1 þ 2k cosðkÞÞ2 ; ð42Þ

which can only be zero at k ¼ 0; p. For more general k; k0 values, it is possible to
have zero, one, and even two different strong Fano resonances, as shown in
Fig. 9b–d, respectively.

4.2 Single Inductive Impurity

Another simple case is a single inductive impurity embedded in the array. This is
achieved by placing a SRR unit at different distances from the left and right
portions of the array, leading to asymmetrical couplings kL and kR. Only couplings
between nearest-neighbors are assumed. This case was already considered in
Ref. [15]. In this case, it can be proven (not shown) that there is no FR for any
choice of kL, kR; the transmission versus wavevector curve shows a single max-
imum at k ¼ p=2. For the special symmetric case kL ¼ kR, there is a single
transmission resonance (t ¼ 1) at k ¼ p=2.
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We move now to simple cases where the defect(s) lie(s) outside the SRR array,
and thus, their coupling can be tuned by changing their distance to the array.

4.3 Single External Inductive Defect: First Case

The first case of this type is that of a single external inductive defect coupled to the
SRR at n ¼ 0 via coupling to first and second nearest neighbors via coupling
parameters k1 and k2, respectively (Fig. 10). From the geometry of the configu-
ration, it is easy to obtain the relationship

k2

k
¼ 1 þ k

k1

� �2=3
" #�3=2

: ð43Þ

For simplicity, we assume only nearest neighbor coupling among the SRR units. For this
approximation to be consistent, one must impose k1 [ ð1=8Þk and also k2 [ ð1=8Þk.
From Eq. (43), this implies k1=k [ Maxfð1=8Þ; 3�3=2g ¼ 3�3=2 ¼ 0:192.

The stationary equations for this case are
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Fig. 9 Top Capacitive defect embedded in SSR array, with couplings to first-and second nearest
neighbors. Bottom a–d show transmission coefficient versus wavevector, for several parameter
values: k ¼ �0:1; k0 ¼ ð1=8Þk;D ¼ 0:7 (a), k ¼ 0:4; k0 ¼ 0:21;D ¼ �0:5 (b), k ¼ 0:4;
k0 ¼ 0:21;D ¼ 0:5 (c), k ¼ 0:4; k0 ¼ 0:21;D ¼ 1:0 (d)
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� X2½kðqnþ1 þ qn�1Þ þ qn

þ qeðk1dn;0 þ k2dn;�1Þ� þ qn ¼ 0

� X2ðk1q0 þ k2q�1 þ qeÞ þ qe ¼ 0;

ð44Þ

where qe is the charge residing on the external defect ring. We assume a plane
wave solution of the form

qn ¼ I eikn þ R e�ikn n	 0;
T eikn n
 1:

�
ð45Þ

The transmission coefficient t � jT=Ij2 for this configuration is

4 k1
k

� 	
k2
k

� 	
þ 1 þ k2

k

� 	2

 �

cosðkÞ

 �

sinðkÞÞ
k1
k

� 	2þ4eik k1
k

� 	
k2
k

� 	
þ 1 þ e2ikð Þ k2

k

� 	2þ2i sinð2kÞ

������

������

2

; ð46Þ

where, k2 is given by Eq. (43) for the SRR system. The most interesting feature of
this transmission coefficient is the presence of a Fano resonance, whose position
varies with the value of k1=k. The FR occurs when k1k2 þ ðk2 þ k2

2Þ cosðkÞ ¼ 0,
which is possible from Eq. (43), for all 0\jk1=kj\2:449. Therefore, the relevant
interval where FR exists in our model is given by 0:192\k1=k\2:449. This can
be achieved by simply changing the distance between the SRR array and the
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Fig. 10 Top SRR array with external inductive defect. Bottom Transmission coefficient versus
wavevector, for different values of the relative coupling defect: k1=k ¼ 1.25 (circles), 1.5
(squares), 1.75 (rhombi) and 2.0 (stars)
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external defect. Note from Eq. (46) that, if we neglect the effect of k2, the position
of the FR remains locked at k ¼ p=2.

To get a better feeling as to what would be expected to see in an actual experiment
for this system, we perform a numerical simulation of a wide pulse impinging on the
inductive impurity region. We used an array of 103 rings and resort to a symplectic
algorithm to trace the time evolution of an initial broad gaussian pulse

unð0Þ ¼ A expð�aðn � n0Þ2Þ expðikðn � n0ÞÞ, where n0 ¼ �300; A ¼ 0:1 and
a ¼ 0:001 which means a width of about 120 sites, in order to simulate a plane wave
with a well-defined k. The rings coupled to the inductive defect are placed at
n ¼ 0;�1. Figure 10 shows numerical simulation results for the transmission
coefficient versus wavevector for several k0=k values, with k ¼ 0:4. The agreement
between analytics (Eq. (46)) and numerics is excellent, and the Fano resonances are
clearly shown. The numerical discrepancies at wavevectors close to k ¼ 0; p are due
to the long integration times needed since the pulse is quite slow at these k values. In
Fig. 11 we show the output profile of the gaussian pulse for different k-values, after
an integration time t ¼ 1500. The transmission increases monotonically up to
k � 0:389pð0:868pÞ from the left (right), then decreases steadily until it vanishes
completely at k � 0:601p.

4.4 Single External Inductive Defect: Second Case

The next case we consider is a variation of the previous case, where the external
defect is now located halfway between two SRR units (Fig. 12). Without loss of
generality, we take the external defect coupled symmetrically to the units at n ¼ 0
and n ¼ 1, with coupling k0. As before, the units in the array interact through
nearest-neighbor couplings k only. In order for this approximation to be consistent,

Fig. 11 SRR array with
external inductive defect:
output profile after t ¼ 1500
as a function of wavevector
and ring site, for k1=k ¼ 1.
Impurity site is located at
n ¼ 0
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and taken into account the dipolar nature of the inductive couplings, we need
jk0j[ ð1=8Þk.

The stationary equations read

�X2ðkðqnþ1 þ qn�1Þ þ qn þ k0qeðdn;0 þ dn;1ÞÞ þ qn ¼ 0

�X2ðk0ðq0 þ q1ÞÞ þ qe ¼ 0;
ð47Þ

where qe is the charge on the external defect ring. We pose a plane wave solution
of the type

qn ¼ I eikn þ R e�ikn n	 � 1
T eikn n
 2

�
ð48Þ

leading to a transmission coefficient:

t � T

I

����

����

2

¼ ðeik � 1Þðk02 þ 2k2 cosðkÞÞ
2ðk02 þ k2 cosðkÞð1 � eikÞÞ

����

����

2

: ð49Þ

Fano resonances are possible when k02 þ 2k2 cosðkÞ ¼ 0. This implies,

kF ¼ �ð1=2Þðk0=kÞ2, which is possible only if jk0=kj\
ffiffiffi
2

p
. This constraint plus the

consistency condition, give us the relevant coupling parameter window for this
SRR configuration:
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Fig. 12 Top External defect coupled symmetrically to the SSR array. Only couplings to first
nearest neighbors are considered. Bottom Transmission versus wavevector for several k0=k
values: 0:5 (circles), 1:0 (rhombi) and 1:5 (triangles)
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ð1=8Þ\ k0

k

����

����\
ffiffiffi
2

p
: ð50Þ

Figure 12 shows some transmission curves for parameter values inside and outside
this window. The position and width of the Fano resonance depend on the ratio
jk0=kj, which can be externally tuned by changing the distance between the defect
and the array.

Figure 13 shows output intensity profile after propagation of t ¼ 1500 as a
function of wavevector and site position.

4.5 Two External Inductive Defects

The final array we consider consists of two external defects, each coupled to a
single unit of a SRR array. The units of the array are coupled to first neighbors
only via coupling k. Between both defects, there are L units (Fig. 14). Without loss
of generality we assume the defects to be coupled to units at n ¼ 0 and n ¼ L, with
couplings k0 and kL, respectively. The stationary equations read

Fig. 13 Fano resonance:
external defect coupled
symmetrically to two array
units: output profile after
t ¼ 1500 as a function of
wavevector and ring site, for
k1=k ¼ 1
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� X2½kðqnþ1 þ qn�1Þ þ qn þ k0Q0dn;0

þ kLQLdn;L� þ qn ¼ 0

� X2ðk0q0 þ Q0Þ þ Q0 ¼ 0

� X2ðkLqL þ QLÞ þ QL ¼ 0;

ð51Þ

where Q0 and QL are the charges residing at the external rings coupled to units
n ¼ 0 and n ¼ L of the array. As before, we pose a plane wave solution

qn ¼ I eikn þ R e�ikn n	 0;
T eikn n
 L:

�
ð52Þ

The transmission coefficient is given in this case by

k4ðe4ik � 1Þ
e4ik½k2

0 þ 2ik2 sinð2kÞ�½k2
L þ 2ik2 sinð2kÞ� � k2

0k
2
Le2ikðLþ2Þ

�����

�����

2

; ð53Þ

which is symmetric under the exchange between the external rings, depending only
on jk0=kj, jkL=kj and L. We see from Eq. (53) that, regardless of the separation L
between the external defects, there is only a single Fano resonance located at
k ¼ p=2. Figure 14 shows examples of transmission versus wavevector plots for
different defects separation. However, it should be noted that, in a more realistic
setting that considers the presence of dissipation effects, one would expect to
observe some broadening of the resonances, as well as a decrease in their heights, as
the separation between defects increases. For SRRs coupled to nearest-neighbors
only, this effect is more pronounced at the band edges, and minimized at mid-band
[15]. For couplings beyond nearest-neighbors, the situation is more complex.1

Let’s make a little digression here. In the case k0 ¼ kL � k0, we have two
symmetrically-coupled external defects, and one natural question to ask in this
case is whether we can have an asymmetrical localized mode, in addition to the
usual symmetrical and antisymmetrical ones. The answer is no, at least in the
absence of nonlinear effects, and will be exemplified with the case L ¼ 1.

The stationary equations are

� X2½kðqnþ1 þ qn�1Þ þ qn þ k0Q0dn;0

þ k0Q1dn;1� þ qn ¼ 0

� X2ðk0q0 þ Q0Þ þ Q0 ¼ 0

� X2ðk0q1 þ Q1Þ þ Q1 ¼ 0:

ð54Þ

1 In the presence of dissipation, a term of the form icX enters Eq. (3). For a complex
wavevector k ¼ kr � iki, with jkij � jkr j, one obtains X2 � ð1 þ

P
nm knm cosðmkrÞÞ�1 and

ki � cð1 þ
P

nm knm cosðmkrÞÞ1=2=
P

m knm sinðmkrÞ. Neglect of dissipation effects is valid
provided jkijL � 1.
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From these two last equations, one obtains

Q0 ¼ k0X2

1 � X2

� �
q0 Q1 ¼ k0X2

1 � X2

� �
q1: ð55Þ

We pose a localized mode of the form

qn ¼ Anjnj n	 0;
Bvn�1 n
 1:

�
ð56Þ

From Eq. (54) evaluated at n 6¼ 0; 1 one obtains

X2 ¼ 1 þ k n þ 1
n

� �� �
; ð57Þ

and n ¼ v.
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Fig. 14 Two external defects separated by L units and coupled to the SSR array. Transmission
versus wavevector for several separations L: L ¼ 2 (a), L ¼ 3 (b), L ¼ 5 (c) and L ¼ 20 (d) (in all
cases k ¼ k1 ¼ k2 ¼ 0:4)
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The evaluation at n ¼ 0 and n ¼ 1 leads to

ð�X2ð1 þ kn þ k02ðX2=ð1 � X2ÞÞ þ 1ÞA � kX2B ¼ 0; ð58Þ

and

�kX2A þ ð�X2ð1 þ kn þ ðk02X2=ð1 � X2ÞÞÞ þ 1ÞB ¼ 0: ð59Þ

Existence of a nontrivial solution demands

ð�X2ð1 þ kn þ k02ðX2=ð1 � X2ÞÞ þ 1ÞÞ ¼ �kX2: ð60Þ

But, from Eq. (58) one has

B

A
¼ ð�X2ð1 þ kn þ k02ðX2=ð1 � X2ÞÞ þ 1ÞÞ

kX2 ¼ �1: ð61Þ

Therefore, the possible localized modes are symmetric or antisymmetric only.
This is probably due to the purely linear character of the defects. Nonlinear effects
like a nonlinear capacitance, or nonlinear inductive coupling at each of the two
external defects could bring about the possibility of a stable, asymmetric state that
bifurcates from the symmetrical one, similar to what happens in the nonlinear
dimer [33].

To summarize this section: the possibility of achieving some degree of control
over the propagation of a wave across an impurity region has always been a topic
of interest. Resonance phenomena, and Fano resonances (FR) in particular, have
attracted great attention. We have shown that, by judiciously placing one or few
magnetic impurities, either embedded or external to the SRR array, it is possible to
achieve complete reflection (FR) of a given magnetoinductive wave, inside a
frequency window. Sometimes, more than one FR is possible.

5 Surface Bound States in the Continuum in SRR Arrays

A long time has elapsed since the original work of Von Neumann and Wigner [34],
where they claimed that the single-particle Schrödinger equation could possess
localized eigenstate solutions, whose eigenvalues lie inside the band of extended
states. Their claim was based on a building recipe to generate a normalizable
localized state by means of a judicious modulation of a plane wave solution,
generated by a carefully chosen local potential. One problem that is common in this
type of construction is that both, the potential and the wavefunction of the embedded
mode decrease as power law, rendering the wavefunction un-normalizable. Since
then, a number of works have been dedicated to the subject of embedded modes from
both, the theoretical and experimental angles [35–44], in condensed matter, atomic
physics, and optics contexts. A recent experiment proving the existence of an
embedded mode in an optical waveguide array was carried out by Plotnik et al. [44].
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In their work they decoupled an optical mode from the band by using a symmetrical
configuration.

In a very recent work [13], we have extended Wigner’s original proposal to a
semi-infinite discrete system in the form of an weakly-nonlinear (Kerr) optical
waveguide array, governed by the discrete nonlinear Schrödinger equation, and
showed how to build a structurally stable embedded surface mode, and its asso-
ciated discrete local potential (i.e., a distribution of refractive indices). Moreover,
it was shown that the position of the imbedded eigenvalue inside the band could be
tuned by increasing or decreasing the nonlinearity of the system. Our method can
in principle be applied to any discrete periodic system of interest, where waves can
propagate. In particular, it can be applied to a periodic SRR array, where mag-
netoinductive waves propagate. Instead of a distribution of refractive indices, we
have a distribution of resonant frequencies, whose values depend on a number of
factors, such as the nature of the dielectric inside the ring slits, the radius of the
ring, or the slit width of the SRRs. To keep things simple, we will assume that the
resonant frequency of the rings can be tuned by changing the slit widths. We look
for stationary solutions of the form qnðsÞ ¼ qn cosðXs þ /Þ, which leads to the
system

�X2fkq1 þ q0g þ x2
0q0 ¼ 0

�X2fkðqnþ1 þ qn�1Þ þ qng þ x2
nqn ¼ 0:

ð62Þ

One can formally solve for x2
n as

x2
0 ¼ X2 1 þ k

q1

q0

� �� 

x2
n ¼ X2 1 þ k

qnþ1

qn
þ qn�1

qn

� �� 
:

ð63Þ

In the absence of any modulation, x2
n ¼ constant � 1, and qn ¼ sinðnkÞ, with

X2 ¼ 1=ð1 þ 2k cosðkÞÞ.
For a weak modulation, let us pose a solution of the form

qn ¼ sinðknÞfn; ð64Þ

where fn is a modulating envelope function that must obey fn ! 0 when n ! 1, in
order to have a bona fide localized surface mode. After inserting this ansatz into
Eq. (63), we obtain

x2
n ¼

X2ð1 þ 2k cosðkÞðf1=f0ÞÞ; n ¼ 0
X2f1 þ k½ðfnþ1=fnÞðcosðkÞ þ sinðkÞ cotðknÞÞ
þðfn�1=fnÞðcosðkÞ � sinðkÞ cotðknÞÞ�; n
 1:

8
<

:
ð65Þ
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As n ! 1, x2
n ! X2½1 þ 2k cosðkÞ� ¼ 1, provided limn!1ðfnþ1=fnÞ ¼ 1.

Let us take

fnþ1

fn
¼ ð1 � dnÞ; ð66Þ

where dn\1. From this, we can solve formally for fn:

fn ¼
Yn�1

m¼1

ð1 � dmÞ; ð67Þ

which can be rewritten as

fn ¼ exp
Xn�1

m¼1

logð1 � dmÞ
( )

: ð68Þ

In the limit n ! 1, and using that dm\1, we can approximate this by

f1 � exp �
X1

m¼1

dm

( )

: ð69Þ

since we want f1 ! 0, we need
P1

m¼1 dm ¼ 1. A good trial function for dn that
satisfies the above requirements is
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Fig. 15 Example of embedded surface mode, Eqs. (64)–(70), for k ¼ 0:56. Top left Modulated
envelope, top right ratio of nearby envelope values, bottom left spatial profile of embedded mode,
bottom right zoom of embedded mode near the axis
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dn ¼ 1
ffiffiffi
n

p sin2ðnkÞ sin2ððn þ 1ÞkÞ: ð70Þ

The presence of the sine terms is not accidental; we need them to counteract the
presence of the two cotðnkÞ terms in (65) that may otherwise lead to possible
divergences. In this way, we get a smoother site energy distribution.
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Fig. 16 Example of embedded surface mode, Eqs. (64)–(70) for k ¼ 0:56. Left Site energy
distribution (65) that gives rise to embedded mode. Right Linear band for a N ¼ 533 sites. The
dark solid circle shows the position of the embedded mode inside the band
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(N ¼ 533; k ¼ 0:3)
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Figure 15 shows results for the modulating envelope fn, ratio fnþ1=fn, and the
spatial profile qn, obtained from trial function based on Eq. (70). As we can see,
the proposed embedded mode does converge to zero at large n values. Using the
Euler–Maclaurin expansion, one can estimate the decay of the envelope function
away from the surface as fn � expð�j

R1
0 logð1 � dðxÞÞjÞ, where dðxÞ is the con-

tinuous version of dn. For the choice (70), one obtains fn � expð�aðkÞ
ffiffiffi
n

p
Þ, with

aðkÞ ¼ ð1=4Þð2 þ cosð2kÞÞ.
In Fig. 16 we show the local ‘site energy potential’ x2

n that gives rise to our
embedded mode. It corresponds to a distribution of resonant frequencies in
the SRR array, obtained by, for instance, a distribution of slit widths of the
SRRs. After we find the x2

n distribution, we compute next all the eigenvalues
and eigenvector of the system, to ascertain that they are all extended, with
the exception of our embedded mode. With the definitions �n � 1=x2

n,
kn � k=x2

n, and b � 1=X2, the eigenvalue equation can be written in the
standard form

�nqn þ knðqnþ1 þ qn�1Þ ¼ bqn: ð71Þ
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Fig. 18 Top left Intensity distribution of all eigenmodes of the SRR array. The localized SRR
embedded mode can be seen at the lower left sector. Top right Dynamical evolution of SRR
embedded mode. Only a portion of the SRR array is shown. Bottom left Intensity profile of an
initially localized excitation, in a completely periodic array, after a given evolution distance.
Bottom Right Intensity profile of an initially localized excitation, in the modulated array, after a
given evolution distance. (N ¼ 133; k ¼ 0:3)
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The corresponding matrix is a real tridiagonal matrix A that satisfies
Ak;kþ1Akþ1;k 
 0. Thus, it is similar to a Hermitian matrix and, therefore all of its
eigenvalues are real [45]. The band obtained is shown in Fig. 16, with the position
of the embedded mode eigenvalue clearly marked. In Fig. 17 we show the
eigenstates of the SRR array in the immediate neighborhood of the embedded
state. They are all clearly extended. A bird’s eye view of all eigenstates is shown in
Fig. 18a. It is apparent that all of them are extended, save for the embedded mode
(lower left sector) that stands alone as a localized mode.

Next, we examine the dynamical evolution of the embedded mode. For that
purpose, we integrate Eq. (6) for a long evolution distance using a symplectic
integrator, assuming no currents initially (ðdqn=dtÞt¼0 ¼ 0). The result is shown in
Fig. 18b, for a portion of the SRR array for ease in visualization. As expected, the
mode is stable and oscillates in time with frequency X2 ¼ 0:663.

Finally, we consider the issue of the dynamical excitation of the embedded
mode. Since this mode is highly localized at the edge, the simplest thing is to place
a highly-localized portion of magnetic energy at the edge (via an antenna).
Numerical results of this procedure are shown on the bottom part of Fig. 18. In the
absence of the x2

n modulation, all of the energy diffracts away from the boundary;
however, in the presence of the modulation, a portion of the magnetic energy does
remain at the boundary.

6 Conclusions

In this work we have considered a rather simplified model of a magnetic meta-
material consisting of a weakly-coupled, periodic split-ring resonator (SRR) array
capable of nonlinear capacitive response. The simplifications incurred in the model
allow us to obtain closed-form results that reflect the main physical features of the
model. We focused on three, different but related problems: (1) The closed-form
computation of localized modes around single linear/nonlinear impurities located
at the surface of the bulk of the array. (2) The scattering of magnetoinductive
waves by internal (external) capacitive (inductive) defects coupled to the SRR
array, and the occurrence of Fano resonance phenomena. (3) Description of an
explicit method for building a localized magnetoinductive mode embedded in the
linear band of extended states. The closed-form results for all of these three
problems suggest that the response of this model system to various stimuli can in
principle be tuned by manipulation of a few system parameters. Thus, the ability to
trap magnetic energy, or to reflect a portion or the whole of an incoming mag-
netoinductive wave, and the capacity to create at will a localized magnetic mode
living in the band, are but some examples of robust behavior of this model that can
hopefully survive in a more realistic model, and thus be of technological relevance
for this rapidly-evolving field.
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Pattern Formation Under a Localized
Gain

Alexander A. Nepomnyashchy

Abstract The onset of patterns due to a localized gain is studied analytically in
the framework of a real or complex amplitude equation. The instability modes are
found, and the bifurcation of small localized solutions is analyzed. Some exact
solutions are also found.

1 Introduction

A spatial inhomogeneity can strongly influence the stability and pattern formation.
Examples spread from nonlinear optics and hydrodynamics to autocatalytic reac-
tions and biological processes. A generic model, which describes the pattern
dynamics near the instability threshold in a spatially inhomogeneous extended
system, is the complex Ginzburg-Landau equation with an advective term and
spatially modulated linear growth rate [1]. That equation has been used for studying
the pattern formation in different physical contexts [1–4] in the case where the
growth rate and wave frequency are smoothly modulated with the spatial scale
characteristic for the Ginzburg-Landau equation. Recall that this scale is large near
the instability threshold, where that equation is valid. The investigation of the
opposite case where the spatial size of the inhomogeneity is small with respect to the
scale of the Ginzburg-Landau equation, was started by Lam et al. [5]. The analysis
has shown a significant difference between the generic case of a nonzero diffusion
coefficient and the specific case of a vanishing diffusion coefficient typical for
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optical models. The latter case has been extensively studied by Kartashov and
collaborators [6–13] and by Malomed and collaborators [14, 15].

In the present paper, we investigate the influence of localized growth rate
inhomogeneities using a mathematical model similar to that suggested in [5].

In Sect. 2, we formulate the basic model which describes the action of an active
spot on a system near the instability threshold. The case of a monotonic instability
is considered in Sect. 3, the case of an oscillatory instability is studied in Sect. 4.
Section 5 contains some concluding remarks.

2 Basic Model

The basic model used in the present paper is as follows:

ut þ vux ¼ cðxÞu � jjuj2u þ Duxx; ð1Þ

where v is the group velocity of waves, cðxÞ ¼ crðxÞ þ iciðxÞ describes the spa-
tially inhomogeneous growth rate and wave frequency, j ¼ jr þ iji determines
the nonlinear saturation of the instability and nonlinear frequency shift (jr > 0),
and D ¼ d þ ia characterizes the diffusion and dispersion of waves (d � 0). By
means of a scale transformation, u ! uj�1=2

r , we obtain:

ut þ vux ¼ cðxÞu � ð1 þ ibÞjuj2u þ Duxx; ð2Þ

where b ¼ ji=jr. Actually, one can scale out the real parameters v and d as well
by rescaling the variables x and t. However, it is instructive to trace the influence
of parameters v and d on the solutions in an explicit way, thus we retain them.
Later on, we assume that the inhomogeneity of the complex growth rate cðxÞ has a
spatial scale small with respect to that characteristic for the Ginzburg-Landau
equation, thus assuming

cðxÞ ¼ �k þ CdðxÞ; ð3Þ

where k is a real constant (its imaginary part ki can be eliminated by the transfor-
mation u ! u expð�ikitÞ). Below we consider also some modifications of model (2).

3 Real Amplitude Equation

3.1 Linear Stability Theory

3.1.1 Single Inhomogeneity

We will start our analysis with the simplest case of a nonlinear advection-diffusion
equation with a real variable uðx; tÞ
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ut þ vux ¼ �ku þ CdðxÞu þ duxx þ f ðuÞ; ð4Þ

where f ðuÞ is a function satisfying conditions f ð0Þ ¼ f 0ð0Þ ¼ 0, e.g., f ðuÞ ¼ �u2

or f ðuÞ ¼ �u3 (the latter case corresponds to a reduction of Eq. (1) in the case of a
real amplitude function). The physical meaning of the variable uðx; tÞ is a dis-
turbance of a concentration on the background of a certain base state described by
the solution u ¼ 0. Without loss of generality, below we assume v� 0.

First, let us consider the evolution of infinitesimal disturbances ~uðxÞ on the
background of the base state u ¼ 0. Taking ~uðxÞ ¼ UðxÞ expðrtÞ, we obtain the
following equation governing the shape and the growth rate of the disturbance:

rU þ vU0 ¼ ½�k þ CdðxÞ�U þ dU00: ð5Þ

It is natural to impose the physical condition of the boundedness of the solution at
the infinity,

lim
x!�1

jUðxÞj < 1: ð6Þ

The eigenvalue problem (5)–(6) has two kinds of solutions. The eigenfunctions
that do not decay at infinity have the form:

U ¼ U�ðxÞ ¼ aeikx þ bev=d�ikx; x < 0

U ¼ U�ðxÞ ¼ eikx; x > 0;

where

b ¼ C
v � 2ikd

; a ¼ 1 � b:

The corresponding continuous spectrum of eigenvalues

rðkÞ ¼ �k � ivk � dk2 ð7Þ

is not affected by the localized inhomogeneity. However, a sufficiently strong
inhomogeneity can create a localized eigenmode decaying at infinity, which has an
eigenvalue depending on C. Consider solutions in the form

U ¼ ek�x; x < 0; U ¼ ekþx; x > 0; ð8Þ

where k� satisfy the following conditions:

r þ vk� ¼ �k þ dk2
�; ð9Þ

C þ dðkþ � k�Þ ¼ 0: ð10Þ

A localized mode exists if the real parts Reðk�Þ > 0;ReðkþÞ < 0. From (9), one
finds that
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kþ � k� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4dðr þ kÞ

p
signC=d; ð11Þ

hence from (10) one concludes that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4dðr þ kÞ

p
¼ jCj; ð12Þ

thus

r ¼ �k þ C2 � v2

4d
; ð13Þ

k� ¼ 1
2d

ðv � CÞ: ð14Þ

Note that k� are real, hence a localized mode exists if k� [ 0; kþ\0. Obviously,
that is possible in the case C > v. In a contradistinction to the continuous spectrum
(7), the eigenvalue of a localized mode (13) is always real, and it is higher than the
real part of any non-localized disturbances.

In the case k > 0 (where the background is stable), the localized mode decays

in time if v < C <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4kd

p
and grows if C >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4kd

p
. In the case k\0

(where the background is unstable), the localized mode grows in the whole region
of its existence (faster than any non-localized disturbances).

Thus, in the case of a real amplitude equation a nonzero group velocity breaks
the reflection symmetry of the normal disturbance (kþ 6¼ �k�, see (14)) and
increases the instability threshold, Cc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4kd

p
.

Note that expressions (13) and (14) diverge in the limit d ! 0. However, for
arbitrary small but nonzero d the localized solutions exist and are obtained from
each other by a simple scaling transformation. Because the influence of d in the
case under consideration is rather obvious, we put d ¼ 1 below in this section.

3.1.2 Periodic Chain of Inhomogeneities

Let us consider now a system under the action of a periodic chain of inhomoge-
neities governed by the equation

ut þ vux ¼ �ku þ C
X1

n¼�1
dðx � nlÞu þ uxx þ f ðuÞ: ð15Þ

The normal disturbance ~uðxÞ ¼ UðxÞ expðrtÞ is governed by the equation

rU þ vUx ¼ �kU þ C
X1

n¼�1
dðx � nlÞU þ Uxx: ð16Þ

Inside each interval nl\x\ðn þ 1Þl the solution of the equation is
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UðxÞ ¼ UnðxÞ ¼ Aþ;nekþðx�nlÞ þ A�;nek�ðx�nlÞ; ð17Þ

where

k� ¼ v �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4ðr þ kÞ

p

2
: ð18Þ

The relations on the boundaries of those intervals,

Unððn þ 1ÞlÞ ¼ Unþ1ððn þ 1ÞlÞ

and

CUnððn þ 1ÞlÞ þ U0
nþ1ððn þ 1ÞlÞ � U0

nððn þ 1ÞlÞ ¼ 0;

determine the linear mapping

ðAþ;n;A�;nÞ ! ðAþ;nþ1;A�;nþ1Þ;

Aþ;nþ1 ¼ ðS þ CÞekþlAþ;n þ Cek�lA�;n

S
;

A�;nþ1 ¼ �CekþlAþ;n þ ðS � CÞek�lA�;n

S
;

where

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4ðr þ kÞ

p
:

The determinant of the transition matrix M,

detðMÞ ¼ evl � 1;

the trace

trðMÞ ¼ 1 þ C
S

� �
ekþl þ 1 � C

S

� �
ek�l:

The eigenvalues of the matrix Q are determined by the formula

Q ¼ trðMÞ
2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtrðMÞÞ2

4
� detðMÞ

s

:

Spatially bounded solutions forming the Brillouin zone are determined by the
condition

Q ¼ expði~klÞ;
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where ~k is the quasi-wavenumber of the disturbance, j~kj � p=l.
The most important disturbance is that with ~k ¼ 0. It is periodic with the period

of the chain of inhomogeneities, l, i.e., ðAþ;nþ1;A�;nþ1Þ ¼ ðAþ;n;A�;nÞ. In the case
k > 0, the corresponding eigenvalue is real, and it changes its sign when the
amplitude of the inhomogeneity reaches the critical value

CcðlÞ ¼
R½coshðRl=2Þ � coshðvl=2Þ�

sinhðRl=2Þ ; ð19Þ

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4k

p
. In the limit of large l; coshðRl=2Þ � coshðvl=2Þ, hence

CcðlÞ	R cothðRl=2Þ; ð20Þ

which matches the value Ccð1Þ ¼ R found in the previous section. Other char-
acteristic limits are (k is assumed to be Oð1Þ): (i) when v 
 1=l,

Cc 	 2
ffiffiffi
k

p
tanhð

ffiffiffi
k

p
l=2Þ; (ii) when v ¼ OðlÞ � 1;Cc 	U½1 � expð�kl=2vÞ�;

(iii) when v � l;Cc ! kl (that limit does not depend on v).
Let us present also the result for ~k ¼ p=l (the mode with the double period),

ðAþ;nþ1;A�;nþ1Þ ¼ �ðAþ;n;A�;nÞ). The critical value of C in that case is

~CcðlÞ ¼
RðcoshðRl=2Þ þ coshðvl=2Þ

sinhðRl=2Þ : ð21Þ

Obviously, ~CcðlÞ > CcðlÞ. The limit cases are: (i) when v 
 1=l; ~Cc 	 2k

cothð
ffiffiffiffi
kl

p
=2Þ; (ii) when v � 1; ~Cc 	U½1 þ expð�kl=2vÞ�.

3.2 Nonlinear Localized Structures

Return to the case of a single inhomogeneity governed by Eq. (4).

3.2.1 The Case v ¼ 0

In the case v ¼ 0, the stationary localized structure created by the monotonic
instability of the base state with respect to the localized mode is governed by the
equation

�ku þ CdðxÞu þ u00 þ f ðuÞ ¼ 0 ð22Þ

with boundary conditions

uð�1Þ ¼ 0: ð23Þ
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Because of the symmetry of the solution, uð�xÞ ¼ uðxÞ, it is sufficient to solve the
equation

�ku þ u00 þ f ðuÞ ¼ 0 ð24Þ

in the region 0\x\1 with boundary conditions

Cuð0Þ þ 2u0ð0Þ ¼ 0; uð1Þ ¼ 0: ð25Þ

Recall that f ð0Þ ¼ f 0ð0Þ ¼ 0. First of all, in the case k\0 (unstable background)
Eq. (24) has no non-trivial solutions decaying at the infinity, thus the boundary
value problem (24), (25) has no non-trivial solutions. Later on, we will consider
the case k� 0.

The calculation of the solutions to (24), (25) is tedious but straightforward.
Below we present results of the calculation in the cases f ðuÞ ¼ �u2 and
f ðuÞ ¼ �u3.

In the case of a quadratic nonlinearity, f ðuÞ ¼ �u2, the stationary solution in
the region x > 0 for k > 0 is

uðxÞ ¼ 3
2
k

C2 � 4k

C sinh
ffiffiffiffiffiffiffiffi
k=2

p
x

� �
þ 2

ffiffiffi
c

p
cosh

ffiffiffiffiffiffiffiffi
k=2

p
x

� �h i2 : ð26Þ

In the region x\0; uðxÞ ¼ uð�xÞ. At the critical value of C;Cc ¼ 2
ffiffiffi
k

p
, a two-

sided bifurcation takes place. The nontrivial solution is uðxÞ is positive and stable
for C > Cc, and it is negative and unstable for C\Cc.

It is interesting that a localized solution exists also in the case of a neutrally
stable background, k ¼ 0. In that case, the solution in the region x > 0 is

uðxÞ ¼ 6

ðx þ 4=CÞ2 ;

thus the decay at infinity is algebraic rather than exponential.
In the case of a cubic nonlinearity, the solution is

uðxÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðC2 � 4kÞ

q

C sinhð
ffiffiffi
k

p
xÞ þ 2

ffiffiffi
k

p
coshð

ffiffiffi
k

p
xÞ

; x > 0: ð27Þ

A supercritical pitchfork bifurcation takes place. Note that the solution (27)
belongs to the family of localized solutions obtained in [5]. For k ¼ 0, the
localized solution is

uðxÞ ¼
ffiffiffi
2

p

jxj þ 2=C

(see [14]).
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3.2.2 The Case v 6¼ 0

In the case v 6¼ 0, the stationary localized structure created by the localized mode
is governed by the boundary value problem

�ku � vu0 þ CdðxÞu þ u00 þ f ðuÞ ¼ 0 ð28Þ

with boundary conditions

uð�1Þ ¼ 0: ð29Þ

No solutions are possible in the case k\0, because in that case the point u ¼ 0 is a
repeller in the framework of Eq. (28) (recall that v > 0). In the case k > 0 the
solution is possible but its analytical computation is a formidable task. Here we
present only the result of the bifurcation analysis in the case f ðuÞ ¼ �u3.

In the vicinity of the critical value Cc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4k

p
;

C ¼ Cc þ �2c; �2 
 1;

one can construct an asymptotic expansion in the form

uðxÞ ¼ �u1ðxÞ þ �3u3ðxÞ þ . . .;

which describes the bifurcation of a nontrivial localized solution of Eq. (28) from
the trivial solution uðxÞ ¼ 0. The leading order equation is linear, and its solution
can be found analytically:

u1ðxÞ ¼ Aek�x; x\0; uðxÞ ¼ Aekþx; x > 0; ð30Þ

where

k� ¼ v �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4k

p

2
: ð31Þ

The solvability condition of the equation for u3ðxÞ obtained in order Oð�3Þ
determines the amplitude A:

1
4k� � v

� 1
4kþ � v

� �
A2 ¼ c: ð32Þ

Because

4k� � v ¼ v þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4k

p
> 0; 4kþ � v ¼ v � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4k

p
\0;

the solution exists only for c� 0, i.e., there is a supercritical pitchfork bifurcation
of two branches of localized solutions (with positive and negative A) from the
trivial solution u ¼ 0. In the case v ¼ 0,

A2 ¼ 2
ffiffiffi
k

p
c; ð33Þ
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which is compatible with (27).

4 Complex Ginzburg-Landau Equation

The results of the previous section can be easily extended to the case of the
Ginzburg-Landau equation with the real coefficients,

ut þ vux ¼ �ku þ CdðxÞu þ duxx � juj2u: ð34Þ

In the present section, we consider the full complex Ginzburg-Landau equation,

ut þ vux ¼ ½�k þ ðCr þ iCiÞdðxÞ�u þ ðd þ iaÞuxx � ð1 þ ibÞjuj2u: ð35Þ

4.1 Linear Stability Theory

Let us linearize Eq. (35) and search the solution in the form uðx; tÞ ¼
UðxÞ expðrtÞ. We find:

rU þ vU0 ¼ ½�k þ ðCr þ iCiÞdðxÞ�U þ ðd þ iaÞU00: ð36Þ

In the case v ¼ 0, this problem has been solved in [5]. Using ansatz (8) for
localized solutions of that equation, we find the following expression for the
growth rate of disturbances:

r ¼ �k þ ðCr þ iCiÞ2 � v2

4ðd þ iaÞ ; ð37Þ

(cf. (13)). The threshold value of Cr;c is determined by the relation

ReðrÞ ¼
ðC2

r;c � C2
i � v2Þd þ 2aCr;cCi

4ðd2 þ a2Þ � k ¼ 0: ð38Þ

Note that the obtained expression resembles that of the absolute instability
threshold in the absence of the inhomogeneity,

k ¼ � v2d

4ðd2 þ a2Þ :

The instability boundary is a hyperbola in the plane ðCc;CiÞ with the asymptotes

Ci=Cr ¼ ða �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ d2

p
Þ=d:

The explicit formula for the threshold value is
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Cr;c ¼
�aCi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4k þ C2

i Þðd2 þ a2Þ þ d2v2
q

d
: ð39Þ

The values of k� in the expression (8) are:

k� ¼ v �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4ðd þ iaÞk

p

2ðd þ iaÞ : ð40Þ

Note that conditions of the boundedness of the eigenfunctions on the infinity,
Reðk�Þ > 0;ReðkþÞ\0, are satisfied. Indeed,

Reðk�Þ ¼
ðv � CrÞd � Cia

2ðd2 þ a2Þ : ð41Þ

Substituting the critical value of Cr, (39), we find that at Cr ¼ Cr;c,

Reðk�Þ ¼
v �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ ð1 þ a2=d2ÞðC2

i þ 4kÞ
q

d
;

hence the boundedness conditions are satisfied. Obviously, they are satisfied for
Cr > Cr;c, because ReðkþÞ (Reðk�Þ) decreases (grows) with the growth of Cr.

In the limit d 
 a the instability condition becomes CrCi > 2ka (see [14]).
Note that it does not depend on v. However, the velocity v influences the critical
value of frequency,

x0 ¼ �Imr ¼ C2
r � C2

i � v2

4a
¼ 4a2k2 � v2C2

i � C4
i

4aC2
i

: ð42Þ

Thus, in the case of a complex amplitude equation, the nonzero group velocity
breaks the reflection symmetry of solutions (kþ 6¼ �k�, see Eq. (40)), typically
enhances the instability threshold (see Eq. (39)), and influences the frequency of
the oscillatory instability (see Eq. (42)).

4.2 Nonlinear Localized Structures

Let us consider the bifurcation of solutions in the framework of Eq. (35). In the
vicinity of the threshold value of Cr,

Cr ¼ Cr;c þ �2c; �2 
 1;

a nontrivial solution of (35) can be constructed in the form

u ¼ �u1ðx; t0; t2Þ þ �3u3ðx; t0; t2Þ þ . . .;
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where t0 ¼ t; t2 ¼ �2t. At the leading order Oð�Þ, the linear problem considered in
the previous section is reproduced, hence

u1ðx; t0; t2Þ ¼ UðxÞe�iðx0t0þx2t2Þ; ð43Þ

where UðxÞ is defined by (8). At the order Oð�3Þ, we obtain the following equation,

u3;t0 þ vu3;x þ ½k � ðCr;c þ iCiÞdðxÞ�u3 � ðd þ iaÞu3;xx

¼ �u1;t2 þ cdðxÞu1 � ð1 þ ibÞju1j2u1: ð44Þ

Assuming

u3ðx; t0; t2Þ ¼ U�
3 e�iðx0t0þx2t2Þ ð45Þ

(the upper and lower signs corresponds to regions x > 0 and x\0), we obtain

vU�
3;x þ ðk � ix0ÞU�

3 � ðd þ iaÞU�
3;xx

¼ ix2Aek�x � ð1 þ ibÞjAj2Ae
~k�x;

where ~k� ¼ 3Rek� þ iImk�, and hence

U�
3;x ¼ A�

3 ek�x þ ix2A

v � 2k�ðd þ iaÞ xek�x � ð1 þ ibÞjAj2A

k � ix0 þ v~k� � ðd þ iaÞv~k2
�

e
~k�x;

where A�
3 are constants. The condition of the continuity of U3 in the point x ¼ 0

and the condition

�ðd þ iaÞðUþ
3;x � U�

3;xÞjx¼0 � ðCr;c þ iCiÞU3ð0Þ ¼ c;

which is obtained by the integration of (44) in the interval �d� x� d and by
taking the limit d ! 0, give a system of two algebraic linear equations for A�

3 with
a zero determinant. The solvability condition of this system gives the following
relation,

�ð1 þ ibÞjAj2 1
v � 2qþðd þ iaÞ �

1
v � 2q�ðd þ iaÞ

� �
þ c þ ix2

d þ ia
¼ 0; ð46Þ

where q� ¼ k� þ Rek�. Multiplying relation (46) by d þ ia and taking the real
part, we find the bifurcation equation,

jAj2Re ðd þ iaÞð1 þ ibÞ 1
v � 2qþðd þ iaÞ �

1
v � 2q�ðd þ iaÞ

� �	 

¼ c; ð47Þ

which is the generalization of Eq. (32) in the case of the complex amplitude
function.
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5 Conclusions

We have considered the onset of patterns under the action of a localized inho-
mogeneity of the linear growth rate. The linear instability threshold has been
found, and the bifurcation of a nonlinear solution near the threshold has been
considered. Similarly to the threshold of the absolute instability in the absence of
an inhomogeneity, the threshold of the inhomogeneity-induced instability is
influenced by the group velocity of waves. An exception is the case of vanishing
diffusion coefficient where the threshold is determined solely by the decay rate of
waves outside the inhomogeneity and by the dispersion of waves. The instability
threshold can be diminished by using a periodic chain of inhomogeneities.
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Spontaneous Formation and Switching
of Optical Patterns in Semiconductor
Microcavities

Jacob Scheuer and Meir Orenstein

Abstract We study spontaneous pattern formation and symmetry breaking in broad
area and pre-patterned (spatially modulated) semiconductor microcavities under
lasing conditions. In broad area VCSELs, we observe the spontaneous formation of
regular arrays consisting of charge ‘‘±1’’ optical vortices. The formation of these
patterns stems from transverse mode locking of almost wavelength degenerated
Gauss-Laguerre (GL) modes. The observed patterns in Gain modulated broad area
VCSELs and their dynamical behavior depends dramatically on the modulation
strength. In ring shaped VCSELs lasers we observe necklace-like pattern formation
and switching as a function of the injection current. The formation of the patterns
and, in particular, their switching is shown to stem from stability loss of the lasing
pattern to perturbations of more complex pattern which, in turn, is stable under
similar pumping conditions. Having the advantage of a strong, saturating nonlinear
response with an inherent loss compensation mechanism, such lasers are potentially
the best microlabortories for studying nonlinear phenomena and for the generation
and employment of complex optical fields. Applications can be found in optical data
storage, information distribution and processing, laser cooling and more.

1 Introduction

Spontaneous pattern formation and switching in nonlinear optics is a well-
established research field that has been in the focus of numerous studies, both
theoretical and experimental [1–4]. A fundamental hurdle in experimental studies
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involving nonlinear optics is loss. Nonlinear phenomena are affected by the
intensity of the field and are, therefore, very sensitive to losses. These drawbacks
characterize, in principle, all passive nonlinear media.

The nonlinear medium of semiconductor laser has several advantages for
exploring spontaneous pattern formation. The main advantage is that under lasing
conditions, the losses of the evolving pattern are automatically compensated by the
gain mechanism of the laser. In addition, the semiconductor lasers have a rela-
tively large nonlinear response to the electrical field (comparing to passive media
such as silica) that includes both real and imaginary terms.

One of the well-known properties of lasing patterns in lasers is that they
exhibiting an evident increase of their spatial frequency as the pumping is
increased [5–7]. Related phenomena are beam filamentation in broad area edge
emitters [8], as well as the on-switching of higher order lasing modes.

The on-switching of higher order patterns in broad area lasers was frequently
explained by the modification of the gain-loss balance between the modal (dif-
fraction) losses, and the modal gain (the intensity profile overlap with the gain
profile) due to the spatial hole burning effect [9–12]. A major drawback of this
argument is its failure to explain the unidirectional evolution of higher spatial
frequencies in the laser as the current is increased, i.e. the preference of switching
to higher order modes against switching back to lower order modes when pumping
is increased. This drawback indicates that the static gain-loss mode-discrimination
mechanism is not the fundamental reason for the pattern evolution.

In this chapter, the spontaneous transversal patterns that evolve in nonlinear
gain medium are explored. The study was focused on two-dimensional structures
realized by vertical cavity semiconductor lasers (VCSELs). The formation of the
patterns was analyzed theoretically and experimentally demonstrated in broad area
gain guided VCSELs.

We choose to focus on the vertical cavity configuration (VCSEL) because it
possesses several inherent advantages. VCSELs are miniature devices and simple
to operate, and they have the two key features for the potential formation of
complex patterns: very high Fresnel number and two-dimensional emission, both
are lacking from edge emitting semiconductor lasers. In addition, patterning the
top mirrors of VCSELs allows for extending of nonlinear pattern formation studies
to diverse geometries as well to modulated nonlinear media—a field that has
received much attention because it facilitates stable patterns. These advantages
make the VCSEL an excellent micro-laboratory for the generation and study of
complex patterns. Another reason to explore the broad area VCSELs in this
context is their application in short range optical links as low coherency sources
for reduced modal noise in multimode fiber links [13, 14].

In Sect. 2 the patterns emitted by square and circular broad area VCSELs are
examined. It is shown that these patterns are comprised of regular arrays of optical
vortices and stem from nonlinear transverse locking of Gauss-Laguerre modes.
The role of the thermal lensing effect in the pattern formation is also examined and
is found to be important.
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In Sect. 3 the patterns emitted by ring shaped VCSELs are examined. We
choose to focus on this relatively simple geometry because it constitutes a con-
venient platform for studying not only the stable patterns but also the dynamical
transitions between them. The patterns that were observed consisted of intensity
lobes that switch to higher numbers of lobes as the injection current is increased.
The pattern switching is found to stem from the mechanism of nonlinear related
instability—the modulation instability which results in a sequential stability loss of
lower complexity patterns to excite higher complexity patterns as the current is
increased. The switching thresholds are studied theoretically and demonstrated
experimentally.

2 Pattern Formation in Broad Area VCSELs

The formation of stable transverse field patterns in nonlinear optical devices was
studied in recent years. Much work (mainly numerical analysis) has been exerted
to the study of transverse pattern formation in cavities incorporating nonlinear
medium [1, 2, 15, 16]. These studies focused mainly on externally driven cavities
and exhibited the formation of ordered patterns of bright or dark spots with
hexagonal symmetry. Other patterns, such as rolls had been observed as well [1].
Experimental observations of the formation of stable transverse patterns in non-
linear cavities containing Sodium vapor [17] and transition between rolls and
hexagons in a system consisting of a liquid crystal light valve (LCLV) in a ring
cavity [18] were reported.

Lasers are incorporating a built-in nonlinearity and cavity, thus are expected to
exhibit these complex field patterns spontaneously. However, only few observa-
tions of such patterns were reported, e.g. in a Sodium vapor based laser [17] and in
VCSELs [7].

In this section the formation of these complex spatial patterns in broad area
VCSELs is discussed in details. The transverse patterns emitted by the VCSELs
are shown to stem from transverse mode locking of wavelength degenerated
Gauss-Laguerre modes. It is also shown that the temperature profile of the VCSEL
has a significant role in the determination of these patterns (thermal lensing effect).

The pattern that evolves in broad area VCSELs were calculated using a rate-
equations based model and compared to experimentally observed patterns.

2.1 The Thermal Lensing Effect

One of the most important linear effects in the determination of the transverse
modes of the device (which in this case is found to be dominant) is the thermally
induced modification of the refractive index. The injected current generates heat
inside the device. The heat flows from the laser outwards and causes a non-
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uniformly heating which creates a temperature gradient over the device. This
temperature profile induces changes in the refractive index profile of the laser—
Dn rð Þ ¼ on

oT � DT . In semiconductor laser materials the induced index increases
with the temperature and as a result, an effective lens (parabolic index) is formed
(thermal lensing).

A comprehensive analysis of VCSELs including thermal effects was conducted
by Hadley et al. [19], Scott et al. [20] and by Chen [21]. These studies were
primarily based on numerical solutions of coupled carriers transport and heat
transfer equations. Here, a relatively simple analytic thermal model is used,
yielding a qualitatively good approximation for the temperature profile which was
found to be parabolic within the laser area.

The heat is assumed to be uniformly generated inside a perfect cylinder with
radius Rl and height Lw. Rl is the laser’s radius and Lw is the width of the wafer
(see Fig. 1). The heat is generated because of the ohmic resistance mainly of the
top Bragg (p-doped) section. The medium is assumed to be homogeneous and
isotropic. The heat generated inside the cylinder is transferred to the rest of the
wafer via thermal conductance within the semiconductor material and to the air
surrounding the wafer via convection from the wafer surfaces. It is assumed that
the device temperature approaches room temperature as r approaches infinity and
that it is limited in r ¼ 0. The steady state temperature profile of the device is the
solution of the heat transfer equation [22]:

d2~T

dr2
þ 1

r

d~T

dr
� 2kA

k � LW

~T þ h rð Þ
k

¼ 0 where h rð Þ ¼ h0 r �Rl

0 r [ Rl

�
ð1Þ

~T ¼ T � TA is the temperature difference between the device and room tempera-
tures, r is the radial coordinate, k and kA are the heat conductance and convection
coefficients respectively. h rð Þ is the heat generation density which is zero outside
the laser and assumed to be constant inside—h0 ¼ V � I

�
pR2

l Lw where V and I are
the voltage and current driving the laser.

The solution of (1) is expressed by modified Bessel functions:

J

Wafer

Current flow
&

Heat generation

VCSEL

Lw

Rl

Heat
flow

Heat
flow

Convection

LC

Fig. 1 Thermal model for VCSEL
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T0�K 0
0 aRlð Þ�I0 a�rð Þ

I00 aRlð Þ�K0 aRlð Þ�I0 aRlð Þ�K 0
0 aRlð Þ þ T0 r\Rl

T0�I00 aRlð Þ�K0 a�rð Þ
I00 aRlð Þ�K0 aRlð Þ�I0 aRlð Þ�K 0

0 aRlð Þ r [ Rl

8
>><

>>:
ð2Þ

where I0 and K0 are the zero order modified Bessel functions of the first and
second kind, the primes denote derivatives, a2 ¼ 2kA=kLw and T0 ¼ h0Lw=2kA. By
measuring the V–I curve of the VCSEL, the diode electrical parameters—
I� IL exp V=VLð Þ can be estimated and used to calculate h0 and the corresponding
temperature profile for each current. These parameters are, obviously, specific for
the examined devices. Table 1 summarizes experimental measurements of the
voltage, current and calculated IL, VL for a circular 20 lm diameter VCSEL (for
detailed description of the devices see Sect. 2.6). These values were used to cal-
culate the temperature profiles for each of the currents.

As the injected current increases, the temperature rises and the induced index
change becomes larger and more significant (see Fig. 2). The induced index
changes the guidance configuration in the VCSEL from primarily gain-guidance to
index-guidance, so the thermally induced waveguide becomes the dominant
ingredient in the determination of the VCSEL transverse modes.

For small argument, a parabolic approximation can be used for the zero order
modified Bessel function of the first kind, I0 rð Þ !

r!0
1 þ r2

�
4 and the approximated

temperature profile inside the laser is ~T rð Þ � ~Tmax � a2T0 � r2
�

4.
As shown in Fig. 3, the approximated thermally induced refractive index (for

I = 35 mA) is in excellent agreement with the exact solution (based on (2)) for radii
smaller than the laser radius Rl (the induced index was calculated by assuming
on=oT ¼ 4�10�4 �C�1 [23]—yielding index changes of Dn * 0.02). Thus, the
heating of the laser induces approximately an effective waveguide with a parabolic
profile.

This simple and analytic thermal model has some limitations that should be
considered. First, the heat transfer problem is essentially a 3D problem because the
thermal and electrical characteristics of the different layers in the laser (Bragg
reflectors, QWs, wafer etc.) may differ significantly. As a result, the heat generated

Table 1 Voltages and heat
generation in a VCSEL for
different driving currents

V (Volt) I (mA)

4.86 20
5.12 25
5.35 30
5.56 35

I & IL exp(V/VL)
IL = 0.377 mA
VL = 0.841 V
Ith = 7 mA
Vth = 2.45 V

Spontaneous Formation and Switching of Optical Patterns 325



in the laser is not distributed uniformly in the z direction. In addition, the current is
not confined to a cylinder under the contact but rather spreads outwards as it flows
toward the ground contact and causes the heat generation to have radial depen-
dence as well. Despite these limitations, the model provides reasonable results
which correspond to more comprehensive thermal models [19–21] and to exper-
imental observation [21].

It should be noted, that the induced waveguide is current dependent—
increasing the current results in stronger guiding and more confined modes. This
causes a continuous decrease in the size of the modal waste as the current is
increased. The injection profile, on the other hand, remains unchanged. As a result,
the lasing pattern would also change as the current is increased.

It should be emphasized that the thermal lensing in a linear effect that deter-
mines a set of orthogonal function (Gauss-Laguerre modes) that can evolve in the
cavity. The nonlinear mechanisms of the VCSEL would select the specific com-
binations of modes that would actually evolve in the laser.
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In the next section, the guided modes of the parabolic index waveguide—the
Gauss-Laguerre modes are presented and discussed.

2.2 The Gauss-Laguerre Modes

The transverse modes of the parabolic index profile waveguide are the well-known
Gauss-Laguerre functions [24]. The Gauss-Laguerre set is:

Wp0 r;uð Þ ¼ 2
ffiffiffiffiffiffi
2p

p L0
p 2r2
� �

� e�r2
Wplj r;uð Þ

¼ 2
ffiffiffiffiffiffi
2p

p
ffiffiffiffiffiffi
2r2

p� �l
� p!

p þ lð Þ !

	 
1=2

�Ll
p 2r2
� �

� e�r2 � eþilu j ¼ 1
e�ilu j ¼ 2

�
ð3Þ

where p = 0,1,… is the radial index and l = 0,1,… is the angular index, r denotes
the radial coordinate normalized by the beam waste, and Ll

p are the Laguerre
polynomials of the indicated arguments. The functions Wplj form an orthonormal
set—

RR
Wplj � W�

p0l0j0 � da ¼ dpp0dll0djj0 . The lowest-order function—W00, is the
Gaussian beam and the higher order functions are connected to the Gauss-Hermite
function by simple algebraic relations.

An important property of Gauss-Laguerre modes is their wave number
dependence on the transverse indices (p, l). Modes satisfying the condition 2p þ
l ¼ const, are wave number degenerated. Within a cavity, this degeneracy causes
these modes to be wavelength degenerate. The Gauss-Laguerre modes can be,
therefore, arranged in wavelength degenerate ‘‘families’’.

This degeneracy is easily understood by examining the equivalent quantum
mechanical problem which is the eigen-functions of the two dimensional harmonic
oscillator [25]. In the quantum analogy, the z-derivative of the electrical field is
equivalent to the time-derivative of the wavefunction and the propagation factor is
equivalent to the energy. Therefore, the wave number (wavelength) degenerated
families of the electrical field correspond to energy-level degenerated solutions of
the 2D harmonic oscillator.

An immediate conclusion from the classification of the Gauss-Laguerre modes
to wavelength degenerated families is that the emitted pattern in each wavelength
must be a superposition of modes belonging to a specific family. In addition, since
the VCSEL supports predominantly a single longitudinal mode, all families that
are lasing simultaneously (multi-mode operation) should have the same longitu-
dinal wave-number (kz). Since higher order families have higher transversal wave-
number (larger kt) and should, therefor, lase in shorter wavelength (higher effec-
tive wave-number). As a result, when the VCSEL is lasing in multi-mode, higher
order families would have shorter wavelength (see for example Fig. 14).

It should be noted, that the thermally induced waveguide is not exactly para-
bolic and therefore the modes of a single family are not completely wavelength

Spontaneous Formation and Switching of Optical Patterns 327



degenerated. The nonlinearity of the laser locks the wavelengths of the almost
degenerated modes to a single wavelength via the mechanism of cooperative
frequency locking [26] and thus the wavelength degeneracy is regained.

Another interesting property of the Gauss-Laguerre modes is that they may
include field patterns with phase singularities (optical vortices) in their center. The
significance and properties of these vortices is reviewed in the next section.

2.3 What is an Optical Vortex?

Let us consider a monochromatic wave of the form:

U ~r; tð Þ ¼ u r;uð Þ exp i kz � wtð Þ½ 	 ð4Þ

where w is the angular frequency and k is the wave-number. Consider, for
example, a transversal field profile u r;uð Þ of the form:

u r;uð Þ ¼ f rð Þ exp inuð Þ ð5Þ

where n is an integer. Equation (5) represents a wave that rotates around its axis as it
propagates, forming a helical wave (see Fig. 4). For a given z, the electrical field
rotates around the beam center similar to a fluid in a vortex. The Gauss-Laguerre
modes (3) are solutions of the wave equation that encompasses also the form of (5).

An important property of the solutions that have the form (5) for n 6¼ 0 is that
they have a phase singularity at r ¼ 0. This singularity can be easily observed
when one tries to evaluate the phase in the center by approaching it radially
starting at different angles u. For each angle of approach, a different value is found
for the phase in the center—indicating that the phase is not well defined there.
Because the solutions of the wave equation must be differentiable, the amplitude of
the electrical field must vanish at the location of the phase singularity—as clearly
seen from (3).

A more formal way to define an optical vortex is examining the phase change in
a closed contour around it. A vortex exists inside a closed contour C if the cir-
culation of the argument of u r;uð Þ along that contour is an integer multiple of 2p:

I

C
r arg u r;uð Þ½ 	 � dl ¼ 2pm m ¼ 
1; 
2; . . . ð6Þ

The integer m is called the topological charge of the phase singularity.
It should be noted that a vortex might rotate clockwise or counterclockwise—

according to the sign of the topological charge n. These opposite vortices have
essentially the same intensity pattern but are actually orthogonal functions.

The rotation of the wave (either clockwise or counterclockwise) indicates that
the beam has angular momentum. Unlike the angular momentum of a circularly
polarized beam (which is associated with the spin of the photon), the angular
momentum of a vortex beam is of orbital type.
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Several methods were developed [27] to identify the rotation direction of a
vortex, one of them is interfering between the vortex beam and an oblique plane
wave. The existence of the vortex is indicated in the interference pattern by the
appearance or disappearance of interference fringes. The number of the fringes
indicates the magnitude of the topological charge and the direction of appearance/
disappearance indicates its sign. Figure 5 shows the interference pattern of a
charge +1 (a) and a charge –1 (b) vortices with an oblique plane wave. In the
interference pattern of the charge +1 vortex (a) there is a fringe in the upper half of
the plane that ‘‘disappears’’ in the lower half. On the other hand, in the interference
pattern of the charge –1 vortex (b) the fringe exists in the lower half plane but
disappears in the upper half.

Propagation

Direction

Rotation

Fig. 4 Schematic representation of the wave-front of a helical wave

Fig. 5 Interference patterns of charge +1 vortex (a) and charge –1 vortex (b) with an oblique
plane wave
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2.4 Derivation of the Modal Rate Equations

As was shown in Sect. 2.1 the thermally induced index is the dominant ingredient
in the determination of the transverse modes of the VCSEL. A key point in the
analysis shown here is the representation of the transverse distribution of the
electric field as a combination of the modes of the induced index—the
Gauss-Laguerre modes (3). It is important to note that the induced waveguide is
current dependent—increasing the current results in stronger guiding and higher
mode confinement. This causes a continuous decrease in the size of the modal
waste as the current is increased while the injection profile remains unchanged. As
a result, the lasing pattern would also change as the current is increased.

The model is based on the semiconductor laser rate equations for the electrical
field and the carrier density. The rate equations for a monochromatic wave in
steady-state (ot ¼ 0) are [5]:

oEF

oz
¼ i

2k
r2EF þ 1

2
g � atotð ÞEF � i

2
R � g � EF ð7aÞ

� oEB

oz
¼ i

2k
r2EB þ 1

2
g � atotð ÞEB � i

2
R � g � EB ð7bÞ

Dr2N þ J

ed
� N

T1
� g

�hw
� ej j2 ¼ 0 ð7cÞ

g ¼ a N � Ntrð Þ
1 þ e0 � ej j2

ð7dÞ

where EF and EB are the forward and backward propagating waves, e is the total
electric field in the active area, N is the carrier density, Ntr is the transparency
carrier density, J the current density, d the VCSEL’s cavity length, g the gain, atot

the losses, k the effective propagation constant and e the electron charge. a is the
confinement factor and differential gain respectively, D is the diffusion coefficient
T1 is the carriers lifetime, e’ is the non-linear gain saturation parameter, R is the
anti-guiding factor representing the refractive index dependence on the free car-
riers distributions, and x is the electric field frequency.

The assertion is that the transverse field distribution of any single lasing mode
of the VCSEL cavity can be represented as a combination of the Gauss-Laguerre
functions belonging to a specific family:

EA ¼
X

n

En
A zð Þ � Wn r;uð Þ ð8Þ

where Wn is the nth function of the family (n runs over all the family modes), En
A is the

corresponding complex coefficient where A = F, B. Substituting the decomposed
EF, EB into (7a) (7b) and integrating over the whole transverse plain (taking
advantage of the modes orthogonality) yields a set of equations for the coefficient En

A:
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¼ 1

2
�atotE

n
A þ 1 � iRð Þ

X

m

Em
A �
ZZ

g � Wm � W�
n � da

 !

ð9Þ

The gain of the active medium (g) in the right hand term of (9) depends also on
the electrical field profile via the equation for the carrier density (7c). If the
diffusion coefficient D is negligible, the carrier density, N, can be easily extracted
from (7c) and be substituted to yield an expression for the gain:

g ¼
a JT1

ed � Ntr

� �

1 þ e0 þ a T1
�hw

� �
� ej j2

ð10Þ

If the diffusion is not negligible, the extraction of the carrier density and the
gain as a function of the electrical field is not simple and, in principle, requires
simultaneous numerical solution of field and diffusion equations. However, if the
effect of the diffusion is relatively small, an approximated expression to the gain
could be derived.

Substituting (7d) into (7c) yields the following equation for the carrier density:

1 þ nj j2�DT1r2
� �

~N ¼ N0 ð11Þ

where ~N ¼ N � Ntr, N0 ¼ JT1=ed � Ntr and nj j2¼ aT1
�hw � ej j2

.
1 þ e0 ej j2
� �

. A for-

mal solution for Eq. (11) is [28]:

~N ¼ 1 � DT1

1 þ nj j2
r2

 !�1
N0

1 þ nj j2

 !

ð12Þ

Assuming the diffusion coefficient is relatively small, the first operator on the
right hand term of (12) could be approximated by a first order Taylor expansion:

~N� 1þ DT1

1þ nj j2
r2

 !

� N0

1þ nj j2

 !

¼ N0

1þ nj j2
þ DT1r2N0

1þ nj j2
� �2þ

2DT1 rN0ð Þ�r 1þ nj j2
� ��1

1þ nj j2
þDT1N0

1þ nj j2
�r2 1

1þ nj j2

 !

ð13Þ

Expression (13) can be substituted into (7d) to get an approximated expression
for the saturating gain of VCSEL. The gain is then substituted into (9) to get the
rate equations for the modal coefficients of the Gauss-Laguerre modes.

It should be mentioned that the gain is also a function of the longitudinal
coordinate—z. In the active layer the gain is given by (7d) but in the other layers
(DBR mirrors etc.) there is no gain and the amplitude of the field decays according
to the internal losses of the medium.
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2.5 Steady-State Solutions

The steady state solutions for (9) were obtained numerically using the parameters
of Ref. [29]. A steady state solution, obtained as a specific mode combination, was
a transverse mode-locked solution supported by the nonlinearities of the VCSEL.
The control parameter for the model was the injection current density (J). As the
current density J was changed, a different mode locked combination of the family
modes evolved as the steady state solution. The details of the evolved patterns
matched the experimental results perfectly in the sense that whenever a solution
was found—a corresponding experimental field distribution was observed and vice
versa (see also Sect. 2.6).

Equation (9) where solved for the first non-trivial wavelength degenerated
families (2p ? l = 1, 2, 3, 4). The 2p ? l = 0 family includes a single function
and is, therefore, less interesting from the complex pattern formation point of
view.

The first family (2p ? l = 1), exhibited two steady state patterns. The first one
(lowest current) to evolve was one of the family basic modes (W011 or W012—see
Fig. 6aI). This pattern includes a charge ‘‘1’’ phase singularity in the middle (see
also Fig. 15). Despite the similarity to the well-known ‘‘doughnut mode’’ the W011

is a completely different pattern. The doughnut mode is an incoherent superpo-
sition of the Gauss-Hermite modes H10 and H01 [24], each one with different
polarization while the pattern observed here has a single polarization and wave-
length. Moreover, in contrast to the optical vortex pattern, the conventional
doughnut mode does not have a phase singularity at all. The second pattern
(Fig. 6aII) included two intensity lobes. This pattern is a superposition of the two
modes of the family and is identical to the H10 or H01 Gauss-Hermite mode. This
pattern was rarely observed (also experimentally) and only in rectangular VCSEls.
The reason is that, unlike the vortex pattern, the H10 mode is less stable (according

(a) (b)

I

II

20 μm

Fig. 6 Transverse pattern for
2p ? l = 1, theoretical
(a) I J0 * 15�10-18;
II J0 [ 20�10-18 and
experimental (b) I 11.3 mA,
II 13.3 mA (J0 units A/lm2)
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to the numerical simulations) in circularly symmetric structure and even a small
difference between the amplitudes of the vortex modes would cause the weaker
mode to decay—leaving a single vortex pattern. Even in rectangular VCSELs the
H10 pattern was hardly observed because of the thermal lensing that induces a
circularly symmetric waveguide.

For the second family (2p ? l = 2), three stable mode-locked combinations
were obtained under the VCSEL lasing conditions (Fig. 7a). The first pattern to
evolve (lowest current) was the ‘‘8’’ shaped pattern (I). The second pattern was the
–‘‘4-hole’’ pattern (II) and the last (III) was the W10 basic Gauss-Laguerre (GL)
mode. The first two patterns are a specific combination of the Gauss-Laguerre
modes that were selected by the nonlinearities of the VCSEL. The values of the
current density for each mode-locked combination are detailed in the caption of
Fig. 7.

An important feature of the first two patterns is the existence of the dark peaks
(two peaks in the ‘‘8’’ shaped pattern and four in the other pattern). These dark
peaks were confirmed theoretically and later experimentally (see Fig. 15) to be
optical vortices. The ‘‘8’’ shaped pattern (Fig. 7aI) has two charge ‘‘1’’ vortices

I

II

III

20 μm

(a) (b)

Fig. 7 Transverse pattern for 2p ? l = 2, theoretical (a) I J0 \ 74�10-18; II J0 [ 74�10-18;
III J0 [ 95�10-18 and experimental (b) I 16 mA; II 17.2 mA, III 20 mA. (J0 units A/lm2)
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(see also Fig. 15) and the ‘‘4-hole’’ pattern consists of four charge ‘‘1’’ vortices
with alternating signs giving rise to a total phase singularity of ‘‘0’’. The last
pattern belonging to this family, the W10 Gauss-laguerre mode (Fig. 7aIII), has no
phase singularities. The values of the current densiny for each mode-locked
combination are detailed in the caption of Fig. 7.

The patterns of the third family (2p ? l = 3) are shown in Fig. 8a. Five stable
lasing patterns of this family were obtained—one is a basic GL mode and the

I

II

III

IV

V

(a) (b)

Fig. 8 Transverse pattern for
2p ? l = 3, theoretical (a) I
J0 \ 20�10-18; II
28�10-18 \ J0 \ 52�10-18;
III J0 \ 26�10-18; IV
J0 [ 52�10-18; V
20�10-18 \ J0 \ 64�10-18

and experimental (b) I
25 mA, II 26.3 mA, III
27.8 mA, IV 28.2 mA, V
28.6 mA. (J0 units A/lm2)
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others are specific combinations of all the four modes. As for the previous families,
the patterns belonging to the third family are characterized by regular arrays of
dark peaks.

The first pattern to appear (lowest current) was the W111 or W112 Gauss-La-
guerre mode (Fig. 8aI) (both modes have an identical intensity pattern). The
second pattern (II) was a circular pattern with seven dark peaks and the third (III)
exhibited five dark peaks. The forth pattern (Fig. 8aIV) exhibited two dark peaks
and two dark stripes and the last pattern (Fig. 8aV) included three dark stripes.

The patterns of the third family can be divided into two groups. The first one is
characterized by overall charge ‘‘1’’ singularity and includes the W111/2 mode with
a charge ‘‘1’’ vortex (Fig. 8aI) and a pattern with seven alternating charge ‘‘1’’
vortices (Fig. 8aII). The second group is characterized by singularities of charge
‘‘3’’. The patterns belonging to this group are shown in Figs. 6aIII, 8aIV and 8aV.
The current densities levels are detailed in the caption of Fig. 8. The vortex
configuration of these patterns is depicted in Fig. 15.

The patterns of the fourth family (2p ? l = 4) are shown in Fig. 9a. Five stable
patterns where found numerically, none of them is a basic Gauss-Laguerre mode.
The first pattern to evolve (Fig. 9aI) exhibited an array of four charge ‘‘1’’ vortices
with identical signs. The second pattern (Fig. 9aII) included ten charge ‘‘1’’ vor-
tices with alternating sign. Increasing the pump rate further resulted in the evo-
lution of one of the patterns depicted in Figs. 9aIII–aV, depending on the initial
conditions. Figure 9aIII depicts a wheel-like pattern with eight charge ‘‘1’’ vortices
with alternating signs. Figure 9aIV depicts a pattern with four identical charge ‘‘1’’
vortices. The vortex configuration is similar to the one exhibited by the pattern
shown in Fig. 9aI but the structure of the pattern is different. Figure 9aV depicts a
pattern with ten vortices with alternating signs—two of them in the middle of the
pattern the rest are in the periphery. This pattern has similar vortex configuration to
the one depicted in Fig. 9aII but different overall structure.

The dependence of the evolving pattern on the initial conditions indicates that
under these conditions the VCSEL exhibits multi-stability and the actual lasing
pattern selected according to local elements such as defects and inhomogeneously.

It is notable, that some of the theoretically obtained patterns were not observed
experimentally, in particular pattern belonging to the 2p ? l = 4 family (Fig. 9).
The numerical approach which was used for the theoretical analysis utilized the
complete rate equations model. Thus we can exclude stability as a possible reason
for that, in particular because such patterns have been observed experimentally in
other laser systems incorporating a parabolic index profile [30, 31]. We attribute
the fact that some of the patterns were not observed in our experiments to the
linkage between the thermal lensing (i.e. the thermally induced parabolic index
profile) and the pump level. The index distribution is not fixed but rather change as
the pump is increased, reducing the characteristic radius of the GL modes. This is
in contrast to other laser system [17] where the index profile is not affected by the
pump level. This correlation between the induced index profile and the pump level
excludes part of the available parameter space which may explain the fact that
some of the predicted patterns were not observed experimentally.
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Fig. 9 Transverse pattern for
2p ? l = 4, theoretical
(a) I J0 \ 30�10-18;
II 32�10-18 \ J0 \ 42�10-18;
III J0 [ 34�10-18;
IV J0 [ 34�10-18;
V J0 [ 52�10-18 and
experimental (b) I [ 30 mA
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2.6 Experimental Results

The experiments were performed using broad area round (D = 20 lm) and rect-
angular (20 lm 9 20 lm) VCSELs. The laser devices were molecular beam
epitaxy grown VCSELs with three 8 nm In0.2Ga0.8As quantum wells (QW), lat-
erally defined by ion implantation [5, 32] (see Fig. 10). The VCSEL is divided into
three substructures. The lower includes 20 pairs of GaAs/AlAs k=4 Si n-doped
layers, creating a DBR mirror with reflection coefficient of 99.87 %. The middle is
an intrinsic GaAs layer, one k in thickness (wavelength in the material) that acts as
the cavity of the laser. In the middle of this layer there are three QWs which are the
active layers of the VCSEL. The upper is the top DBR mirror that includes 12 Be
p-doped pairs of GaAs/AlAs k=4 layers. The upper DBR mirror is covered by
p ? layer which is used both as an optical matching layer to the upper gold mirror
and as an electrical contact layer. A proton implantation was used to define the
area into which the current is injected (see Fig. 10). This procedure practically
defines the laser area and enables the usage of wide gold contact.

The lasers were examined under CW conditions using current levels in the
range of 5–43 mA. Under these conditions the lasers wavelength was *950 nm.
The experimental setup is depicted in Fig. 11. The near-field intensity pattern was
imaged (using an objective lens) through the thinned wafer and a linear polarizer
on a CCD camera to observe the near-field intensity pattern. Part of the light was
imaged through a spectrometer to get the spectrally resolved near-field intensity
patterns. The Mirror M1 could be inserted into the optical path in order to conduct
an interference experiment. The beam reflected from M1 was spatially filtered and
collimated, and was used as a reference beam for interference.

Fig. 10 Schematics of a
VCSEL structure

Spontaneous Formation and Switching of Optical Patterns 337



Figure 12 depicts the intensity patterns emitted by the VCSELs at low injection
current (below 15 mA). These patterns included narrow bright light filaments and
modes belonging to the 2p ? l = 1 family (a vortex an the H10 mode) which are
considered ‘‘conventional modes’’.

MONOCHROMATOR

CCD

BS
Objective

Lens
VCSEL

M 1

Obj. Lens

Obj. Lens

Pinhole

Reference

beam

Monitor

Neutral Density

filter
CCD

Spectrally Resolved

Near-Field

Polarizer

Fig. 11 The experimental setup. BS Beam Splitter, M1 Mirror

20μm

(a) (b)

(c) (d)

Fig. 12 Emitted patterns
close to threshold
(a) Spontaneous emission;
(b) Bright filament; (c) H10

mode; (d) An optical vortex
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As the injection current was increased above 15 mA, the near-field (NF) lasing
pattern switched from these ‘‘conventional’’ to complex field patterns, character-
ized by arrays of ‘‘dark peaks’’ which were very similar to the theoretically pre-
dicted patterns.

The first complex patterns to emerge were (Fig. 7b) an ‘‘8’’ like pattern (at
16 mA), the basic W10 Gauss-Laguerre mode (at 17.2 mA) and the pattern with 4
dark peaks (at 20 mA). As seen in Fig. 7 the experimentally observed near field
patterns are extremely similar to the theoretically calculated patterns.

Increasing the current further (above 25 mA), resulted in the evolution of
increasingly complex patterns, depicted in Fig. 8b and exhibiting 3, 5 and 7 dark
peaks. As for the previous family, an excellent match was found between the
calculated and the experimentally observed patterns.

Higher injection currents gave rise to the emission of patterns belonging to the
fourth family and multi wavelength patterns. Only two of the theoretically cal-
culated patterns where observed, probably due to the tendency of the VCSELs to
emit multi wavelength patterns in these high currents.

The patterns were imaged through a spectrometer to get the spectrally resolved
near-field (see examples in Fig. 13). The spectrally resolved NF revealed a single
wavelength operation for each of these patterns, indicating that they indeed a
coherently locked combination of wavelength degenerated modes.

I

II

III

IV

V

VI

(a) NF (b) Spectral NF (a) NF (b) Spectral NF
20μm

λ

λ

λ

λ

λ

λ

Fig. 13 Imaging through spectrometer, direct Near-Field imaging (a) and through the
spectrometer (b); I 8-like pattern; II 4-hole pattern; III 5-hole pattern; IV 7-hole pattern;
V W111; VI wheel shaped pattern. The distortion in (b) is due to the complex optics path of the
spectrally resolved near-field scheme
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Injecting even higher current levels caused the complexity of the patterns to
increase—exhibiting large regular arrays of optical vortices. Although multi
wavelength patterns emerged eventually, the overall near-field intensity pattern
preserved its highly regular ‘‘crystal-like’’ structure (Fig. 14), e.g. patterns with
ordered arrays of dark hexagons, which were composed of 2–4 distinct patterns,
each with a different wavelength.

The vortex array patterns emitted by the VCSELs were generated primarily by a
single wavelength degenerated family or by a small number of families (2–3) that
lase together. When lasing in multi-mode configuration, higher order families
lased with shorter wavelength than the lower order families as predicted by the
theoretical analysis (Sect. 2.2). Figure 16 depicts the spectrally resolved near filed
of a multi-mode lasing configuration, exhibiting lower order families in longer
wavelengths (left) and higher order families in shorter wavelengths (right). The
spectral shift between the families is approximately 0.25 nm.

2.7 Discussion

Although the symmetry of the physical problem is essentially circular (even for the
rectangular lasers because the thermally induced index is primarily circularly
symmetric), the emitted patterns are not circularly symmetric. Clearly, this
spontaneous symmetry breaking stems from the interaction between the GL modes
belonging to a certain family through the nonlinear gain saturation mechanism
(Figs. 15, 16).

The symmetries of the patterns which evolve in the VCSELS essentially reflect
the symmetries of the relevant GL modes. In contrast to the well-studied problem of
MI in 1D with periodic boundary conditions supporting two counter-propagating

20μm

Fig. 14 Experimental near
field lasing patterns of higher
families and multi-mode,
I [ 30 mA
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waves where MI tends to completely extinguish one of the solutions, here the stable
patterns that evolve are specific superposition of several solutions. This is clearly an
impact of the 2D geometry and the existence of more than two degenerate solutions.

It is worth noting the similarity of the observed arrays of vortices to the
so-called ‘‘supervortices’’ patterns which were theoretically predicted in complex
Ginzburg–Landau equation models with lattice trapping potentials [33, 34].
Despite the similarity, the origin of the formation of the vortex array is inherently
different. While supervortices clearly exhibit the symmetry of the trapping
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+

+
+

+
+
-

-

+ +

+ +
- --

20μm

(a) (b) (c)

Fig. 15 Interference patterns. (a) The original experimental near-field patterns; (b) the
experimental interference (c) the calculated interference. I single vortex; II ‘‘8’’-like pattern;
III ‘‘4-hole’’ pattern; IV ‘‘7-hole’’ pattern

λ
957.8nm958.3nm

20μm

Fig. 16 Spectrally resolved
near field in multi-mode
lasing configuration
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potential which serve as a perturbation, giving advantage to an appropriate
symmetry, the vortex array observed in broad area VCSELs are self-inflicted in the
sense that no external perturbation is required for their generation.

3 Pattern Formation in Ring Shaped VCSELs

Broad area VCSELs exhibit reach and interesting patterns but are complicated to
analyze because of the diverse mechanisms which are involved in the pattern
generation. This complexity necessitates the employment of numerical analysis
approaches and makes it difficult to obtain clear understanding of the mechanisms
which are responsible to the stability/instability of the lasing patterns.

In this section we study the dynamics of patterns formation in a ring shaped
laser, which is basically a one-dimensional structure with no ‘‘hard’’ boundary
conditions. These properties render the ring shaped laser an attractive configura-
tion for investigating the basic evolution of nonlinear field patterns both experi-
mentally and theoretically. We find that the mode switching of spatial patterns in
lasers is related to an intrinsic nonlinear dynamical effect—the Modulation
Instability (MI) [35, 36] and we derive the threshold conditions for the formation
of the patterns. We also show how the MI mechanism explains the unidirectional
evolution in the complexity of the observed patterns (increased complexity with
larger pump level)—a property which is not explained completely by gain-loss
considerations.

3.1 The Field Propagation Equation

Schematics of a ring shaped VCSEL is shown in Fig. 17. The structure of this
VCSEL is very similar to the structure of the broad area VCSEL described in
Sect. 2.6 except that its mirror is ring shaped.

The coordinates and geometry are defined in Fig. 18—z is the propagation
coordinate, r is the radial coordinate and x ¼ u � �r is a linear coordinate along the
perimeter of a circle with an average radius �r ¼ r1 þ r2ð Þ=2. r1 and r2 are the
internal and external radii of the ring and u is the angular coordinate.

Under the assumption that the ring width is significantly smaller than its
average perimeter, the radial and angular dependencies of the electrical field in the
scalar approximation can be separated:

Êðx; r; z; tÞ ¼ Re Eðx; zÞ � �RðrÞ � ei bz�x tð Þ
h i

ð14Þ

where Ê is the total field, �R—the radial part of the field, E(x,z)—the azimuthal
part, b—the propagation constant and x is the angular frequency. In this model the
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scalar approximation is used because the experimental observations indicated that
the emission in both polarizations is identical and would merely change the
effective saturation power of the medium but would not change the qualitative
behavior of the model. Other effects that were neglected here such as diffusion,
Bragg mirror bandwidth etc. may change the details of the analysis but yet a core
of pattern switching mechanism is revealed here. Specifically, the impact of dif-
fusion is highly important because it modifies the nature of the nonlinearity from
local (negligible diffusion) to non-local (non-negligible diffusion). Essentially,
diffusion causes the medium and a certain point to react to the whole field dis-
tribution in its vicinity (depending on the diffusion coefficient) and not only to the
local intensity of the field at that point. Diffusion also eliminates (to some extent)
the spatial-hole burning effect because it allows carrier transport to regimes where
their concentration is low.

Au Cr

3xQW In0.2Ga0.8As

GaAs/AlAs

GaAs/AlAs

Light

DBR  mirror

Gain

DBR  mirror

Fig. 17 Schematics of the
structure of the VCSEL
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Fig. 18 The VCSEL
geometry. The black spot
schematically represent the
lasing pattern (see also
Fig. 23)
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The electrical field E(x, z) is a periodical function—Eðx þ 2p�rÞ ¼ EðxÞ. The
evolution of the field inside the cavity is governed by the paraxial wave equation:

o2E x; zð Þ
ox2

þ 2ib � oE x; zð Þ
oz

þ k2
0 � n2

eff xð Þ � b2� �
� E x; zð Þ ¼ 0 ð15Þ

The nonlinear effects within the laser medium—saturated gain and carrier
induced index change, are expressed by the refractive index, neff :

n2
eff xð Þ ¼ n2

0 þ 2n0C � Dn x;Nð Þ þ i � n0

k0
� atot � C � g x;Nð Þð Þ ð16Þ

where n0 is the linear refractive index of the transparently pumped material, k0 the
wave number, C the confinement factor, atot the losses, g the gain and N is the
carrier density. Dn is the change of the refractive index induced by the changes in
the carrier density:

Dn x;Nð Þ ¼ � R

2k0
� g x;Nð Þ ð17Þ

where R is the anti-guiding factor. Substituting (16) and (17) into (15) yields:

o2E x; zð Þ
ox2

þ 2ib � oE x; zð Þ
oz

� ik0n0 Cg x;Nð Þ � 1 � iRð Þ � atot½ 	 � E x; zð Þþ

k2
0 � n2

0 xð Þ � b2� �
� E x; zð Þ ¼ 0

ð18Þ

In the paraxial limit: b2
r ; b

2
x � b2 ) b2 ¼ n2

0k2
0 � b2

r � b2
x � n2

0k2
0 and therefore

Eq. (18) can be simplified:

oE x; zð Þ
oz

� i

2k0n0

o2E x; zð Þ
ox2

� 1
2

Cg x;Nð Þ � 1 � iRð Þ � atot½ 	 � E x; zð Þ ¼ 0 ð19Þ

Since the carrier lifetime (*1 ns) is much longer than the photons lifetime
inside the cavity (*1 ps), the carrier dynamics can be adiabatically eliminated.
Neglecting the diffusion, the equilibrium expression for the carrier density and the
gain are:

N xð Þ � Ntr ¼
Np � Ntr

1 þ Ej j2
.

Isat

g N; xð Þ ¼
Ca � Np � Ntr

� �

1 þ Ej j2
.

Isat

¼
g0 Np

� �

1 þ Ej j2
.

Isat

ð20Þ

where Np

�
ssp is the pump rate, a the differential gain and Isat ¼ hm

�
Cassp

� �
is the

gain saturation intensity. By inserting neff into (19) we get an equation for the
electrical field:
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oE

oz
� i

2k0n0

o2E

ox2
� 1

2
g0 1 � iRð Þ

1 þ Ej j2
.

Isat

� atot

2

4

3

5E ¼ 0 ð21Þ

Equation (21) is a complex Ginzburg–Landau (CGL) type nonlinear equation,
but with a saturable nonlinearity rather than the conventional polynomial one. For
simplicity, the following variables are introduced—x’ = k0x, z’ = k0z/2n0 and
E x; zð Þ ¼ E0 x0; z0ð Þ �

ffiffiffiffiffiffi
Isat

p
. Substituting them into (21) and dropping the primes

yields a normalized equation for the field:

oE

oz
� i

o2E

ox2
� n0

k0

g0 1 � iRð Þ
1 þ Ej j2

� atot

" #

E ¼ 0 ð22Þ

Equation (22) describes the propagation of a beam in a nonlinear medium that
includes losses, saturating gain and saturating nonlinear refractive index. In the next
section, the longitudinal steady-state solutions of (22) are presented and discussed.

3.2 Steady State Helical and Standing Wave Solutions

Finding analytical solutions to Eq. (22) is rather complicated and Due to the cyclic
boundary condition in the angular coordinate the solution of (22) is quantized.
A possible discrete set of solutions of the cyclic CGL equation is the right- and
left-hand helical wave set E ¼ E0 exp i 
kmx � gzð Þ½ 	 where:

E2
0 ¼ g0

atot
� 1; g ¼ n0g0R

k0 1 þ E2
0

� �þ k2
m; km ¼ m � 2p= k0 � Lð Þ m ¼ 0; 1; 2. . .

ð23Þ

where L is the normalized ring perimeter. As these waves propagate along the
cavity axis (z), they also rotate around the axis, resulting in a helical motion of the
wave vector (see Fig. 4). The m ¼ 0 case corresponds to a uniformly distributed
field with no angular momentum. These solutions seem similar in structure to the
solutions of a linear ring shaped waveguide, however the signature of the non-
linearity is the determination of the field amplitude for each pattern and the
dependence of the propagation constant on the amplitude. Additional nonlinear
effect—the coupling between counter propagating modes will be discussed.

Although the helical waves are exact solutions of the nonlinear wave Eq. (22)
they are not the solutions that evolve spontaneously in ring shaped VCSELs. Both
the experimental observations and the theoretical analysis of the following sections
indicate that standing azimuthal wave patterns evolve in actual devices (see also
Fig. 23). Since no closed form standing wave solutions to Eq. (22) are known (to
the best of our knowledge) a superposition of two counter-propagating helical
waves of the same order m was taken as an approximation:
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E ¼ A0 cos 2pm=L0 � xð Þ ; L0 ¼ k0L; m ¼ 1; 2; . . . ð24Þ

Because Eq. (22) is nonlinear, the superposition of Eq. (24) is not a solution of
(22) and thus the amplitude of the wave, A0, cannot be extracted directly. This
problem can be overtaken by arguing that in steady state the total energy of the

wave is constant. ) oz

H
L

Ej j2dx ¼ 0. This condition imposes restrictions on the
azimuthal profile of the field:

o

oz

ZL0

0

Ej j2dx ¼
ZL0

0

g0

1 þ Ej j2
Ej j2dx � atot

ZL0

0

Ej j2dx ¼ 0 ð25Þ

Inserting the ansatz (24) into (25) yields an equation for A0. For low saturation

levels the amplitude of the standing wave is given by: A2
0 � 4

3 1 � atot
g0

� �
. The

validity of this approximation was verified by comparing between the approxi-
mation and a numerically calculated transverse profile at two different gain levels
(see Fig. 18 in the next section). An excellent match between the approximation
and the exact solutions was found, indicating that the (24) is a good approximation
to the exact solution of (22).

As mentioned in the introduction, the ring configuration is an excellent example
for the failure of the ‘‘conventional’’ mode-switching criterion (modal gain-loss
consideration). To exhibit the insignificant role of the modal gain-losses the
overlap between the gain and the field intensity profiles for each mode were
calculated. Eq. (24) was used to calculate the modal gain of each of the possible
modes while the nth mode was lasing. The modal gain of the mth mode is given
by:

gm¼
ZL0

0

g0

1þ Enj j2
Emj j2dx¼g0

ZL0

0

cos2 2p
L0 mxþu
� �

dx

1þA2
0cos2 2p

L0 nx
� �¼g0L0

2
� 1þ

X1

q¼1

�1ð ÞqA2q
0

22q

2q

q

	 
" #

þ

g0L0 �
L�cos 2uð Þ

P1

q¼1
�1ð ÞpþqA2 pþqð Þ

0

22 pþqð Þ

2 pþqð Þ
q

	 

m¼p�n

0 else

8
><

>:

9
>=

>;

ð26Þ

u indicates a possible relative angular shift between the lasing mode, n, and the
evolving mode, m. The resulting modal gain is independent on the lasing mode and
is identical for all other possible modes that may evolve in the ring (with the
exception of higher harmonics of the currently lasing mode—m ¼ n � p). The ring
structure thus eliminates the influence of the gain-loss balance and enables the
exposure of the fundamental mechanism for the spontaneous switching of the
lasing pattern.
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3.3 Numerical simulations

Equation (22) was also studied numerically to get the ‘‘exact’’ steady-state patterns
that evolve in a ring shaped laser. The main objective of the numerical study was
to examine the dynamical behavior of Eq. (22) and to verify that it exhibits the
phenomenon under study (i.e. the on switching of higher modes). Another
objective was to verify the validity of the approximations used in the analytical
study.

The numerical study utilized 1 ? 1 Dimension split-step Fourier Beam Prop-
agation Method (BPM) [37] with 512 points for the transverse axis. Typical
parameters of VCSELs were used for the simulations: R = 2, Isat = 20,
atot = 0.01, n0 = 1.45, L = 185l and k = 1l. The steady-state patterns were
found by setting an initial transverse pattern and letting it propagate through the
medium until a steady state was reached.

Figure 19 depicts the evolution of the electrical field for different pump rates
(g0 = 0.01004 to g0 = 0.01012). In all cases, the initial conditions were identical.
Figure 19a shows the evolution of a uniform field distribution (m = 0), Fig. 19b—
a combination of uniform field and double lobed mode (m = 0 ? m = 1),
Fig. 19c—4 intensity lobes (m = 2) and Fig. 19d—6 intensity lobes (m = 3). The
numerical results show that the solutions of Eq. (22) exhibit a consistent behavior
with the experimentally observed patterns—higher spatial frequencies develop as
the current is increased.
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Fig. 19 Evolution of the electrical field at different pump rates—(a) g0 ¼ 0:01004
(b) g0 ¼ 0:01005 (c) g0 ¼ 0:01008 (d) g0 ¼ 0:01012. The VCSEL parameters are R = 2,
Isat = 20, atot = 0.01, n0 = 1.45 L = 185l and k = 1l
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Figure 20 depicts comparison between the standing wave approximation (24)
and the numerically calculated transverse profile at two different gain levels. There
is an apparent excellent match between the approximation and the exact solutions,
which indicates that the approximation describes well the patterns that evolve in
the VCSEL.

3.4 Stability Analysis

Equation (26) indicates that simple modal gain-loss considerations cannot explain
the unidirectional evolution of patterns with higher spatial frequencies in a ring
shaped laser. In order to identify the mechanism responsible for this pattern
switching, the stability characteristics of each helical wave solution were analyzed.

A small harmonic perturbation, with a spatial frequency X, is introduced to the
mth solution which is assumed to be lasing:

E x; zð Þ ¼ E0 � exp i kmx � gzð Þ½ 	 � 1 þ l zð Þ � exp i X � kmð Þ x½ 	f g ð27Þ

where l is the amplitude of the perturbation, l � 1.
After perturbed solution (27) is substituted into the field Eq. (22), the equation

is linearized in the perturbation l. Most of the derivation of the evolution equation
for the perturbation is straightforward except for the approximation of the
nonlinearity:

1

1 þ Ej j2
� 1

1 þ E0j j2� l exp iXx½ 	 þ l� exp �iXx½ 	ð Þ
� 1

1 þ E0j j2
þ

� E0j j2

1 þ E0j j2
� �2 � l exp iXx½ 	 þ l� exp �iXx½ 	ð Þ

ð28Þ

Defining l0 ¼ l exp iXxð Þ and c ¼ n0 � atot 1 � atot=g0ð Þ=k0 yields the following
evolution equation for the perturbation (after dropping the primes):

lz þ il X � kmð Þ2þ2km X � kmð Þ
h i

þ c 1 � iRð Þ � l þ l�ð Þ ¼ 0 ð29Þ

Separating the real and imaginary parts of (29) yields two real equations for
Re lð Þ and for Im lð Þ:

lr
z � X � kmð Þ2þ2km X � kmð Þ
h i

li þ 2clr ¼ 0

li
z þ X � kmð Þ2þ2km X � kmð Þ
h i

lr � 2Rcli ¼ 0
ð30Þ

where lr ¼ Re lð Þ and li ¼ Im lð Þ. Equations (30) are ODEs with constant coef-
ficients which means that their solutions are either real or complex exponents—
lA ¼ lA

0 exp n zð Þ where A = r or i. The coefficient n can be either imaginary or
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real. If n is imaginary or negative real, the perturbation l does not increase as the
field propagates and the lasing solution is, therefore, stable. If, however, n is
positive and real, the perturbation increases exponentially as the field propagates
and the lasing mode is not stable to harmonic perturbation with the spatial fre-
quency X. Substituting lA into (30) yields a set of two homogeneous algebraic
equations. In order for these equations to have non-trivial solutions, the determi-
nant of the system must be zero, giving rise the following expressions for n:

n1;2 ¼ �c 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � X2 � k2

m

� �
X2 � k2

m � 2cR
� �q

ð31Þ

The growth coefficient n (denominated also as the MI gain), will be positive
(indicating instability of the lasing solution) if the second term under the square
root is negative i.e.:

km\X\
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

m þ 2cR
q

ð32Þ

Perturbation with spatial frequencies X that are in the instability region (32)
would grow exponentially and ‘‘destroy’’ the lasing mode.

It should be noted that the instability region of a lasing mode includes only
spatial frequencies that are higher than km and that the region becomes wider for
higher pumping levels. Figure 21 depicts the exponential growth rate (MI gain) of
each spatial frequency while the first order mode (m = 1) is lasing. The instability
region (blue solid line) is the frequency range where small perturbations will grow
exponentially. However, because of the cyclic BC, only a discrete set of spatial
frequencies can evolve in the ring (black arrows in Fig. 21). Spatial frequencies
that are not part of this discrete set are suppressed and thus in the case of Fig. 21
the lasing mode is actually stable. For a higher pumping level, the instability
region becomes wider and overlap with the spatial frequency characteristic of the
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Fig. 20 Comparison between numerical results (solid line) and the standing wave approximation
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second order mode (m = 2). This results in the instability of the first order mode
and the excitation of the second order mode.

The on switching of the first pattern (m = 1) from the azimutally constant
emission (m = 0) lasing is depicted in Fig. 22. At low pumping level (Fig. 22a)
the zero order mode is stable, but as the pumping level is increased (Fig. 22b), the
first order mode is excited and starts to lase. For the same pumping conditions this
first order mode is stable (see Fig. 22b) and would, therefore, continue to lase and
would not excite other modes.

Another important phenomenon shown in Fig. 22 is the nonlinear coupling
between counter propagating helical waves of the same order. The instability
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region of each helical wave also includes its complex conjugated wave (Fig. 22b).
As a result, when a helical wave is excited, its counter propagating wave is also
excited and a standing wave evolves which matches the above discussion.

The stability analysis has identified the modulation instability (MI) as the
fundamental mechanism that seeds the spontaneous pattern switching in ring
shaped lasers. The analysis also yields closed form threshold conditions for the
lasing of each mode—the excitation of a higher mode occurs when the instability
region of the lasing mode overlaps with the frequency of the higher mode. The
small signal gain level required for the lasing of the m ? 1 mode is straightfor-
wardly derived from (32):

g mþ1ð Þ
0 ¼ atot

1 � 2p2� 2mþ1ð Þ
n0k0RL2atot

ð33Þ

For low injection level the relation between the spatial frequency of the mode
(the value of m) and the modal threshold current is linear:

I mð Þ
th

I 0ð Þ
th

¼ 1 þ 2p2

n0k0RL2Gth

� 2m � 1ð Þ ð34Þ

where I mð Þ
th is the threshold current of the mth mode, I 0ð Þ

th is the conventional
threshold current and Gth is the threshold gain level. Equation (34) was derived by
first order Taylor expansion of the right hand term in (33) and expressing the small
signal gain as a function of the injection current (20):

g0 � atot ¼ Ca NP � Nthð Þ ¼ Gth

NP

Nth

� 1

	 

¼ Gth

I

I 0ð Þ
th

� 1

 !

ð35Þ

where Nth is the threshold carrier density.
However, as the current is increased and much higher order modes are excited,

another interesting phenomenon comes into effect. For high modal index m, the
right term of the denominator of (33) approaches unity and the required gain level,

g mð Þ
0 , approaches infinity. This effect imposes a limit on the maximal modal index

(or intensity lobes) that can evolve in the cavity, so for high pumping levels the
number of intensity lobes saturates. This limit on the number of intensity lobes is
given by:

Nmax ¼ n0k0RL2atot

2p2
� 1 ð36Þ

The limit of the intensity lobe number is brought by the combined effect of MI
and gain saturation (there is no limit on the lobe number when only the cubic
approximation is taken, unless additional effect such as a limited spatial frequency
span of the cavity mirrors is added). Note that the amplitude of the standing wave
pattern according to (25) cannot exceed 4/3, due to the gain saturation. This draws
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an upper limit on the width of the instability regions associated with each mode. In
particular, since the instability region shrinks for higher order modes, there will be
a mode that its instability region does not overlap with the consecutive higher
mode. This mode will be therefore unconditionally stable upon current increase. It
should be emphasized that patterns with even higher angular frequencies are in
principle stable, but they would not evolve spontaneously as the current is
increased.

In should be noted that the stability of the CGL solutions to perturbation has
been studied extensively both for Kerr-like nonlinearity as wells as higher order
polynomial terms, representing saturable nonlinearities [38–40]. Such nonlinear-
ities can approximate the saturable nonlinearity of Eq. (21) for low pump levels
and in general exhibit similar behavior in terms of increased pattern complexity
with higher pump levels. However, these polynomial approximations do not
exhibit the complexity saturation effect (36)—a phenomenon that was also
observed experimentally as detailed in Sect. 3.5 below.

3.5 Experimental Results

Experiments were conducted on ring shaped VCSELs (28–40 lm in diameter)
with similar structure to the lasers described in Sect. 2.6 but with ring shaped
contact. The near-field patterns were examined at room temperature under pulsed
operation.

The near field intensity patterns emitted from the VCSELs were imaged on a
CCD camera (see Fig. 11) for various currents starting from threshold. A quasi
uniform near field pattern was registered until the injected current was increased to
*1.5 times the threshold current. Then the pattern switched to higher order modes
characterized by multiple light lobes.

The first multi-lobe pattern that evolved in the 28 lm diameter ring VCSEL had
eight lobes and in the 40 mm diameter VCSEL—16 lobes. As the current was
increased, the number of lobes was increased but not continuously. At higher
currents, however, a monotonic increase of the number of intensity lobes was
observed. At the highest current levels the saturation effects was observed. Fig-
ure 23 depicts the near-field intensity pattern of 40 and 28 lm diameter lasers at
various currents, from threshold up to three times threshold current.

Unlike the theoretical predictions, the first non-uniform patterns to appear had
multiple intensity peaks rather than two (m = 4 for the 28 lm laser and m = 8 for
the 40 lm laser). This was caused by the linear coupling between the radial and
angular coordinates—patterns with higher azimuthal frequencies are narrower in
the radial direction and have a better overlap with the radial gain profile. Patterns
with low azimuthal frequencies have higher modal losses and are, therefore, not
expected to lase.
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Figure 24 shows a plot of the number of intensity lobes against the current for a
40 lm diameter ring. As predicted by the theory, at low injection levels the
relation is linear but at higher pumping levels the number of intensity lobes sat-
urates. The plot can be used to extract some of the parameters of the laser. For the
tested device, a good match between the theory and the experiments was found for
Gthcm-1 assuming anti-guiding factor (R) of 2.
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4 Summary and Conclusions

In this chapter, the evolution of the complex emission patterns in two-dimensional
VCSELs was studied theoretically and experimentally.

We saw that broad area VCSELs emit complex patterns that are composed of
regular arrays optical vortices that can be explained by transverse modes locking.
The locking was possible due to the relatively small frequency spacing between
specific modes of the cavity (almost wavelength degenerated). The theoretical
results revealed that the only combinations obtainable by the model for the
VCSEL nonlinear cavity were the same specific mode combinations that were
observed experimentally. The similar patterns obtained previously for a com-
pletely different laser medium and laser size and geometry [17], reconfirm that the
specific modal selection is a generic phenomenon rather than a specific one.

The on-switching of patterns in ring shaped semiconductor lasers were also
studied. As for the broad area VCSELs, a unidirectional evolution of higher spatial
frequencies was observed as the current is increased. This phenomenon was shown
to stems from the dynamic effect of modulation instability and not merely by
modal gain-loss considerations. It was shown both theoretically and experimen-
tally that the number of intensity lobes increases linearly for low injection current
level but saturates at high pumping levels.

Although the analysis shown here was performed for ring shaped VCSELs, the
theory can explain pattern switching in various configurations of semiconductor
lasers. However, in different kinds of geometries, additional linear/nonlinear
mechanisms may be involved as well.
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Sub-Wavelength Plasmonic Solitons in 1D
and 2D Arrays of Coupled Metallic
Nanowires

F. Ye, D. Mihalache and N. C. Panoiu

Abstract In this chapter, we describe a very promising approach to achieve deep
sub-wavelength confinement of the optical field guided by plasmonic nanostruc-
tures. In the plasmonic nanostructures investigated in our review, namely, one-
dimensional (1D) and two-dimensional (2D) arrays of closely spaced parallel
metallic nanowires embedded in an optical medium with Kerr nonlinearity, the
optical nonlinearity induced by the evanescent component of the guided modes of
the nanowires exactly balances the discrete diffraction due to the optical coupling
among neighboring metallic nanowires. As a result, nonlinear optical modes,
called plasmonic lattice solitons (PLSs), are formed in the plasmonic array.
Because the radius of the nanowires and their separation distance could be much
smaller than the operating wavelength the size of the PLSs can be deep in the
subwavelength regime. We present fundamental (vorticityless) PLSs in both 1D
and 2D plasmonic arrays, and also vortical PLSs in 2D arrays, in both focusing and
defocusing nonlinear media. We demonstrate that the spatial extent of fundamental
and vortical PLSs could be in the deep-subwavelength regime under experimental
accessible conditions. Moreover, their existence, stability, and spatial confinement
are studied in detail. Our analysis employs a model based on the coupled-mode
theory as well as the full set of Maxwell equations, and shows that the predictions
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of the two models are in excellent agreement for relatively large nanowires
separations. We expect that these nonlinear plasmonic modes have important
applications to subwavelength nanophotonics. In particular, we demonstrate that
the subwavelength PLSs can be used to optically manipulate with nanometer
accuracy the power flow in ultra-compact photonic devices.

1 Introduction

The downscaling of photonic devices for confining and manipulating optical energy
at the nanoscale is one of the major challenges of nanophotonics [1]. When the size
of conventional optical circuits is reduced to nanoscale, the spatial confinement of
light is inherently limited by diffraction. One recently proposed approach to
overcome this limitation is to use surface plasmon polaritons (SPPs) [2, 3]. In
particular, by using SPP modes of metallic nanowires [4], chains of resonantly
coupled metallic nanoparticles [5, 6], tapered plasmonic waveguides [7, 8], or
cylindrical metallic gratings [9, 10] one can spatially confine and guide optical
energy over distances much smaller than the wavelength. Also, in a recent work
[11] a perturbative theory for modeling of nonlinear propagation in rod waveguides
with subwavelength core radii was developed and surface-induced nonlinearity
enhancement in metalic, dielectric and semiconductor subwavelength rod wave-
guides was investigated in detail. These basic guiding nanostructures can be
assembled in more complex plasmonic systems, such as Y-splitters, Mach-Zehnder
interferometers, and waveguide-ring resonators [12]. Despite these promising
developments, there remains a basic challenge that one has yet to overcome in order
to fully exploit the technological potential of plasmonic devices: they must provide
the critical functionality of all-optic active control of light at nanoscale. Because of
the strong enhancement of the field induced by the excitation of SPPs, and
consequently the increased optical nonlinearity, SPPs are particularly suited for
providing this functionality. While basic nonlinear optical processes have been
demonstrated in a variety of plasmonic nanostructures, e.g., optical limiting and
self-phase modulation in chains of structured nanoparticles [13] or second-
harmonic generation in nanostructured metallic films [14, 15], the physical
constraints imposed by large in-plane extent of the optical field and out-of-plane
operation of some of these devices preclude their integration in ultra-compact
plasmonic systems.

In this Chapter, we review the results of our recent work pertaining to a very
promising approach to achieve subwavelength confinement of the optical field
guided by plasmonic nanostructures, an approach based on a new type of nonlinear
optical modes, which we called plasmonic lattice solitons (PLSs). In the proposed
plasmonic nanostructures, which consist of one- or two-dimensional (1D, 2D)
arrays of closely spaced parallel metallic nanowires embedded in a nonlinear
optical medium, the optical nonlinearity induced by the field of the guiding modes
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of the nanowires compensates the discrete diffraction due to the optical coupling
among the nanowires. As a result, nonlinear collective modes, also called plas-
monic lattice solitons, are formed in the plasmonic arrays. Because the radius of
the nanowires and their separation distance are much smaller than the operating
wavelength, the spatial width of the PLSs can be significantly smaller than the
wavelength. Importantly, this remarkable property of PLSs cannot be achieved by
using dielectric waveguide arrays, which also support discrete solitons [16–20],
as the transverse size of such waveguides is comparable or larger than the
wavelength.

The Chapter is organized as follows. In the next section we derive the theo-
retical model which describes the dynamics of the plasmonic field in 1D and 2D
arrays of metallic nanowires. This general model is used then in Sects. 3 and 4 to
investigate the physical properties of PLSs that are formed in 1D and 2D plas-
monic arrays, respectively. Then, in Sect. 5, we compare the results obtained by
using to alternative methods that can be employed to described the light propa-
gation in plasmonic arrays, namely, the coupled-mode theory (CMT) and the full
set of three-dimensional (3D) Maxwell equations (ME). Finally, the main results
and conclusions are summarized in Sect. 6.

2 Theoretical Model for Light Propagation
in Plasmonic Arrays

Our analysis of the dynamics of PLSs is based on an extension to the nonlinear
case of a coupled-mode theory, which captures the full vectorial character of the
interacting modes of the metallic nanowires [21]. This fully vectorial approach to
the description of the PLSs, first introduced in Ref. [22], is essential for a rigorous
analysis of their physical properties since the electric field of the modes of metallic
nanowires has a large longitudinal component and therefore the optical modes
cannot be described by scalar functions. Moreover, this vectorial analysis of the
PLSs applies to the general case of optical systems with complex dielectric con-
stant and as such it fully accounts for the losses in the nanowires. In particular, we
use the Drude model for the dielectric constant of the metal,

�mðxÞ ¼ 1 �
x2

p

xðx þ imÞ ; ð1Þ

where x is the frequency, xp is the plasma frequency and m is the damping
frequency. Note that this assumption does not restrict the generality of our analysis
as in order to describe the PLSs one only requires the value of the dielectric
constant of the metal at the operating frequency. In our calculations we considered
that the metallic nanowires are made of Ag, for which xp ¼ 13:7 � 1015 rad/s
and m ¼ 2:7 � 1013 rad/s [23].
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We consider first the nonlinear propagation of the plasmonic field in a 1D array
of metallic nanowires, as it is schematically illustrated in Fig. 1. We start our
analysis of the PLSs by expanding the total electric field EðrÞ and magnetic field
HðrÞ in a superposition of the modes of a single nanowire, a standard approach
within the CMT

E?ðr?; zÞ ¼
X

n

anðzÞffiffiffi
P

p
n

e
ðnÞ
? ðr?Þ; ð2aÞ

Ezðr?; zÞ ¼
X

n

anðzÞ�ðnÞðr?Þffiffiffi
P

p
n�ðr?Þ

eðnÞz ðr?Þ; ð2bÞ

Hðr?; zÞ ¼
X

n

anðzÞffiffiffi
P

p
n

h
ðnÞ
? ðr?Þ; ð2cÞ

where anðzÞ is the mode amplitude in the n-th nanowire (normalized so as it is
measured in

ffiffiffiffiffi
W

p
) and depends only on the longitudinal coordinate, z; �ðr?Þ and

�ðnÞðr?Þ are the dielectric constant of the plasmonic array and that of an isolated
nanowire, respectively, and eðnÞðr?Þ and hðnÞðr?Þ are the electric and magnetic
field components of the optical mode, respectively. Note that due to the longitu-
dinal translational invariance of the plasmonic nanowires the electromagnetic field
of the modes depends only on the transverse coordinate, r?: The optical modes are
normalized such that

1
4

Z

S
½eðnÞ � hðmÞ� þ eðmÞ� � hðnÞ� � ẑdS ¼ Pndnm; ð3Þ

where Pn is the optical power carried by the mode n: For simplicity, we assumed in
the expansion (2) that the nanowires have only the fundamental TM mode ðhz ¼ 0Þ;
whose non-vanishing field components, er; ez; and h/; depend only on the magni-
tude of the radial coordinate, r?: These field components can be found analytically
by solving the Maxwell equations, while the dispersion relation, given by the
dependence of the complex propagation constant b ¼ br þ ibi on x; can be deter-
mined by imposing continuity conditions on the tangent fields at the metal-dielectric
interface. As illustrated in Fig. 1a, the large dielectric constant of metals, combined
with the subwavelength transverse size of the nanowire, leads to a strong depen-
dence of b on the wavelength, k: This dependence also suggests that the propagation
losses, which are proportional to bi; can be significantly reduced by increasing k:

To find the mode amplitudes, we start from the unconjugated form of the
Lorentz reciprocity theorem [24],

o

oz

Z

S
½E1ðr;xÞ � H2ðr;xÞ � E2ðr;xÞ � H1ðr;xÞ� � ẑdS

¼ ix
Z

S
½�2ðrÞ � �1ðrÞ�E1ðr;xÞ � E2ðr;xÞdS;

ð4Þ
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where ðE1;H1Þ and ðE2;H2Þ are solutions of the Maxwell equations in the fre-
quency domain, corresponding to the dielectric constants �1ðrÞ and �2ðrÞ;
respectively. As fields ðE1;H1Þ we choose the fields propagating in the plasmonic
array, fields given by Eq. (2), whereas for the fields ðE2;H2Þ we choose a back-
ward ð�zÞ propagating mode in the n-th nanowire. With this choice, the dielectric
constants in the two cases are �1ðrÞ ¼ �ðr?Þ þ d�nlðrÞ and �2ðrÞ ¼ �ðnÞðr?Þ; where
d�nlðrÞ is the nonlinearly induced change in the dielectric constant of the back-
ground medium. Inserting these fields in Eq. (4) and performing some simple
algebraic manipulations leads to the following system of coupled equations
describing the mode amplitudes anðzÞ:

i
d

dz
þ b

� �
an þ

cn;n�1 þ cn�1;n

2cnn
an�1 þ

cn;nþ1 þ cnþ1;n

2cnn
anþ1

� �

¼ 1
cnn

Knnan þ Kn;n�1an�1 þ Kn;nþ1anþ1
� �

þ Cnn

cnn
janj2an:

ð5Þ

In these equations the coupling constants are given by
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Fig. 1 Schematics of a 1D array of metallic nanowires with radius a and separation distance
d (top left panel). a Real and imaginary parts of the propagation constant of the fundamental TM
mode, br and bi; respectively. Panels b and c show the transverse profile of the amplitude (top)
and longitudinal component (bottom) of the electric field of unstaggered and staggered PLSs,
respectively, for k ¼ 1550 nm and background index of refraction nb ¼ 3:5: In panels b and c,
dnnl ¼ �0:05 ðn2 ¼ �4 � 10�18 m2=WÞ and dnnl ¼ 0:05 ðn2 ¼ 4 � 10�18 m2=WÞ; respectively.
The metallic nanowires have a ¼ 40 nm and d ¼ 8a:
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cnm ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffi
PnPm

p
Z

S
½eðnÞðr?Þ � hðmÞðr?Þ� � ẑdS; ð6aÞ

Knm ¼ x

4
ffiffiffiffiffiffiffiffiffiffiffi
PnPm

p
Z

S
D�ðnÞðr?ÞFnmðr?ÞdS; ð6bÞ

where D�ðnÞðr?Þ ¼ �ðnÞðr?Þ � �ðr?Þ and Fnmðr?Þ ¼ e
ðnÞ
? ðr?Þ � e

ðmÞ
? ðr?Þ �

�ðmÞ
� eðnÞz ðr?ÞeðmÞ

z ðr?Þ: Furthermore, the nonlinear coefficient that describes the
nonlinear self-focusing or defocusing effects can be written as

Cnn ¼ � �0nbxn2

2P2
n

Z

S
Fnnðr?Þ jeðnÞ? ðr?Þj2 þ

�ðnÞðr?Þ
�ðr?Þ

eðnÞz ðr?Þ
����

����

2
" #

dS; ð7Þ

where nb is the refractive index of the background and n2 is the Kerr coefficient.
Note that in deriving Eq. (5) we have neglected the nonlinear interaction among
the nanowires, i.e., we have considered that

d�nlðrÞ ¼
2�0nbn2

Pn

X

n

janðzÞj2 jeðnÞ? ðr?Þj2 þ
�ðnÞðr?Þ
�ðr?Þ

eðnÞz ðr?Þ
����

����

2
" #

: ð8Þ

It should be noted that our derivation of the mathematical model describing the
plasmonic field takes into account the 3D nature of the electromagnetic field, as
our linear expansion of the total field is performed in terms of the full 3D optical
modes of the nanowires. An alternative analysis of the propagation of the plas-
monic field in a single nanowire, which accounted for the evolution of all six field
components of the modes, has been performed recently [11] and led to an
expression for the nonlinearity coefficient Cnn similar to that given in Eq. (11).
Furthermore, in the derivation of the Eq. (5), the next-neighbor-coupling terms and
the higher-order nonlinear effects have been omitted. However, the electromag-
netic coupling effects between nanowires located at arbitrary positions in the array
can be introduced by simply summing over all nanowire pairs in Eq. (5) and using
the appropriate indices in Eq. (2), which define the coupling coefficients. As we
will discuss in what follows, these considerations apply to the 2D case, too,
namely, the nearest-neighbor interactions provide a good description for the
dynamics of the plasmonic field in the nanowire array. The higher-order nonlinear
mutual interactions between nanowires, on the other hand, can be safely neglected
due to the exponential decay of the optical modes away from the nanowires.
Further, our calculations show that if the distance between adjacent nanowires, d;
is of the order of a few hundred nanometers ðcn;n�1 þ cn�1;nÞ=cnn\1% and thus
the corresponding terms in Eq. (5) can be neglected. This conclusion is valid for
both 1D and 2D plasmonic arrays.

If one now rescales the mode amplitudes, anðzÞ ¼
ffiffiffiffiffi
P0

p
/nðzÞ exp½iðb � Knn=cnnÞz�;

with P0 the power in the zeroth nanowire, the system (5) can be simplified as
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i
d/n

dz
þ jð/n�1 þ /nþ1Þ þ cj/nj2/n ¼ 0; ð9Þ

where j ¼ �Kn;n�1=cnn and c ¼ �P0Cnn=cnn: Note that, the normalized nonlin-
earity coefficient, c [ 0 ðc\0Þ for a medium with self-focusing (self-defocusing)
Kerr response. The model (9) is the discrete nonlinear Schrödinger equation, which
is known to have soliton solutions [16]. We emphasize that for our plasmonic array
j\0; so that the linear dispersion relation, kz ¼ 2j cosðkxdÞ; implies that anoma-
lous (normal) diffraction occurs at kx ¼ 0 ðkx ¼ p=dÞ; which is opposite to the case
of dielectric waveguide arrays. We note that a negative coupling coefficient also
arises in all-dielectric Bragg waveguides [25–28] where the coupling mechanism is
a radiative one; this is in contrast to the plasmonic arrays [22, 29–31] where the
mode coupling is a purely evanescent one.

For the sake of simplicity of the presentation, we have discussed in detail the
theoretical model that applies to the 1D plasmonic arrays. However, it should be
noted that unlike the plasmonic crystals consisting of layered metallo-dielectric
structures [29, 32], which can also supports PLSs, the plasmonic structures
described here can readily be extended to 2D geometries [see Fig. 2a]. Impor-
tantly, in this case new types of nonlinear plasmonic modes, such as discrete
plasmonic vortex solitons, should exist. Note that the generalization of the model
to 2D arrays is straightforward. The 2D version of Eq. (9) is written as

i
d/m;n

dz
þ jð/m;nþ1 þ /m;n�1 þ /mþ1;n þ /m�1;nÞ

þ lð/mþ1;nþ1 þ /mþ1;n�1 þ /m�1;nþ1 þ /m�1;n�1Þ þ cj/m;nj2/m;n ¼ 0;
ð10Þ

where /m;n is the normalized mode amplitude in the nanowire indexed by the
integers ðm; nÞ; j and l are the coupling coefficients between neighboring and
next-neighboring nanowires, respectively. Similarly to the 1D case, j\0 and
l\0; so that the linear dispersion relation, kz ¼ 2j½cosðkxdÞ þ cosðkydÞ� þ

00

kxd
kyd

k
z

-π

π -π

πΓ

M X

(a) (b)

Fig. 2 a Schematic of a 2D square array ofmetallic nanowires. b The band structure predicted
by the coupled mode theory. The radius of the nanowires is a ¼ 40 nm
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4l cosðkxdÞ cosðkydÞ; forms a concave surface with anomalous diffraction occur-
ring at the C symmetry point ðkx ¼ ky ¼ 0Þ; while normal diffraction occurs at the
M symmetry points ðkx ¼ ky ¼ �p=dÞ [see Fig. 2b]. In order to compare the
strength of the coupling between neighboring nanowires with that of the coupling
between next-neighboring nanowires, we give some typical values of the coupling
coefficients, namely, j ¼ ð�9:02 � 0:52iÞ � 104 m�1 and l ¼ ð�1:48 � 0:12iÞ �
104 m�1: These values correspond to nanowires with radius a ¼ 40nm and sepa-
ration distance d ¼ 8a: Note that jjj is almost an order of magnitude larger than
jlj; which illustrates the steep decrease of the field away from the nanowires. We
also note that all the coefficients in Eq. (9) and Eq. (10) are complex, with the
imaginary parts amounting for the Ohmic loss-induced dissipation. For the sake of
completeness, in addition to the coupling coefficients given above, we also give the
typical value of the effective nonlinear coefficient, c ¼ ð1:9 � 0:04iÞ � 103 m�1;

for a nonlinear material with n2 ¼ 4 � 10�18 m2=W: One can see that the imagi-
nary parts are typically almost two orders of magnitude smaller than their real
counterparts. From a mathematical point of view, the imaginary part of the non-
linearity has the same form as that of the two-photon absorption in semiconductor
waveguides.

3 Plasmonic Lattice Solitons in 1D Arrays of Metallic
Nanowires

We consider first the case of 1D plasmonic arrays. For this geometry, the soliton
solutions of Eq. (9) are sought in the form /nðzÞ ¼ un expðiqzÞ;where the amplitudes
un are independent of the coordinate z and q is the soliton wave number. In order to
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Fig. 3 Soliton width w versus the nonlinear index change dnnl; calculated for plasmonic
nanowires with radius a ¼ 40 nm and a k ¼ 1550 nm; d ¼ 8a; and b k ¼ 632 nm; d ¼ 4a: The
solid and dotted curves correspond to nb ¼ 3:5; n2 ¼ 4 � 10�18 m2=W and nb ¼ 2:8;
n2 ¼ 1:4 � 10�18 m2=W; respectively.The red dot in a corresponds to the soliton in Fig. 1c
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determine the plasmonic solitons, this ansatz is inserted in Eq. (9) and the resulting
system of equations is solved numerically by using a standard relaxation method. The
corresponding amplitudes are then used to compute the fields of the PLSs. Following
this procedure based on the CMT, we found that our plasmonic array supports two
types of PLSs, unstaggered and staggered solitons. In the case of unstaggered PLSs
the phase difference of the mode amplitudes in adjacent nanowires is equal to zero
whereas in the case of staggered ones it is equal to p: The spatial profile of the field
amplitude and longitudinal component of the field of unstaggered (staggered) PLSs
corresponding to a nonlinear index change of dnnl ¼ �0:05 ðdnnl ¼ 0:05Þ; with
dnnl ¼ 2d�nl=ð�0nbÞ; are shown in Fig. 1b and c. Note that due to the inverted linear
dispersion relation, staggered solitons are formed in self-focusing media, whereas
the unstaggered ones correspond to self-defocusing nonlinearity. This situation is
opposite to the case of dielectric waveguide arrays [20]. Importantly, the calculated
soliton full width at half maximum is w � 0:6k; i.e., the soliton has subwavelength
extent. The dependence of the soliton width on dnnl is presented in Fig. 3. As
expected, this figure shows that the soliton width decreases with the strength of the
induced nonlinearity and increases with the wavelength.

Figure 4 shows the propagation of a staggered PLS in the plasmonic array. It can
be seen that in the lossless ðm ¼ 0Þ linear propagation regime ðn2 ¼ 0Þ; the plasmon
field experiences significant discrete diffraction (see Fig. 4a). However, when the
optical nonlinearity is taken into account, the plasmon field maintains its shape
during propagation, which means that a PLS is formed. When the optical losses
are included in our analysis, the absorption coefficient is 2ImðqÞ ¼ 910 cm�1;
which corresponds to a decay length of 11lm: On the other hand, Fig. 4c illustrates
that when both optical losses and the nonlinearity are included, the plasmon field of
the PLS retains its initial width over a propagation distance of 	 20lm: Thus, these
calculations show that an experimental observation of subwavelength PLSs can be
realized even without incorporating optical gain in the plasmonic nanostructure. On
the other hand, a soliton-like propagation requires a gain of g ¼ 910 cm�1; which
can be easily achieved in a practical experimental setting [33, 34].

As it is well known from soliton theory, the existence of optical solitons does not
necessarily imply that they can be excited and observed in realistic experimental
conditions. To be more specific, in a common experimental setting, solitons are
excited from input Gaussian optical beams, which do not have the same spatial
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Fig. 4 a Linear and b nonlinear propagation of the plasmonic soliton in Fig. 1c in the lossless
plasmonicarray with nb ¼ 3:5; n2 ¼ 4 � 10�18 m2=W; k ¼ 1550 nm; a ¼ 40 nm; and d ¼ 8a:
c Propagation of the same plasmonic soliton in the lossy plasmonic array
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profile of the actual soliton. We therefore investigate the excitation of PLSs from
Gaussian beams whose width and amplitude are optimized so as to lead to the
shortest soliton formation length, which is defined as the characteristic distance
required for a beam to reshape itself into a soliton. The generic scenario of soliton
formation is illustrated in Fig. 5. It shows that during a propagation distance of just a
few tens of micrometers the input beam sheds off part of its energy as radiative
waves, the remaining plasmon field evolving into a plasmonic soliton. During this
latter transient stage the width of the beam presents a damped oscillatory evolution
(see Fig. 5d). Importantly, Fig. 5d also shows that the soliton formation length is
strongly dependent on the specific geometry of the plasmonic array. For example,
for a ¼ 40 nm and k ¼ 1550 nm; the shortest soliton formation length, of about
50 lm; is achieved for d ¼ 6a.

In order to illustrate the technological potential of plasmonic solitons, e.g., to
subwavelength chip-level active nanodevices, we show that the dynamics of PLSs in
the plasmonic array can be easily and accurately controlled via optical means. To
this end, we launched into the plasmonic array a staggered PLS with an initial phase
tilt, /nð0Þ ¼ un expðik0xÞ; with k0 being the transverse wave number. Figure 6
presents the power dependence of the dynamics of the PLS in the plasmonic array.
Thus, as expected, at low input power, Pin; the PLS moves across the array, the
transverse shift increasing with k0: However, as Pin increases, the transverse shift of
the plasmon field decreases, and, finally, for Pin exceeding a certain threshold value,
the PLS is trapped at its initial location. Although a similar soliton dynamics have
been observed in dielectric waveguide arrays [20], PLSs provide the critical func-
tionality of all-optical control with subwavelength precision of the spatial
confinement of the optical field (note that d\k=4 for the plasmonic array in Fig. 6.
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4 Plasmonic Lattice Solitons in 2D Arrays of Metallic
Nanowires

By increasing the number of dimensions of plasmonic arrays from 1D to 2D, the
complexity of PLSs increases, and as a result these higher-dimension plasmonic
arrays support new species of plasmonic solitons that have no counterpart in
lower-dimensional systems. These include, in addition to the fundamental 2D
solitons, multipole PLSs and vortical PLSs, the latter ones being solitons with a
topological phase of m � 2p; along a closed trajectory around the phase singularity
of the vortex soliton, m being a non-zero integer. These vortex solitons are
important not only because they represent basic objects for study in nonlinear
science, but also for their potential practical applications in quantum optics and
optical trapping. Although vortex solitons have been studied in various nonlinear
systems [35, 36], in all these cases their spatial extent was diffraction-limited,
which distinguishes them from the plasmonic vortices studied in this section.

To study the plasmonic solitons formed in 2D arrays of metallic nanowires we
follow an approach similar to that used in Sect. 3 to analyze the 1D PLSs. Thus,
the soliton solutions to Eq. (10) are sought in the form /m;nðzÞ ¼ um;n expðibjzÞ;
where again the amplitudes um;n are independent of z and b is the soliton wave
number (normalized by the coupling coefficient j). The soliton is characterized by

its power P ¼
P

m;n j/m;nj2: This ansatz is inserted into Eq. (10) and the resulting
system of equations is solved numerically by a standard relaxation method. The
corresponding amplitudes are then used to reconstruct the fields of the PLSs. To
quantify the transverse size of solitons we use the effective radius,
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Fig. 6 a The location of the soliton peak amplitude at the output facet of a plasmonic array with
length of 150 lm; a ¼ 0:03k; and d ¼ 8a versus the soliton power Pin; determined for different
phase tilt k0ðk ¼ 1550 nmÞ: b The amplitude distribution of the output plasmon field versus Pin;
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where x0 ¼
RR1

�1xjEj2dxdy=
RR1

�1jEj2dxdy and y0 ¼
RR1

�1yjEj2dxdy=
RR1

�1jEj2
dxdy are the coordinates of the center of the soliton.

We first search for fundamental solitons. As in the case of the 1D PLSs [22], we
also find two types of 2D PLSs, i.e., staggered and unstaggered solitons. The
spatial profile of the amplitude and longitudinal field of unstaggered (staggered)
PLSs corresponding to a nonlinear change of dnnl ¼ �0:05ðdnnl ¼ 0:05Þ are
shown in Fig. 7a, b, c and d. Similar to the case of PLSs formed in 1D plasmonic
arrays, due to the inverted linear dispersion relation, staggered (unstaggered)
solitons are formed in self-focusing (self-defocusing) media, which is opposite to
the case of dielectric waveguide arrays. Note also that the 2D fundamental solitons
have subwavelength size, the radius being R ¼ 0:35 k for the solitons shown in
Fig. 7a, b and R ¼ 0:50 k for those in Fig. 7c, d. The dependence of soliton radius
on the propagation constant b is presented in Fig. 7e. The plot shows that both
staggered and unstaggered PLSs shrink monotonically as their wave number
moves away from the band edges. This is because staggered and unstaggered PLSs
originate from the extended Bloch modes at the symmetry points M and C;
respectively, and thus when their wave number is close to the band edge, solitons
have a large width. A larger change of nonlinear refractive index tunes the soliton
mode deeper into the gap (see inset of Fig. 7e) and thus PLSs are increasingly
smaller than the wavelength. Importantly, our calculations show that the power
carried by such PLSs cannot be smaller than a threshold value, as can be seen from
Fig. 7f. The nonmonotonic relationship P ¼ PðbÞ has important implications on
soliton stability, as it will be shown below.

In addition to the fundamental PLSs, 2D plasmonic arrays also support a new
type of PLSs, which has no counterpart in 1D systems, i.e., vortex PLSs; these
nonlinear modes belong to the class of discrete vortices [35]. Here we focus on off-
site vortices, i.e., compact vortex states whose singularity is located between
lattice sites. Similarly to fundamental PLSs, vortex PLSs exist both in self-
focusing (Fig. 8a, b) and self-defocusing media (Fig. 8c, d). As can be easily
inferred from the phase profiles, the vortex has a topological charge equal to 1 (2D
PLSs with topological charge 2 also exist, although they are not discussed here).
Interestingly, the phase profile for PLSs in focusing media features a ‘‘staggered’’
pattern at the sites far away from the soliton center, which is a typical feature of
‘‘gap’’ vortices [36]. However, one should mention that the staggered vortex PLS
resides at the semi-infinite gap (above the band) and thus is not a ‘‘gap’’ vortex.
This is again a consequence of the inverted linear dispersion relation. The prop-
erties of vortex PLSs are summarized in Fig. 8e, f. Several differences from
fundamental PLSs are observed. First, unlike the fundamental PLSs where their
value of b can be very close to the band edges, vortex soliton can only exist in the
gaps at a finite distance from the band edges. This is due to the fact that the vortex
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mode is structurally very different from a Bloch mode of the linear plasmonic
array. Secondly, as vortex PLSs possess four intensity maxima, vortex solitons
always have a larger width as compared to that of the fundamental ones (under the
same change of nonlinear refractive index). Therefore, forming a subwavelength
vortex generally requires stronger nonlinearity. Nevertheless, we find that
subwavelength vortex PLSs can be achieved under experimentally accessible
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conditions. For example, the vortex presented in Fig. 8a, b has radius R ¼ 0:3 k
requiring a nonlinear change of refractive index dnnl ¼ 0:11: Note that an index
change of 	 0:14 was reported in Ref. [37]. Further, the size of PLSs can be
significantly reduced if the operating wavelength is scaled down, thus the
requirement for a strong nonlinear change of the refractive index can be relaxed.
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Finally, we mention that as in the case of 2D fundamental solitons, vortex PLSs
also feature power thresholds for their formation.

A relevant issue associated with the 2D PLSs is their stability. To address this
issue, we integrate Eq. (10) by using a fourth-order Runge-Kutta method with the
input condition being the stationary soliton solution plus a certain amount of
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Fig. 9 Top and middle panels show the unstable propagation of a fundamental soliton with
b ¼ 3:8 and that of a vortex soliton with b ¼ 3:82; respectively. The intensity profiles are
calculated at z ¼ 0(a, c), z ¼ 60 lm b, and z ¼ 90 lm d. e Variation of the maximum field
amplitude versus propagation distance for the fundamental (dashed line) and vortex(solid line)
solitons
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random noise. Our extensive numerical simulations show that the fundamental
PLSs obey the Vakhitov-Kolokolov stability criterion, namely, the staggered
(unstaggered) PLSs are stable when dP=db[ 0ðdP=db\0Þ and are unstable
otherwise. In the stability region, the soliton maintains its original shape over a
sufficiently long distance while the initially added noise is rapidly eliminated as
radiative waves. In contrast, unstable solitons tend to relax to stable ones with the
same power and large oscillations are observed during propagation (Fig. 9a, b, e).
The vortex can be also stable, although its stability region is more limited. An
unstable propagation of vortex PLS is shown in Fig. 9c, d. The vortex quickly
loses its screwed phase structure and decays into a fundamental PLS. Note that the
stability domain of vortex PLSs increases at a shorter operating wavelength.

In addition to the fundamental and vortical PLSs discussed in this section, 2D
plasmonic arrays also support a variety of multipole PLSs. These include dipoles,
quadrupoles, and necklaces, which exist in both self-focusing and self-defocusing
media. Such multipole states feature complex internal structure of the field
amplitude and phase and represent basic constituents of the higher-order solitons.
Equally important, they could also be of deep-subwavelengh nature and be
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achievable in not too complex experimental settings. For a detailed discussion of
their physical properties, stability domains as well as their dynamics, the reader is
referred to [38].

5 Comparison Between Two Models: CMT Versus Maxwell
Equations

All results presented here have been inferred from the models (9) and (10), which
have been derived by using the CMT. Due to the strong field confinement in
plasmonic nanostructures, one must determine the parameter range in which the
CMT is valid as the conclusions established in the case of arrays of dielectric
waveguides cannot be simply extrapolated to the case of plasmonic arrays.
Therefore, in order to validate the predictions based on the CMT, we have used an
alternative approach that amounted to solving the full set of 3D Maxwell equa-
tions. For this, we have used a commercially available software tool, COMSOL,
which solves the ME that incorporate all the effects relevant to our problem,
namely optical losses in the metallic regions of the plasmonic structures and
optical Kerr nonlinearity of the background medium.

The results corresponding to the 1D case are summarized in Fig. 10. Thus,
Fig. 10a presents a comparison of the coupling coefficients calculated by using the
two alternative methods. It shows that the CMT provides an excellent description
of the mode coupling for separation distance as small as d ’ 3:5a: Equally
important, Fig. 10b, which presents the soliton power dependence on the nonlinear
change of the index of refraction, illustrates that the nonlinear optical effects are
equally well described by the CMT as the linear ones. Thus, the two theoretical

4.48 4.5 4.52
70

80

90

100

110

120

β

P
 [W

]
CMT

ME

0 0.05 0.1 0.15 0.2
70

80

90

100

110

120

δnnl

P
 [W

]

CMT
ME

(b)(a)

Fig. 11 Panels a and b show the soliton power versus the effective mode index and the nonlinear
change of refractive index, respectively, for 2D fundamental solitons in a plasmonic array embedded
in a focusing nonlinear material. Physical parameters are a ¼ 40 nm; d ¼ 8a; k ¼ 1550 nm;

nb ¼ 3:34; and n2 ¼ 6:4 � 10�20 m2=W
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models predict similar values for the soliton power, even for remarkably large
values of the optical nonlinearity. These conclusions are further validated by the
spatial profiles electromagnetic field of the 1D solitons. Thus, as illustrated in
Fig. 10c, d, the two methods lead to almost identical results.

A good agreement between the predictions of the two methods is also observed
in the case of PLSs in 2D arrays of metallic nanowires, although in this case the
corresponding differences are larger than in the 1D case. Figure 11 plots the
dependence of soliton power on the effective mode propagation constant and on
the nonlinearly induced change of the index of refraction, as predicted by both
theories. The observed agreement proves that our CMT provides an excellent
theoretical framework for studying the light coupling and formation of nonlinear
localized modes at nanoscale.

6 Conclusion

Before concluding, we note that the existence of subwavelength PLSs is not
limited to arrays of metallic nanowires. They can be excited in any system of
coupled plasmonic waveguides, as long as the transverse dimension of the
waveguides is much smaller than the wavelength. Thus, one can consider arrays
made of coupled wedge waveguides [12] or coupled chains of interacting metallic
nanoparticles [13]. Moreover, the size of the plasmonic array, and implicitly the
size of the PLSs, can be significantly reduced if one uses deeply scaled down
nanostructures, such as metallic carbon nanotubes [39, 40], although in this case
the theoretical model must be modified so as to incorporate the carriers dynamics.

In summary, we have demonstrated theoretically that subwavelength PLSs are
formed in 1D and 2D arrays of metallic nanowires embedded into a host dielectric
medium with Kerr nonlinearity. The excitation of PLSs from Gaussian beams has
also been investigated and their potential use to all-optical nanodevices has been
discussed. Our analysis employs a model based on the coupled-mode theory as
well as full Maxwell equations, and shows that the predictions of the two models
are in excellent agreement for relatively large regions of the parameter space.
Importantly, the analysis presented here can be easily extended to other types of
solitions, including spatio-temporal solitons, multi-color solitons, non-local soli-
tons, and surface solitons. We expect, therefore, that these results will facilitate
exciting new developments in nanophotonics and subwavelength optics.
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From Coherent Modes to Turbulence
and Granulation of Trapped Gases
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Abstract The process of exciting the gas of trapped bosons from an equilibrium
initial state to strongly nonequilibrium states is described as a procedure of
symmetry restoration caused by external perturbations. Initially, the trapped gas is
cooled down to such low temperatures, when practically all atoms are in Bose–
Einstein condensed state, which implies the broken global gauge symmetry.
Excitations are realized either by imposing external alternating fields, modulating
the trapping potential and shaking the cloud of trapped atoms, or it can be done by
varying atomic interactions by means of Feshbach resonance techniques. Gradu-
ally increasing the amount of energy pumped into the system, which is realized
either by strengthening the modulation amplitude or by increasing the excitation
time, produces a series of nonequilibrium states, with the growing fraction of
atoms for which the gauge symmetry is restored. In this way, the initial equilib-
rium system, with the broken gauge symmetry and all atoms condensed, can be
excited to the state, where all atoms are in the normal state, with completely
restored gauge symmetry. In this process, the system, starting from the regular
superfluid state, passes through the states of vortex superfluid, turbulent superfluid,
heterophase granular fluid, to the state of normal chaotic fluid in turbulent regime.
Both theoretical and experimental studies are presented.
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1 Introduction

Different thermodynamic phases are usually characterized by different symmetries.
At the point of a phase transition, there occurs the change of system symmetry
[1–3]. The observation of phase transitions can be done by slowly varying the
system parameters, e.g., temperature, pressure, density, or some stationary external
fields, so that the system practically always is in equilibrium.

Another possibility of observing phase transitions is to prepare a system in a
nonequilibrium phase under the values of parameters favoring a different phase.
Then the system, starting from one phase with a given symmetry, relaxes to the
equilibrium phase with another symmetry, dynamically passing through the phase-
transition line [4].

In the present paper, we suggest and study the third way of realizing phase
transitions accompanied by symmetry changes. This way is opposite to the
relaxation procedure. We can start from an equilibrium phase, with one type of
symmetry, and then pump into the system energy by means of external alternating
fields, so that to transfer the system into another state, with another symmetry type.
We illustrate this idea by considering the system of trapped bosons. This system
can be cooled down to very low temperatures below the Bose–Einstein conden-
sation point, when all atoms pile down to the condensed state. The properties of
these condensed atoms have been intensively studied both theoretically and
experimentally, as can be inferred from the books [5–8] and reviews [9–20].

The Bose-condensed state is characterized by the global gauge symmetry
breaking. Moreover, the latter is the necessary and sufficient condition for Bose–
Einstein condensation [6, 15]. Acting on the system of trapped atoms by external
alternating fields increases the system energy, which is similar to increasing the
system temperature. The energy, pumped into the system, destroys the condensate,
transferring atoms into uncondensed states. When the injected energy is very large,
one should expect that the state can be reached where all condensate has been
depleted, and the whole system is in the normal phase, with the restored gauge
symmetry. This latter state will, of course, be nonequilibrium, being reached by
subjecting the system with time-dependent alternating fields. The investigation of
such a procedure of nonequilibrium transitions, going through several stages, is the
aim of the present paper. We shall describe both theoretical as well as experi-
mental peculiarities of this method. The main part of the paper summarizes the
results of previous publications, while some experimental results, related to the
granular state, are new.

2 Broken Gauge Symmetry

We consider a system of spinless bosons characterized by the field operators

ŵðr; tÞ satisfying Bose commutation relations. Here r is spatial variable and t is
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time. In the equations below, for the compactness of notation, we often omit the

time variable, assuming it but writing the field operator as ŵðrÞ, when this does not
lead to confusion. We keep in mind dilute Bose gas confined in a trap modelled by
an external trapping potential U ¼ Uðr; tÞ. Atomic interactions are described by
the local potential

UðrÞ ¼ U0dðrÞ; U0 � 4p
as

m
; ð1Þ

where as is scattering length and m, atomic mass. The scattering length, for
concreteness, is assumed to be positive. Generally, it could be negative, but then
the number of atoms should be such that to avoid the collapse occurring for atoms
with attractive interactions.

Here and in what follows, we shall use in the majority of equations, the system
of units with the Planck and Boltzmann constants set to one ð�h ¼ 1; kB ¼ 1Þ.

The external potential consists of two terms,

Uðr; tÞ ¼ UðrÞ þ Vðr; tÞ; ð2Þ

the first term being the trapping potential and the second term describing addi-
tional modulation potential pumping energy into the trap.

The energy operator is given by the standard Hamiltonian

ŵ ¼
Z

ŵðrÞ � r2

2m
þ U

� �
ŵðrÞ dr þ U0

2

Z
ŵyðrÞŵyðrÞŵðrÞŵðrÞ dr; ð3Þ

where U is the total external potential (2). In the presence of Bose–Einstein
condensate, the system global gauge symmetry is necessarily broken [6, 15]. The
most convenient way of breaking the gauge symmetry is by employing the
Bogolubov shift [21, 22] of the field operator:

ŵðrÞ ¼ gðrÞ þ w1ðrÞ; ð4Þ

in which gðrÞ is the condensate wave function normalized to the number of
condensed atoms

N0 ¼
Z

jgðrÞj2dr; ð5Þ

and w1ðrÞ is the operator of uncondensed atoms defining their number

N1 ¼ hN̂1i; N̂1 �
Z

wy
1ðrÞw1ðrÞ dr; ð6Þ

with the angle brackets implying statistical averaging. By this definition, the field
operator of uncondensed atoms satisfies the Bose commutation relations.

The condensate function and the field operator of uncondensed atoms charac-
terize different degrees of freedom, orthogonal to each other,
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Z
g�ðrÞw1ðrÞ dr ¼ 0:

The condensate function plays the role of the system order parameter, such that

hŵðrÞi ¼ gðrÞ; hw1ðrÞi ¼ 0: ð7Þ

This definition can also be written in the form of the statistical average

hK̂i ¼ 0 ð8Þ

of the operator

K̂ �
Z

kðrÞwy
1ðrÞ þ k�ðrÞw1ðrÞ

h i
dr; ð9Þ

in which kðrÞ is a Lagrange multiplier guaranteeing the validity of condition (7).
The correct description of any statistical system presupposes the use of the

representative ensemble uniquely defining the system [20, 23–25]. This requires to
take into account all imposed constraints that, in the present case, are given by
Eqs. (5), (6), and (8). In turn, taking account of these constraints makes it nec-
essary to introduce the grand Hamiltonian

H ¼ Ĥ � l0N0 � l1N̂1 � K̂; ð10Þ

with the Lagrange multipliers l0 and l1. Only employing this grand Hamiltonian
allows one to correctly describe the Bose-condensed system. When one uses an
ensemble that is not representative, that is, when not all constraints are taken into
account, this leads to various inconsistencies in thermodynamic and dynamic
characteristics, such as the arising gap in the spectrum of elementary excitations
and instability of the system.

3 Nonequilibrium Bose System

In the presence of an external time-dependent potential, we have to study a
nonequilibrium Bose system. The equations of motion for the system variables can
be written through the variational derivatives, which is equivalent to the
Heisenberg equations of motion [20, 26]. The condensate function satisfies the
equation

i
o

ot
gðr; tÞ ¼ dH

dg�ðr; tÞ

� �
: ð11Þ

While for the field operator of uncondensed atoms, one has

380 V. S. Bagnato and V. I. Yukalov



i
o

ot
w1ðr; tÞ ¼ dH

dwy
1ðr; tÞ

: ð12Þ

To represent the resulting evolution equations in a convenient form, let us
introduce several notations. The condensate density is

q0ðrÞ � jgðrÞj2: ð13Þ

The density of uncondensed atoms reads as

q1ðrÞ � hwy
1ðrÞw1ðrÞi: ð14Þ

When the gauge symmetry is broken, there appear the anomalous averages, such as
the pair anomalous average

r1ðrÞ � hw1ðrÞw1ðrÞi ð15Þ

and the triple anomalous averages

nðrÞ � hwy
1ðrÞw1ðrÞw1ðrÞi; n1ðrÞ � hw1ðrÞw1ðrÞw1ðrÞi: ð16Þ

The total atomic density is the sum

qðrÞ ¼ q0ðrÞ þ q1ðrÞ: ð17Þ

Equation (11) yields the equation for the condensate function

i
o

ot
gðrÞ ¼ � r2

2m
þ U � l0

� �
gðrÞ

þ U0 q0ðrÞgðrÞ þ 2q1ðrÞgðrÞ þ r1ðrÞg�ðrÞ þ nðrÞ½ �: ð18Þ

And using Eq. (12), we find the continuity equation for the density of uncondensed
atoms,

o

ot
q1ðrÞ þ r � j1ðrÞ ¼ �CðrÞ; ð19Þ

with the atomic current

j1ðrÞ � � i

2m
wy

1ðrÞrw1ðrÞ � rwy
1ðrÞ

h i
w1ðrÞ

D E
ð20Þ

and the source term given by the expression

CðrÞ ¼ iU0 N�ðrÞ � NðrÞ½ �; ð21Þ

in which

NðrÞ � g�ðrÞ g�ðrÞr1ðrÞ þ nðrÞ½ �: ð22Þ
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In addition, it is necessary to consider the equations for the anomalous aver-
ages. Writing down the equation for the pair average (15), we can use the Hartree-
Fock-Bogolubov approximation for the four-operator correlator

hwy
1ðrÞw1ðrÞw1ðrÞw1ðrÞi ¼ 3q1ðrÞr1ðrÞ: ð23Þ

Also, we define the anomalous kinetic term

KðrÞ � � 1
2

r2w1ðrÞ
2m

w1ðrÞ þ w1ðrÞ
r2w1ðrÞ

2m

� �

¼ 1
2m

½rw1ðrÞ
2�

D E
� 1

2
r2r1ðrÞ

� �
:

ð24Þ

Then the evolution equation for the anomalous average (15) is

i
o

ot
r1ðrÞ ¼ 2KðrÞ þ 2ðU � l1Þr1ðrÞ

þ 2/0 g2ðrÞq1ðrÞ þ 2q0ðrÞr1ðrÞ þ 3q1ðrÞr1ðrÞ þ 2gðrÞnðrÞ þ g�ðrÞn1ðrÞ
� 	

:

ð25Þ

Equations (18) to (25) describe the nonequilibrium system with Bose–Einstein
condensate [20].

4 Topological Coherent Modes

Strongly nonlinear time-dependent equations, such as the condensate-function
equation (18), can display different nonequilibrium solutions. One usually con-
siders a particular case of this equation corresponding to asymptotically weak
interactions, when one can neglect the terms containing q1 and r1. In that case,
Eq. (18) reduces to the nonlinear Schrödinger equation, also called the Gross–
Pitaevskii equation [27–31]. Such a nonlinear equation possesses a variety of
soliton solutions [32, 33]. Here we shall consider a special class of nonequilibrium
solutions that can exist being supported by the action of external alternating fields.

First, let us define the set of stationary solutions to the condensate-function
equation (18). These solutions are obtained by considering the situation without
the time-dependent perturbation Vðr; tÞ and substituting into Eq. (18) the form

gnðr; tÞ ¼ gnðrÞe�ixnt; ð26Þ

which results in the eigenvalue problem
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� r2

2m
þ UðrÞ


 �
gnðrÞ þ U0 jgnðrÞj2gnðrÞ þ 2q1ðrÞgnðrÞ þ r1ðrÞg�nðrÞ þ nðrÞ

h i

¼ EngnðrÞ;
ð27Þ

where n is a multi-index labelling the eigenstates and

En � xn þ l0: ð28Þ

The related stationary solutions for q1 and r1 are assumed to enter Eq. (27), or they
are neglected in the simple case of the Gross–Pitaevskii equation. The lowest
eigenvalue En corresponds to the equilibrium case, when

l0 ¼ min
n

En ðmin
n

xn ¼ 0Þ: ð29Þ

The solutions to Eq. (27) are termed coherent topological modes. They are
coherent, since the condensate function corresponds to the coherent state, in
agreement with the general definition of such states [34]. And they are called
topological because the solutions with different indices n possess different spatial
topology, having different number of zeroes. Respectively, the related densities of

condensed atoms jgnðrÞj
2, with differing indices n, have different spatial shapes.

The coherent topological modes for the Gross–Pitaevskii equation were introduced
in Ref. [35]; and their properties were studied in many articles [36–61]. A dipole
topological mode was excited in experiment [62]. The general case of Eq. (27) has
also been considered [20, 63].

As an illustration of typical solutions, representing such coherent modes, let us
consider the case of zero temperature and weak atomic interactions, when the
Gross–Pitaevskii equation is applicable. The atoms are trapped in a harmonic
cylindrical trapping potential. The corresponding solution can be represented
[9, 35, 36, 43, 46] in the form

wnmjðr;u; zÞ ¼ 2n!ujmjþ1

ðn þ jmjÞ!


 �1=2

rjmj exp � u

2
r2

� 
Ljmj

n ur2
� �

� eimu

ffiffiffiffiffiffi
2p

p v

p

� 1=4 1
ffiffiffiffiffiffiffi
2jj!

p exp � v

2
z2

� 
Hjð

ffiffiffi
v

p
zÞ;

in which Lm
n is a Laguerre polynomial, Hj, a Hermite polynomial, n ¼ 0; 1; 2; . . . is

the radial quantum number, m ¼ 0;�1;�2; . . . is the azimuthal quantum number,
and j ¼ 0; 1; 2; . . . is the axial quantum number. The variables r;u; z are cylin-
drical coordinates. And the quantities u; v are the so-called control functions,
depending on all system parameters and defined so that to guarantee the conver-
gence of optimized perturbation theory [64–67]. As is clear, the solutions with
nonzero azimuthal quantum number m correspond to vortices.

When there is no external perturbation, the system tends to its equilibrium state
corresponding to the lowest energy level (29). But if the system is subject to an
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external time-dependent perturbation, then we have to consider the evolution
equation (18). It is admissible to look for the solution of this equation in the form
of the expansion over the coherent modes:

gðr; tÞ ¼
X

n

cnðtÞgnðrÞe�ixnt: ð30Þ

Defining the number of condensed atoms at the initial time,

N0 �
Z

jgðr; 0Þj2dr; ð31Þ

we use the notation

gnðrÞ ¼
ffiffiffiffiffiffi
N0

p
unðrÞ; ð32Þ

introducing the functions un normalized to one:
Z

junðrÞj2dr ¼ 1:

Note that these functions un, being defined by a nonlinear equation, are not
necessarily orthogonal.

We impose, in addition to the stationary trapping potential UðrÞ, the external
potential modulating the trapping potential in the form

Vðr; tÞ ¼ V1ðrÞ cosðxtÞ þ V2ðrÞ sinðxtÞ; ð33Þ

with the total potential given by Eq. (2). Also, we require that this alternating
potential be in resonance with one of the transition frequencies xn, so that the
resonance condition

Dx
x

����

���� 	 1 ðDx � x � xnÞ ð34Þ

be valid for the fixed n. Substituting expansion (30) into Eq. (18) and employing
the averaging techniques [68–70], we come to the equations

i
dc0

dt
¼ a0njcnj2c0 þ

1
2

b0ncneiDx�t;

i
dcn

dt
¼ an0jc0j2cn þ

1
2

b�
0nc0e�iDx�t;

ð35Þ

in which

amn � U0N0

Z
jumðrÞj2 2junðrÞj2 � jumðrÞj2

h i
dr;

bmn �
Z

u�
mðrÞ V1ðrÞ � iV2ðrÞ½ �unðrÞ dr:
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Solving these equations gives us the fractional mode populations

pnðtÞ ¼ jcnðtÞj2;
X

n

pnðtÞ ¼ 1: ð36Þ

It is worth noting that the mathematical structure of these equations is the same as
that of equations describing atomic motion in a double-well potential. Therefore
solutions to these equations exhibit many properties that are analogous to the
properties of solutions in the case of a double-well potential. For instance, the
effect of mode locking [35, 46], occurring for Eqs. (35), is mathematically iden-
tical to the effect of self-trapping for the double well potential [71].

Among other interesting effects, exhibited by the system with the generated
coherent topological modes, we can mention the interference patterns and inter-
ference current [42, 43, 46], dynamical phase transitions and critical phenomena
[39, 42, 43, 46], chaotic motion under the action of several alternating fields
[53, 54], atomic squeezing [46, 48, 49], Ramsey fringes [57–59], and entanglement
production [72–75].

The coherent topological modes can also be generated by modulating the atomic
scattering length by means of the Feshbach resonance techniques [20, 60, 61],
so that the interaction strength be varying in time as

UðtÞ ¼ U0 þ U1 cosðxtÞ þ U2 sinðxtÞ; ð37Þ

provided that the alternating frequency x is tuned close to one of the transition
frequencies xn.

In the case of resonance x ¼ xn, coherent modes can be generated by an
external modulation of rather weak strength. But increasing the amplitude of the
pumping field simplifies this generation, making the strict resonance x ¼ xn not
necessary [53, 54]. Then several other conditions come into play allowing for the
mode generation. Thus, the modes can be created when the external frequency is
close to the condition of harmonic generation

kx ¼ xn ðk ¼ 1; 2; . . .Þ: ð38Þ

If there are two alternating fields, with the frequencies x1 and x2, then the modes
can be produced [53, 54] by parametric conversion, when the frequencies satisfy
(at least approximately) the relation

x1 � x2 ¼ xn: ð39Þ

This effect is similar to parametric resonance [76].
Generally, for several alternating fields, with frequencies xi, the condition of

the generalized resonance
X

i

kixi ¼ xn ðki ¼ �1;�2; . . .Þ ð40Þ

is sufficient for generating coherent modes.
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In this way, increasing the amplitude of the pumping field produces in the
trapped Bose gas a variety of different topological coherent modes. The same
multiple mode creation happens when the action of the alternating perturbing
potential lasts sufficiently long, during the time after which the effect of power
broadening comes into play [35, 46, 54, 63].

5 Creation of Trapped Vortices

One type of the coherent topological modes is of special interest. These are the
quantum vortices. Such vortices have been observed in superfluid helium [77] and
in trapped Bose–Einstein condensate [78–80]. In the dynamical picture, the
appearance of vortices is caused by a dynamical instability arising in a nonequi-
librium moving fluid [81–88].

The first vortex appears, when the atomic cloud is rotated with the frequency
reaching the critical value xvor. Let us consider a cloud of Bose-condensed atoms
in a cylindrical trap with a transverse, x?, and longitudinal, xz, trap frequencies,
and with the aspect ratio

a � xz

x?
¼ l?

lz

� �2

; ð41Þ

in which the effective trap lengths are

l? � 1
ffiffiffiffiffiffiffiffiffiffi
mx?

p ; lz �
1
ffiffiffiffiffiffiffiffiffi
mxz

p :

The critical rotation frequency for this trap [8] can be written as

xvor ¼
5

2mR2
TF

ln 0:7
RTF

n

� �
; ð42Þ

where the notations are used for the Thomas–Fermi radius

RTF ¼ l?
15
4p

ag

� �1=5

; ð43Þ

dimensionless coupling parameter

g � 4pN
as

l?
; ð44Þ

and the healing length

n � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mqð0ÞU0

p : ð45Þ
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The vortex with vorticity one is energetically more stable than the vortices with
higher vorticities. Because of this, the latter decay into several basic vortices with
vorticity one. Moreover, for large coupling parameter (44) the basic vortex is the
most stable among all coherent modes [9, 20]. This follows from the fact that the
basic vortex energy, that can be represented by Eq. (42), can be rewritten as

xvor ¼
0:9x?

ðagÞ2=5
lnð0:8agÞ; ð46Þ

which shows that this energy diminishes with g. While the energies of other
coherent modes increase with g as

xn / ðagÞ2=5 ðg 
 1Þ: ð47Þ

Increasing the velocity of rotation produces many basic vortices that form arrays
arranged into Abrikosov lattices [79, 89].

However, if we modulate the trapping potential by alternating fields without a
fixed rotation axis, as is described above for generating coherent modes, then we
shall generate vortices and antivortices. Such a type of vortex creation was
demonstrated in experiments [90, 91], where the harmonic trapping potential

UðrÞ ¼ m

2
x2

? x2 þ y2
� �

þ m

2
x2

z z2; ð48Þ

with x? ¼ 2p � 210 Hz and xz ¼ 2p � 23 Hz, was modulated with the alternating
potential

Vðr; tÞ ¼ m

2
X2

xðtÞðx � x0Þ2 þ m

2
X2

yðtÞðy0 � y00Þ
2 þ m

2
X2

z ðtÞðz0 � z00Þ
2: ð49Þ

Here the oscillation centers are defined by the equation

y0 � y00
z0 � z00


 �
¼ sin#0 cos#0

cos#0 � sin#0


 �
y � y0

z � z0


 �
;

and the oscillation frequencies are

XaðtÞ ¼ xada½1 � 1 cosðxtÞ�; ð50Þ

with a ¼ x; y; z, and x0; y0; z0; #0; da;x being fixed parameters [92].

6 Trapped Turbulent Superfluid

Strong rotation creates a vortex lattice [8]. But when the trapped atomic cloud is
subject to the action of an alternating modulation potential without a fixed rotation
axis and this pumping injects into the system the amount of energy sufficient for
creating many vortices and antivortices, then the latter are randomly distributed
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inside the trap, forming a chaotic tangle. Such a random tangle of vortices is
associated with turbulence, similar to the spatially tangled vortices in superfluid
helium [93].

Turbulence is a phenomenon that has been studied for classical liquids for many
years [94]. Vortices in a classical fluid can be of different vorticities, while the
vortex circulation in a quantum fluid is quantized, which distinguishes the classical
turbulence from the quantum turbulence [95].

One of important characteristics of turbulent motion is the mean kinetic energy
that can be represented as the integral

K ¼
Z 1

0
EðkÞ dk ð51Þ

over the wave-number values k. In classical fluids, there exists a diapason of wave
numbers, called inertial range, where the spectrum EðkÞ, is given by the Kol-
mogorov [96, 97] law for isotropic turbulence

EðkÞ ¼ Ce2=3k�5=3; ð52Þ

with C � 1:5 and � being energy transfer rate. The Kolmogorov law is universal
for classical fluids [98].

Quantum turbulence was, first, studied for superfluid helium [99, 100]. It was
found in experiments [101, 102] that there also exists an inertial range of wave
numbers, where the Kolmogorov law (52) is valid, independently of temperature.
In superfluids, the energy is dissipated through the interaction of the normal and
superfluid components and, at low temperature, through vortex reconnection,
Kelvin wave excitations, and phonon emission [103, 104]. More details can be
found in Refs. [105–108].

Numerical simulation of quantum turbulence in Bose–Einstein condensate is
usually done by solving the Gross–Pitaevskii equation. Atoms are assumed to be
trapped in a stationary trap and subject to the action of an external alternating
perturbation with more than one rotation axes. The kinetic energy, when all atoms
are condensed, is given by the integral

K ¼
Z

g�ðr; tÞ � r2

2m

� �
gðr; tÞ dr: ð53Þ

It was found [109, 110] that there again exists an inertial range, where the Kol-
mogorov law is applied. Thus, for atoms in a harmonic trap, the inertial range is

2p
RTF

\k \
2p
n

ðC � 0:25Þ; ð54Þ

where RTF is the Thomas–Fermi radius and n, healing length. For atoms in a box of
linear size L, the inertial range is
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2p
L

\k \
2p
n

ðC � 0:55Þ: ð55Þ

Experimental generation of trapped quantum turbulence was realized [111–114]
for 87Rb Bose–Einstein condensate. It was trapped in the harmonic potential (48)
and subject to the action of the alternating potential (49).

7 Heterophase Granular Fluid

If we continue pumping energy into the system, turbulence is getting stronger and
stronger. The core of each vortex can be treated as a nucleus of normal (uncon-
densed) phase. Producing more and more vortices increases the amount of the
uncondensed component. What then happens, when the number of vortices in the
strongly turbulent liquid is so large that the amount of the uncondensed fraction
becomes comparable or greater than the fraction of condensed atoms? The answer
to this question cannot be done being based solely on the Gross–Pitaevskii
equation that describes only the condensed fraction. To take into account both the
condensed as well as uncondensed fractions, it is necessary to consider the full
evolution equations (18) to (25).

A simple way of understanding what happens in a strongly nonequilibrium
system under the action of a time-dependent perturbation is as follows. It is
possible to prove [20, 107, 115] that the system with the time-dependent pertur-
bation can be mapped onto the system subject to the action of a random spatial
potential, provided that the modulation period is larger than the local equilibration
time. The behavior of the weakly interacting Bose-condensed system in a weak
spatially random potential has been studied in several articles (see, e.g., [116,
117]). A theory for Bose systems with arbitrarily strong interactions and random
potentials of arbitrary strength has also been developed [115, 118, 119].

Using the analogy between the spatially random and temporally perturbed Bose
gas [20, 115] we can evaluate the localization length defining the scale at which
Bose gas can be condensed. This length for a trapped Bose gas is

lloc ¼
1

m2E2
injl

3
0

¼ x0

Einj

� �2

l0; ð56Þ

where the effective trap size and effective frequency are

l0 � l2
?lz

� �1=3¼ 1
ffiffiffiffiffiffiffiffiffi
mx0

p ; x0 � x2
?xz

� �1=3¼ 1

ml2
0

; ð57Þ

and the energy per atom, injected into the trap, can be evaluated as

Einj �
1
N

Z
qðr; tÞ oVðr; tÞ

ot

����

���� drdt: ð58Þ
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If the pumping potential is alternating, as is usual, with an amplitude A and
frequency x, then the energy, injected in the time interval ½t; t0�, is approximately

Einj � Axðt � t0Þ: ð59Þ

This expression for the injected energy is certainly approximate, since a part of the
pumped energy is dispersed, but not transferred to atoms.

If the localization length (56) is larger or of order of the trap size, given in
Eq. (57), then all atoms in the trap are in the Bose-condensed state. But when this
length becomes shorter than the trap size, though yet larger than the mean inter-
atomic distance a, then the atomic cloud breaks into pieces. Then the system
consists of grains, composed of Bose-condensed phase, immersed into the cloud,
consisting of normal phase, without gauge symmetry breaking. The sizes of the
condensate grains are of order of the localization length. Thus, the condition for
the occurrence of this heterophase granular state is

a\lloc\l0: ð60Þ

Such a heterophase state is similar to heterophase states arising in many con-
densed-matter systems [23, 120] and that can happen in optical lattices [18, 121].

The state of the heterophase granular fluid has been observed in experiment
[114] with a cloud of strongly modulated 87Rb atoms.

8 Normal Chaotic Fluid

What happens, if we continue pumping energy into the trapped atomic cloud?
Again, following the analogy with other heterophase systems [18, 23, 120, 121],
we should expect that the fraction of the Bose-condensed phase, concentrated in
the grains, will diminish, and, finally, the whole system will be transferred into the
normal state, with the restored gauge symmetry. Being subject to strong external
perturbation, the system will, of course, be essentially nonequilibrium, experi-
encing chaotic fluctuations. So, this will be a normal chaotic fluid, with completely
restored global gauge symmetry, without any remnants of Bose–Einstein
condensate,

The normal chaotic fluid could, probably, be characterized by the approach
called weak-turbulence theory, or wave-turbulence theory [122–127]. In this
approach one assumes that turbulence in a weakly nonlinear system can be
represented by an ensemble of weakly interacting waves. However, the nonlin-
earity in the system can be rather strong. And the normal chaotic state, with no
condensate, cannot be described by the Gross–Pitaevskii equation appropriate only
for pure condensate. More probably, the normal chaotic state is just a strongly
turbulent state of a normal fluid and could be described as classical turbulence.

This state has not yet been reached in experiments [113, 114] and remains to be
investigated.
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9 Amplitude-Time Phase Diagram

The whole procedure of exciting the system of trapped atoms by applying an
external alternating perturbation potential passes through several stages. We start
with an almost completely Bose-condensed gas, where the global gauge symmetry
is broken. Very weak perturbation can do not more than to produce elementary
collective excitations that do not change the overall system properties. This state
can be called the regular superfluid.

When the energy, injected into the trap, becomes comparable with the energy of
a vortex, a single vortex is created. This happens when Einj �xvor. With equality
(59), this gives the relation

Avor �
xvor

xðt � t0Þ
ð61Þ

between the amplitude A of the alternating perturbing potential and the time t of its
action, describing the effective transition line of vortex creation. Above this line,
we have the state of vortex superfluid. Of course, the transition from the regular
superfluid to vortex superfluid is not a sharp phase transition, but it is a crossover.
However, the crossover line (61) serves as an approximate separation line between
these two qualitatively different regimes. Similarly, the dividing lines between
other qualitatively different regions are also crossover lines.

Increasing the injected energy, pumped into the trap, by either a stronger
alternating field or by its longer action, leads to the generation of a variety of
coherent topological modes that decay into basic vortices and antivortices. To
create Nvor vortices (and antivortices), it is necessary to inject the energy
Einj �Nvorxvor. When the number of vortices becomes large, of order

Nvor �
l0

n
; ð62Þ

they form a random tangle, which signifies the appearance of turbulent state.
Hence, the crossover line between the vortex superfluid and the turbulent super-
fluid is given by

Atur �
l0xvor

nxðt � t1Þ
: ð63Þ

The random vortex tangle is formed due to the property of the imposed perturbing
potential that does not prescribe a single rotation axis.

As soon as the injected energy reaches the value Einj �x0, the condensate
localization length (56) becomes of order of the trap size l0. As is explained in
Sect. 7, in the region of the localization lengths (60), the heterophase granular state
arises. This granular fluid consists of the grains of Bose-condensed gas immersed
into the cloud of normal fluid without gauge symmetry breaking. The corre-
sponding crossover line writes as
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Ahet �
x0

xðt � t2Þ
: ð64Þ

The cloud of normal atoms, surrounding the Bose-condensed droplets, is charac-
terized by the restored gauge symmetry.

When the localization length (56) becomes as small as the mean interatomic
distance, no condensed droplets can be formed. That is, on the boundary, where

lloc � a; Einj �x0

ffiffiffiffi
l0

a

r

;

all condensate is completely destroyed. This defines the crossover line

Anor �
x0

xðt � t3Þ

ffiffiffiffi
l0

a

r

ð65Þ

between the granular fluid and the normal fluid with no gauge symmetry breaking.
Since the latter is in a strongly nonequilibrium state with chaotic motion, it can be
termed chaotic fluid. This regime, presumably, can be characterized by classical
turbulent state.

Summarizing the sequence of these crossover transitions, we have:

0\A\Avor ðregular superfluidÞ
Avor\A\Atur ðvortex superfluidÞ
Atur\A\Ahet ðturbulent superfluidÞ
Ahet\A\Anor ðgranular fluidÞ

A [ Anor ðchaotic fluidÞ

:

The first four of these regimes have been observed in experiments, as described
above. The last state of chaotic fluid has not yet been reached for trapped atoms.

10 Experiments with Strongly Nonequilibrium Trapped
Bose Gas

While classical turbulence can be observed quite easily with visualization
techniques, for traditional superfluids that is not the case. The high density in
superfluid liquid-He makes the vortex line core of order of atomic scale dimen-
sions, and therefore, turning the visualization techniques hard to be applied. On the
other hand, in trapped atomic superfluids the low density makes possible the
observation of vortex arrangement with unaided eye. We therefore use the
observations of irregular arrangement of vortices as one of the macroscopic
indications of Quantum Turbulence (QT). After the regime of QT is reached, the
studies of many aspects, revealing the similarities and differences with the clas-
sical counterpart, become of great interest.
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The first important aspect on the experimental observation of QT is the pro-
duction of vortex lines. The standard way of producing quantized vortices in a
trapped condensate is by stirring [128, 129]. Laser beams or rotation of an
asymmetric trapping potential are the alternatives to achieve a rotating cloud of
atoms. In these cases, the nucleation of vortices takes place in a specific direction
(along the rotation axis), and therefore the final result is a lattice of vortices instead
of a tangle configuration. To achieve a tangle configuration, we have developed a
new technique [90], where a combination of oscillations in the cloud results in the
nucleation of vortices in many directions, which is a necessary ingredient for the
final production of a tangle configuration of vortices.

In brief, we start with a BEC of Rb atoms confined in a harmonic trapping
potential with the frequencies xx ¼ xy ¼ 9 xz and xz ¼ 2p � 23 Hz. The typically

produced BEC contains 2 � 105 atoms. A pair of coils (as in Fig. 1) forms a

Fig. 1 Scheme of the main components composing the magnetic trap and the additional extra
coils producing the necessary oscillatory fields generating trapped quantum turbulence
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magnetic field that mechanically excites the trapped condensate. The notation of
axes in this figure corresponds to that used in the text with the interchange of x and z.
The excitation is achieved by applying an oscillatory current in the extra coils. The
produced distortions of the trapping potential cause a combination of translations
and rotations of the cloud. The result of such an excitation is a combination of the
effects, going from a simple bending of the symmetry axis of the cloud up to the
generation of vortices in many directions with a final granulation of the cloud.
We have characterized the overall behavior of the system in a diagram presenting the
regions of observations in Fig. 2 [114].

Small amplitudes of oscillation can only produce a bending mode intrinsically
connected to the scissor mode [130] present in atomic trapped superfluids. Larger
amplitudes of oscillation, combined with longer excitation times, can produce

Fig. 2 Diagram, on the excitation amplitude-time plane, showing the observed characteristic
regions of four different identifiable structures, from the simple bending of the superfluid axis, to
the creation of vortices, vortex tangle, and to granulation
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vortices with a characteristic array of QT. As is shown in Fig. 2 , in a range of the
excitation parameters, there arise vortices directed along the cloud axis, but still
not yet showing a fully tangled configuration. Quantum turbulence takes place in
the region of parameters with a clear separation of behavior between the regions.

The generation of vortices takes place because the oscillation of the atomic
superfluid cloud produces collective modes [112] leading to the generation of

Fig. 3 The difference between a turbulent and a granulated cloud. While in the first case the
landscape is made of vortex filaments distributed in space, the granulated state corresponds to a
collection of grains characterizing strong density fluctuations

Fig. 4 Absorption by the
granulated cloud showing the
domains of the grains
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coherent modes [35]. In a more recent observation, it has been verified [131] that
the excitation, through a combination of oscillations produces, together with
collective modes, the excitation of the second sound mode coupled to the dipole
mode. This excitation corresponds to the counterflow between condensate and
thermal cloud, with the possible generation of vortices in the regions of the
maximal relative motion. At low temperatures, when the normal fraction is neg-
ligible, dynamic instability appears due to the counterflow between different parts
of the condensate [81–88].

Being generated, vortices can be distributed in many directions, first, without
actually forming a tangled configuration. When the finite size of the cloud is
saturated with the vortices, any further pumped energy forces a fast evolution of
the vortices, promoting their reactions by reconnections [132], eventually yielding
a turbulent cloud. At this stage, not only the distribution of the vortices is an
indication for the occurrence of turbulence, but also a change in the hydrodynamic
behavior, during the free expansion of the cloud, works as the indicator of tur-
bulence. While a non-turbulent cloud of an atomic superfluid demonstrates the
inversion of aspect ratio during free expansion, the turbulent cloud preserves the
original aspect ratio [111, 133].

It has been observed that the existence of a boundary, between the regular and
turbulent superfluids, on the amplitude-time diagram of Fig. 2 is the consequence
of the finite size of the cloud, as explained in Ref. [113].

For the extreme case of excitation (high amplitude and longer excitation times),
the turbulent condensate evolves into a granulated state, when the original con-
densate cloud breaks into many grains. The transition from the turbulent to frag-
mented cloud is presented by the density profile of Fig. 3.

The experimental observation of the atomic cloud inside the trap is not easy.
This is because the produced condensate has the size of just a few microns. To
perform an absorption measurement in situ, we would be severely limited by
diffraction. We therefore, first, allow a free expansion of the cloud, and then
perform absorption measurements. For the observed states, discussed above, the
time of flight before absorption was of 15 ms. In this case, the size of the cloud is
many times larger than the actual size in situ. As far as, during the time of flight,
the density is greatly reduced, the interactions are also reduced, freezing the
existent structure, that now evolves much slower in time. It is a general consensus
that the free expansion preserves the in situ structure of the atomic cloud.

Figure 4 demonstrates the absorption image of the granulated cloud and the
details showing the domains of the grains after free expansion of 15 ms. We
observe an isotropic expansion and the details of the figure allow us to identify the
grains arising in the originally homogeneous superfluid. Applying the reversibility
analysis, we find that, in situ, the grains have the average size of about 0:25 lm.
They are clearly not regular either in shape or in size and do not form any structure
that could be observed through the absorption.

For convenience, let us summarize the data characteristic of our experiments
with 87Rb atoms. The mass of a Rb atom is m ¼ 1:445 � 10�22 g. The scattering
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length is as ¼ 0:577 � 10�6 cm. The radial frequency is x? ¼ 1:32 � 103 s�1 and
longitudinal frequency is xz ¼ 1:445 � 102 s�1. The corresponding oscillator
lengths are l? ¼ 0:744 � 10�4 cm and lz ¼ 2:248 � 10�4 cm. The average oscil-
lator frequency and length are x0 ¼ 0:631 � 103 s�1 and l0 ¼ 1:076 � 10�4 cm.
The effective condensate volume is Veff ¼ 0:783 � 10�11 cm3. The average con-
densate density is q� 2:554 � 1015 cm�3. The mean interatomic distance is
a ¼ 0:732 � 10�5 cm, which is much larger than the scattering length. Hence, the
gas is rarified. The gas parameters are small, qa3

s ¼ 0:491 � 10�3 and
q1=3as ¼ 0:079. This implies that atomic interactions are weak. However, the
effective coupling parameter (44) is large, g ¼ 1:95 � 104. Therefore the corre-
sponding nonlinearity is very large.

The trap is subject to an external field modulation during the time
text ¼ 0:02–0.06 s, with an alternating potential of frequency x ¼ 1:257 � 103 s�1.
The related modulation period is tmod � 2p=x ¼ 5 � 10�3 s. The local equilibration
time is tloc ¼ m=ð�hqasÞ ¼ 0:929 � 10�4 s. This is much shorter than the modulation
period, because of which the system is always in local equilibrium.

With the average grain size lg � 2:5 � 10�5 cm, the number of atoms inside a

grain is ðlg=aÞ3 � 40. And the number of grains in the trap is of order

ðl0=lgÞ3 � 400.
The majority of experimental observations can be explained by the models of

Sects. 4–7. But, certainly, other experiments for cross-checking the measured and
theoretical dependencies are needed. Recent measurements of the momentum
distribution of a turbulent cloud show the existence of a power-law type depen-
dence nðkÞ / k�d, which also requires confirmation and analysis with respect to its
relation to the Kolmogorov-type behavior.

11 Conclusion

We have described the procedure of exciting a system of trapped Bose-condensed
atoms by an external alternating potential, forcing the system to pass through
several qualitatively different stages. Initially, the system is almost completely
condensed, which is characterized by the broken global gauge symmetry.
Applying sufficiently strong external perturbation transfers the system into a
nonequilibrium state. First, there appear separate vortices and antivortices, which
marks the transfer from the regular superfluid to vortex superfluid. Increasing
perturbations is realized by either strengthening the amplitude of the applied
alternating field or by its longer action on the system. Sufficiently strong pertur-
bation generates a variety of coherent topological modes that decay into basic
vortices with vorticity one. Thus, a multiplicity of vortices and antivortices is
effectively generated. The location of these vortices inside the trap and their
directions are random, which is caused by the absence of a unique rotation axis of
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the applied alternating potential. Because of this, the increasing perturbation
creates not a vortex lattice, as it would be in the case of a uniaxial rotation, but
forms en ensemble of randomly directed vortices. When the number of vortices
becomes large, they form a random vortex tangle typical of quantum turbulence.
Increasing further the amount of energy, injected into the trap, breaks the system
into pieces. Then Bose-condensed grains, or droplets, are surrounded by uncon-
densed gas in the normal state. Pumping more energy into the trap reduces the
fraction of condensed atoms. Finally, the system should transfer into the normal
state, where the global gauge symmetry is restored.

Thus, starting with a regular superfluid, we pass through the states of vortex
superfluid, turbulent superfluid, granular fluid, and should finish with chaotic fluid
that is in a state of classical turbulence. In that way, the initial state with global
gauge symmetry breaking is transformed, through a sequence of qualitatively
different regimes, to a state with the restored global gauge symmetry. Transitions
between different regimes are classified as crossovers, though they are sufficiently
sharp for allowing us to define the corresponding crossover lines. All these tran-
sitions, except that to chaotic fluid, are illustrated by experiments with trapped
87Rb atoms.
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Bright Solitary Matter Waves: Formation,
Stability and Interactions

T. P. Billam, A. L. Marchant, S. L. Cornish, S. A. Gardiner
and N. G. Parker

Abstract In recent years, bright soliton-like structures composed of gaseous
Bose–Einstein condensates have been generated at ultracold temperature.
The experimental capacity to precisely engineer the nonlinearity and potential
landscape experienced by these solitary waves offers an attractive platform for
fundamental study of solitonic structures. The presence of three spatial dimensions
and trapping implies that these are strictly distinct objects to the true soliton
solutions. Working within the zero-temperature mean-field description, we explore
the solutions and stability of bright solitary waves, as well as their interactions.
Emphasis is placed on elucidating their similarities and differences to the true
bright soliton. The rich behaviour introduced in the bright solitary waves includes
the collapse instability and asymmetric collisions. We review the experimental
formation and observation of bright solitary matter waves to date, and compare
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to theoretical predictions. Finally we discuss some topical aspects, including
beyond-mean-field descriptions, symmetry breaking, exotic bright solitary waves,
and proposals to exploit bright solitary waves in interferometry and as surface
probes.

1 Introduction

1.1 Gaseous Bose–Einstein Condensates

In 1925 Einstein predicted that an ideal and uniform gas of bosons, under con-
ditions of sufficiently high density and/or low temperature, would begin to
‘‘condense’’ into the single particle quantum state of zero energy [1]. This phe-
nomenon of Bose–Einstein condensation is now known to extend beyond gases
into liquids and solids, being the underlying mechanism responsible for super-
fluidity in Helium and superconductivity [2]. But it is the gaseous form of this
phenomenon that offers the purest and most controllable realization of this state of
matter [3–5].

Since 1995, gaseous atomic Bose–Einstein condensates (BECs) have been
generated in laboratories world-wide. These gases are extremely dilute, with
typical number densities of 1018–1021 m�3, and the onset of Bose–Einstein con-
densation occurs at ultracold temperatures of around 100 nK [3]. Typically,
experiments are run sufficiently far below this critical temperature that practically
all the atoms enter the Bose–Einstein condensate, and the remaining thermal gas
component becomes negligible. Within the Bose–Einstein condensate, the indi-
vidual de Broglie wavelengths of the atoms overlap, forming a single coherent
matter wave that extends across the system. From a theoretical perspective, this
enables the description of the many-body system via a single mean-field wave
equation.

Although these gases are dilute, the atom–atom interactions play a significant
role and introduce a nonlinearity into the system. At such low temperatures and
densities, the interactions arise predominantly via elastic s-wave collisions, which
are short-range and introduce a local cubic nonlinearity into the mean-field wave
equation. Furthermore, these interactions are usually repulsive.

The gases are formed and held within confining potentials produced via mag-
netic or optical fields. These make the condensate finite in size and introduce an
inhomogeneity across the system, both of which have major implications for the
static properties and dynamics of the gases, not least for the bright solitary waves
considered herein. Furthermore, these configurable traps allow for the dimen-
sionality of the system to be engineered to produce ‘‘quasi-one-dimensional’’ and
‘‘quasi-two-dimensional’’ systems.
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1.2 Solitons and Bright Solitary Matter Waves

Solitons are non-dispersive waves that arise across nonlinear systems, such as
shallow water, plasmas and optical fibres [6, 7]. Although solitons are defined
formally as mathematical solutions of nonlinear wave equations, a physical,
‘‘working’’ definition is that a soliton [7]:

• Retains its initial shape for all time
• Is localized
• Can pass through other solitons and retain its size and shape.

The mean-field wave equation of a BEC is of the form of the (3 ? 1)D cubic
nonlinear Schrödinger equation, with an additional inhomogeneous term arising
from the trapping potential. In the theoretical limit of 1D and in the absence of
trapping in the remaining direction, this reduces to the 1D nonlinear Schrödinger
equation, for which bright and dark soliton solutions are known to exist. Bright
solitons are localized humps in the field amplitude, bound together by a focussing
nonlinearity. Dark solitons appear as localized reductions in an otherwise uniform
field amplitude, preserved instead by a defocussing nonlinearity. While analogs of
dark solitons have been observed in BECs (see [8] for a review), we here focus on
the case of bright solitons.

Bright soliton-like [9–11] structures have been observed in BECs, with the
required focussing nonlinearity arising from the attractive atomic interactions. Of
course, the physical reality introduces three dimensions and trapping potentials/
finite-sized systems, and so these are strictly distinct objects from the true bright
solitons. As such we will henceforth refer to this wider family of structures as
bright solitary waves. Following the definition of Morgan et al. [12] we regard a
solitary wave as a wavepacket that propagates without change of shape. This
relaxed definition will allow for the inclusion of solutions which feature trapping
potentials and three dimensions, as we shall see. Of course, one should not assume
that a solitary wave will mimic the wider properties of the classic bright soliton
and it is a key focus of this chapter to elucidate this intimate relationship.

Bose–Einstein condensates are an attractive system in which to study solitonic
waves, with some key features summarized below:

• A sophisticated toolbox based on atomic physics allows almost arbitrary shapes
of confining potentials to be constructed, for example, waveguides to steer the
wavepackets, systems of reduced dimensionality, and disordered and periodic
potential landscapes.

• This toolbox also enables the interactions (i.e. the nonlinearity) to be changed
effectively from infinitely attractive, through zero, to infinitely repulsive via the
exploitation of Feshbach resonances. Moreover, one can employ atoms such as
52Cr which feature permanent magnetic dipole moments; this introduces long-
range atom–atom interactions, i.e. nonlocal nonlinearity, into the system [13].
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• The condensate density can be imaged directly with high contrast. While this is
most commonly performed via destructive techniques based on optical
absorption, non-destructive imaging techniques are also possible, e.g. phase-
contrast imaging [3]. The phase of the condensate can also be mapped out in
space and time via interferometric techniques [14].

• Bright solitary waves, which typically exist as small BECs, are mesoscopic
quantum systems. This scale allows interfacing of the robust and well-
established mean-field description of BECs with more sophisticated models that
incorporate thermal and quantum effects [4].

• The precision and control offered by BECs makes them an attractive system in
general for application in ultra-precise force detection and quantum information.
For these applications, bright solitary waves offer further merits through their
self-trapped, highly-localized form.

1.3 The Mean-Field Gross–Pitaevskii Equation

Our theoretical analysis will be based upon the well-established Gross–Pitaevskii
equation, which is a wave equation for the classical field of the many-body wave-
function [3–5]. This equation is a valid description for a gaseous BEC providing:

• The condensate is macroscopically-populated, i.e. N � 1, where N is the
number of atoms in the condensate.

• The temperature of the gas satisfies T � Tc, where Tc is the critical temperature
for Bose–Einstein condensation, such that approximately all the particles are
within the BEC phase.

• The dominant inter-atomic interactions are two-body, short-range elastic s-wave
collisions, parameterized by the s-wave scattering length as.

• The condition of length scales jasj � d, where d the average interparticle dis-
tance, is satisfied. Then, the detailed shape of the inter-atomic potential Uðr � r0Þ
becomes unimportant and it can be approximated by the contact potential.,

Uðr � r0Þ ¼ 4p�h2as

m
dðr � r0Þ; ð1Þ

where m is the atomic mass.

• The interactions are weak, parameterized by the condition njasj3 � 1, such that
fluctuations out of the single-particle state are negligible.

Subject to these criteria, the condensate can be parameterized in time and space
by a mean-field order parameter wðr; tÞ, often termed the macroscopic wave-
function. For convenience we take wðr; tÞ to be normalized to unity, i.e.,

Z
jwðr; tÞj2 d3r ¼ 1: ð2Þ

According to the Madelung transform, wðr; tÞ, which is complex, can be related to
the atom number density nðr; tÞ and a phase function hðr; tÞ via,
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wðr; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
nðr; tÞ

N

r

exp ihðr; tÞ½ �; ð3Þ

where N is the number of atoms in the condensate (introduced here to account for
the normalization of w to unity).

The field w evolves in space and time according to the Gross–Pitaevskii
equation [3–5],

i�h
owðr; tÞ

ot
¼ � �h2

2m
r2 þ VðrÞ þ 4p�h2Nas

m
jwðr; tÞj2

� �
wðr; tÞ; ð4Þ

where VðrÞ specifies the external potential acting on the condensate (taken, for
simplicity, to be time-independent) and m is the atomic mass.

The time-independent eigenstate solutions of Eq. (4) obey the GPE in its sta-
tionary form,

� �h2

2m
r2 þ VðrÞ þ 4p�h2Nas

m
jwðrÞj2 � l

� �
wðrÞ ¼ 0; ð5Þ

where l is a (real) eigenvalue. The lowest energy solution to this equation rep-
resents the mean-field ground state of the BEC.

The Gross–Pitaevskii equation has proven an excellent description of a vast
spectrum of static and dynamical properties of BECs [3–5]. The present work will
be based primarily on this mean-field description, although we will briefly discuss
beyond-mean-field descriptions in Sect. 7.1.

As is most commonly used to confine a BEC, we will assume a trapping
potential that is harmonic in shape. For simplicity, we will further assume the trap
to be cylindrically symmetric. This restriction sacrifices only a little generality for
significant gains in clarity. We write this potential as,

VðrÞ ¼ 1
2

m x2
xx2 þ x2

r ðy2 þ z2Þ
� �

; ð6Þ

where xx is the trap frequency in the axial (long) direction and xr is the trap
frequency in the transverse directions. When dealing with such three-dimensional
(3D) systems we introduce the trap anisotropy k ¼ xx=xr, with k\1ð[ 1Þ cor-
responding to a prolate (oblate) trap.

It is useful to parameterise the interaction strength of the condensate via,

k � jasjN
ar

; ð7Þ

where ar ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=mxr

p
is the harmonic oscillator length in the radial direction.1

1 Note that in works that focus specifically on fully trapped condensates, k is more commonly
defined in terms of a geometric average of trap frequencies (e.g. Refs. [11, 15–24]). The radial
harmonic oscillator length here is advantageous as it allows us to readily consider the case of
zero axial trapping ðk ¼ 0Þ:
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1.4 Chapter Overview

The bright solitary waves generated experimentally are related, but strictly differ-
ent, entities to the true bright solitons (which apply only in 1D and for a uniform,
infinite system). It is the focus of this chapter to explore this relationship in detail,
highlighting the similarities and differences. In essence, we wish to shed light on
how ‘‘soliton-like’’ these solitary waves are. We will consider how the waves look,
how they move and how they interact with each other. The deviation of the bright
solitary wave from the true bright soliton is a consequence of two factors: the
inclusion of an inhomogeneous trapping potential and the extension to three-
dimensions, and we will consider these two factors separately so as to elucidate
their independent contributions to the identity of bright solitary waves. We first
begin in Sect. 2 by outlining the experimental generation and observation of bright
solitary matter waves to date. Following this we begin our theoretical analysis of
bright solitary waves. Sections 3 and 4 explore the static solutions of bright solitary
waves. In Sect. 3 this is conducted within an effective 1D model of the condensate,
and the role of axial trapping considered. Then in Sect. 4 we extend our analysis of
the static solutions to 3D, where the collapse instability comes into play. In Sects. 5
and 6 we turn to the dynamics of bright solitary waves in 1D and 3D, respectively.
There we consider the solitary wave dynamics resulting from the presence of axial
trapping and the interaction with another solitary wave. In Sect. 7 we turn our
attention to some current hot topics in bright solitary wave research, discussing
beyond-mean-field descriptions and the current anomalies with mean-field pre-
dictions, examples of spontaneous symmetry breaking with solitary waves, pre-
dictions of exotic bright solitary waves, and proposals for controllable generation of
bright solitary waves and exploiting them as ultra-precise atom-optical sensors.
Finally, in Sect. 8, we draw some general conclusions.

2 Bright Solitary Matter Wave Experiments

In order to experimentally realise bright solitary matter waves precise control over
the s-wave scattering properties of an atomic sample is of paramount importance.
In the following section we discuss the application of magnetic Feshbach reso-
nances as a means of establishing this control and review bright solitary matter
wave experiments to date.

2.1 Tuning Atomic Interactions: Feshbach Resonances

The use of magnetically tunable Feshbach resonances [25] to control the inter-
action between atoms is now commonplace in many ultracold atomic gas exper-
iments. Feshbach resonances arise when a resonant coupling occurs between the
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collisional open and closed channels of an atomic system, as illustrated in Fig. 1a.
For large internuclear distances, the interaction between two atoms can be
described by the background potential, Vbg. If two free atoms approach, colliding
with low energy, E, this potential represents the open or entrance channel for the
collision. In contrast, closed channels (described by Vc) are able to support
molecular bound states. A Feshbach resonances occurs when the energy of a quasi-
bound molecular state in the closed channel, Ec, approaches that of the open
channel. In this instance a strong mixing between the two channels can occur even
in the presence of only weak coupling. By changing the magnetic field applied this
energy difference can be tuned if the magnetic moments of the two channels differ
thus the scattering properties of the atomic sample can be modified.

These resonances allow the value of the s-wave scattering length, as, to be
changed over many orders of magnitude in both the positive and negative domain
by simply changing the magnetic field,

asðBÞ ¼ abg 1 � D
B � B0

� �
: ð8Þ

Here as is the scattering length at the field of interest, B; abg is the background
scattering length away from the resonance, D is the width of the resonance and B0

is the resonance position. In the limit B ! B0, the scattering length diverges

as ! �1. Then the gas is no longer weakly-interacting (the condition njasj3 � 1
is not satisfied) and the Gross–Pitaevskii equation ceases to be an adequate model.

In the case of broad resonances, where DJ1 G; there is a smooth variation of
the scattering length through zero from positive to negative with a slope of
das=dB ¼ as=D. For Bose–Einstein condensation of some species (e.g. 85Rb; 7Li)
this is of particular importance as it allows the creation of stable condensates with
repulsive interactions ðas [ 0Þ despite a negative background scattering length
away from the resonance. As an illustration, Fig. 1b shows the Feshbach resonance

Fig. 1 Feshbach resonances: a A two channel model of a Feshbach resonance. A resonance
occurs when two atoms colliding with energy E resonantly couple to a bound state of the closed
channel. b The Feshbach resonance present in the F ¼ 2;mF ¼ �2 state of 85Rb
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in the F ¼ 2;mF ¼ �2 state of 85Rb: This broad resonance, of width 10:7 G, at
	 155 G gives tuning of the scattering length on the order 40a0=G close to the
zero crossing.

In all of the experiments described in the following sections a Feshbach reso-
nance is the key atomic tool without which the controlled creation of bright
solitary matter waves would not be possible.

2.2 Collapse of an Attractive Bose–Einstein Condensate

A BEC (in three-dimensions) with attractive interactions is inherently unstable to
collapse when its interaction parameter k ¼ Njasj=ar exceeds a critical value kc.
This leads to the typical notion of a critical atom number Nc (for fixed as and ar) or
critical scattering length ac (for fixed N and ar) at which instability becomes
induced. The origin of the collapse instability will be outlined theoretically in
Sect. 4.1. The ensuing collapse of the condensate has been dubbed the ‘Bosenova’
in analogy to the astronomical phenomena of stellar explosion.

The first experimental insights into BECs with attractive interactions were
made using 7Li [26]. Here the negative scattering length of as ¼ ð�27:4 � 0:8Þ a0,
where a0 ¼ 5:29 
 10�11 m is the Bohr radius, means that the condensate atom
number N grows until it reaches Nc and the condensate collapses. During the
collapse the density of the cloud rises thus increasing both the elastic and inelastic
collision rates. This causes atoms to be ejected from the condensate with high
energy in a violent explosion. Following this, the condensate begins to reform, fed
by the surrounding bath of thermal atoms also present in the trap. If observed for
an extended period the system exhibits a saw-tooth dynamic of growth and col-
lapse [27] until equilibrium is eventually reached. Throughout, the maximum
condensate number is strictly limited to the critical number for an attractive BEC.
It is important to note that a three-dimensional attractive condensate with N\Nc is
a metastable state of the system, with the true ground state being the collapse state
(as we shall explore theoretically later in this chapter). As such, quantum tunneling
and thermal fluctuations may also enable a transition from the metastable to the
collapse state, even for N\Nc [28–31].

Further insight into the collapse phenomena came from the group at JILA
(Boulder, US) in 2001 [15, 32], carrying out a controlled collapse using a pure
85Rb condensate. Tuning the scattering length from positive to negative using the
broad Feshbach resonance illustrated in Fig. 1b not only enabled the collapse
process to be precisely initiated but also allowed the condition k [ kc to be ful-
filled, unlike systems using fixed negative scattering lengths. Along with control of
the initial condensate number, control over scattering length made the testing of
critical number models possible, finding the exact scattering length necessary to
collapse the cloud, ac. Early work examining the point of collapse using slow field
ramps confirmed the relationship between critical number and scattering length,
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determining the critical interaction parameter for kc. Later improvements to the
calibration of the Feshbach resonance, enhancing precision, found kc to be in
excellent agreement with mean-field models [33].

Following this, the JILA experiments were then extended to study the dynamics
of the collapse, measuring the evolution of the condensate number following a
‘sudden’ change in the scattering length to some value, denoted af . This value
satisfied the criteria af\ac such that the condensate suddenly entered a regime
where it was unstable to collapse. Measurements of atom number as a function of
time showed a sudden yet delayed loss of atoms, as shown in Fig. 2. As the
interactions are made attractive the condensate begins to shrink in size, thus
increasing its density. This contraction tends to accelerate with time eventually
leading to collapse of the condensate. The time for the collapse to begin tc was
found to be shorter for larger asj j as the stronger attraction between atoms in the
condensate results in a more rapid contraction of the cloud. Following the collapse,
a stable remnant component was formed in the trap. Notably, the number of atoms
maintained in this remnant, Nf , was found to depend strongly on N and as and in
many cases exceeded Nc. This remnant was observed to persist in the trap for more
than 1 s, oscillating in a highly excited state.

In addition, a number of more qualitative features were observed about the
collapse process in the 85Rb experiment. The first of these features was a burst of
atoms being ejected from the condensate during collapse. The energy of the burst
varied with the value of af . The burst would then focus at multiples of Tx=2 and
Tr=2, where Tx;r ¼ 2p=xx;r is the trap period in the axial (x) and radial
(r) dimensions. In all experiments only full, never partial, collapse was observed.

Fig. 2 Controlled collapse: The collapse of a stable Bose–Einstein condensate can be triggered
by a sudden change of the scattering length from positive to negative. After some time at the new
attractive scattering length af the condensate begins to collapse and atoms are lost. Eventually the
collapse process ceases, leaving a stable remnant in the trap containing Nf atoms (Data from
Durham 85Rb experiment)
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However, if interrupted (by jumping the scattering length away from the collapse
point), jets of atoms were also formed. Unlike the burst, these streams of atoms
were found to have highly anisotropic velocities and were interpreted as indicating
the local pinching of the wavefunction during the collapse.

The collapse process has since been revisited by the group at the Australian
National University (Canberra, Australia) [34]. Again using 85Rb; measurements
of the collapse time have been shown to be in good agreement with mean-field
models describing the process which take into account three-body loss
mechanisms.

2.3 Observation of Bright Solitary Matter Waves

The advent of optical trapping led to the realisation of experimental geometries
closer to the ideal 1D limit. This, in combination with control of the atomic
scattering length via Feshbach resonances, led to the first observations of bright
solitary matter waves by groups at Rice University (Houston, US) [9] and Ecole
Normale Supérieure (Paris, France) [10] in 2002 using 7Li: Despite two inherently
similar experiments, the ENS group succeeded in producing a single solitary wave
whereas the Rice experiment resulted in trains of multiple solitary waves.

In both experiments initial cooling of the atomic sample was carried out in a
magnetic trap using the F ¼ 2;mF ¼ 2 state. The atoms were subsequently trans-
ferred into an optical dipole trap [35] and a microwave field was used to transfer the
atoms to the F ¼ 1;mF ¼ 1 state. This state is the absolute internal ground state in a
magnetic field and consequently two-body inelastic losses are completely sup-
pressed, aiding the creation of condensates. Moreover, collisions between atoms in
this state exhibit a broad Feshbach resonance suitable for the precise control of the
atomic interactions necessary for the realisation of solitary waves.

In the ENS experiment optical confinement was realised using a red-detuned
crossed dipole trap. Here condensates of 2 
 104 atoms were produced with
as ¼ þ39:7a0 in an approximately isotropic harmonic trap. After the creation of
the BEC the scattering length was tuned close to as ¼ 0 before adiabatically
reducing the power in one of the beams, producing a highly elongated cylindrical
harmonic trap with xx ¼ 2p 
 50 Hz and xr ¼ 2p 
 710 Hz. The bias field, and
hence scattering length, was then ramped to its final value before the vertical beam
was switched off, releasing the cloud into a 1D waveguide. In this trap, the atoms
experience a slightly expulsive potential due to the magnetic coils used to produce
the bias field. As a typical example, at B ¼ 520 G, the trap frequency along the
waveguide can be considered imaginary, around xx ¼ 2ip 
 78 Hz. Tuning the
scattering length to a small negative value, as ¼ �3:97 a0, resulted in a soliton of
6 
 103 atoms able to propagate without dispersion for over 1.1 mm.

In contrast to the crossed ENS trap, the Rice experiment used a single red-
detuned dipole beam to provide radial confinement. Two additional blue detuned
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beams were applied to cap the ends of the trap in the axial direction. After forming
a condensate of 3 
 105 atoms with as � 200a0 the magnetic field controlling the
scattering length was ramped exponentially to the final value and the laser end
caps switched off thus setting the resulting solitary waves in motion.

In this experiment multiple solitary waves were observed. The number of these
wavepackets, Ns, was found to be insensitive to the time constant of the expo-
nential magnetic field ramp. However, Ns increased linearly with Dt, the time
delay between the switch off of the end caps and the time of the scattering length
change to as\0. For the Rice experiment four solitary waves were observed for
Dt ¼ 0 with this number increasing to 10 for Dt ¼ 35 ms: The wavepackets were
observed to propagate for *3 s, this being limited by atom loss rather than dis-
persion effects.

With many solitary waves confined in a single trap it becomes possible to
explore the dynamical interactions of the wavepackets. Observation of the solitary
wave motion showed evidence of a short range repulsive interaction between
neighbouring wavepackets raising many questions regarding their formation and
collisional dynamics. A possible explanation for the formation of multiple solitary
waves was the presence of a modulational instability [36]. Here, phase fluctuations
of the condensate lead to a local increase in density at wavelengths approximately
equal to the healing length. The attractive nonlinearity leads to the growth of these
density fluctuations and the emergence of solitary waves.

The spacing between neighbouring solitary waves observed at Rice increased
near the centre of the oscillation and decreased near the turning points. This result
implied a repulsive interaction between solitary waves. This interaction was
attributed to the existence of p-phase differences between neighbouring solitary
waves, somehow imprinted during their formation. The phase-dependence of the
solitary wave interaction will be discussed in Sects. 5.1 and 6, and the origin of the
p-phase difference in Sect. 7.1.

It was not until 2006 that solitary waves were again investigated experimen-
tally, this time at JILA [11] using the same 85Rb experiment that has first observed
tunable atomic interactions [37] and controlled collapse [15]. This new work
concluded that the stable remnant observed previously in the collapse experiments
divided into similar solitary wave structures as seen at Rice. Intriguingly, these
observations persisted despite the fact that the JILA trap remained almost isotropic
(with radial and axial trap frequencies of 17.3 Hz and 6.8 Hz, respectively), far
from the highly elongated geometries employed at ENS and Rice. The somewhat
surprising capacity of bright solitary waves to be supported in almost isotropic trap
geometries will be discussed in Sect. 4.3.

Unlike the ENS and Rice experiments, the JILA apparatus used a purely
magnetic trap. However, the method of creating solitary waves by modifying the
scattering length can be considered an inherently similar process. After producing
condensates of up to 15,000 atoms at as [ 0 the magnetic field was adiabatically
ramped to decrease the scattering length to as ¼ 9a0. To initiate the collapse, the
magnetic field was changed so as to rapidly ð0:1Þms jump the scattering length
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from a positive initial value to a negative final value of af . Following some time at
the final scattering length, tevolve, the atoms were destructively imaged. Investi-
gating the collapse process as a function of af and the initial condensate number it
was clear that the number of condensate atoms surviving the collapse could greatly
exceed Nc. Furthermore, the lifetime of the stable remnant could be as long as
several seconds. As we will review in Sect. 6.2, this observation is consistent with
the presence of several repulsively-interacting bright solitary waves.

Observations of the condensate size in the trap as a function of time suggested a
highly excited state had been produced during the collapse, with the remnant
cloud’s width doubling during its oscillation in the trap. However, further analysis
revealed that, as in the Rice experiment, multiple solitary waves were being cre-
ated which oscillated back and forth along the weak axial direction of the trap,
shown in Fig. 3. The wavepackets were observed to persist in the trap for 	 3 s;
undergoing as many as 40 collisions in this time. This provided additional
experimental data to accompany the Rice experiments and the growing body of
theoretical work on the stability of three-dimensional bright solitary waves (which
we will review in Sects. 4 and 6). The number of solitary waves created in the
85Rb collapse experiment was found to be controllable, to a degree, depending on
af and N0. As expected, Ns increased with jaf j. Importantly, the number of atoms
observed in any one solitary wave was never found to exceed Nc.

2.4 Current Developments

In order to further explore the results from both previous experiments and theo-
retical simulations, an experiment has been constructed at Durham University
(Durham, UK). As in the JILA experiment, this apparatus uses 85Rb in the
F ¼ 2;mF ¼ �2 state allowing access to the 10.7 G wide Feshbach resonance
giving control over the scattering length of order 40 a0=G close to as ¼ 0. How-
ever, the trapping geometry, a crossed dipole trap and additional waveguide beam
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Fig. 3 Solitary wave
oscillation in a weak
magnetic trap [11]: Following
the collapse process used in
the JILA experiment a stable
remnant is formed. The
variation in the remnant’s
width with time can be
explained by the creation of
multiple bright solitary matter
waves oscillating in the trap,
which are visible in the 2D
plots of atomic density
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to produce a quasi 1D geometry, allows entirely independent control of the trap
frequencies and s-wave scattering properties (due to an independent magnetic bias
field).

Here BECs are first created in the crossed dipole trap (at 300--400 a0 by careful
tuning of the atomic scattering properties. Once condensed, the scattering length is
ramped close to as ¼ 0 before the BEC is loaded into the waveguide by syn-
chronously switching the cross beams off and the waveguide beam on. The scat-
tering length is then jumped to a small, negative value ð	 � 6:5 a0Þ and the BEC
is allowed to propagate along the waveguide as shown in Fig. 4. Weak axial
confinement along the beam is realised with the addition of a magnetic quadrupole
gradient. Typically this results in trap frequencies of xx ¼ 2p 
 1 Hz and
xr ¼ 2p 
 27 Hz. Using this method a single soliton can be produced containing
*3,000 atoms observed to propagate a distance of *1 mm in 150 ms.

In addition to experiments aimed at investigating soliton splitting and binary
collisions (the theory of which will be detailed in Sect. 7.3.1), the Durham
experiment has the potential to be extended to the study of atom–surface inter-
actions. Contained within the experimental apparatus is a super polished Dove
prism (surface roughness \1 Å) designed to allow the study of both classical and
quantum reflection from a surface. The self-stabilizing, localized nature of the
wave packets means bright solitary matter waves show great potential as surface
probes for the study of short-range atom–surface interactions in the future. This
idea will be explored in more detail in Sect. 7.4.

The Rice group have reported further experimental activity on bright solitary
matter waves [38]. Here they ‘‘kick’’ a bright solitary wave towards a thin potential
barrier, formed by a near-resonant focussed laser beam. The wave-barrier inter-
action is observed to result in either reflection, transmission and splitting of the
solitary wave, depending on the kinetic energy of the solitary wave, the potential
strength and the nonlinearity (s-wave interaction strength). Moreover, for the case
of a split solitary wave, they have applied a phase imprinting to one of the solitary
waves and thereby studied phase-dependent interaction of solitary waves [39].

Fig. 4 Propagation in the waveguide: a As a repulsive BEC travels along the waveguide the
interactions in the condensate cause it to spread out. b In contrast, the attractive interactions
present in a bright solitary matter wave cause the wavepacket to hold together as it propagates,
maintaining its shape with time (Data from Durham 85Rb experiment)
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3 Bright Solitary Waves in 1D: Static Properties

Having reviewed the experimental formation and observation of bright solitary
matter waves to date, we will now review our theoretical understanding of these
wavepackets. Within a quasi-one-dimensional (quasi-1D) system, bright solitary
matter waves become completely analogous—within the mean-field, Gross–
Pitaevskii equation (GPE) treatment—to classical bright solitons of the 1D non-
linear Schrödinger equation (NLSE) [40]. In this section we examine the quasi-1D
limit in which this occurs. In Sect. 3.1 we describe the conventional factorization to
reduce the 3D GPE to an effective 1D form, and some approaches to include higher-
order terms. In Sect. 3.2 we demonstrate the link to bright solitons and explore the
static properties of bright soliton solutions of the NLSE. Then, in Sect. 3.3, we
consider the bright solitary matter waves which occur as the ground state of an
axially trapped BEC, elucidating how their form depends on the strength of the
axial trap, and how they compare to the bright solitons of the 1D NLSE.

3.1 Effective One-Dimensional Descriptions

We begin by considering an attractively-interacting (s-wave scattering length
as\0) three-dimensional BEC confined by the cylindrically-symmetric harmonic
trap of Eq. (6) and described by the 3D Gross–Pitaevskii equation, Eq. (4).

3.1.1 Quasi-One-Dimensional GPE

The quasi-1D limit is associated with highly elongated ðxr � xxÞ traps. The
reduction from the full 3D to an effective 1D description typically proceeds by
assuming that the radial confinement is sufficiently strong,2 that the radial modes
of the condensate become essentially ‘‘frozen’’ into the ground harmonic oscillator
ground state (i.e. a Gaussian wavefunction). This approximation then allows the
factorization,

wðrÞ ¼
ffiffiffiffiffiffiffiffiffi
mxr

p�h

r
exp

�mxrðy2 þ z2Þ
2�h

� �
wðxÞ ð9Þ

where it is implied that both the Gaussian radial wavefunction and the axial
wavefunction are both normalized to unity. Integrating over the y- and z-directions
then yields the quasi-1D GPE for wðxÞ,

2 Specifically, the criteria �hxr � l and �hxr � kBT are required to ensure that the condensate
and thermal energy scales are insufficient to excite the radial modes.
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In the static case, one obtains the stationary quasi-1D GPE,

� �h2

2m

o2

ox2
þ mx2

xx2

2
� 2�hxrNjasjjwðxÞj2 � l

� �
wðxÞ ¼ 0: ð11Þ

This factorization has often been applied in the study of attractively-interacting
condensates (in both dynamic and static situations) [41–46]. However, the regime
in which this factorization is valid is significantly restricted for attractively-
interacting condensates [47]; this issue is revisited using a full 3D analysis in
Sect. 4.

3.1.2 One-Dimensional Equations with 3D Effects

Alternatives to the factorization presented above exist, which yield 1D equations
retaining more 3D character by choosing to incorporate the coupling between axial
and radial modes, and time-dependent dynamics of the radial modes [48–53].
These effects are manifest in the effective 1D equation through the appearance of
higher-order terms. Consequently, the resulting equations have a wider range of
validity than the bare 1D GPE (10), but are no longer isomorphous to the NLSE
(for xx ¼ 0).

For example, Salasnich et al. [48, 49] chose to factorize the 3D GPE wave-
function into a slowly-varying axial function, multiplied by a rapidly varying
radial function. The radial function was also given a dependence on the axial
function itself; this incorporates the effect unique to attractive interactions in a
cigar-shaped trap, where an increase in axial density leads to an associated
increase in radial density. A variational calculation then yields the non-polynomial
Schrödinger equation [48],

i�h
owðx; tÞ
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2m

o2wðx; tÞ
ox2

þ mx2
xx2

2
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1

CAwðx; tÞ:

ð12Þ

When jasjNjwðxÞj2 � 1 for all x this reduces first to an effective 1D equation with
both cubic and quintic nonlinearities [51], and then to the bare 1D GPE (10) itself.
These equations can be applied to both positive and negative as, although a
modified equation for the case of positive as offers improved accuracy [52]. An
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even more general approach can be taken, incorporating even fewer assumptions
about the form of the ground state, but leading to a coupled system of effective 1D
equations [50, 53].

3.2 Bright Soliton Solutions

Consider the 1D GPE (10) in the homogeneous regime xx ¼ 0. With the removal
of the quadratic potential term, this becomes a 1D nonlinear Schrödinger equation
(NLSE) with a focusing nonlinearity [40]. The 1D NLSE is a classical field
equation which is integrable, in the sense that solutions possess an infinite and
complete set of conserved quantities [6, 40, 54]. This is analogous to a discrete
(Liouville-integrable) system which possesses as many conserved quantities as it
does degrees of freedom [55]. This integrability leads to a spectrum of true soliton
solutions [6, 54]. In the case of the 1D NLSE with focusing nonlinearity, these
bright-soliton solutions were first discovered in Refs. [56, 57] using the inverse
scattering technique (see Refs. [6, 54] for an overview).

The classical bright soliton solutions of this equation have been extensively
studied in the context of optical solitons [56–62]. The same equation appears in
many other fields, including biophysics, astrophysics and particle physics [40], and
in the study of deep ocean waves [63]. The single-bright-soliton solution of the
homogeneous 1D GPE is given by,

wðx; tÞ ¼ a

2
ffiffiffiffiffi
bx

p sech
aðx � x0 � vtÞ

2bx

� �


 exp i
m

�h
vðx � x0Þ þ

v2t

2
þ x2

r jasj2N2a2t

2

 !

þ U

( )" #

:

ð13Þ

This solution describes a single bright soliton with amplitude and norm3 a,
velocity v, displacement x0, and phase U. The parameter bx � �h=2mxrjasjN is a
length scale characterizing the soliton’s spatial extent. Dynamical solutions
composed of multiple bright solitons also exist; in these solutions each soliton has
a similar form to Eq. (13) when well-separated from the others. These multiple-
soliton solutions contain additional, dynamic phase and position shifts to account
for the nonlinear interactions between solitons; these dynamical solutions are
discussed further in Sect. 5.

The single-soliton ground state of the static 1D GPE (11) in its homogeneous
ðxx ¼ 0Þ form is given exactly by Eq. (13) with a ¼ 1, v ¼ 0, and arbitrary U and
x0. The quantity U can be chosen arbitrarily because it corresponds to a global

3 In contrast to our definition here, a common convention in the literature is to define an
amplitude A such that the norm is 2A [59].
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phase of the wavefunction, and Eq. (11) possesses a Uð1Þ global phase symmetry.
Similarly, the displacement x0 may be chosen arbitrarily because the assumption of
homogeneity ðxx ¼ 0Þ ensures the 1D GPE to be translationally symmetric.
However, the choice of displacement x0 in Eq. (13) for the ground state breaks this
symmetry; in the context of atomic BECs, this symmetry-breaking is a feature of
the mean-field description. This feature is at odds with a fully quantum-mechanical
treatment; in the latter, the ground state of the system retains the translational
symmetry of the equation, leading to a delocalized ground state [64, 65].

3.3 Effect of Axial Trapping

The addition of an axial harmonic trap ðxx [ 0Þ removes the integrability of the
system and prevents the appearance of true solitons. While the new ground state is
no longer a soliton, it remains a solitary wave in the sense of being capable of
propagation without emission of radiation (see Sect. 5 and Refs. [12, 45, 46]). In
this section we elucidate the form of the ground state under axial trapping and
compare the form of this ground state to the NLSE bright soliton.

3.3.1 Variational Analysis

A great deal of insight into the form of the bright soliton state can be gained using
the variational approach, first applied to bright solitons in the context of nonlinear
optics [66, 67]. More recently, the variational approach has proved useful for
treating a variety of problems involving bright solitary matter waves [47–51, 68–73]
and will be used extensively in Sect. 4. Note that here we present the variational
approach to analyse stationary solutions of the Gross–Pitaevskii equation. However,
it can be extended to a non-stationary form to analyse dynamics, e.g., centre-
of-mass motions [42] and excitation frequencies [71].

The ground state solution of Eq. (11) can be alternatively defined as the
function wðxÞ which minimizes the value of the classical field Hamiltonian,

H1D½wðxÞ� ¼
Z

dx
�h2

2m

o

ox
wðxÞ

				

				

2

þmx2
xx2

2
jwðxÞj2 � �hxrNjasjjwðxÞj4

" #

: ð14Þ

This functional represents the energy per particle, and generates the 1D GPE (10)
through the functional derivative dH1D½w�=dw� ¼ iow=ot.

In the homogeneous limit ðxx ¼ 0Þ the ground state is given by Eq. (13) with
a ¼ 1 and v ¼ 0. In the trap-dominated limit ðxx ! 1Þ the ground state tends to

the harmonic oscillator eigenstate wðxÞ ¼ ðmxx=p�hÞ1=4e�mxxx2=2�h. These limits
motivate our use of a normalized Gaussian ansatz,
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wðxÞ ¼ mxx

p�h‘2
x;G

 !1=4

exp �mxxx2

2�h‘2
x;G

 !

; ð15Þ

or a normalized sech ansatz,

wðxÞ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffi
bx‘x;S

p sech
x

2bx‘x;S

� �
; ð16Þ

to describe the intermediate regime xx [ 0. Substituting theses ansatz into
Eq. (14) we obtain an energy functional in terms of the dimensionless length ‘x.
Note that the sech ansatz length ‘x;S is defined so that ‘x;S ! 1 as xx ! 0, while
the Gaussian ansatz length ‘x;G is defined such that ‘x;G ! 1 as xx ! 1.

In the Gaussian case, one obtains the energy functional,

H1Dð‘x;GÞ ¼ �hxx
1

4‘2
x;G

þ
‘2

x;G

4
� axjasjNffiffiffiffiffiffi

2p
p

a2
r ‘x;G

 !

; ð17Þ

where ax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=mxx

p
and ar ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=mxr

p
are the axial and radial harmonic

oscillator lengths. In the sech case, one instead obtains,

H1Dð‘x;SÞ ¼ mx2
r a2

s N2 1

6‘2
x;S

� 1
3‘x;S

þ
pb4

x‘
2
x;S

24a4
x

 !

: ð18Þ

Either of these energy functionals can be analytically (or numerically) minimized
to give the corresponding, variational-energy-minimizing, axial length ‘x [47]. The
axial lengths ‘x for both variational solutions are shown in Fig. 5a as a function of
the axial trap frequency xx.

3.3.2 Comparison to Bright Soliton Solution

The variational solutions can be compared with a full numerical solution of the 1D
GPE [Eq. (10)] to give an idea of how the axial trapping affects the ground state
[47]. The results of such an analysis are shown in Fig. 5b, which shows the
maximum difference in shape between the lowest-energy (and hence, most accu-
rate) variational solution and the numerically exact ground state. As one would
expect, the sech ansatz converges to the exact solution in the axially free limit
xx ! 0 and it is in this regime, where this ansatz approximates the exact solution
well, that the ground state can be regarded as soliton-like. In the opposite, trap-
dominated limit xx ! 1, the Gaussian ansatz converges to the exact solution,
which is no longer soliton-like in appearance. Convergence is also somewhat
slower for the Gaussian ansatz as xx ! 1 than for the sech ansatz as xx ! 0 due
to the density-dependent nature of the nonlinearity [47]. In intermediate regimes,
one or other ansatz provides a good approximation to the solution over a wide
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range of trap strengths, with only a small gap in which neither ansatz is particularly
accurate. Consequently, one can usefully think of the ground state being deformed
from sech-shaped to Gaussian-shaped as xx is increased.

However, the preceding analysis assumes the validity of the quasi-1D
approximation. To obtain a complete picture of the ground state, and its rela-
tionship to the NLSE bright soliton, a full treatment of the 3D GPE is required. We
undertake such a treatment in Sect. 4.

4 Bright Solitary Waves in 3D: Static Properties

The 3D GPE [Eq. (4)] is non-integrable and does not support true bright solitons.
Nonetheless, bright solitary matter waves can be observed [9–11] which continue
to exhibit soliton-like behaviour for a wide range of parameters. They are par-
ticularly soliton-like in their dynamical properties—especially when considering
their mutual interactions and collisions. In this section, however, we focus on the
static regime by considering the solitary wave stationary states of the 3D GPE.
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Fig. 5 Gaussian-ansatz [Eq. (15)] and sech-ansatz [Eq. (16)] solutions of the 1D GPE
[Eq. (10)], as found in Ref. [47]. In a, the energy-minimizing axial length for each ansatz is
shown, as a function of xx. In b the maximum absolute difference between the best-fitting ansatz,
wAnsatz, and the exact numerical solution, w0, is shown as a percentage of the peak value of w0.
This can be expressed mathematically as Dw ¼ 100maxðjwAnsatz � w0jÞ=maxðw0Þ. Our deliberate
definition of the ansatz such that ‘x;S ! 1 as xx ! 0 and ‘x;G ! 1 as xx ! 1 results in the
potentially confusing trend that ‘x;G ! 0 as xx ! 0 despite the fact that the physical length of the
Gaussian ansatz tends to a non-zero constant in this limit
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The existence and form of bright solitary wave states of the 3D GPE is
intricately linked to the instability of attractive condensates to collapse. In this
section we review the properties of stationary 3D bright solitary matter waves in
detail. In Sect. 4.1 we discuss the collapse phenomena. In Sect. 4.2 we present
variational and numerical approaches to the problem. In Sect. 4.3 we review the
properties of bright solitary waves as elucidated by the variational and numerical
methods, and compare the 3D results to the predictions of the 1D approach con-
sidered in Sect. 3.

4.1 Collapse and the Critical Parameter

An attractively-interacting BEC in 3D is prone to a collapse instability. Indeed, in
the absence of trapping, the system will undergo collapse. Importantly, the presence
of trapping can support metastable, non-collapsing states, although the existence of
the metastable state depends on the atom number, interaction strength and shape
and strength of the trapping potential. The collapse instability has been investigated
experimentally [15, 26, 27, 32]. Numerous theoretical studies have focused on
identifying the parameters associated with the onset of collapse in condensates of
various geometries, using variational [47, 48, 69, 70, 72], perturbative [24], and
numerical [16, 17, 23, 47, 69, 70, 74] methods. The condensate dynamics during
collapse are the subject of continuing theoretical study [34, 75–78].

Recall, we parameterise the interaction strength of the condensate via
k ¼ Njasj=ar. The relevance of k is that, when it exceeds a critical value kc, the
metastable states cease to exist and the collapse phenomenon kicks in. The value
of kc is dependent on the trap geometry.

4.2 Variational and Numerical Approaches
to the Static Solutions

The parameter regime of metastable solutions of the 3D GPE with as\0 is most
accurately determined by numerically solving the 3D GPE. However, as shown in
Sect. 3.3 in 1D, a variational approach can give insightful and accurate results,
especially into the threshold for collapse, and we will begin here with this
approach. Note that the variational approach was first used to study collapse of
bright solitons in the context of nonlinear optics [79]. We begin with this approach
using two variational ansatz: an ansatz with Gaussian radial and axial profiles, and
an ansatz with a Gaussian radial profile and a sech axial profile.

4.2.1 Variational Analysis: Gaussian Ansatz

The solution of the 3D GPE under cylindrically symmetric trapping can be
approximated by a normalized Gaussian ansatz of the form,
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2
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 !1=2
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2a2
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þ r2

‘2
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" # !
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where ‘x;G and ‘r;G are, respectively, axial and radial variational length parameters
associated with the Gaussian ansatz. (Of course, this becomes the exact solution in
the noninteracting regime ðas ¼ 0Þ:) Such an ansatz has been considered for bright
solitary waves in [47, 70, 72], and is most appropriate in parameter regimes where
the strength of the trap potential dominates over the strength of interactions in all
directions. Substituting this Gaussian ansatz [Eq. (19)] into the classical field
Hamiltonian for Eq. (4),

H3D½w� ¼
Z

dr
�h2

2m
rwðrÞj j2þVðrÞjwðrÞj2 � 2pNjasj�h2

m
jwðrÞj4

� �
; ð20Þ

where VðrÞ ¼ mx2
r ðk2x2 þ r2Þ=2, yields

H3D½w� ¼ �hxr
1

4‘2
x;G

þ 1

2‘2
r;G

þ
k2‘2

x;G

4
þ
‘2

r;G

2
� k

ffiffiffiffiffiffi
2p

p
‘2

r;G‘x;G

 !

: ð21Þ

This defines an ‘‘energy landscape’’ in terms of the variational lengthscales ‘x;G

and ‘r;G, in which the variational solution corresponds to an energy minimum.
Typical energy landscapes for this Gaussian variational ansatz are shown in Fig. 6.
We seek the lengthscales that minimize this variational energy. Differentiating
with respect to each of the lengthscale variables produces, respectively, two
coupled conditions for the variational energy-minimizing lengths,

k2‘4
x;G þ 2k‘x;Gffiffiffiffiffiffi

2p
p

‘2
r;G

� 1 ¼ 0; ð22Þ

and

‘4
r;G þ 2k

ffiffiffiffiffiffi
2p

p
‘x;G

� 1 ¼ 0: ð23Þ

In the case of prolate and oblate trap potentials these equations can be solved via
straightforward iterative procedures [47], while for the axially free case an analytic
solution can be found [47, 69].

4.2.2 Variational Analysis: Sech Ansatz

One can take the same variational approach but with a normalized sech ansatz of
the form
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where ‘x;S and ‘r;S are, respectively, axial and radial variational length parameters.
Such an ansatz has been considered in [47, 69, 70], and is most appropriate in
parameter regimes where the strength of the radial trap potential dominates over
the strength of interactions, but the strength of interactions dominates over the
strength of the axial trap potential. Following the above procedure, the variational
energy expression now becomes,

H3D½w� ¼ �hxr
1

6‘2
x;S

þ 1

2‘2
r;S

þ
p2k2‘2

x;S

24
þ
‘2

r;S

2
� k

3‘2
r;S‘x;S

 !

; ð25Þ

yielding the two conditions for the energy-minimizing lengthscales,

k2‘4
x;S þ

4k‘x;S

p2‘2
r;S

� 4
p2

¼ 0; ð26Þ

Fig. 6 Per-particle energy functional, H3D, determined using a Gaussian ansatz [Eq. (19)] for a
BEC in a cylindrically symmetric, harmonic trap. Trap anisotropies shown are: a k ¼ 0,
b k ¼ 1=2, c k ¼ 1, d k ¼ 2, e k2 ¼ �4 
 10�4 (expulsive axial potential). The top row [sub-
label (i)] shows the case k ¼ 0:35, for which all the trap geometries are stable to collapse. In this
case there is a stable local minimum in the variational energy, which corresponds to the
(metastable) bright solitary matter wave state. The bottom row [sub-label (ii)] shows the case
k ¼ 1:1, for which all the trap geometries are unstable to collapse
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and

‘4
r;S þ

2k

3‘x;S
� 1 ¼ 0: ð27Þ

The sech ansatz yields variational energy landscapes which are qualitatively very
similar to those yielded by the Gaussian ansatz [69, 70].

4.2.3 Numerical Approaches

A variational approach to the stability of bright solitary matter waves in 3D yields
considerable qualitative insight, particularly with regard to the collapse phenom-
enon. However, the approach is not particularly accurate in its prediction of the
critical parameter kc; the imposition of a certain shape on the wavefunction via the
variational ansatz causes variational methods to consistently over-estimate kc.
Consequently, a great deal of work in the field of attractively-interacting BECs has
focused on accurately identifying kc, for various trap configurations, via numerical
solution of the 3D GPE. The main approaches to solving the GPE numerically are
reviewed in Ref. [80]. As in Sect. 3, the numerical and variational results can also
be compared in order to investigate how bright-soliton-like the bright solitary
matter wave states are in terms of their shape; such a comparison is, however, only
meaningful in cases which approach the quasi-1D limit [47].

Studies have investigated traps with spherical [23, 74] and cylindrical [16]
symmetry, cylindrically symmetric waveguides without axial trapping [70], and
the case of a generally asymmetric trap [17]. Several works also investigated the
configurations of specific experiments in detail [69, 81]. The parameter space of
bright solitary wave solutions, under cylindrically-symmetric trapping, is sum-
marized in Fig. 7.

4.3 Static Solutions in 3D and the Role of Trapping

Here we discuss the predicted bright solitary matter wave solutions (in cylindri-
cally symmetric traps) according to the variational method and the full numerical
solution. The structure of the energy surfaces described by the Gaussian [Eq. (21)]
is illustrated for a selection of trap geometries and interaction strengths in Fig. 6.
The collapse instability is manifest as an unbounded decrease of H3D as the var-
iational lengths ‘x and ‘r tend to zero. In cases where a bright solitary wave state
exists (upper rows in figures) it is stabilized against collapse by an energy barrier
(forming a local energy minimum in the energy surface); in cases where such an
energy barrier is not present (lower rows in figures), no bright solitary matter wave
state exists. The parameter space of metastable state solutions as predicted by the
variational methods is compared to numerical solutions of the cylindrically
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symmetric 3D GPE in Fig. 7. In this plot we use the parameter k2 to specify the
trap geometry; this is because that, as well as considering the conventional case of
confining axial potentials ðk2 [ 0Þ we will also consider the case of expulsive axial
potentials ðk2\0Þ: We will discuss the results of these figures below by separately
discussing four key trapping regimes (specified in terms of k2).

Zero axial potential ðk2 ¼ 0Þ
The case of a zero axial potential (which is equivalent, more generally, to any

constant uniform potential in the axial direction), results in a waveguide-like trap.
It leads to some algebraic simplification in the variational equations and, in the
case of the sech ansatz, the variational energy-minimizing lengths ‘x and ‘r and the
critical parameter kc ¼ 3�1=4 can be found analytically [47, 69].

More insight into the physical situation can be gleaned from the corresponding
variational energy surfaces, shown in Fig. 6a. The energy surface forms a rela-
tively flat ‘‘plain’’ for larger ‘x and ‘r, with sharply rising ‘‘ridges’’ occurring when
either length becomes small. However, the (negative) interaction term in the
energy functional leads to a distinct ‘‘chute’’ [69] at the meeting point of these two
ridges (when both ‘x and ‘r are small). For low k a raised saddle point separates the
chute from the plain, thus forming the local energy minimum of the metastable
solution; as k increases this saddle lowers, until at k ¼ kc it disappears and the
entire parameter regime of the plain becomes unstable. For the sech ansatz, this
transition at kc ¼ 1=31=4 � 0:76 [47, 69]. For the Gaussian ansatz the critical value
is kc � 0:778 [72]. For comparison, the non-polynomial Schrödinger equation (an
extended quasi-1D approach) predicts kc ¼ 2=3, through a simpler calculation [49].
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Fig. 7 Existence and properties of bright solitary matter wave stationary states in cylindrically
symmetric traps as a function of trap geometry, parameterized by k2. The presence of metastable
states is indicated by the various regions, according to the 3D GPE (blue/grey region), the
Gaussian ansatz (region bound by the green dashed line) and the sech ansatz (region bound by the
red dotted line). The uppermost lines represent the critical parameter for collapse kc; under an
expulsive trap k2\0 there exists a lower bounding line representing the critical parameter for
expansion ke. Note the difference in scale on the abscissa either side of k2 ¼ 0 axis (Colour figure
online)
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The true mean-field result, obtained by numerical solution of the 3D GPE, is
kc ¼ 0:675 [70].

Within the regime of metastable solutions, the solitary wave lengthscales vary
with the interaction strengths. For k ¼ 0 the axial lengthscale is effectively infinite.
As k is increased the axial lengthscale reduces monotonically, until the point of
collapse. The radial lengthscale stays close to the radial harmonic oscillator length

ar ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=mxr

p
throughout. Interestingly, the solution approaches being spherical

as the collapse point is reached [69].
In regimes where a bright solitary wave stationary state does exist, the energy of

the saddle point relative to that of the local energy minimum on the plain sets an
energy scale at which the bright solitary wave state will be unstable to collapse
when excited. Excitations with sufficient energy could allow the condensate to
overcome the barrier formed by the saddle point and lead to a dynamical collapse
in which ‘x decreases to zero [69, 70, 82]. A second channel of instability also
arises; because the lack of an axial trap results in a finite-valued energy as
‘x ! 1, there exists a ‘‘dispersive channel’’ in which excitations of the metastable
state above a certain energy threshold can lead to dynamics where ‘x increases
without bound [69, 70].

In Ref. [47] the 3D solitary wave state in the waveguide-like trap was compared
to the NLSE bright soliton. It was found in Ref. [47] that, while it is possible to
reach a highly soliton-like state in a waveguide-like trap, it lies in an experi-
mentally challenging regime. Nonetheless, as we review in Sects. 5 and 6, the
dynamics of 3D bright solitary waves can be highly soliton-like even when their
static shape does not closely resemble the NLSE soliton.

Prolate and isotropic traps ð0\k2  1Þ
For 0\k2\1 the trap is prolate, i.e. elongated in x, while for k ¼ 1 it is

spherically symmetric. In such cases the variational solutions must be obtained
numerically [47].

The energy landscape under these potentials (with examples shown in Fig. 6b, c)
is similar to that for the waveguide trap k ¼ 0 in and around the region of the
collapse instability. Indeed, the critical point for removal of the metastable state
depends quite weakly on k, as evident from Fig. 7. The only qualitative difference
introduced into the variational energy by axial trapping arises in the high-‘x limit,
where the potential energy of the trap leads to an infinite total energy in the limit
‘x ! 1, eliminating the dispersive channel altogether.

In Ref. [47] the solitary wave state in a prolate trap was also compared to the
NLSE bright soliton and similarly to above, the achievement of a soliton-like state
was found to be highly experimentally challenging.

Oblate trap ðk2 [ 1Þ
Such a trapping geometry, in which xx [ xr, is not typical for the study of

bright solitary matter waves, as in this geometry no clear analogy can be drawn
with an integrable NLSE.

Nonetheless, when an oblate trap possesses a metastable state it is indeed a
solitary wave under the definition used by [12]. These stationary states have been
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studied using the 3D GPE [70], and 2D reductions with 3D effects [83]. The
variational energy surface (Fig. 6d) is similar to the prolate/isotropic case.

Expulsive axial potential ðk2\0Þ
The self-trapped nature of bright solitary matter waves means they can with-

stand being placed in a trap with a weakly expulsive harmonic axial potential
ðk2\0Þ without dispersing. This was the case in the experiment of Ref. [10], and
considered theoretically in [69, 70].

The ensuing variational energy surfaces, shown in Fig. 6e, again (i) permit
metastable states [Fig. 6e(i)] and (ii) fully collapsed scenarios for k [ kc: How-
ever, the expulsive potential leads to a second instability via an ‘‘expansive
channel’’ [70]. This corresponds to axial spreading of the solutions ‘x ! 1. In
contrast to the dispersive channel—which never completely prevents the existence
of a metastable ground state, but renders it unstable to (potentially very small)
excitations—the expansive channel can destabilize the state; like the collapse
channel’s ‘‘chute’’, the expansive channel is separated from the solitary wave state
by a saddle point, which disappears for sufficiently low k, or high jkj. This
introduces a critical expansion parameter ke, such that one must have ke\k\kc in
order to observe a metastable state. The structure of kc and ke is illustrated in
Fig. 7; it is immediately apparent that the regime of metastable ground state
solutions with an expulsive axial potential is severely restricted compared to the
other cases. In particular, jkj must be relatively close to zero to avoid passing the
cusp point ðkc ¼ keÞ; beyond which metastable solutions are no longer found.

4.3.1 Asymmetric Trap Potentials

Removing the restriction to cylindrically symmetric trap geometries which we
have enforced up to now leads to a considerably enlarged parameter space to
explore. The critical parameter in such traps has been numerically determined by
Gammal et al. [17]. The existence and form of the bright solitary wave ground
state in anisotropic traps shows no qualitative differences from the cylindrically
symmetric case.

5 Bright Solitary Waves in 1D: Dynamics

When analysing the dynamics of bright solitary matter waves, it is naturally of
interest to compare their dynamics to the well-known and rich dynamics of bright
solitons. The natural regime for such comparison is the case in which the axial
potential is weak compared to the radial trap potential. As discussed in Sects. 3
and 4, this regime is where stationary bright solitary matter waves bear the greatest
resemblance to bright solitons, and experiments to date have focused on this
regime.
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Under a quasi-1D geometry, the condensate dynamics are described by the 1D
GPE [Eq. (10)]. In the case of zero axial trapping this reduces further to the
focusing NLSE, admitting exact bright solitons. With a weak trapping or expulsive
axial potential, as realized in experiments, integrability is lost and the dynamics
are no longer those of true solitons. Nonetheless, as we illustrate in this section, the
dynamics remain highly soliton-like under the assumption that a 1D description is
accurate. We shall later relax this 1D assumption in Sect. 6.

In this section, we begin by reviewing the dynamics of single and multiple
NLSE bright solitons (Sect. 5.1), and introduce a particle-like model for their
motion and interactions. Introducing axial trapping, we then explore the dynamics
of bright solitary waves in the quasi-1D approximation (Sect. 5.2.1); these
dynamics are highly soliton-like and can be easily understood using a straight-
forward modification of the particle model.

5.1 Dynamics and Collisions of the Classic Bright Soliton

In the absence of axial trapping, an attractively-interacting BEC in a quasi-1D trap
is described by the focusing 1D NLSE, which supports bright soliton solutions
[56, 57]. The single- and many-soliton solutions to this equation have been
extensively explored in the context of optical solitons [56–61]. We review the
results pertinent to soliton dynamics in this section.

5.1.1 Dynamic Bright Soliton Solutions

Eliminating the axial trapping in the 1D GPE [Eq. (10)] yields the focusing NLSE,

i�h
owðx; tÞ

ot
¼ � �h2

2m

o2wðx; tÞ
ox2

� 2�hxrNjasjjwðx; tÞj2wðx; tÞ: ð28Þ

Despite its nonlinear nature, the integrability of Eq. (28) means solutions can be
found using the inverse scattering method [56, 57]. In summary, a scattering
transform of wðx; tÞ yields, at any time t, a spectral decomposition of wðx; tÞ into
solitons and radiation. The radiation part of the spectrum is continuous, and has in
general a non-trivial time-dependence. However, the soliton part of the spectrum is
discrete and time-independent, and is completely described by four real quantities for
each soliton. Consequently, the spectrum of an N-soliton solution with no radiation
component can be completely described by 4N real quantities, from which the
complete solution wðx; tÞ can be recovered using the inverse scattering transform.

The most general N-soliton solution to Eq. (28), containing no radiation, can be
written as [59],

wðx; tÞ ¼
XN

j¼1

wjðx; tÞ; ð29Þ
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where,
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in addition to the characteristic soliton length bx ¼ �h=2mxrjasjN. Each soliton is
described by a real amplitude aj, velocity vj, position offset xj, and phase Uj. In the
case that the jth soliton is well-separated from the other N � 1 solitons, the linear
system defined by Eq. (30) can be approximately solved to give [59],
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Here, qj and Wj are time-dependent position- and phase-shifts which appear as a
result of collisions with the other N � 1 solitons. They are given by,

qj þ iWj ¼
X

k 6¼j

� log
aj þ ak þ iðvj � vkÞ=2xrjasjN
aj � ak þ iðvj � vkÞ=2xrjasjN

� �
; ð34Þ

where the sign is positive (negative) when the jth soliton is to the left (right) of the
kth [59]. While the jth soliton is well-separated these shifts remain approximately
constant, and only change significantly during collisions.

5.1.2 Bright Soliton Dynamics and Collisions

The dynamics of a single bright soliton in the NLSE are determined entirely by their
nonlinear interactions with the remainder of the solution. It is convenient to divide
the remainder of the solution into soliton and radiation components, and consider
the influence of these components on the dynamics separately. We review soliton
dynamics due to soliton interactions in this section. The majority of these dynamics
can be understood on the basis of a simple particle model. The interaction of
solitons with radiation is more mathematically involved [58, 61, 84] and no
similarly general picture is available.
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In the absence of radiation, the dynamics of multiple bright solitons are dom-
inated by the interactions and collisions between solitons. One of the defining
characteristics of true solitons, associated with the integrability of the system, is
that they survive mutual collisions entirely unchanged in form. The only obser-
vable effects of the collision are the asymptotic position and phase shifts discussed
in Sect. 5.1.1.

The main characteristics of soliton interactions can be illustrated by the colli-
sions of two equal-amplitude solitons. This is shown, for various relative phases
DU ¼ U1 � U2, in Fig. 8. As expected, the solitons survive such a collision
completely unchanged in form. The position shifts qj are clearly visible as the
deviation of both solitons from their initial linear trajectories. Although the
dynamics of the collision itself differ with the relative phase DU, the position shift
qj is unchanged. Note that, due to the phase symmetry of the collision, the
0-relative phase case leads to a central density anti-node, whereas for p-relative
phase a density node is preserved at the origin.

The independence of the position shifts qj from the solitons’ relative phase DU
allows one, in principle, to predict their asymptotic trajectories independently of
their phase. Disregarding the phase information in this way leaves each soliton
described by a position, velocity, and amplitude. One can then treat the solitons as
classical particles with an effective mass proportional to their amplitude and some
appropriate inter-particle potential. This approach was developed for optical NLSE
solitons [85–88], using the inter-particle potential,

Vðxj � xkÞ ¼ �2gjgkðgj þ gkÞsech2 2gjgkðxj � xkÞ
bxðgj þ gkÞ

 !

; ð35Þ

Fig. 8 Bright soliton collisions in the nonlinear Schrödinger equation, for solitons with equal
amplitude and relative phase DU ¼ 0 (a), p=2 (b), p (c), and 3p=2 (d). In each case the density
profile of the solution is superimposed with the soliton trajectories predicted by a particle model
[45, 46]. This phase-independent model fails to describe the dynamics of the collision in detail,
but correctly incorporates the asymptotic position shift of the solitons
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where the solitons are treated as classical particles of effective mass gj ¼ aj=4.
This potential reproduces the correct asymptotic position shifts provided the
velocities and effective masses satisfy the condition jgj � gkj � jvj � vkj=4xrjasjN
[46]. The particle model therefore reproduces the asymptotic shift exactly for the
equal-effective-mass solitons in Fig. 8. For collisions of solitons with non-equal
effective mass, the asymptotic shift predicted by the particle model approaches the
correct value for weak soliton interactions (small density or s-wave scattering
length) or short interaction times (high-velocity collisions).

5.2 Dynamics and Collisions Under Axial Trapping

Despite the lack of integrability in the 1D GPE with an inhomogeneous axial
potential, and the resulting absence of true solitons, one may still observe solitary
waves if the stationary, eigenstate solutions of the equation can propagate without
changing shape [12]. While they do not satisfy the strict mathematical require-
ments to be solitons [6, 54], these non-dispersive solitary waves can nonetheless,
under certain conditions, behave and interact in a soliton-like way.

5.2.1 Dynamic Bright Solitary Matter Wave Solutions

The possibility to observe solitary waves of this type was examined in consider-
able generality in Ref. [12]. In this work the authors considered, in 1, 2 and 3D,
how static eigenstate solutions of nonlinear Schrödinger equations with a general
nonlinearity and an arbitrary external potential behaved when used as initial
conditions in a nonlinear Schrodinger equation with the same nonlinearity and a
new, possibly time-dependent, external potential. Two conditions were found to be
necessary for the original eigenstates behave as solitary waves under the influence
of the new potential: firstly, the nonlinearity must be decoupled from the absolute
position, a requirement immediately satisfied by the conventional cubic form of
the nonlinearity appearing in the GPE. Secondly, the new potential must differ no
more than linearly in any spatial coordinate from the original potential [12]. We
note that this second condition implies that one can use a time-dependent linear
potential as a way to control bright solitary waves in experiments without causing
them to lose their solitary-wave character; experimental control techniques such as
this are discussed further in Sect. 7.

We shall restrict our attention to the case where the eigenstates are the bright
solitary wave stationary states considered in Sect. 2,4 and the ‘‘new’’ potential is a
harmonic one of identical frequency to the original, but with a displaced center;

4 It is also possible to consider solitary waves having the form of higher-energy nonlinear
eigenstates; such eigenstates were considered in Ref. [89].
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this is equivalent to the case of the original potential acting on a displaced bright
solitary wave stationary state. In this case, the solitary wave has the same spatial
profile as the stationary state, but its centre of mass moves as a classical particle in
the static harmonic potential. If free from the influence of other solitary waves or
other components of the solution, it thus undergoes simple harmonic motion like a
classical particle [12, 45, 46]. This feature of the GPE stationary state is analogous
to the Kohn theorem for the many-body ground state. The latter guarantees that
the true quantum mechanical ground state of N bosons in a harmonic trap can be
expressed as a separable tensor product of a single-body wavefunction in the
centre of mass coordinate with a general ðN � 1Þ-body wavefunction in the
remaining inter-particle coordinates.

5.2.2 Bright Solitary Matter Wave Collisions Under Axial Trapping

If the bright solitary wave is not well-separated from other components of the
solution, its dynamics are influenced by the nonlinear interaction with the other
components. As in the case of bright solitons, we concentrate on the interactions
between solitary wave components only. For bright solitons the asymptotic effects
of the interactions were entirely described by phase and position shifts
(Sect. 5.1.2). For bright solitary waves this is no longer strictly true; however, this
can be considered a satisfactory approximation in the limit that the external
potential is approximately constant over the region of the collision and provided
that the solitary waves are approximately bright-soliton-shaped. Making these
approximations, one can combine the particle model of soliton collisions
(Sect. 5.1.2) with the behaviour of a particle in a harmonic trap [45, 46]. This leads
to a combined particle model for multiple bright solitary waves in a harmonic trap,
which is most accurate for (a) weak harmonic traps, (b) fast solitary wave colli-
sions, and (c) in-phase solitary wave collisions.

The collisional dynamics of two, identical bright solitary waves according to
the 1D GPE are illustrated in Fig. 9 for relative phases of 0 and p. As anticipated
by the particle model, the dynamics are dominated by harmonic particle-like
motion when the waves are well-separated; however, when the waves collide,
periodically, at the trap centre, a soliton-like collision results in a position shift.
There is no overall phase shift between collisions, however [46]. During the
collision, we obtain qualitatively the same phase-dependent density structure as for
the bright soliton collisions. The particle model predicts these trajectories well
over the short times shown here. However, over longer times deviations do build
up, arising from the variation of the harmonic axial potential over the character-
istic length scale of the collision [45, 46].

The complex dynamics of three or more solitary waves oscillating and colliding
in a harmonic trap can be effectively predicted using the particle model; inter-
estingly, the model is itself non-integrable for three or more solitary waves,
leading to chaotic particle-like dynamics [45, 46].
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6 Bright Solitary Waves in 3D: Dynamics

The solitary waves of the 1D GPE explored in the previous section are in many
respects similar to NLSE bright solitons despite the addition of a trap potential.
However, in real experiments it is not only the addition of trapping which leads to
deviation from the NLSE, but also three-dimensional effects. While the 3D sta-
tionary state is still a solitary wave [12], residual 3D effects can lead to large
deviations from soliton-like behaviour, although there are regimes where highly
soliton-like dynamics can still be observed.

Although the absence of an axial trap potential does not lead to exact soliton
solutions in 3D, we nonetheless begin by considering the axially free case in
Sect. 6.1. We then consider the additional effects of an axial trap in Sect. 6.2. In
broad parallel to the previous section, we focus on the dynamics and interactions
of solitary waves only. However, this distinction is blurred due to the 3D effects
during collisions, which can lead to non-soliton-like behaviour and eventual
destruction of solitary waves. This behaviour is fundamentally linked to the col-
lapse instability in 3D, explored in Sect. 4.

Fig. 9 Bright solitary wave collisions in the 1D GPE with harmonic axial trapping. The initial
solitary waves, each with N=2 atoms, are ground states of the trap displaced by � � 10:35 in x
and with zero initial velocity and relative phase DU ¼ 0 (a), and p (b). In each case the density
profile of the solution is superimposed with the soliton trajectories predicted by the particle model
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6.1 Dynamics and Collisions in a Waveguide

In this section we consider a waveguide-like trap, with harmonic radial and zero
axial trapping potential. In such a trap the solitary wave profile is the stationary
state, in the parameter regimes that are stable against collapse (Sect. 4). With
uniform axial potential this solitary wave is self-trapped in the x-direction, and the
dynamics of multiple such solitary waves is consequently dominated by their
interactions, as for NLSE bright solitons.

6.1.1 Stability of Solitary Wave Collisions

In the absence of analytic solutions for binary solitary wave collisions in a
waveguide trap, such collisions must be simulated numerically. This can be done
from an initial condition composed of two copies of the (numerically obtained)
stationary state, displaced from each other by some distance and given some
velocity toward each other.5 For equal-sized solitary waves the resulting collisions
can be studied within the parameter space of incident velocity v, interaction
strength parameter k, and relative phase DU [81].

As for the stationary state itself, the key parameter determining the stability of
collisions of this type is the interaction strength parameter k; this must remain
below some threshold kc in order to avoid a dynamically-induced collapse when the
waves meet. However, kc itself is dependent on the other collision parameters. In
particular, kc is larger for faster collisions, and for collisions with a relative phase
closer to p. This is evident from the simulated results in Fig. 10a, b. The latter effect
is most noticeable for low velocities, with the phase-dependence of kc disappearing
in the high-velocity limit.6 At low velocity, this phase-dependence can be under-
stood from the collision profiles illustrated for the NLSE in Fig. 8; in the case
DU ¼ p the density profile of the collision itself resembles two solitons interacting
repulsively [59] and never overlapping, whereas in the case DU ¼ 0 the solitons
overlap, leading to a strong density peak. While this peak is of no consequence in
the NLSE or the 1D GPE, in the 3D GPE this peak in the atomic density can trigger
the collapse instability. The full dependence of the collisional stability on k and
incident speed v is shown in Fig. 10 for the cases of DU ¼ 0 and DU ¼ p. Note that
the phase dependence of the collisional stability is also predicted by effective 1D
equations retaining more 3D character than the 1D GPE [51].

5 Such a velocity is imparted numerically by applying a spatially varying phase of e�imvx=�h:
Experimentally, this could be achieved by applying a linear external potential to each solitary
wave for a short time.
6 The GPE is based on the assumption of atomic scattering at low energy and momentum and so
by ‘‘high velocity’’ here we refer to a scale relative to the condensate’s natural speed scale of the

speed of sound c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p�hasn=m2

p
[3].
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The dependence of kc on the incident velocity v can be understood in terms of
the relationship between the characteristic time for collapse of the condensate, tc,
and the characteristic time for the collision-interaction to take place, tint. In
Ref. [81] it was illustrated that the critical collision velocity, below which collapse
occurred in numerical simulations of collisions, for the parameters of the JILA
solitary wave experiment [11], corresponds to a collision-interaction time tint

approximately equal to the experimentally measured collapse time, tc. Theoretical
investigation of the role of the two timescales has not proceeded further to date, in
part because the GPE has not been generally considered an accurate predictor of tc.
However, recent results suggesting that the GPE can accurately predict tc when a
three-body loss term is included [34] offer the possibility of further progress in
this area.

6.1.2 Population Transfer in Solitary Wave Collisions

Another effect occurring as a result of the 3D nature of the system is that of
population transfer between bright solitary waves. In both the 1D NLSE, and the 3D
GPE for a waveguide trap, collisions between solitons or solitary waves with rel-
ative phases DU ¼ 0 and p have a density profile which remains completely
symmetric in x after the collision; in this respect the 1D NLSE and 3D GPE are
analogous. The two descriptions, however, lead to very different dynamics for
intermediate phases 0\DU\p and p\DU\2p. In the 1D NLSE the density
profile, which is initially symmetric in x, loses its symmetry during the collision and
regains it afterwards. In the 3D GPE for a waveguide trap, the initially-symmetric

Fig. 10 Stability of solitary wave collisions in an axially homogeneous waveguide potential.
a Space-time plots of atom density during collision between two identical solitary waves, each
with k ¼ 0:4 and featuring DU ¼ 0, for (i) high incident speed and (ii) low incident speed. b The
same but for DU ¼ p. c Stability diagram of the solitary wave collisions as a function of incident
speed vi and interaction parameter k, where the solid (dashed) line marks the boundary between
stable and unstable collisions for DU ¼ 0 ðpÞ. The vertical line denoted kc indicates the critical
interaction strength for collapse of a single, isolated bright solitary wave. The figure and
parameters are from [81]
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density profile loses its symmetry during the collision, and this loss of symmetry
leads to population transfer between the two waves: the first solitary wave grows
in amplitude and slows down, while the second wave loses amplitude and
speeds up. Example dynamics are shown in Fig. 11b–d. In addition to the 3D
GPE, this effect can also be seen in effective-1D approaches retaining extra 3D
character [51].

The amount of population transferred shows interesting dependencies on the
relative phase and velocity of the solitary waves (Fig. 11) [81]. For fast collisions
the amount of population transfer depends sinusoidally on the relative phase, with
the maximum transfer occurring at DU ¼ p=2 and DU ¼ 3p=2, and the magnitude
of this transfer decreasing with velocity. At lower velocities, however, this
dependence becomes heavily skewed, with the maximum transfer occurring closer
to DU ¼ 0 and the collapse instability occurring in extreme cases. This deviation
from sinusoidal transfer is a result of strong transient nonlinear effects during the
collision [81].

6.2 Dynamics and Collisions Under Axial Trapping

We now introduce an axial harmonic trap, in addition to the waveguide-like trap of
the previous sections. In analogy to transition from the NLSE to the 1D GPE, such
a system supports solitary wave excitations which have the shape of the stationary
state of the system and move like classical particles in the axial harmonic trap
when well-separated from other solitary waves. When these solitary waves do

Fig. 11 a Population transfer DN during bright solitary wave collisions within a homogeneous
waveguide, as a function of the relative phase between the waves DU. At high incident speed
(stars) the transfer is sinusoidal. For reduced speed (circles) the transfer becomes larger and
skewed towards DU ¼ 0. For low speed (squares) the population transfer diverges as DU ! 0,
due to runaway nonlinear effects and collapse. The results are taken from [81]. b–d Wave
dynamics for the low speed case with b DU ¼ 0, c p=2 and d p
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interact and collide, two key questions arise: (a) how soliton-like, and (b) how
stable are these collisions? Both these questions are particularly pertinent to the
interpretation of bright solitary wave experiments to date, and to unresolved issues
regarding the role of relative phase (as will be discussed in Sect. 7). We address
each question in turn in the following sections.

6.2.1 Soliton-Like Dynamics

Again, the trapping is assumed to be cylindrically symmetric with a shape spec-
ified by the trap anisotropy k ¼ xx=xr. As was discussed in Sect. 4, the static
bright solitary wave solutions in such traps have the most soliton-like shape in the
low-k limit (provided the collapse threshold is not exceeded), and least soliton-like
in the opposite case. One naturally expects a similar trend in the soliton-like-ness
of the solitary wave dynamics, but is faced with the issue of how to quantify the
soliton-like-ness of the dynamics.

When considering repeated collisions between two solitary waves at the centre of
a harmonic trap, as shown in Fig. 9, soliton-likeness can be defined in relation to the
characteristic tendency for true solitons to emerge from mutual collisions unscathed.
In Ref. [90] a metric was defined as the number of binary collisions for which the
solitary waves subsequently reach their turning point in the harmonic trap while still
having amplitudes and displacements from the origin above 75 % of their original
value. Since 1D collisions satisfy this criteria almost indefinitely,7 this metric is
termed the ‘‘number of 1D collisions’’, C1D. While more sophisticated definitions
could also be employed, this simple metric for the soliton-likeness of the dynamics is
enough to reveal a rich variation in the dynamics of collisions in the parameter space
of incident velocity v, trap anisotropy k and relative phase DU [90]. Figure 12
illustrates the variation of C1D in the v-k-DU parameter space, for interaction

strength k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=0:08

p
; this choice of k ensures that the effective 1D trap strength

used in Ref. [90] is fixed to x ¼ 0:02, for which value a solitary-wave state exists for
N atoms. Rather than being set in motion by an initial displacement, the solitary
waves in Fig. 12 are set in motion using an interference protocol providing arbitrary
control over the relative phase and velocity (see Sect. 7 and Ref. [90]).

As would be expected from the analysis of collisional stability in the waveguide
trap, how soliton-like the solitary wave collisions are is strongly dependent on the
relative phase DU at low velocity, with C1D being significantly higher for DU ¼ p
than for DU ¼ 0. This phase-dependence weakens for faster collisions, which
become more soliton-like as the velocity is increased. However, the dependence of
C1D on k is oscillatory in character. This is quite distinct from the case when

7 Eventually, the effects of the variation in the external trap potential across the collisions could
lead to the break-up of solitary waves in the 1D GPE. However, this does not seem to occur on
timescales easily accessible to numerical simulation; instead the numerical errors grow faster
than the deviation from the soliton-like behaviour.
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considering the static solitary wave states (Sect. 4), where the solitary wave shape
varied smoothly with k. These oscillations represent the entirely dynamical effect of
radial breathing oscillations of the solitary waves being excited during the collision.
Depending on the trap anisotropy k the transfer of energy to these radial breathing
oscillations can be either enhanced or suppressed, possibly providing an experi-
mental ‘‘knob’’ with which to enhance the stability of bright solitary waves [90].

6.2.2 Stability of Solitary Wave Collisions

While the analysis of the previous section gives a comprehensive account of the
soliton-likeness of collisions for varying velocity, anisotropy and relative phase, the
interaction parameter k in Fig. 12 is fixed (as a function of k). Other theoretical
work has explored the k-dependence of solitary-wave collision dynamics, for fixed
k [81, 91]. It was found, for example, that even in the presence of axial trapping, the
stability diagrams in v-k space were qualitatively the same as for the axially-
homogeneous case (Fig. 10). The population transfer for DU 6¼ 0; p also occurs
within an axially-trapped system, but with an additional consequence: the repetition
of collisions under axial trapping leads to the continued growth of asymmetric
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Fig. 12 Stability of bright solitary wave collisions in a cylindrically symmetric 3D trap, as
established in Ref. [90]. The number of 1D-like bright solitary wave collisions, C1D, is shown as a
function of the incident velocity v, relative phase U, and trap anisotropy k. Here, C1D is defined as
the number of collisions for which the solitary waves return to within 75 % of their original peak
amplitude and position at their maximum distance from the origin. Higher C1D indicates greater
stability. The interaction strength parameter k varies with anisotropy as kðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=0:08

p
; this

ensures that the effective quasi-1D trap frequency x ¼ k=4k2 remains equal to 0:02 [90]. Rather
than being released from displaced positions in the trap, the solitary waves are launched with a
controlled velocity and relative phase using the interference method described in Ref. [90]. The
computation takes advantage of the radial symmetry of the problem, using a pseudospectral split-
step method in 2D cylindrical coordinates
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populations between the two colliding waves, which terminates only when collapse
instability occurs in one of the waves. As such even a small deviation from DU ¼ 0
or p can, over repeated collisions in a trap, leads to significant changes in the long
term state of the system [91].

These studies also performed modelling of the JILA experiment [11] using the
3D GPE. Excellent agreement with the experiment data was achieved assuming
the bright solitary waves to have a relative phase very close to DU ¼ p, i.e. locally
repulsive interactions. In this manner, the solitary waves are predicted to be able to
survive many collisions without collapse, as were observed in the JILA experi-
ment. This is in general agreement with other work predicting that the multiple
soliton-trains seen in experiment [9, 11] are consistent with neighbouring solitary
waves having a relative phase close to p [22, 42–44, 81, 91]. The origin, and even
the true existence, of these p-phase differences is an open question, and will be
discussed in Sect. 7.

7 Hot Topics in Bright Solitary Matter Waves

The degree of control over the potential landscape and nonlinearity of BECs offers
unique opportunities to study the fundamental properties of solitary waves, as well
as nonlinear systems and quantum many-body physics in general. Furthermore, the
properties of bright solitary matter waves makes them promising candidates for a
variety of future applications. Areas of current research towards future applications
include the development of soliton atom-lasers [92–94], the stabilization and
manipulation of bright solitary matter waves using spatially and temporally
varying traps and inter-atomic s-wave scattering lengths [95, 96], and manipula-
tion of bright solitary matter waves in periodic potentials [97, 98], with the
potential for applications in quantum information [99].

In this section we focus on four areas of current research: the description of
bright solitary matter waves beyond the mean-field approximation (including open
questions over their relative phase), spontaneous symmetry breaking, the exploi-
tation of bright solitary matter waves in interferometry, the application of solitary
waves as surface probes, and more exotic forms of bright solitary matter wave.

7.1 Beyond-Mean-field Treatments and Relative Phase

The results presented in this chapter have focussed on the mean-field, zero tem-
perature description of a Bose–Einstein condensate provided by the Gross–
Pitaevskii equation. However, Bose–Einstein condensates are in fact many-body
quantum mechanical systems at finite temperature. To incorporate these general
and important additional effects, more sophisticated models must be employed.
Such effects become particularly relevant in tightly confined geometries, e.g. a

440 T. P. Billam et al.



quasi-1D system, or close to the transition to Bose–Einstein condensation. The
most common family of methods to describe beyond-mean-field effects (quantum
and/or thermal effects) are the various embodiments of the stochastic GPE [4].
A more fundamental quantum mechanical approach is to describe the many-body
dynamics via the multiconfigurational time-dependent Hartree method for inter-
acting bosons [100].

There have been limited beyond-mean-field studies of bright solitary matter
waves to date, although what studies have been performed have raised intriguing
differences from the mean-field predictions.

In the two experiments to date that have generated multiple bright solitary
waves [9, 11], the observed wave dynamics (post-formation of the waves) could be
well described by the mean-field GPE under the assumption that the waves fea-
tured phase differences close to p [42, 81, 91]. This pattern of relative phases can
potentially be explained by a process of solitary wave formation through modu-
lational instability, followed by collapse of neighbouring solitons with relative
phases close to zero [22, 42–44]. However, the mean-field GPE, even when
supplemented with phenomenological three-body loss terms, cannot provide a
quantitatively accurate description of solitary wave formation out of a condensate
collapse [75, 77, 101]. More sophisticated simulations of the condensate quantum
field during collapse recover the formation of multiple solitary waves but without
p-phase differences [78]. The origin of the p-phase differences (if they truly exist)
remains an open question.

In Ref. [78] it was also observed that, under 1D quantum field simulations, that
the solitary wave collisions behaved repulsively, i.e. akin to mean-field collision
with p-phase difference, but independent of the initial relative phase. Although
these 1D results were not supported by the corresponding 3D quantum field
simulations, uncertainty remains over whether p-phase differences do indeed
appear in the experimental systems, and indeed whether relative phase as defined
by the GPE is a well-defined quantity for experimental bright solitary waves.
Potentially, the relative phase and velocity dependencies predicted by the GPE
could be verified in experiment using the controlled generation method of
Ref. [90], providing a test of the mean-field description.

More recently, Cederbaum et al. used the time-dependent Hartree method [100]
to describe the collisions between two initially-formed bright solitary waves [102].
While the GPE assumes that all atoms occupy a single quantum state, this method
relaxes this condition and allows occupation of an arbitrary number of states. It
was observed that the freely evolving solitary waves rapidly lost their coherence,
evolving into fragmented condensates distributed over multiple states. These are
fundamentally different objects to the original solitary waves, which within the
GPE are assumed to perpetuate. These final states can be distinguished in exper-
iment via their signatures in the first-order correlation functions.

Recent work has also considered the quantum dynamics of bright solitons in the
presence of a disordered potential, showing that quantum bright solitons are able to
undergo Anderson localization [103]. This analysis was performed through an effec-
tive potential approximation, later confirmed through full many-body simulations
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[104]. Furthermore, for a pair of bright solitons in a disordered potential it was shown
that the localization effect is sensitive to soliton interactions, and becomes destroyed
when the soliton interactions become too strong [105].

7.2 Spontaneous Symmetry Breaking

Symmetry breaking plays a central role in the formation of bright solitons from
an initially broad condensate. The exact many-body ground state of a one-
dimensional system with translational symmetry and attractive interactions is
fragile and prone to localization into a bright soliton state, thereby spontaneously
breaking the translational symmetry of the system [106]. This localization is
achieved via a superposition of low-lying many-body eigenstates of the system.
This scenario can be realized experimentally within a ring-shaped trapping
potential, as considered in Ref [106]. Although the bright soliton state is well
described within the mean-field Gross–Pitaevskii equation, in a mesoscopic system
it was predicted that there exists a cross-over from the translationally symmetric
state to the soliton state as a function of the interaction strength.

Experimentally it is possible to rotate the trapping potential which confines
the condensate. For a 3D bright solitary wave confined in an axi-symmetric
waveguide of trap frequency xr and rotated about its untrapped axis at a frequency
X\xr, the stationary states are bright solitary waves which are elliptically
deformed in the transverse plane [107, 108]. However, the orientation of the
ellipticity has no preferred direction and one can expect a spontaneous breaking of
axi-symmetry. Meanwhile, at higher rotation frequencies, the favoured state is
believed to be for the wave centre-of-mass to be off-axis and undergo precessional
motion, also associated with spontaneous breaking of axi-symmetry [109, 110].
Interestingly, one may add quintic trapping in the transverse plane, for which the
effective potential experienced by the rotating solitary wave takes the form of the
classic Mexican hat potential.

7.3 Bright Solitary Wave Interferometry

Over the last two decades the advent of atom interferometry [111] has led to
significant improvements in metrological precision for real-world measurements
of, e.g., rotation [112] and the acceleration due to gravity [113]. The development
of atomic BECs has enabled a new form of atom interferometry in which a trapped
BEC is coherently split and recombined after a period of differential evolution.
Following a pioneering early experiment [114], many BEC interferometers have
been constructed based around the principle of a raised, and subsequently lowered,
double-well potential [115–119]. This scheme allows long interaction times [120]
and the small spatial scale potentially permits accurate measurements of, e.g., the
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Casimir–Polder potential of a surface [119]. Provided the raising of the barrier is
sufficiently fast, the GPE can provide a good description of the dynamics, in the
sense that nearly all atoms remain in a single mode, which is coherent across the
barrier [121]. However, interactions also cause undesirable phase diffusion during
the interaction time, and for this reason experiments have typically chosen to
reduce or eliminate them where possible [118, 120, 122].

The properties of bright solitary waves offer a novel solution to the problem of
inter-atomic interactions; one can envisage an analogue to the optical Mach–
Zender interferometer in which a BEC is split into two coherent, non-dispersive,
spatially-localized bright solitary waves, which are manipulated and eventually
recombined using a time-dependent external potential. In the following sections
we briefly review two proposals for the necessary coherent beam-splitting of
solitary waves, using an internal-state interference protocol [90] (Sect. 7.3.1) and
potential barriers [123–126] (Sect. 7.3.2). Note that bright solitons may also be
split by imposing a spatially-dependent chirp on the soliton, which may be realized
by an appropriately profiled laser beam [127]. In Sect. 7.4 we outline proposals to
use interferometry devices based on bright solitary waves for improved sensitivity
in the measurement of atom–surface interactions [128].

7.3.1 Splitting Solitary Waves Using Interference Methods

In this section we consider using a magnetic Feshbach resonance to quasi-
instantaneously change the (negative) s-wave scattering length from an initial
value a0

s , related to the new value as by a0
s ¼ a2as. If the BEC is initially in the

bright solitary wave stationary state at scattering length a0
s , it remains so imme-

diately after the change to scattering length as. Assuming a 1D description and
negligible axial trapping ðxx ¼ 0Þ; the subsequent dynamics are described by the
NLSE [Eq. (28)] with initial condition,

w0ðxÞ ¼
1

2a
ffiffiffiffiffi
bx

p sech
x

2a2bx

� �
; ð36Þ

where the original soliton is assumed to be centered on the origin for convenience.
Solutions of the NLSE for this initial condition are well-known in the context of
nonlinear optics [58]: for integer a ¼ J, Eq. (36) consists of a bound state, or
multi-soliton pulse, of J solitons with unequal amplitudes aj and zero velocity
ðvj ¼ 0Þ: For non-integer a ¼ J þ b, where 0\b\1, it consists of J solitons plus
radiation [58].

Subjecting such a pulse to a sinusoidal density modulation, such that,

w0
0ðxÞ ¼

1

2a
ffiffiffiffiffi
bx

p sech
x

2a2bx

� �
cos

Kx

2a2bx
þ DU

2

� �
; ð37Þ

is the new initial condition, alters the character of the multi-soliton pulse. For the
case of most interest, aJ2, this modulation was explored in Refs. [60, 61] using
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perturbative and numerical methods. In this case, beyond a (relatively low)
threshold value of the modulation wavevector K the multi-soliton pulse is split into
two solitons and a (generally negligible) radiation component. The two solitons
have equal amplitudes, oppositely directed velocities approximately proportional
to K [60], and relative phase DU. Consequently such a modulation can be used to
to control the velocity and relative phase of a pair of bright solitons.

In Ref. [90], a theoretical scheme was developed to implement such a modu-
lation, and hence controllably generate a pair of bright solitons, using an internal
state interference protocol; this protocol is illustrated schematically in Fig. 13a. In
this protocol, the application of a linear perturbing potential for a short time is used
to impart momentum on the solitons; the waves continue to behave as solitary
waves under such a potential as shown in Ref. [12]. Numerical simulations verified
that the same protocol is effective for bright solitary matter waves both in the
presence of an axial trap (Fig. 13b, c) and outside the quasi-1D limit. If such a
technique can be experimentally implemented, the possibility to carefully engineer
the relative phase between two solitary waves would represent a crucial first step
towards a general bright solitary wave interferometer.

Fig. 13 Interferometric scheme to phase-coherently split a single bright solitary wave into two
bright solitary waves with controlled velocity and phase [90]: a interferometric protocol
illustrated for 85Rb and magnetic field B, which is applied for a short time s between two quasi-
instantaneous p=2-pulses. The component in j3;�2i is not trapped, and escapes. b Splitting and
re-collision with relative phase / ¼ 0, and c / ¼ p. Red lines indicate the trajectories predicted
by the particle-like model discussed in Sect. 5 [45] (Colour figure online)
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7.3.2 Splitting Solitary Waves at a Potential Barrier

Compared to the interference method discussed in the previous section, a simpler
method to split bright solitary waves is afforded by collisions with a potential
barrier. In return for experimental simplicity, however, this method lacks the same
fine-grained control over the relative phase.

Within the mean field description, the dynamics of NLSE bright soliton colli-
sions with potential barriers and wells has been widely explored (see, e.g.,
[73, 129–132] and references therein). The behaviour of solitary waves is similar
in soliton-like regimes; in particular, fast solitary wave collisions with a narrow
barrier lead to smooth splitting of an incoming solitary wave into transmitted and
reflected solitary waves [125, 126, 132–134]. This behaviour is analogous to bright
solitons in the NLSE scattering from a d-function potential: it can be analytically
demonstrated in such a situation that the incoming bright soliton is split into
transmitted and reflected components, each of which consist mainly of a bright
soliton, plus a small amount of radiation [132]. Bright solitary waves interacting
with barriers much narrower than their width largely follow this prediction [125,
133, 134]. Within the mean-field description, potential barrier collisions of this
nature have been proposed as another means to realize solitary wave interferom-
eters, potentially based on solitary wave molecules [133], oscillating bright solitary
waves in a harmonic trap [134] and bright solitary waves in a toroidal trap [125].

In understanding the operation of such an interferometer one must be careful in
interpreting the predictions of the GPE. This mean-field description is most often
thought of as describing a system with a wavefunction of Hartree product form
(that is, a single macroscopically occupied single particle mode). Such a state is
free of many-body correlations [124]. At face value, this seems to be at odds with
many-body descriptions of the scattering of a bright solitary wave on a potential: it
was demonstrated in Ref. [123], using an effective potential approximation, that a
condensate bright soliton of 100 atoms could be placed in a coherent macroscopic
superposition between reflected and transmitted solitons via a slow collision with a
wide Gaussian barrier—a state entirely dominated by many-body correlations
rather than free of them. Similar collisions were investigated in Ref. [124] using
the MCTDHB many-body computational method [100, 135]. In this work, the
condensate was found to fragment, leaving two macroscopically occupied orbitals.
One of these orbitals corresponded to a transmitted, and the other to a reflected,
bright soliton, implying creation of a macroscopic coherent superposition between
spatially distinct states.

This apparent disagreement with the GPE prediction is, however, only a dis-
agreement with the Hartree-product interpretation of the GPE; in classical-field
methods one commonly uses the GPE to describe all macroscopically occupied
modes of a system [136], and in this interpretation there is no general disagreement
with the many-body description. Importantly, in the proposed solitary wave
interferometers [125, 134] the actual interferometric measurement consists of

Bright Solitary Matter Waves: Formation, Stability and Interactions 445



measuring the average fraction of atoms ending up on a particular side of a
potential barrier. Such a measurement is independent of the underlying occupa-
tions of single particle modes, suggesting the mean-field GPE may still give a
useful description of a bright solitary wave interferometer.

Nonetheless, the realization of macroscopic quantum effects using bright soli-
tary waves offers exciting potential for future interferometric devices, for example
in exploiting the macroscopic quantum superposition to achieve quantum
enhancement of the measurement precision [120, 122] and using pairs of entangled
quantum solitons [137]. A bright solitary wave interferometer therefore offers the
intriguing possibility of observing the effects of macroscopic quantum superpo-
sition [138, 139] through the formation of a fragmented state [123, 124] and hence
enhancing measurement sensitivities [138, 140].

7.4 Soliton Surface Probes and Quantum Reflection

There is growing interest in the use of ultracold atoms to measure short range
forces close to a surface motivated by the possibility of probing short range
corrections to gravity which extend beyond the Standard model [141–143]. Tra-
ditional experiments, following the pioneering measurements of Cavendish in
1798 [144], now use a variety of approaches from superconducting gravity gra-
diometers [145] and microcantilevers [146] to planar oscillators [147] and torsion
balance experiments [148]. However, in scaling down experiments to probe ever
decreasing length scales a new, fundamental problem arises. Quantum electro-
dynamics predicts a macroscopic force between conductors, known as the Casimir
force [149]. This force vastly overwhelms the much weaker gravitational attraction
between the test masses, such that experiments are forced to search for deviations
between the theoretical and experimental Casimir forces. Precisely calculating
such Casimir forces for a specific macroscopic test mass near a surface is generally
difficult [150]. In contrast, the interaction between a single neutral atom and a
plane surface is well understood [151, 152] being characterised by the attractive
Casimir–Polder potential,

UvdW ¼ �C3

z3
for z\kopt=2p; ð38Þ

Uret ¼ �C4

z4
for kopt=2p\z\kT; ð39Þ

where for longer length scales the 1=z3 form of the van der Waals potential,
characterised by C3, becomes 1=z4 due to retardation effects. This new regime is
characterised by C4 with the transition point between the two regimes determined
by the wavelength corresponding to the dominant excitation energy of the inter-
acting atoms, kopt [153]. Further from the surface (larger than the thermal
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wavelength of photons, kT) the interaction becomes dominated by the thermal
fluctuation of the electromagnetic field [154].

The inherent advantage of directly probing the atom–surface interaction has
prompted the recent proposal of a new generation of experiments which aim to
exploit the precision and control offered by atomic physics and ultracold quantum
gases to push the measurement of short-range forces into a new regime [155–158].
Indeed a number of proof-of-principle experiments have already utilised ultracold
atomic gases to explore the short range van der Waals and Casimir–Polder
potentials [159–162]. Nevertheless such experiments are in their infancy and
considerable refinement is required before they become competitive with the
classical ‘Cavendish style’ experiments as a test of short-range gravitational
forces.

The attractive Casimir–Polder potential described above can also be investigated
through the study of quantum reflection. The term quantum reflection refers to the
process where a particle reflects from a potential without reaching a classical turning
point and is a direct consequence of the wave nature of the particle. Significant

reflection occurs when the local wave vector of the particle k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2

1 � 2mUðzÞ=�h2Þ
q

changes by more than k over a distance of 1=k, where k1 is the wave vector of the
particle of mass m far from the potential UðzÞ. This requires an abrupt variation in the
potential UðzÞ, exactly as is found for an atom in the vicinity of a solid surface. The
demonstration of quantum reflection from solid surfaces is typically performed at
grazing incidence in order to reduce the wave vector normal to the surface [163, 164].
The advent of ultracold and quantum degenerate atomic samples with large de
Broglie wavelengths opens up new possibilities to study quantum reflection at nor-
mal incidence with unprecedented control over the atomic motion. Reflection
probabilities as high as 20% have been demonstrated for 23Na condensates incident
on a solid silicon surface [165].

The use of bright matter wave solitons has been proposed to study quantum
reflection from a solid surface. In Ref. [128] the authors show that the use of
solitons presents a number of unique advantages resulting from the presence of
attractive interactions. Crucially the robust, self-trapped and highly localised
nature of bright solitons can result in a clean reflection from the surface, with very
limited disruption to the density profile as compared to condensates with repulsive
interactions [165]. Moreover, previous numerical studies of quantum reflection
from purely attractive potential wells revealed that in certain regimes the whole
soliton reflects with very little loss, leading to a significant enhancement of the
reflection probability as compared to the single particle case [130]. The presence
of attractive interactions has also been shown to be advantageous in the perfor-
mance of traps for cold atoms based upon quantum reflection [166]. The absence
of dispersion as the soliton propagates permits the precise control of the velocity
normal to the surface and allows much lower velocities to be achieved.

Current experiments in Durham [167, 168] aim to exploit this combination of
advantages and promise to deliver accurate measurements of the quantum
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reflection probability. The proposed experimental scenario for the study of
quantum reflection is depicted in Fig. 14.

Bright matter wave solitons are formed in an optical waveguide from an 85Rb
condensate with attractive interactions. For rubidium and a room temperature
surface, the lengthscales relating to the Casimir–Polder potential are kopt=2p �
0:12 lm and kT � 7:6 lm: The velocity of the soliton towards the surface can be
controlled by manipulating a weak (	 1 Hz) magnetic potential along the axis of
the waveguide. The experimental configuration also allows for the addition of a
repulsive (or attractive) evanescent field in the vicinity of the surface formed by
the total internal reflection of a blue (or red) detuned laser field within the glass
prism. This produces a potential which decays exponentially with distance from
the surface; the decay length being determined by the laser wavelength, the
refractive index of the prism and the angle of incidence of the laser beam. When
combined with the atom–surface potential, the repulsive evanescent field leads to a
repulsive barrier of finite height, in close proximity to the surface (see Fig. 14b).
Studies of classical reflection from such a barrier can be used to probe the atom–
surface potential [159]. Moreover, the addition of both repulsive and attractive
evanescent fields can be used to engineer a potential in the vicinity of the surface
that significantly enhances the quantum reflection probability [169].

Soliton

Magnetic 
Axial 

Potential

Optical 

Waveguide

Prism Evanescent Wave

Atom-surface

Combined

(a) (b)

Fig. 14 a Schematic of the proposed experimental configuration for the study of quantum
reflection of bright matter wave solitons from a solid surface. The soliton propagates towards the
surface in an optical waveguide formed by a focussed 1,064 nm laser beam. Motion of the soliton
along the waveguide is controlled through the manipulation of a weak magnetic potential along
the waveguide. An optional repulsive evanescent field can be added through the total internal
reflection of a 532 nm laser beam in the prism. The inset shows a photograph of the super-
polished Dove prism mounted in a UHV glass cell in the Durham experiment. b The total
potential (red) experienced by the atoms in the vicinity of the surface is the sum of the Casimir–
Polder potential (purple) and the evanescent field (blue) (Colour figure online)
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7.5 Exotic Bright Solitary Waves

We have focussed in this chapter on bright solitary waves of a single-species
condensate with s-wave interactions. However, part of the beauty of these atomic
gases is that it is possible to precisely introduce additional complexity into the
system, e.g. additional condensate components or long-range interactions. In
certain such scenarios, distinct bright soliton-like structures can arise, with even
richer properties than their s-wave counterparts. We will briefly summarise these
exotic bright solitary waves below.

Bright-dark solitons
Condensate systems which involve two co-existing condensates, composed of

either different atomic species or the same atomic species but in two different
magnetic states, have been the topic of much experimental and theoretical study
[4]. As well as the local intra-species interactions within each component, there
exists a local inter-species interaction. When all interactions are repulsive, and the
inter-species interaction is sufficiently strong, phase separation of the condensates
becomes favourable [3]. Then, the system can enter a state where one component
adopts a bright soliton-like structure, about which the other component forms a
dark soliton-like density notch. These hybrid structures, termed dark-bright soli-
tons, have analogs in nonlinear optics [170] and were first predicted to exist in
inhomogeneous BECs by Busch and Anglin [171]. Since then they have been
generated and observed in several experiments [172–174]. Possessing only
repulsive interactions, they are free from the collapse instability and behave more
akin to dark solitary waves (see Ref. [8] for a review) than bright solitary waves.

Bose–Fermi solitons
Similar to above, it is possible to create a system in which a Bose–Einstein

condensate co-exists with a degenerate gas of fermions. For identical fermions, the
Pauli exclusion principle prevents s-wave interactions, and so the predominant
interactions in this ultracold mixture are the s-wave boson–boson interactions and
the boson–fermion interactions. Here, an attractive boson–fermion interaction can
support a soliton structure in which localized wavepacket of each gas, overlapping
in space, is self-trapped by their mutual interaction. These structures, termed
Bose–Fermi solitons, have been predicted via numerical and variational approa-
ches [175–179], and have been simulated to propagate without dispersion [175,
180]. The boson–fermion interaction must be sufficiently strong to overcome the
internal repulsion within the BEC component but not so large as to induce col-
lapse. As such, in 3D, they exist as metastable states of the system. Interestingly,
under the inclusion of higher order p-wave interactions with repulsive sign, the
collapse instability can be completely eradicated, suggesting a greatly enhanced
stability [179]. Related bright solitary wave structures are also predicted to arise in
Bose–Fermi mixtures in the presence of optical lattice potential [181–183].
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Non-local bright solitons
In recent years, BECs have been produced in which the atomic species have a

large natural magnetic dipole moment [13]. In contrast to s-wave interactions
which are short-range and isotropic, these interactions are long-range and
anisotropic. By polarizing the dipoles in a common direction, the whole condensate
takes on a dipolar nature, which can be accounted for within the GPE by the
inclusion of a non-local term [13]. The attractive component of the dipolar
interactions lends itself to support self-trapped solitary wave states, but it also
makes the collapse instability a general feature of dipolar BECs.

Within a quasi-1D waveguide, solitary waves of dipolar BECs are predicted to
be supported [184, 185]. In general, dipolar interactions also co-exist with s-wave
interactions, and the capacity for self-trapping was shown to occur for various
regimes of the dipolar interaction and the s-wave interaction. Collisions between
two such dipolar solitary waves were found to exhibit more complicated dynamics
including regimes where the colliding waves form a bound state [184] and sen-
sitivity to the polarization direction [185]. More strikingly, in Refs. [186, 187] it
was shown that a dipolar BEC within a quasi-two-dimensional trap can form a
bright solitary wave that is self-trapped in two-dimensions and free to move within
the untrapped plane of the system.

Distinct non-local effects can be introduced by coupling of a BEC to highly
excited Rydberg states [188], excited atomic states with high principal quantum
number. These excited states become coherently shared throughout the conden-
sate, inducing a strong collective interaction via van der Waals forces. Using a
GPE which incorporated an appropriate non-local term, it was predicted in [189]
that bright solitary waves could form which are not only free from the collapse
instability, but are self-trapped in all three dimensions. These wavepackets are
predicted to remain stable for hundreds of milliseconds and raise the prospect of
the first realization of 3D bright solitary matter waves.

8 Conclusions

We have reviewed bright solitary waves composed of gaseous Bose–Einstein
condensates, from their experimental formation and observation, through to a
theoretical exposition of their static and dynamical mean-field properties.
Emphasis is placed on how the harmonic trapping potential and three-dimensional
setting leads to departures in behaviour from the classic bright soliton. Soliton-like
states remain supported, in the sense that they are capable of self-trapping and
retaining their static form as they propagate. The most marked deviation is
introduced by the extension from 1D to 3D, which introduces an instability to
collapse for sufficiently large interaction parameter and a population transfer
during collisions. These deviant behaviours can be greatly reduced in appropriate
regimes but may be exploited in their own right, e.g. by using population transfer
as a means to infer relative phase.
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The properties of these bright solitary matter waves are now, generally
speaking, well understood at the mean-field level. Emphasis is now turning to
developing a full quantum mechanical understanding of these excitations and
much work remains to be done in this direction. The experimental capacity to
engineer additional atomic components and interactions into the system promises
new families of bright solitary waves, which are, for instance, self-trapped in
higher dimensions and stable to collapse. Furthermore, we believe that bright
solitary waves hold strong potential as atomic vehicles for applications in matter
wave interferometry and surface force detection.
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Temporal Quantum Fluctuations
in the Fringe-Visibility of Atom
Interferometers with Interacting
Bose-Einstein Condensate

Doron Cohen and Amichay Vardi

Abstract We formulate a semiclassical approach to study the dynamics of
coherence loss and revival in a Bose-Josephson dimer. The phase-space structure
of the bi-modal system in the Rabi, Josephson, and Fock interaction regimes, is
reviewed and the prescription for its WKB quantization is specified. The local
density of states (LDOS) is then deduced for any given preparation from its
semiclassical projection onto the WKB eigenstates. The LDOS and the non-linear
variation of its level-spacing are employed to construct the time evolution of the
initial preparation and study the temporal fluctuations of interferometric fringe
visibility. The qualitative behavior and characteristic timescales of these fluctua-
tions are set by the pertinent participation number, quantifying the spectral content
of the preparation. We employ this methodology to study the Josephson-regime
coherence dynamics of several initial state preparations, including a Twin-Fock
state and three different coherent states that we denote as ‘Zero’, ‘Pi’, and ‘Edge’
(the latter two are both on-separatrix preparations, while the Zero is the standard
ground sate preparation). We find a remarkable agreement between the semi-
classical predictions and numerical simulations of the full quantum dynamics.
Consequently, a characteristic distinct behavior is implied for each of the different
preparations.
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1 Introduction

Atom interferometry [1–4] with Bose-condensed atoms offers the possibility of
constructing compact and highly precise measurement tools. Recent experiments
[5–20] demonstrate that bi-modal Bose-Einstein condensates (BECs) have the
necessary phase-coherence and controllability of coupling and interaction
parameters, to operate atom interferometers at the best sensitivity allowed by
quantum mechanics.

A typical atom interferometer follows the Mach-Zehnder scheme consisting of
a preparation stage, in which the bimodal input state is mixed by a (usually 50:50)
beam-splitter, a waiting time t during which the system evolves and the two modes
acquire a relative phase difference u, and a measurement stage where the two
condensates are either released and allowed to interfere or are mixed again by a
second beamsplitter. In the former case, the accumulated relative phase u corre-
lates with the location of interference fringes, whereas in the latter it is reflected in
the final atom number difference.

The single-particle coherence of the split BEC is characterized by the many-

realizations fringe-visibility function gð1Þ
12 ðtÞ: The useful timescale of an interfer-

ometric measurement is set by decoherence. For trapped BEC interferometers, an
important source for the loss of single-particle coherence, is the phase-diffusion
induced by nonlinear inter-particle interactions [9, 21–29]. For uncoupled con-
densates starting from a coherent preparation, this process amounts to a simple

Gaussian decay of gð1Þ
12 ðtÞ on a time scale t �ðU

ffiffiffiffi
N

p
Þ�1, where U is the interaction

strength and N is the number of particles. However, most current atom-interferom-
eter setups with trapped BECs operate in the Josephson interaction regime, where
coupling while small, still affects the dynamics and generates richer coherence

evolution which includes oscillations, fluctuations, and recurrences of gð1Þ
12 ðtÞ due to

quantum collapse and revival [30–32]. The evolution of fringe visibility in the
Josephson regime, thus offers a unique opportunity for the controlled study of strong
correlation dynamics, beyond the usual focus on ground state properties.

Our objective here is to characterize the quantum dynamics of single-particle
coherence and explore the dependence of its fluctuations on the initial preparation
[32–35]. For this purpose we employ a semiclassical picture of the quantum two-
mode Bose-Hubbard model normally used to describe BEC atom interferometers.
In Sect. 2 We introduce the model Hamiltonian for N bosons in a dimer system.
In Sect. 3 we provide the prescription for the WKB quantization of the associated
spherical phase space. Several experimentally viable preparations are introduced
in Sect. 4, and their local density of states (LDOS) is characterized using a par-
ticipation number M, with marked differences in the dependence of M on the
particle number N, and on the interaction U. Consequently we are able to analyze
the observed temporal fluctuations in Sect. 5 and determine their long time
average and their characteristic variance. We show that the RMS of the fluctua-
tions scales differently with N, depending on the nature of the prepared state.
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2 Model Hamiltonian and Phase-Space Structure

Matter-wave interferometers can be realized using double-well spatial confinement
[5–14] or internal spin states [15–19]. In both cases, the bimodal system of
interacting atoms is described to good accuracy [36] by the tight-binding Bose-
Hubbard Hamiltonian (BHH) [27–29, 37–39]. Here we refer to N particles in a
two-site (bi-modal) system, also known as a ’dimer’:

H ¼
X

i¼1;2

Ein̂i þ
U

2
n̂iðn̂i � 1Þ

� �
� K

2
ðây2 â1 þ â

y
1 â2Þ; ð1Þ

where K is the hopping amplitude, U is the interaction, and Ei are the on-site
energies. One may define an SU(2) algebra, where

Jz �
1
2
ðn1 � n2Þ � n; ð2Þ

Jþ � â
y
1 â2; ð3Þ

and J� ¼ ½Jþ�y: Hence Jx ¼ ðJþ þ J�Þ=2 and Jy ¼ ðJþ � J�Þ=2i. Rewriting the
Hamiltonian (1) in terms of these SU (2) generators, we see it is formally the same
as that of a spin j ¼ N=2 system,

H ¼ �EĴz þ UĴ
2
z � KĴx þ const; ð4Þ

where E ¼ E2 � E1 is the bias in the on-site potentials. It is thus clear that the
characteristic dimensionless parameters which determine both stationary and
dynamic properties, are

u � NU=K ð5Þ

e � E=K ð6Þ

The two-site BHH can be regarded as the quantized version of the top
Hamiltonian, whose spherical phase space is described by the conjugate
non-canonical coordinates ðh;uÞ that are defined through

Ĵz ¼ ½ðjþ1Þj�1=2
cosðhÞ; ð7Þ

Ĵx ¼ ½ðjþ1Þj�1=2
sinðhÞ cosðuÞ; ð8Þ

The Hamiltonian (4) is thus transformed into the top Hamiltonian,

Hðh;uÞ ¼ NK

2
1
2

uðcos hÞ2 � e cos h � sin h cos u

� �
: ð9Þ

which is closely related to the Josephson Hamiltonian. The cylindrical phase space
of the latter is described by the canonical coordinate n of (2), and its conjugate
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angle u: In the absence of bias, in the vicinity of the Equator, it is just the
pendulum Hamiltonian:

Hðn;uÞ � Un2 � 1
2

KN cos u : ð10Þ

In Fig. 1 we draw the constant energy contours Hðh;uÞ ¼ const of the top
Hamiltonian (9) for u ¼ 10 and e ¼ 0: Generally, the qualitative features of the
phase-space structure [23, 40], change drastically with the interaction strength. For
u [ 1 a separatrix appears provided jej\ec, where

ec ¼ u2=3 � 1
� �3=2

: ð11Þ

This separatrix divides the spherical phase space into ‘‘sea’’ and two ‘‘islands’’ as
shown in Fig. 1. In what follows, we focus on the case of zero bias. Accordingly we
distinguish between three regimes depending on the strength of the interaction [41]:

Rabi regime : u\1; ð12Þ

Josephson regime : 1\u\N2; ð13Þ

Fock regime : u [ N2: ð14Þ

In the Rabi regime the separatrix disappears and the entire phase-space consists of
the nearly linear ‘‘sea’’. By contrast, in the Fock regimes the ‘‘sea’’ has area less
than 1=N, and therefore it cannot accommodate quantum states. Thus in the Fock
regime phase space is composed entirely of two nonlinear components: the
‘‘islands’’ occupy the entire upper and lower hemispheres. Our main interest below
is in the intermediate Josephson regime where linear and non-linear regions
coexist and the dynamics is least trivial. This is the regime of interest to most
current BEC interferometers and luckily, precisely where semiclassical methods
are expected to be most effective.

0 5 10 15 20
−1

0

1

2

3

4

5

E

n 

WKB
numeric
analytic

Fig. 1 Contour lines for u [ 2. Sea levels are colored blue, Island levels are colored green, and
the Separatrix is colored red (left panel). Energy spectrum for N ¼ 20 and u ¼ 10: WKB energies
(red x) are compared with exact eigenvalues (blue +). Dashed lines indicate slopes xJ for low
energies, xx for near-separatrix energies, and xþ for high energies (right panel)
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3 WKB Quantization and Associated Frequencies

Due to the simplicity of the two mode BHH (9), it is possible to carry out its
semiclassical quantization analytically [32–34, 42–46] and acquire great insight on
the ensuing dynamics of the corresponding Wigner distribution [47, 50]. We begin
by accurately determining the quantum energy levels in the Josephson regime,
using the WKB prescription. Having a phase-space area of 4p spherical angle
supporting N þ 1 quantum states, the Planck cell area is,

h ¼ Planck cell area in steradians ¼ 4p
Nþ1

; ð15Þ

and the WKB quantization condition thus reads,

AðEmÞ ¼
1
2
þ m

� �
h; m ¼ 0; 1; 2; 3; :::; ð16Þ

where AðEÞ is the phase space area which is enclosed by the energy contour. Note
that it does not matter which area, of which ‘‘side’’ of the contour, is selected.
Away from the separatrix the levels spacing equals approximately to the classical
oscillation frequency:

xðEÞ � dE

dm
¼ 1

h
A0ðEÞ

� ��1

ð17Þ

In particular in the absence of interaction this is the Rabi frequency

xK � K ð18Þ

For strong interaction, in the bottom of the sea, it is the Josephson frequency

xJ �
ffiffiffiffiffiffiffiffiffiffiffi
NUK

p
¼

ffiffiffi
u

p
xK ð19Þ

while in the top of the islands it is

xþ � NU ¼ u xK ð20Þ

Finally, in the vicinity of the separatrix a more careful analysis is required, leading
to the h dependent result

xx � log
N2

u

� �� ��1

xJ ð21Þ

Comparing Eq. (21) to Eqs. (19) and (20) we realize that only in the vicinity of
the separatrix does the number of particles N become an essential parameter in the
spectral analysis of the dynamics at fixed u.
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4 The Preparations

Current experiments in matter-wave interferometry enable the preparation of
nearly coherent states of the SUð2Þ algebra, by fast splitting of the condensate [12].
Alternatively, number-squeezed states, approaching relative-number Fock states
for large separation, can be prepared by slow, adiabatic splitting [14]. So far, the
main focus of study in the Josephson regime, has been on coherent population
dynamics, contrasting coherent preparations located near the bottom of the linear
sea which exhibit Josephson oscillations around the ground state [8, 51–54] , with
coherent preparations located near the top of the nonlinear islands, which result
in self-trapped phase-oscillations around the ‘poles’ [8, 55]. Our focus here, is
on the interesting effects incurred in the fringe-visibility dynamics of coherent
preparations located on the separatrix and contrasting them with the more com-
mon ground-state, north-pole, and number-squeezed preparations.

4.1 Wigner Distributions

In order to gain semiclassical insight, it is convenient to represent each eigenstates
jEmi by a proper spin Wigner function [47, 50], which is a quasi-distribution that
dwells on the spherical phase space. In this representation these eigenstates cor-
responds to strips along the contour lines of H: In the same representation
Coherent states jhui are like a minimal Gaussian wavepackets, while Fock states
jni are like equi-latitude annulus. Note that the coherent state h ¼ 0 is also a Fock
state with all the particles occupying one site, while jn ¼ 0i is the Twin Fock state
with equal number of particles in both sites.

In Fig. 2 we plot the Wigner functions corresponding to the five preparations
under study. These include the NorthPole self-trapped state, the TwinFock state,
two equal-population coherent states that we call Zero (u ¼ 0) and Pi (u ¼ p,) and
a third coherent state preparation that we call Edge. The two latter states (Pi and
Edge) are both on-separatrix preparations. Note that in the Zero state all the
particles occupy the symmetric orbital, while in the highly excited Pi state all the
particles occupy the antisymmetric orbital.

Some of these preparations were experimentally realized and studied [8]. While
in the experimental work the emphasis was on contrasting Josephson-Oscillation
and Self-Trapping, with regard to near-Zero and near-NorthPole preparations, here
our main interest is in contrasting the Zero preparation with the on-separatrix
preparations Pi and Edge.

4.2 Local Density of States

In order to analyze the dynamics ensuing from the said preparations, we expand
the initial state as a superposition of the eigenstates jEmi: The probability of the mth
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eigenstate in the superposition is denoted PðEmÞ, and is known as the local density
of states (LDOS) with respect to the pertinent preparation. The LDOS of the
various preparations is illustrated in Fig. 3 and the line shape can be determined
analytically via a semiclassical calculation [32, 35]. Schematically the results can
be summarized as follows:

PðEÞ
			
TwinFock

� 1 � 2E

NK

� �2
" #�1=2

ð22Þ

PðEÞ
			
Zero

� I
E � E�

NU

� �
ð23Þ

PðEÞ
			
Pi
�K

E � Ex

NU

� �
ð24Þ

PðEÞ
			
Edge

� exp �1
N

E � Ex

xJ

� �2
" #

ð25Þ
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Fig. 3 The LDOS of N ¼ 500 bosons with u ¼ 4, for TwinFock, Zero, Pi, and Edge preparations
(left to right). The horizontal axes are E � E x and x=xJ : The lines in the LDOS figures are based
on a semiclassical analysis, while the circles are from the exact quantum calculation. Note the
outstanding difference between the spectral support of Zero and Pi preparations compared with
continuous-like support in the case of Edge and Fock preparations
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Fig. 2 An illustration of the NorthPole (h ¼ 0) coherent state preparation (left), the TwinFock
(n ¼ 0) preparation (middle), and of Pi (‘‘p’’), Zero (‘‘0’’) and Edge (‘‘e’’) preparations (right)
using Wigner plots on a sphere. The left and middle panels are a 3D plots, while the right panel is
a Mercator projection of the sphere using ðu;nÞ coordinates
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where I and K are Bessel functions. It is important to observe that the classical
energy scales are NK and N2U: Accordingly only the line shape of the TwinFock
LDOS has a purely classical interpretation. In contrast to that, the width of the
coherent preparations is determined by the quantum uncertainty.

4.3 Participation Number

The qualitative features of the fringe-visibility dynamics, given some initial
preparation, are determined by its participation number defined as:

M �
X

m

PðEmÞ2

" #�1

¼ number of participating levels in the LDOS ð26Þ

In the case of a TwinFock preparation, the Wigner function is spread all over the
equator of the spherical phase-space and thus overlaps with all the states in the sea
up to the separatrix level (the equator intersects with all sea trajectories in Fig. 2
but with no island trajectory). Therefore we expect M to be of order N, with
classical (N independent) prefactor that reflects the relative size of the sea:

M ¼ ClassicalPrefactor � N; ½TwinFock preparation� ð27Þ

In the case of a coherent preparation, the Wigner function is a minimal wavepacket

that has width rn ¼ ðN=2Þ1=2: If the Fock states jni were the eigenstates of the
Hamiltonian, as they are in the Fock regime, we would get

M ¼ ð2pNÞ1=2; ½Coherent preparation; n basis�; ð28Þ

for all three coherent preparations. However in the Josephson regime the eigenstates
are jEmi, and therefore the differences between the LDOS of the three coherent
states Zero, Pi, and Edge, are set by the ratio between rn and the width of the
separatrix (Dn ¼ NK=U). The ratio rn=Dn equals the dimensionless semiclassical

parameter ðu=NÞ1=2: If this ratio is larger than unity the distinction between the
Zero, the Pi and the Edge preparations is blurred, and we expect to have the same
participation number. Indeed plotting the participation number of these three initial
states (Fig. 4), we see that at the strong interaction limit M � ð3=2ÞN1=2: This is
roughly half compared with Eq. (28), and reflects the odd-even selection rule that
removes half of the overlaps (the semiclassical states do not have a well-defined
parity with respect to site substitution, whereas the actual quantum eigenstates are
constructed from their odd and even superpositions. The participating constituents
are those that have the same parity as that of the preparation).

For weaker interaction, when the semiclassical parameter ðu=NÞ1=2 is smaller
than unity the different nature of the Zero, the Pi and the Edge preparations
expresses itself. Now we have to account for both the width of LDOS line shape
and the mean level spacing. This leads to the following results:
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M �
ffiffiffi
u

p
; ½Zero preparation� ð29Þ

M � log
N

u

� �� �
ffiffiffi
u

p
; ½Pi preparation� ð30Þ

M � log
N

u

� �� � ffiffiffiffi
N

p
; ½Edge preparation� ð31Þ

The striking point here is that the Pi preparation resembles the Zero preparation,
rather than its sister separatrix Edge state. This seems at first sight in contradiction
with semiclassical intuition: one would naively expect that wavepackets that have the
same energy and reside in the same phase space region (separatrix) would behave
similarly. This is not the case, as we see here, and later in the dynamical analysis. The
Pi state is actually closer to the Zero preparation, as both have a small participation
value. The resemblance of the Pi and Edge preparations is only detectable in the
formal limit N ! 1: In other words, because of the N dependence of M it is ‘‘easier’’
to approach the ‘‘classical limit’’ in the case of an Edge preparation.

5 Coherence Dynamics

5.1 Classical, Semiclassical, and Quantum Dynamics
of the Bloch Vector

In this section, we describe the dynamics of single-particle coherence for the
preparations of Sect. 4. The lowest-order approximation is the mean field
dynamics. It is generated by replacing the operators in the Hamiltonians of
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Fig. 4 The participation number M as determined from the LDOS for N ¼ 100ðCircleÞ;
500ðSquareÞ, and 1000ðDiamondÞ particles. The left panel contains the Zero (lower set in blue)
and Pi (upper set in red) preparations, while the Edge preparation is presented in the right panel.
Note the different vertical scale. In the crudest approximation we expect in the Edge case
M �N1=2, while in the Pi case M � N1=2 as long as ðu=NÞ � 1
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Eqs. (1), (4), or (9) by c-numbers, thus obtaining a set of classical equations of
motion for them. For example, in the spin representation,

_Jx ¼ ðE � 2UJzÞJy;

_Jy ¼ KJz � ðE � 2UJzÞJx;

_Jz ¼ �KJy:

ð32Þ

These Gross-Pitaevskii equations (GPE) describe the classical evolution of a point
in phase space, which is a single trajectory. The classical evolution assumes that
the state of the system is coherent at all times, so that the single-particle coherence
is fixed to unity and the Wigner distribution always resembles a minimal Gaussian
(the center of which is the traced point). By contrast, the semi-classical theory
describes the classical evolution and subsequent deformation of a distribution in
phase space, according to the GPE equations (34). Finally the Quantum theory is
obtained by direct solution of the Schrödinger or Heisenberg equations with the
Hamiltonians (1), (4), or (9). This full quantum solution adds recurrences and
fluctuations which are absent from the classical and semiclassical pictures and
result from the discreteness of the energy spectrum. The dimer system is inte-
grable, and therefore the WKB method provides a very good basis for the analysis.
Fig. 5 illustrates the agreement between the quantum evolution of the Wigner
function, starting from the TwinFock state [33, 35] and the semiclassical evolution
of a corresponding distribution. It should be emphasized that in the Wigner-Wyle
formalism any operator Â is presented by the phase-space function AWðXÞ, and the
calculation of an expectation value can be done in a classical-like formulation:

Â

 �

¼ trace½q̂Â� ¼
Z

dX
h

qWðXÞAWðXÞ : ð33Þ

The single-particle density matrix of the two-mode system can be presented using
the Bloch vector,

~S ¼ h~Ji=ðN=2Þ ¼ ðSx; Sy; SzÞ; ð34Þ
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Fig. 5 The evolving quantum state of N ¼ 40 bosons with u ¼ 5 for TwinFock (n ¼ 0)
preparation. The units are such that K ¼ 1 and the time is t ¼ 4: On the left—the Wigner function
of the evolved quantum state. On the right— the corresponding classical evolution
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Whereas previous work [8] has focused on the mean-field dynamics of the
occupation difference ðN=2ÞhSzi, here we study the single-particle coherence
manifested in the one body purity,

OneBodyPurity ¼ ð1=2Þ 1 þ hSxi2 þ hSyi2 þ hSzi2
h i

; ð35Þ

and the transverse component of the Bloch vector, the fringe visibility,

gð1Þ
12 ¼ hSxi2 þ hSyi2

h i1=2
: ð36Þ

This quantity reflects the fringe-contrast over multiple runs of an experiment in
which the particles from the two confined modes are released and allowed to inter-
fere. In Fig. 6 we plot examples for the evolution of the Bloch vector, and observe
significant differences in the dynamical behavior of the Zero, Pi, and Edge prepa-
rations. Our objective is to understand how the dynamics depends on the dimensional
parameters: the ‘‘classical’’ parameter u and the ‘‘quantum’’ parameter N.

In accordance with the opening paragraph of this section, we see in Fig. 6 that
in the semiclassical simulation the fluctuations always die after a transient. This
should be contrasted with both the classical (single trajectory) behavior, and the
quantum behavior. In the latter quantum case the wavepacket is a superposition of
M [ 1 eigenstates, and consequently there are persistent fluctuations that depend
on the ‘‘quantum’’ parameter N. In what follows, we will quantitatively analyze the
characteristic features of the quantum dynamics resulting from the three coherent
preparations, including the frequency of oscillation, its mean long-time value, and
its RMS amplitude, and compare the analytic predictions to the numerical results
at various values of the characteristic parameter u=N.

5.2 Characteristic Frequencies

The typical frequency of the fluctuations is the simplest characteristic that
differentiate the three panels of Fig. 6. The numerically-obtained frequency xosc

as a function of the interaction parameter u=N is displayed in Fig. 7. In the
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Fig. 6 The variation of SxðtÞ with time for N ¼ 40 particles with u ¼ 5, for Zero (left), Pi
(middle), and Edge (right) preparations. Note the different vertical scale. The dashed-dotted lines
are based on semiclassical simulation
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classical picture xosc should be related to the Josephson frequency xJ at the
bottom of the sea, while quantum mechanically it reflects the level spacings of
the participating levels. A straightforward analysis leads to the followings
estimates:

xosc � 2xJ ½Zero� ð37Þ

xosc � 1� log
N

u

� �� ��1

2xJ ½Pi� ð38Þ

xosc � 2� log
N

u

� �� ��1

2xJ ½Edge� ð39Þ

xosc �
u

N

� �1=2
2xJ ½u 	 N� ð40Þ

The first three expressions apply for ðu=NÞ\1, where the differences between the
preparations is distinct. The last expression refers to the regime ðu=NÞ[ 1 where
the differences are blurred and the three preparations become equivalent equatorial
states (as clearly evident from Fig. 7). Note that due to the mirror symmetry of
the Zero preparation the expected frequency should approach 2xJ , while for the
Pi preparation it is bound from below by 2x x: Both frequencies are indicated in
Fig. 7 by dashed lines.

0.01 1 100
u/N

1

10

w
os

c/w
J

Fig. 7 The mean frequency of the SxðtÞ oscillations versus u=N for , and 1000ðdiamondÞ
particles. The preparations are (upper to lower sets of data points): Zero (blue), Edge (magenta),
and Pi (red). The weaker-interaction theoretical predictions (37–39), which are doubled due to
mirror symmetry, are represented by blue, red, and magentadashed lines, while the strong
interaction prediction (40) is represented by a black dash-double-dotted line
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5.3 Long Time Average

Next we examine the long time average, plotted in Fig. 8 as a function of
the characteristic parameter. Unlike the fluctuations around it, this average
value does not reflect the quantization of energy and therefore a purely semi-
classical analysis is adequate. The naive expectation might be that coherence
would be diminished due to phase spreading (aka ‘‘phase diffusion’’). This is
indeed the case in the Fock regime, leading to hSxi1 � 0:However, the situation is
rather more complicated in the Josephson regime, where hSxi1 is determined by
u=N: The semi-classical phase space picture allows to calculate the phase distribu-
tion PðuÞ that pertains to the long time ergodic-like distribution (see for example
Fig. 5). This distribution is determined by the LDOS. Then we use the integral

Sx �
Z

cosðuÞPðuÞdu; ð41Þ

to evaluate the residual coherence. This procedure results in the following
predictions:

Sx � 1=3 ½TwinFock� ð42Þ

Sx � exp½�ðu=NÞ� ½Zero� ð43Þ

Sx � �1 � 4= log
1

32
ðu=NÞ

� �
½Pi� ð44Þ

Thus, the coherence of the Zero preparation is robustly maintained as long as
u=N\1, corresponding to the u ¼ 0 phase locking of the two condensates due to

0.01 1 100
u/N

-1

-0.5

0

0.5

1

S
x

10010.01
u/N

0.001

0.01

0.1

1

N
1/

4  [
S x

] R
M

S

100 1000N
0.01

0.1

[S
x] R

M
S

~N
-0.26

~N
-0.09

Fig. 8 Left: The long-time average of SxðtÞ versus u=N for , and 1000ðdiamondÞ particles. The
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(magenta), and Pi (red). The symbols are used for the quantum results and the dashed lines are
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regime 1 � u � N2, and therefore, for a given u=N range, becomes better for large N. Right: The
long time RMS of SxðtÞ for the three coherent preparations (lower to upper sets): Zero (blue),
Edge (magenta), and Pi (red). In the inset, the RMS of SxðtÞ for Edge (triangle) and Pi
(down-pointing triangle) preparations is plotted versus N while u ¼ 4 is fixed
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the weak coupling. By contrast, the Pi and Edge coherence is far more fragile
throughout the Josephson regime [32]. Note that the phase locking of the Pi state
take place only in the Rabi-regime (no separatrix). As evident from the Twin-Fock
self-induced coherence (46), one-particle coherence should not necessarily be lost
due to interactions, but could actually be built [33]. This course of events is
somewhat similar to the coherent relaxation of a system to its ground state at low
temperatures: the ground state has higher purity compared with the initial
preparation.

5.4 RMS of the Fluctuations

Finally, we turn to discuss the RMS of the fluctuations, which constitute a
fingerprint of energy quantization. General reasoning implies that the classical
fluctuations are suppressed by factor M:

RMS Ah it

� 
¼ 1

M

Z
~CclðxÞdx

� �1=2

: ð45Þ

In this formula ~CclðxÞ is the classical power spectrum of an ergodic trajectory.
What we want to highlight is the quantum N dependence. It is important to clarify
that in the semi-classical limit M ! 1, and therefore the fluctuations are
suppressed. We emphasize again that the quantum behavior is intermediate
between the coherence-preserving classical (single trajectory) dynamics and
the strong coherence-attenuation of the semi-classical (infinite M) dynamics.

The dependence of M on N is remarkably different for the various preparations.
In the case of the TwinFock preparation M �N and therefore the RMS is inversely
proportional to N1=2: This should be contrasted with the case of the Pi and the
Edge preparations:

RMS SxðtÞ½ � �N�1=2 ½TwinFock� ð46Þ

RMS SxðtÞ½ � �N�1=4 ½Edge� ð47Þ

RMS SxðtÞ½ � � ðlogðNÞÞ�1=2 ½Pi� ð48Þ

We further note that in the Pi case the leading dependence of the participation number
is on the classical parameter (M � u1=2), unlike the case of the Edge preparation
where the leading dependence in on the quantum parameter (M �N1=2). The results
of the RMS analysis are presented in Fig. 8. The implied N1=4 scaling based on Eq.
(45) is confirmed. The dashed lines in the inset are power-law fits that nicely agree
with the predictions of Eq. (46).
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6 Summary

Using semiclassical machinery, we have analyzed the temporal fluctuation of the
single-particle coherence, and of the fringe-visibility, in the Bose Josephson
model. While recent experiments in the Josephson regime have essentially focused
on mean-field population dynamics [8], with coherent preparations at the spectral
extremes (self trapping versus Josephson oscillations), here we highlight intricate
effects that can be found by studying the coherence-dynamics in the intermediate
separatrix regime. We predict significant differences in the transverse relaxation of
seemingly similar coherent initial states, differing by the initial relative-phase or
by their location along the separatrix, as well as the interaction-induced phase-
locking of two initially separated BECs due to the combined effect of interaction
and coupling. The semiclassical WKB quantization facilitates the calculation of
the LDOS for the pertinent preparations, and thus the estimation of the number of
participating eigenstates. This allows for a detailed quantitative analysis of the
time evolution of the fringe visibility function. The obtained analytic expressions
are found to be in a very good agreement with the results of numerical
calculations.
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Temperature Effects on the Quantum
Coherence of Bosonic Josephson Junctions

B. Juliá-Díaz, J. Martorell and A. Polls

Abstract We analyze the effects of temperature on the properties of a system of
ultracold atoms confined by a double-well potential. We consider the case of
repulsive interactions and review the different approximations to the exact many-
body results.

1 Introduction

Our experimental control on trapped ultracold atomic systems is constantly
improving, allowing an impressive degree of control on both the microscopic, e.g.
atom–atom scattering length, and macroscopic, e.g. external traps [1, 2], param-
eters. A conceptually simple but rich configuration which has been already engi-
neered is that of condensing a bosonic atomic cloud on a double-well external
potential [3–5]. This has allowed to explore the effect of atom–atom interactions
on the tunneling dynamics of the atomic cloud, as predicted by [6, 7]. The
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properties of this coherent tunneling dynamics can be predicted by means of
semiclassical approximations to the two-site Bose-Hubbard (BH) model. Several
bosonic aggregates have been found to be well described by the BH Hamiltonian,
in particular condensates confined by external double-well potentials [8] or con-
densates with two internal degrees of freedom confined by harmonic traps [9].

During the last years the interest has shifted towards preparing experimental
set-ups exhibiting quantum properties beyond the semiclassical ones: cat-like
states, and squeezed states [8]. In simple terms, a cat-like state corresponds to a
many-body quantum state where the system is described by a macroscopic
superposition of two states each of them mostly localized on one well. The most
extreme case is the so-called NOON state, in which the state of the system is an
equal weight superposition of two many-body states, each of which consisting on
all particles populating a single well. Cat-like states appear in systems with finite
number of atoms N as quasidegenerate ground states in the case of attractive
atom–atom interactions [10]. The energy difference between the ground state and
the first excited state decreases as 1=N!, thus producing an almost exact two-fold
degenerate ground state manifold as N is increased.

Recently it has also been noted that the existence of strongly correlated cat-like
many-body ground states in the systems at finite N is directly linked to the
presence of a degenerate ground state in the semiclassical/large N description of
the system. In the N ! 1 limit the system exhibits a quantum phase transition,
which can be identified by the dependence of the imbalance of population between
both wells, which shows a characteristic bifurcation, as a function of the inter-
action between the atoms [11]. In this limit, by increasing the atom–atom inter-
action strength, the system exhibits a spontaneous symmetry breaking in which the
ground state of the system evolves from having an equal population on both sites
to being mostly localized on one of the two sites of the double well.

In this chapter we review the thermal effects, both in the exact BH and by
means of approximate expressions, on the quantum coherence of the system for the
case of repulsive interactions. Exact numerical solution of the BH are compared to
previously derived approximate expressions [12, 13] and to expressions derived
within the large-N model of Refs. [14, 15]. First, we describe the theoretical
framework in Sect. 2. Then, in Sect. 3 we discuss thermal effects first in the
exactly-solvable non-interacting case, and finally in the interacting case, com-
paring semiclassical results with the 1=N model described in Sect. 2 and with the
exact BH results. Finally, in Sect. 4 a summary and conclusions are provided.

2 Two Site Bose-Hubbard Hamiltonian

We will consider a many-body system of bosons described by a two-site
Bose-Hubbard Hamiltonian, Ĥ, of the form,

Ĥ ¼ �Jðây1 â2 þ â
y
2 â1Þ þ

U

2
n̂1ðn̂1 � 1Þ þ n̂2ðn̂2 � 1Þð Þ; ð1Þ
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where J is the hopping strength, taken positive, and U is the atom–atom interaction
strength. U [ 0 ðU\0Þ corresponds to repulsive (attractive) atom–atom interac-

tion. ây
i creates a particle in site i, the number operator of particles on site i is

defined as n̂i ¼ â
y
i âi. It is customary to define three operators [16, 17],

Ĵx ¼
1
2
ðây1 â2 þ â

y
2 â1Þ

Ĵy ¼
1
2i
ðây1 â2 � â

y
2 â1Þ

Ĵz ¼
1
2
ðây1 â1 � â

y
2 â2Þ;

ð2Þ

which satisfy angular momentum commutation relations, provided ½âi; â
y
j � ¼ di;j.

Using these operators the Hamiltonian reads,

Ĥ ¼ �2JĴx þ UĴ2
z þ U

N2

4
� N

2

� �
: ð3Þ

The corresponding time dependent Schrödinger equation is written as,

ıotjWi ¼ ĤjWi: ð4Þ

An appropriate many-body basis for this bosonic system is the Fock basis [16],
fjN1;N2ig, with N1 þ N2 ¼ N, being Ni the number of atoms in site i. The total
number of atoms, N, is taken to be constant. A general many-body state, jWi, can
be written in this basis as,

jWi ¼
XN

k¼0

ckjk;N � ki: ð5Þ

The phase coherence of a many-body quantum state is defined as,

a ¼ hâi; where â ¼ 1
N
ðây

1â2 þ ây
2â1Þ ¼ 2

Ĵx

N
; ð6Þ

and can be experimentally measured [4]. The phase coherence takes values from
-1 to 1. The two extreme values correspond to the two coherent states

WðþÞ � Wp=2;0 ¼
�

1ffiffi
2

p ðj1i þ j2iÞ
��N

and Wð�Þ � Wp=2;p ¼
�

1ffiffi
2

p ðj1i � j2iÞ
��N

,

where j1i � â
y
1 jvaci and j2i � â

y
2 jvaci. A coherent state is defined as a state in

which all atoms populate the same single particle state.
In real experiments the temperature of the cloud is not absolute zero. In this

case, the quantum mechanical description of the system is given by a mixed state
where the different energy levels are populated according to a thermal distribution.
In the canonical ensemble the thermal average of an operator Â, is
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hÂiT ¼ Z�1 Tr e�bĤ Â; ð7Þ

where the partition function, Z, is

Z ¼ Tr e�bĤ ð8Þ

and b ¼ 1=ðkBTÞ.

2.1 1/N Expansion of the Bose-Hubbard Model

In Refs. [14, 15], 1=N approximations to the Bose-Hubbard Hamiltonian have
been presented. They rely on using a systematic expansion on h � 1=N of the
relevant expectation values. For states in the neighborhood of the ground state the
variation with k of the ck coefficients is smooth. That is, ck � ck�1. For the topmost
excited states the opposite is true: the signs of the ck alternate with k and

ck �ð�Þkck�1. As explained in Refs. [14, 15] two different semiclassical Hamil-
tonians emerge depending on the regime considered. The two extreme cases

correspond, in the non-interacting case, to states close to the coherent states WðþÞ

and Wð�Þ defined in the previous section.
The equations that govern the dynamics of states close to these two extremes

are,

ihotwðzÞ ¼
�
	 2h2oz

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
oz þ V�ðzÞ

�
wðzÞ � HNwðzÞ ð9Þ

with either wðx ¼ k=NÞ ¼
ffiffiffiffi
N

p
ck or wðx ¼ k=NÞ ¼

ffiffiffiffi
N

p
ð�Þkck, and

V�ðzÞ ¼ ð1=2Þcz2 	
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
1 þ h

1 � z2

� �
; ð10Þ

where x is a continuous variable which interpolates k=N, and z ¼ 2x � 1 is the
population imbalance. h ¼ 1=N is the expansion parameter, c � NU=ð2JÞ, and t is
the time measured in units of J. See Fig. 1 for two representative examples of
V�ðzÞ. The wave function wðzÞ is re-normalized as,

Z1

�1

jwðzÞj2 dz ¼ 1: ð11Þ

The expression for V� contains only terms up to first power in the small
parameter h, as explicitly given in Eq. (9) of Ref. [15]. The linear term in h will
play a significant role when studying the coherence of the system, which for a
broad range of c values is fairly close to 1.
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Equation (9) can be regarded as a Schrödinger-like equation defined on the
closed interval, z 2 ½�1; 1�. The equation provides an important insight into the
quantum behavior of the system, essentially builds on the usual semiclassical
Hamiltonian, which is equal to VðzÞ, and quantizes it, through the kinetic term,
�2h2oz

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
oz. An important feature of this approximation is that it maps the

many-body problem onto that of a single fictitious particle whose dynamics is
governed by this Schrödinger-like equation.

In this approximation the coherence of a state can be computed as [18],

hâi ¼ �Es þ 1
2
c
Z1

�1

dz z2 jwðzÞj2 ð12Þ

which relates the energy of the system Es, its coherence a, and the dispersion of the
population imbalance.

The semiclassical 1=N models corresponding to Vþ and V�, provide very
accurate descriptions of the lowest part and of the highest part of the spectrum,
respectively. See for instance Fig. 2, where two important features of the ground
state: its coherence and the dispersion of the population imbalance obtained with
the 1=N model are compared to the exact values.

As can be seen in Fig. 1, the potential Vþ which enters when considering the
lower part of the spectrum is almost a parabolic-like potential. Thus, the low part
of the spectrum is expected to be harmonic-oscillator-like. In contrast, V� exhibits
a clear double-well structure, predicting the existence of quasidegenerate states in
the higher part of the spectrum. These two effective potentials capture properly
both limiting cases and agree well with the known spectral properties of the BH
Hamiltonian, see for instance [11, 17, 19]. It is linear for the lower excitations and
quasi-double degenerate for the higher part of the spectrum. It should be noted
however, that each of the semiclassical models predicts correctly only a different
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Fig. 1 (left) Potential VþðzÞ for c ¼ 1:5 (solid). (right) Potential �V�ðzÞ for c ¼ �1:5 (solid).
The dashed lines correspond to the parabolic approximation to the potential described in the text
(Color figure online)
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part of the spectrum. Therefore they will fail to capture properties in which the full
spectrum is proved, as will be the case when high temperatures are considered.

3 Finite Temperature Effects

In this section we will consider the effect of temperature on the coherence of the
system. Our aim is to compare different approximations [4, 12, 13, 20], which are
expected to be valid in different regimes, e.g. non-interacting, low temperature,
large atom–atom interactions, high N, etc.

3.1 The Exactly Solvable Non-Interacting System

The non-interacting case provides an important limiting scenario and can be
solved exactly for any N.

In this case, Ĥ ¼ �2JĴx and the eigenstates are those of Ĵx: Ĵxjqi ¼ qjqi, with
q ¼ �N=2; . . .;N=2, which can also be represented in the basis defined in Eq. (5).
The eigenenergies are Eq ¼ �2Jq. Since J [ 0 the ground state corresponds to
q ¼ N=2, whereas the most excited state has q ¼ �N=2. The partition function is
given by

Z ¼
X�N=2

q¼N=2

e�bEq ¼ sinhðbJðN þ 1ÞÞ
sinh bJ

: ð13Þ
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Fig. 2 Deviation of the coherence of the ground state of the system Nð1 � hâiÞ, (a), and
dispersion of the population imbalance Nhz2i, (b) as a function of c for N ¼ 60, 100, 200 and 500
obtained by means of the Bose-Hubbard model, symbols. The lines are the predictions of the 1=N
model, see Ref. [18] for explicit analytical expressions (Color figure online)
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For the state jqi, it is immediate that hâiq ¼ 2q=N. Therefore it is easy to show that
the thermal average can be exactly computed,

hâiT ¼ 1
Z
X

q

2
N

q e2bJq ¼ N þ 1
N tanhðbJðN þ 1ÞÞ �

1
N tanhðbJÞ : ð14Þ

Two relevant limits can be easily identified: (a) limT!0hâiT ¼ 1. (b) when
T ! 1:

hâiT ’ 1
3
ðN þ 2ÞbJ þOðb3Þ ! 0; ð15Þ

as expected, as T increases the coherence decreases, making the system more
classical.

For large N it is possible to derive very simple expressions. Assuming that
N 
 1, one can replace sums by integrals. For instance, in Eq. (13):

Z ’
ZN=2

�N=2

dq e2bJq ¼ N

bEJ
sinhðbEJÞ; ð16Þ

where EJ � NJ. For the coherence factor we now have:

hâiT ¼ 1
NJ

o

ob
lnZ ¼ � 1

bEJ
þ 1

tanh bEJ
: ð17Þ

The latter expression agrees with the semi-classical expression given in Ref. [13]
for the non-interacting case.

It is easy to check that ohâiT=ob[ 0 for all b [ 0. And thus that hâiT decreases
smoothly when T increases. It is also immediate that hâiT starts with zero slope at
T ¼ 0 ðb ! 1Þ: These features are clearly reflected in Fig. 3.

As seen above the spectrum runs only from q ¼ N=2 (ground state) to
q ¼ �N=2 (highest excited state). Let us consider the differences that arise when
the spectrum is extended to q ¼ �1. As expected these differences appear when
the temperature is increased above a certain limit that we will quantify. The
partition function for a semiinfinite equally spaced spectrum is:

Zð1Þ ¼
XN=2

q¼�1
e2bJq ¼ 2 expðbJðN � 1ÞÞ

sinh bJ
ð18Þ

which should be compared to Eq. (13). Similarly:

hâið1Þ
T ¼ 1

NJ

o

ob
lnZð1Þ

� �
¼ N þ 1

N
� 1

N tanh bJ
; ð19Þ
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instead of Eq. (14). Then, when T ! 1; hâið1Þ
T ’ ððN þ 1Þ=N � 1=ðbEJÞÞ 6¼ 0,

in strong disagreement with Eq. (15) above. Figure 3 shows that, as expected,
extending the spectrum to infinity is only a good approximation at small tem-
peratures. Note that 1=ðb½Eðq ¼ �N=2Þ � Eðq ¼ N=2Þ�Þ ¼ 1=ð2bEJÞ, which is
roughly the value at which the two sets of curves in Fig. 3 begin to disagree.

3.2 Thermal Effects in the Interacting Case

Now lets consider the case of non-zero interaction between the atoms.

3.2.1 Results from the 1/N Model

We consider the case c [ � 1 for which the potential in the semiclassical Ham-
iltonian, Eq. (10), is well approximated by a parabolic function. The stationary
states and energies are written in this approximation as: HswmðzÞ ¼ EmwmðzÞ,
m ¼ 0; 1; 2; . . ., so that

Em ¼ hHsim ¼ �hâiðsÞm þ 1
2

chz2im: ð20Þ
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Fig. 3 Coherence as a function of temperature for the non-interacting case. We compare the
numerical BH results (symbols), the exact analytical formula (14), solid line, and the prediction
for a spectrum of infinite equally spaced levels, Eq. (19), dashed-line
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When c [ � 1 it is a good approximation to set
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
’ 1 in the kinetic energy

term, and to expand the potential:

VðzÞ ¼ 1
2
cz2 �

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
� h

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p ’ �1 � h þ 1
2
ðc þ 1 � hÞz2: ð21Þ

This leads to a parabolic approximation in which we have a harmonic-oscillator-like

Hamiltonian with m� ¼ 1=4, x ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ c � h

p
and b ¼

ffiffiffiffiffi
2h

p
=ð1 þ c � hÞ1=4.

Therefore

Em ¼ 1 þ h þ h
�c=2 � 1 þ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c þ 1 � h

p ð2m þ 1Þ: ð22Þ

We introduce auxiliary constants:

Em � E0 þ 2Fm and hâiðsÞm � Aþ Bm: ð23Þ

where,

E0 ¼ �1 � h þ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c þ 1 � h

p
; F ¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c þ 1 � h

p
; A ¼ 1 þ h þ h �c=2�1þhffiffiffiffiffiffiffiffiffiffiffi

cþ1�h
p , and

B ¼ 2h �c=2�1þhffiffiffiffiffiffiffiffiffiffiffi
cþ1�h

p . Using the parabolic approximation we calculate the partition

function following a similar procedure as for the c ¼ 0 case,

Z ¼ e�bðE0þFNÞ sinhðbFðN þ 1ÞÞ
sinh bF

ð24Þ

and the thermal average of the coherence,

hâiðsÞT ¼ A� B
2

N þ 1
tanh bFðN þ 1Þ �

1
tanh bF

� N

� �
: ð25Þ

One can also derive expressions similar to Eqs. (16) and (17) for the large N limit.1

In Fig. 4 exact Bose-Hubbard results for the coherence of the system are
compared to the predictions of Eq. (25). The analytic expression captures very
well the T ! 0 limit, with a good prediction of the initial curvature and its
dependence on c. Also, the validity of the analytic expression extends to higher T
as the number of atoms is increased. As noted by comparing results at N ¼ 100
(left) and N ¼ 200 (right).

Taking the c 
 1 limit the above results lead to the Bogoliubov approximation
presented in Ref. [20], where the Bogoliubov excitations around the ground state
are considered.

1 Although the physics is of course different, the mathematical approach followed here is the
familiar one in the theory of paramagnetism. See e.g. the textbooks of Ashcroft and Mermin [21]
or Kittel [22]. In particular Eqs. (14), and (25) involve the same Brillouin function that plays a
central role in the study of paramagnetic ions.
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3.2.2 Previous Approximations

In Ref. [12] the authors provide an expression for the coherence as a function of
temperature valid in the limit in which the interaction energy is much larger than
the thermal energy, kBT :2 They find,

aS:P:ðTÞ ¼
I1½NJ=ðkBTÞ�
I0½NJ=kBTÞ� ð26Þ

where IjðxÞ are the spherical Bessel functions. More recently, Ref. [13] presented
an approximate expression of haiT ,

aG:S:ðTÞ ¼
R 1
�1 dx x I0½�ð1 � x2Þ=4�edxþ�x2=4

R 1
�1 dx I0½�ð1 � x2Þ=4�edxþ�x2=4

ð27Þ

where � ¼ N2U=ð2kBTÞ and d ¼ NJ=ðkBTÞ. This approximation is justified when
d; � � N, and N is large. As limit cases, Eq. (27) reproduces the semiclassical
expression, Eq. (26) when � 
 1, and Eq (16) when � ¼ 0.

In Fig. 5 we compare the results from Eq. (27) to the exact Bose-Hubbard
results and to the results obtained from the harmonic oscillator approximation,
valid for low temperatures. Equation (27) predicts accurately the large temperature
behavior when c ¼ 10 and N ¼ 100.

In contrast it fails to reproduce the low temperature behavior, which involves
the thermal population of a few number of states, as seen in the comparison in
Fig. 4.
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Fig. 4 Low temperature behavior of the coherence for different values of c for N ¼ 100 (left)
and N ¼ 200 (right). The comparison includes: BH results, symbols, and 1=N results in the
parabolic approximation, Eq. (25), solid lines. For N ¼ 100 we also compare the results of
Eq. (27) [13], dashed lines

2 Note that in Refs. [23, 24] experimental data are measured for EC ¼ 0:016 nK; EJ ¼ 0:43 nK
and N ¼ 3000 atoms. Thus EJ=ðECN2Þ ¼ 2:986 � 10�4 � 1. In our notations:
EJ=ðECN2Þ ¼ ðJNÞ=ð2UN2Þ ¼ 1=ð4cÞ, and indeed this implies that c 
 1 in their experiment.
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4 Summary and Conclusions

We have presented a brief rendition of the thermal effects on the coherence of
Bose-Einstein condensates trapped in double-well potentials. The aim has been to
compare the exact quantum results, obtained diagonalizing the two-site Bose-
Hubbard Hamiltonian, with previous approximate expressions present in the lit-
erature and with the semiclassical 1=N expansion, which correctly predicts the
quantum properties of the ground state of the system. We have shown that the
approximate models developed in Refs. [12, 13] describe very well the loss of
coherence due to thermal effects in the bosonic Josephson junction. In contrast, the
1=N provides an accurate description of the low-temperature regime in which few
levels of the Hamiltonian are thermally populated, and therefore the quantum
many-body effects are more important. In the large c limit, this model recovers the
previously derived Bogoliubov description presented in Ref. [20].
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Multiple Fluxon Analogues and Dark
Solitons in Linearly Coupled
Bose–Einstein Condensates

M. I. Qadir, H. Susanto and P. C. Matthews

Abstract Two effectively one-dimensional parallel coupled Bose–Einstein con-
densates in the presence of external potentials are studied. The system is modelled
by linearly coupled Gross–Pitaevskii equations. In particular, the interactions of
grey-soliton-like solutions representing analogues of superconducting Josephson
fluxons as well as coupled dark solitons are discussed. A theoretical approximation
based on variational formulations to calculate the oscillation frequency of the
grey-soliton-like solution is derived and a qualitatively good agreement with
numerics is obtained.

1 Introduction

The concept of electron tunnelling between two superconductors separated by a
thin insulating barrier predicted by Josephson [1] has been extended relatively
recently to tunnelling of Bose–Einstein condensates (BECs) across a potential
barrier by Smerzi et al. [2–4]. Such tunnelling has been observed experimentally
where a single [5, 6] and an array [7] of short Bose–Josephson junctions (BJJs)
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were realized. The dynamics of the phase difference between the wavefunctions of
the condensates [2–4, 8–11] resembles that of point-like Josephson junctions [12].

Recently a proposal for the realization of a long BJJ has been presented by
Kaurov and Kuklov [13, 14]. Similarly to superconducting long Josephson junc-
tions, one may also look for an analogue of Josephson fluxons [15] in this case. It
was shown in [13, 14] that fluxon analogues are given by coupled dark-soliton-like
solutions, as the relative phase of the solutions has a kink shape with the topo-
logical phase difference equal to 2p. Moreover, it was emphasized that fluxon
analogues (FAs) can be spontaneously formed from coupled dark solitons due to
the presence of a critical coupling at which the two solitonic structures exchange
their stability. The idea of FAs in tunnel-coupled BECs is then extended to rota-
tional FAs in the ground state of rotating annular BECs confined in double-ring
traps [16]. The work in [13, 14] was extended in [17] where the existence and the
stability of both FAs and the coupled dark solitons were investigated in the
presence of a magnetic trap.

In this chapter, we consider the existence and the stability of multiple FAs and
dark solitons in two coupled cigar-shaped condensates in the presence of a mag-
netic trap along the elongated direction. The system is modelled by the normalized
coupled Gross–Pitaevskii equations

iwjt
¼ � 1

2
wjxx

þ jwjj
2wj � q0wj � kw3�j þ Vwj; ð1Þ

where wj; j ¼ 1; 2; is the bosonic field, and t and x are the time and axial coor-
dinate, respectively. Here, we assume that the parallel quasi one-dimensional
BECs are linked effectively by a weak coupling k. Note that herein k [ 0. The case
k\0 corresponds to an excited state in which there is a p-phase difference between
the condensates. q0 is the chemical potential which is considered to be the same in
both waveguides and V is the magnetic trap with strength X, i.e.

VðxÞ ¼ 1
2
X2x2: ð2Þ

Different works have been done in similar settings as (1), such as the sponta-
neous symmetry breaking were analyzed in [18] when BECs are loaded in two
parallel quasi-one-dimensional traps fitted with optical lattices, the study of stable
defects in nonlinear patterns known as optical domain walls [19], and the inves-
tigation of the separation of two far separated domain walls along with their
stability limits were considered in [20]. Recently, the studies were extended for the
case when two components of BECs are coupled by both linear and nonlinear
terms [21].

When X ¼ 0, writing wj ¼ jwjj exp ðiujÞ; it was shown that the relative phase
/ ¼ �ðu2 � u1Þ will satisfy a modified sine-Gordon equation [13]. An FA of (1)
in that case is given by the solution w1 ¼ w�

2 ¼ w, with

w ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q0 þ k

p
tanhð2

ffiffiffi
k

p
xÞ � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0 � 3k

p
sechð2

ffiffiffi
k

p
xÞ; ð3Þ

486 M. I. Qadir et al.



where the asterisk denotes complex conjugation. The soliton (3) can be regarded as
an analogue of Josephson fluxons [13, 14] as the phase difference / between the
phases of w1 and w2 forms a spatial kink connecting / ¼ 0 and / ¼ �2p. In the
following, solution (3) (and its continuations) will be referred to as FAs. The case
of k\0 can be obtained accordingly as there is a symmetry transformation k !
�k and wj ! iwj. From the expression, it is clear that an FA exists only for
0\k\q0=3. The amplitude of the imaginary part of FA decreases with k and
tends to zero as k ! q0=3. For k ¼ q0=3, the solution in (3) transforms into a dark
soliton [13, 14]

w1;2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q0 þ k

p
tanhð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q0 þ k

p
xÞ; ð4Þ

which exists for k [ � q0. Thus, solutions in (3) and (4) coexist for 0\k\q0=3.
Hence, k ¼ q0=3 is a bifurcation point along the family of (4). The bifurcation in
this case is a pitchfork bifurcation. When there is no trap, it is found in [13] that the
FA solution (3) is stable for all values of k where it exists, while the coupled dark
soliton (4) remains unstable for k\q0=3 and becomes stable for k � q0=3.

It is shown in [17] that the presence of a magnetic trap destabilizes the FA
solution. However, stabilization is possible by controlling the effective linear
coupling k between the condensates. The critical coupling above which FA does
not exist is almost independent of the trapping strength. Moreover, the existence
and stability regions for coupled dark soliton remain unaffected by the presence of
the trap. The transition between FA and dark soliton in the presence of the trap can
be realized as a pitchfork bifurcation. In the limiting case, when X ! 0, the
critical value of stability kcs of FA goes to zero whereas the critical value of
existence kce remains unaffected.

When the two condensates are uncoupled or the same, i.e. k ¼ 0 or w1 ¼ w2
with q0 þ k ! q0; respectively, (1) reduces to

iwt ¼ � 1
2

wxx þ jwj2w � q0w þ Vw: ð5Þ

In the absence of the external potential, i.e. V ¼ 0, a single dark soliton on top of a
background with constant density q0 has the form of [22, 23] (cf. (4))

wðx; tÞ ¼ ffiffiffiffiffi
q0

p ½A tanhð ffiffiffiffiffi
q0

p
Aðx � ffiffiffiffiffi

q0
p

x0ÞÞ þ iv�; ð6Þ

where the parameters A and v determine the soliton depth and velocity, respec-
tively, and are in general functions of time t with A2 þ v2 ¼ 1. When v ¼ 0, the
dark soliton becomes a stationary kink also called a black soliton and has unit
depth (see (4)). When v ¼ 1, the depth of the solution vanishes and the dark soliton

becomes the background solution. Since jwj2 represents the density of the dark

soliton, its minimum value qmin can be obtained by differentiating jwj2 partially
with respect to x and equating it to zero, i.e.
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ojwj2

ox
¼ 0: ð7Þ

Here,

jwj2 ¼ q0½A2 tanh2ð ffiffiffiffiffi
q0

p
Aðx � ffiffiffiffiffi

q0
p

x0ÞÞ þ v2�: ð8Þ

Using Eq. (7), the critical point we obtain is x ¼ ffiffiffiffiffi
q0

p
x0. Substituting this value

back in Eq. (8) yields qmin ¼ q0v2.
Multiple dark soliton solutions of Eq. (5) in the absence of a magnetic trap are

also available. The wavefunction for the simplest case of two dark solitons moving
with velocities v1 ¼ �v2 ¼ v can be expressed as [24]

wðx; tÞ ¼
ð2q0 � 4qminÞ coshðqtÞ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q0qmin

p
coshðpxÞ � 2iq sinhðqtÞ

2
ffiffiffiffiffi
q0

p
coshðqtÞ þ 2

ffiffiffiffiffiffiffiffi
qmin

p
coshðpxÞ ; ð9Þ

where q ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qminðq0 � qminÞ

p
and p ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0 � qmin

p
.

The dynamics of a dark soliton in BECs in the uncoupled system with magnetic
trap has been considered before theoretically [25, 26] (see also [27] and references
therein) and experimentally [28–32]. Interesting phenomena on the collective
behavior of a quantum degenerate bosonic gas, such as soliton oscillations [28, 29,
31] and frequency shifts due to soliton collisions [32] were observed. A theoretical
analysis based on variational formulation was developed in [23, 33] that is in good
agreement with numerics as well as with experiments (see, e.g. [34, 35]). A similar
variational method was derived in [17] to explain the dynamics of FAs in (1). It
was shown that the equation of motion for the core of the FA solution is

d2x0

dt2
¼ ð1 � 5kÞX2

1 þ k
x0: ð10Þ

Note that when k ¼ 1=3, i.e. the critical coupling for a pitchfork bifurcation
between dark solitons and FAs, the oscillation frequency of dark solitons in a
harmonic trap is recovered [36] (see also [26, 28, 34]). When the FAs are moving
with the velocity v, the critical value of the coupling constant is [17]

k ¼ � 1
3

v2 � 1
21

þ 4
21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7v4 � 7v2 þ 4

p
: ð11Þ

In a similar fashion as the case when v ¼ 0, travelling FA solutions are found to be
stable in their existing domain. Travelling coupled dark solitons are stable beyond
the critical value and unstable otherwise.

Here, we will consider the interaction of multiple FAs as well as dark solitons
in (1) both in the absence and presence of a magnetic trap. Depending on the
symmetry of the imaginary parts of the solutions, multiple FAs can be categorized
into ðþ�Þ-configuration and ðþþÞ-configuration. Note that for dark solitons, we
have a single configuration for both ðþ�Þ and ðþþÞ-configurations as the
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imaginary part is zero. In the context of a parametrically driven nonlinear
Schrödinger (NLS) equation, the bound states of FA correspond to Bloch–Bloch
states and were discussed in [37, 38].

The chapter is outlined as follows. In Sect. 2, we will derive a variational
formulation for the oscillation frequency of the ðþ�Þ-configuration of FA solu-
tion. In Sect. 3, we will consider the interactions of FAs and dark solitons in (1) in
the absence and presence of a trap. We conclude the work in Sect. 4.

2 Variational Approximations

In this section, we shall first derive the interaction potential of two dark solitons
given by (5) in the absence of the magnetic trap, which was discussed rather briefly
in [23, 28]. We shall then generalize the concept for the interaction of n solitons.
The interaction potential will then be used to approximate the oscillation fre-
quency of multiple FAs in the presence of the trap.

2.1 Determining the Interaction Potential

When k ¼ 0, the system (1) is decoupled and we are left with the one-dimensional
NLS equation (5). We consider the interaction of two dark solitons in (5) where
one of the solitons is located at x ¼ x0 while the other is at x ¼ �x0. Both solitons
are moving with velocities equal in magnitude but opposite in signs, i.e.
v1 ¼ �v2 ¼ v. Then in the weak interacting limit and in the absence of external
potential, one can find the equation of the trajectory of the dip of the soliton x0 as a
function of time t. To do this, we identify the soliton dip x0 as the point of

minimum density (cf. Eq. (7)). In this case, jwj2 can be obtained from Eq. (9) and
is given by

jwj2 ¼
½ð2q0 � 4qminÞ coshðqtÞ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q0qmin

p
coshðpxÞ�2 þ 4q2 sinh2ðqtÞ

½2 ffiffiffiffiffi
q0

p
coshðqtÞ þ 2

ffiffiffiffiffiffiffiffi
qmin

p
coshðpxÞ�2

: ð12Þ

Differentiating jwj2 partially with respect to x and equating the resulting equation
to zero yields

ð8q2
0 � 8q2

0v2 þ 16q2
0v4 � 16q2

0v2Þ cosh2ðqtÞ þ 4q2 sinh2ðqtÞ
þ ð8q2

0v3 � 8q2
0vÞ coshðpxÞ coshðqtÞ ¼0:

Using A2 ¼ 1 � v2, the above equation can be written as

ð8q2
0A2 � 16q2

0v2A2Þ cosh2ðqtÞ þ 4q2 sinh2ðqtÞ � 8q2
0vA2 coshðpxÞ coshðqtÞ ¼ 0:
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Since q ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qminðq0 � qminÞ

p
or q2 ¼ 4q2

0v2A2, substituting the value of q2 in the
above equation and using the identity cosh2ðqtÞ � sinh2ðqtÞ ¼ 1, we obtain

8q2
0A2 cosh2ðqtÞ � 16q2

0v2A2 � 8q2
0vA2 coshðpxÞ coshðqtÞ ¼ 0:

Dividing throughout by 8q2
0vA2 coshðqtÞ, the equation simplifies to

x ¼ 1
p

cosh�1

�
coshðqtÞ

v
� 2v

coshðqtÞ

�
: ð13Þ

Then the minimum distance 2x�0 between the two dark solitons corresponding to
t ¼ 0 can be obtained from the last equation as

2x�0 ¼ 2
p

cosh�1

�
1
v
� 2v

�
: ð14Þ

When the solitons are moving slowly, they remain well separated for every
value of time. This suggests that the distance 2x�0 should be large. This can be
justified if the second term on the right hand side of Eq. (13) is much smaller than
the first term and hence can be neglected. Then, the resulting equation at x ¼ x0

can be written as

x0 ¼ 1
p

cosh�1

�
coshðqtÞ

v

�
: ð15Þ

Note that differentiating Eq. (15) twice with respect to time yields

d2x0

dt2
¼ A2q2v�3 coshðqtÞ

p½v�2 cosh2ðqtÞ � 1�3=2
:

From Eq. (15), we have v�1 coshðqtÞ ¼ coshðpx0Þ. Substituting this value and
using the identity cosh2ðpx0Þ � 1 ¼ sinh2ðpx0Þ in the second derivative above
yields

d2x0

dt2
¼ A2q2 coshðpx0Þ

pv2 sinh3ðpx0Þ
¼ � o

ox0

�
A2q2

2p2v2 sinh2ðpx0Þ

�
: ð16Þ

Equation (16) is the equation of motion of the dip of soliton from which we
acquire the repulsive potential W to be

W ¼ A2q2

2p2v2 sinh2ðpx0Þ
:

Substituting the values of p and q, we obtain

W ¼ q0A2

2 sinh2ð2 ffiffiffiffiffi
q0

p
Ax0Þ

: ð17Þ
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It is clear that this potential is velocity dependent as A2 ¼ 1 � v2. Even though the
potential W is relevant to the symmetric interactions, however it can be applied to
the asymmetric interactions as well, provided that the average depth of the two
solitons is used.

The effective repulsive potential (17) can be used to construct an approximate
potential for the interaction of n solitons. In this case the position of the dip of the
ith soliton (where i ¼ 1; 2; . . .; n) is at xi and is moving with velocity vi and having

depth Ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � v2

i

p
. We may define, respectively, the average depth and the

relative position of the dip for the ith and jth solitons as Aij ¼ ð1=2ÞðAi þ AjÞ and
xij ¼ ð1=2Þðxi � xjÞ. Then the repulsive potential Wi can be expressed as

Wi ¼
Xn

i6¼j

q0A2
ij

2 sinh2½ ffiffiffiffiffi
q0

p
Aijðxi � xjÞ�

: ð18Þ

The kinetic energy E and the potential energy V of a structure of n interacting
solitons are given by E ¼

Pn
i¼1ð1=2Þ _x2

i and V ¼
Pn

i¼1 Wi. Here dot represents the
derivative with respect to time t. The Lagrangian L, which is the difference of
kinetic and potential energies, is L ¼ E � V . To find the equations of motion we
use the Euler–Lagrange equations

o

ot

�
oL
o _xi

�
� oL
oxi

¼ 0; i ¼ 1; 2; . . .; n: ð19Þ

Hence the following n coupled dynamical equations for the trajectories xiðtÞ of n
interacting solitons are obtained as

€xi �
Xn

k¼1

�
o2V

oxko _xi
_xk þ

o2V

o _xko _xi
€xk

�
þ oV

oxi
¼ 0: ð20Þ

2.2 Variational Approximation for Multiple FAs

We can now use a Lagrangian approach to find the oscillation frequency X of
multiple FA solution, in the presence of a magnetic trap. Here, we assume that the
FAs are well separated. Then in the limiting case when k is close to the critical
coupling for a pitchfork bifurcation, the Lagrangian can be written as

L ¼ 1
2
ð _x2

1 þ _x2
2Þþ

�
1 � 5k

1 þ k

�
X2ðx2

1 þ x2
2Þ �

q0

sinh2½ ffiffiffiffiffi
q0

p ðx2 � x1Þ�
: ð21Þ

Note that we have used (10) to describe the potential due to a magnetic trap to an
FA. Since we assume that the FAs are well separated, i.e. jx2 � x1j � 0, this
implies that e�

ffiffiffiffi
q0

p ðx2�x1Þ approaches zero. Hence (21) can be approximated by

Multiple Fluxon Analogues and Dark Solitons 491



L ¼ 1
2
ð _x2

1 þ _x2
2Þþ

�
1 � 5k

1 þ k

�
X2ðx2

1 þ x2
2Þ � 4q0e�2

ffiffiffiffi
q0

p ðx2�x1Þ:

Using Eq. (19), we then have the following system of governing equations

€x1 ¼ �8q
3
2
0e�2

ffiffiffiffi
q0

p ðx2�x1Þ þ 2

�
1 � 5k

1 þ k

�
X2x1; ð22Þ

€x2 ¼ 8q
3
2
0e�2

ffiffiffiffi
q0

p ðx2�x1Þ þ 2

�
1 � 5k

1 þ k

�
X2x2: ð23Þ

In order to find the fixed points of this system, we set €x1 ¼ 0 ¼ €x2. On adding
the resulting equations one can easily see that both fixed points x1 and x2 are
additive inverse of each other i.e. x1 ¼ �x2 ¼ ~x (say), from which we obtain a
single nonlinear algebraic equation which is

8q
3
2
0e4

ffiffiffiffi
q0

p
~x � 2

�
1 � 5k

1 þ k

�
X2~x ¼ 0: ð24Þ

We solve this equation numerically to find the values of ~x corresponding to
different values of k.

Now let d1 and d2 be small perturbations in x1 and x2 and X1 ¼ x1 þ d1ðx1; tÞ,
X2 ¼ x2 þ d2ðx2; tÞ be the solutions of Eqs. (22) and (23), respectively. Substi-
tuting these solutions into Eq. (22) with X1 ¼ �X2, we obtain

€d1 ¼ �8q
3
2
0e4

ffiffiffiffi
q0

p
~xe�2

ffiffiffiffi
q0

p ðd2�d1Þ þ 2

�
1 � 5k

1 þ k

�
X2ð~x þ d1Þ:

Using Taylor series expansion of e�2
ffiffiffiffi
q0

p ðd2�d1Þ in the first term on the right hand
side yields

€d1 ¼ �8q
3
2
0e4

ffiffiffiffi
q0

p
~x½1 � 2

ffiffiffiffiffi
q0

p ðd2 � d1Þ� þ 2

�
1 � 5k

1 þ k

�
X2ð~x þ d1Þ:

Since ~x is a fixed solution, the terms �8q
3
2
0e4

ffiffiffiffi
q0

p
~x and 2ð1�5k

1þk ÞX
2~x provide only the

vertical shift in the solution d1, but do not affect the oscillation frequency and
hence can be neglected. So, we have

€d1 ¼ 16q2
0e4

ffiffiffiffi
q0

p
~xðd2 � d1Þ þ 2

�
1 � 5k

1 þ k

�
X2d1: ð25Þ

Similarly from Eq. (23) we obtain

€d2 ¼ �16q2
0e4

ffiffiffiffi
q0

p
~xðd2 � d1Þ þ 2

�
1 � 5k

1 þ k

�
X2d2: ð26Þ
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Now let x is the common oscillation frequency of FA solutions, then we can
write d1 ¼ c1eixt and d2 ¼ c2eixt. Substituting these values into Eqs. (25) and (26),
we obtain

�x2c1 ¼ 16q2
0e4

ffiffiffiffi
q0

p
~xðc2 � c1Þ þ 2

�
1 � 5k

1 þ k

�
X2c1; ð27Þ

�x2c2 ¼ �16q2
0e4

ffiffiffiffi
q0

p
~xðc2 � c1Þ þ 2

�
1 � 5k

1 þ k

�
X2c2: ð28Þ

This system of equations represents an eigenvalue problem and can be written in
matrix form as AY ¼ kY , where

A ¼
2 1�5k

1þk

� �
X2 � 16q2

0e4
ffiffiffiffi
q0

p
~x 16q2

0e4
ffiffiffiffi
q0

p
~x

16q2
0e4

ffiffiffiffi
q0

p
~x 2 1�5k

1þk

� �
X2 � 16q2

0e4
ffiffiffiffi
q0

p
~x

2

4

3

5;

Y ¼ ½c1; c2�T (T represents the transpose) and k ¼ �x2. The characteristic
frequency which corresponds to in-phase oscillations (i.e. d1 ¼ d2) of FA solutions
is

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

�
5k � 1
k þ 1

�s

X; ð29Þ

while the frequency corresponding to out-of-phase oscillations (i.e. d1 ¼ �d2) is

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

�
5k � 1
k þ 1

�
X2 þ 32q2

0e4
ffiffiffiffi
q0

p
~x

s

: ð30Þ

It is important to note that in the above calculations we did not distinguish between
FAs with ðþ�Þ and ðþþÞ-configurations. It is because the imaginary part of the
solution is treated as a passive component. Later through comparisons with
numerical results we will see that the theoretical results above are only valid for
the ðþ�Þ-configuration.

3 Numerical Simulations and Computations

3.1 Interactions of Uncoupled Dark Solitons Without Trap

Let us reconsider the interaction of two dark solitons in (5), i.e. (1) with k ¼ 0,
which are located at x ¼ �x0 and are moving with velocities v1 ¼ �v2 ¼ v. This
problem has been considered in details in [28]. Since the domain of inverse
hyperbolic cosine is ½1;1�, Eq. (14) holds for 1=v � 2v [ 1 or v2\1=4, otherwise
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it gives a complex value for x0. This means that there exists a critical value of
velocity vcr ¼ 1=2 which separates two scenarios.

In the first scenario, two dark solitons having velocities v1 ¼ �v2 ¼ v\vcr start
coming close to each other and at the point of their closest proximity, they repel
and continuously go away from each other. In this case, before and after the
interaction, both dark solitons can be described by two individual density mini-
mum equal to zero. This shows that dark solitons moving with velocity v\vcr are
well separated and can be regarded as low speed solitons. Physically this means
that well-separated low speed solitons repel each other and their low kinetic
energy could not overcome the interparticle repulsion. A direct numerical inte-
gration of (5) is performed and shown in Fig. 1a. Numerical simulations have also
been done to check the validity of Eq. (20). The trajectories obtained through
Eq. (20) are then plotted in Fig. 1a and indicated by white solid curves. The
approximation shows excellent agreement quantitatively with the results obtained
through direct numerical integration of Eq. (5).

In the second scenario, dark solitons approaching each other with velocity
greater than the critical velocity will collide and after collision transmit through
each other. Unlike low speed solitons, at the collision point they overlap entirely
and are indistinguishable. Physically this means that due to the high velocity, their
kinetic energy defeats the interparticle repulsion. This situation is shown in
Fig. 1b. Even though this case is beyond the particle-like approximation, we show
in Fig. 1b that Eq. (20) can still provide an approximate trajectory of the soliton
collision.

In the above discussion, we only considered the symmetric case where solitons
collide with the same absolute velocity. Let us now consider the asymmetric case.
In this case, a dark soliton moving with velocity v will interact with a static dark
soliton. At the interaction point, the static soliton is repelled by the travelling
soliton. The energy possessed by the moving soliton is used to push the static
soliton away from the original position. The travelling soliton transfers all its
kinetic energy to the static soliton and becomes stationary after collision as shown
in Fig. 1c. The white solid lines in this figure depict the trajectories obtained
through the numerical integration of Eq. (20).

3.2 Interaction of Dark Solitons in Coupled NLS Equations
Without Trap

Next, we consider the case k 6¼ 0. Let us first consider the symmetric case in which
a pair of coupled dark solitons interact with each other. The interaction scenarios
for coupled dark solitons are almost similar to the scenarios for the uncoupled dark
solitons in the previous section. The scenario for slow moving solitons is presented
in Fig. 2a, where we can see that both coupled solitons are repelling each other and
remain well separated for all time t. The only difference from the uncoupled case is
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that there is radiation emerging after interaction which was not seen in the
uncoupled case. The reason for the emergence of this radiation is because the
system is non-integrable. Also after a particular time the coupled dark solitons
break up because they are unstable for the parameter values used for the
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Fig. 1 Numerical evolutions
of interaction of two dark
solitons. a The solitons are
moving with velocities
v1 ¼ �v2 ¼ 0:1. The
interparticle repulsion is
dominant over the kinetic
energies of solitons and
solitons are going away from
each other after interaction.
b The solitons are moving
with velocities
v1 ¼ �v2 ¼ 0:6. The
interparticle repulsion is
suppressed by the kinetic
energies of the solitons and
they transmit through each
other at the interacting point.
c One of the solitons is static
and the other is moving with
velocity v ¼ 0:5. After
interaction, the travelling
soliton becomes stationary
and the static soliton starts
moving with the velocity of
the other soliton. In all
panels, the white solid curves
are simulations of trajectories
of solutions obtained through
Eq. (20). Note that solutions
in upper and middle panels
have an exact analytic
solution given by (9)
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Fig. 2 As Fig. 1, but for
coupled dark solitons. In
a the solitons are moving
with velocities
v1 ¼ �v2 ¼ 0:2. The
interparticle repulsion is
dominant over the kinetic
energies and the solitons are
going away from each other
after interaction. Due to an
instability, they break down
at approximately t ¼ 120. For
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interaction. Since a travelling uncoupled dark soliton is stable for all values of
velocity, no radiation or break up could be seen. In the interaction scenario of the
fast moving coupled solitons, they transmit through each other. Like the uncoupled
case, their high kinetic energy overcomes the interparticle repulsion as shown in
Fig. 2b. In an asymmetric interaction when one of the coupled dark solitons is
static while the other is moving with some non-zero velocity v, the interaction
scenario is similar to that of the uncoupled case and is shown in Fig. 2c. The
trajectories of dips obtained by doing numerical simulations of Eq. (20) are
compared with the trajectories found through direct numerical integration of
Eq. (1). The white solid curves in Fig. 2 are the approximations obtained through
Eq. (20) showing excellent agreement.

3.3 Interaction of FAs in the Absence of a Magnetic Trap

In this section, we will consider symmetric as well as asymmetric interactions of
two FAs. An FA solution moving with velocity v corresponding to a particular
value of k is shown in Fig. 3. We use a numerically obtained FA solution to
construct a collision of two FAs. Since FAs are coupled solutions which consist of
w1 and w2, there are two possibilities to connect two FA solutions. In the first
possibility, w1 and w2 of the first FA are connected, respectively, to w1 and w2 of
the second FA solution. In the second possibility, w1 and w2 of the first FA are
connected, respectively, to w2 and w1 of the second FA solution. The combined
pictures for both possibilities are shown in Fig. 4. From the symmetry of the
imaginary parts, we refer to the first possibility as an odd symmetric interaction or
ðþ�Þ-configuration and the second possibility as an even symmetric interaction or
ðþþÞ-configuration.
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Fig. 3 Numerically obtained
FAs travelling with velocity
v ¼ 0:2 corresponding to
k ¼ 0:1. The black curves
represent the real parts while
the red curves are the
imaginary parts of w1 and w2,
respectively (Color figure
online)
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First, we discuss the odd symmetric interaction. In this case, two FA solutions
initially localized at x ¼ �x0 move with opposite velocities. Shown in Fig. 5a is
the interaction of relatively slow moving FAs. Both FAs can be characterized by
an individual density minimum before and after collision while at the interacting
point they exhibit a single nonzero density minima. Both FAs show attraction
towards each other at the interacting point which results in the deflection of
positions of dips of both solutions. Radiation emerges and phase shift is induced
due to collision. Figure 5b depicts an interaction of relatively high speed FA
solutions. Neither of the FAs show any resistance during collision. Due to their
high kinetic energies, both FAs pass through each other without shifting the phase
and without showing any deflection in the trajectories of their dips.

Next, we consider the even symmetric interaction. An interaction of extremely
slow moving FA solutions is displayed in Fig. 6a. The FAs come close to each
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Fig. 4 Profiles of an initial
condition representing two
coupled FAs travelling with
velocities v1 ¼ �v2 ¼ 0:2
corresponding to k ¼ 0:1.
The figure in the upper panel
represents the odd interaction,
while figure in the lower
panel is the even interaction
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other, but at the point of their closest proximity, they repel each other. Both the
solutions can be identified by two individual density minima before and after the
interaction as well as at the point of interaction. Another output from the inter-
action of two FAs moving with relatively slow velocities is shown in Fig. 6b. In
this scenario, the solitons merge and form a breather similar to that reported in [37]
in a parametrically driven Schrödinger equation. Radiation emerging after the
collision is clear. Shown in Fig. 6c is the collision of FA solution moving with
relatively high velocities. The FA solutions collide with each other and become
indistinguishable at the interacting point.

Finally, we consider asymmetric interactions of two FAs. We show in Fig. 7a
an odd interaction of a relatively slow moving FA with a static FA. The travelling
FA pushes the static FA away from the interacting point. This mean that the
travelling FA transfers all its kinetic energy to the static FA. Due to collision,
radiation appears. In Fig. 7b we show an interaction of a relatively fast moving FA
solution with a static FA solution, where we obtain a similar behavior as before.
Even interactions of a slow and a fast moving FA with a static FA are shown in
Fig. 8a, b, respectively. From Figs. 7 and 8, one can conclude that the collisions of
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Fig. 5 As Fig. 1, but for the
odd symmetric collision of
FAs for (a) v ¼ 0:2 and
(b) v ¼ 0:6. In both panels
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two slowly moving FAs or a moving and a static FA are strongly inelastic. The
radiation after the collision is so pronounce that it can be difficult to identify the
outputs of the collisions.
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3.4 Stationary Multiple FAs and Dark Solitons in the Presence
of Magnetic Trap

In this section, we will consider the existence, stability and time-dynamics of
multiple FAs and dark solitons in the coupled NLS equations (1) in the presence of
a magnetic trap. In particular, we consider stationary solutions of the governing
equations.

To seek for static solutions in the time-independent framework of (1), we use a
Newton–Raphson continuation method. The spatial second order derivative is
approximated using central finite differences with three-point or five-point stencils.
At the computational boundaries, we use Neumann boundary conditions. In all the
calculations, the grid spacing Dx ¼ 0:2 or smaller. Numerical linear stability

analysis of a solution wð0Þ
j ðxÞ is then performed by looking for perturbed solutions

of the form
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Fig. 7 Numerical evolutions
of the odd symmetric
collisions of two FAs when
one of them is static while the
other is moving with velocity
(a) v ¼ 0:2 and (b) v ¼ 0:6.
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wj ¼ wð0Þ
j ðxÞ þ �½ajðxÞeikt þ b�

j ðxÞe�ik�t�; j ¼ 1; 2:

Substituting the ansatz into the governing equation (1) and keeping the linear

terms in �, one will obtain a linear eigenvalue problem for the stability of wð0Þ
j . The

ensuing eigenvalue problem is then discretized using a similar finite difference
scheme as above and solved numerically for the eigenfrequency k and corre-

sponding eigenfunctions aj and bj. It is then clear that wð0Þ
j ðxÞ is a stable solution if

the imaginary parts of all the eigenvalues vanish, i.e. ImðkÞ ¼ 0.

3.4.1 ðþ�Þ-Configuration of FAs

First, we consider the ðþ�Þ-configuration of FA solutions of (1), which is shown
in Fig. 9. The amplitude of the imaginary parts of the solution reduces with k and
ultimately become zero at a critical value kce, when we obtain coupled dark
solitons. The imaginary parts remain zero for all values of k greater than or equal
to kce.
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We have calculated the existence and stability of FA solutions for different non-
zero values of trapping parameter X. The critical value kce for which this FA
solution changes into dark soliton decreases with the increment of X. The con-
version of FAs into coupled dark solitons for X ¼ 0:1 is shown in Fig. 10. The
variation in the value of X also affects the stability of the solution. The critical
coupling kcs where the solution becomes stable increases with X. In this case, the
value of kcs always remains greater than its corresponding value of kce. This shows
that the ðþ�Þ-configuration of FA solution is completely unstable for all values of
k where it exists. We note that the value of kcs corresponding to a specific value of
X is actually the critical value for dark soliton at which it attains stability. The
eigenvalue structure of FAs for a specific value of X is displayed in Fig. 11
showing that most of the eigenvalues are real as they are lying on the horizontal
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Fig. 9 Numerically obtained
multiple FAs with a ðþ�Þ-
configuration for X ¼ 0:1,
q0 ¼ 1, k ¼ 0:2
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Fig. 10 Coupled dark
soliton solutions for X ¼ 0:1,
q0 ¼ 1, k ¼ 0:5

Multiple Fluxon Analogues and Dark Solitons 503



axis, while few of them are complex. The most unstable eigenvalues are purely
imaginary. The magnitude of the most unstable pair of eigenvalues increases for
all k 	 kce and then decreases with k and ultimately becomes zero at k ¼ kcs. The
stability curve is shown in Fig. 12 by a solid curve. In the figure, we also present
the stability curve of coupled dark solitons in dashed line. At k ¼ kce the solid and
dashed curves meet. This corresponds to the situation when FAs turn into dark
solitons, i.e. k ¼ kce is a pitchfork bifurcation point. The dark soliton becomes
stable for k � kcs. The dashed dotted curve shows the approximation (30) obtained
through a variational approach for X ¼ 0:1, where one can see that a qualitatively
good agreement is obtained.

In order to verify our results, we solve the time-dependent system (1) numer-
ically for the configuration of FA solutions above. For X ¼ 0:1 and k ¼ 0:2, the
numerical evolution of the unstable FA solutions represented by w1 and w2 is
shown in Fig. 13. Different from the collisions of two moving FAs with ðþ�Þ-
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Fig. 11 The eigenvalue
structure of the soliton in
Fig. 9 in the complex plane
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represents the approximation
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configuration that are attractive (see Fig. 5), the dynamics of unstable stationary
FAs in here is rather repulsive. This can be seen in Fig. 13 where at t 
 100 the
FAs are moving away from each other.

3.4.2 ðþþÞ-Configuration of FAs

Finally, we consider FA solutions of (1) with ðþþÞ-configuration as shown in
Fig. 14. Similarly to the ðþ�Þ-configuration, the imaginary parts of the solution
reduces to zero with k and at the critical value k ¼ kce coupled dark solitons are
obtained. The critical value kce increases with X. The change in the value of X also
changes the critical value kcs for the stability of this solution. For X ¼ 0:1, the
ðþþÞ-configuration of FA solution is unstable for k\0:16 due to two pairs of
purely imaginary eigenvalues. The solution remains stable up to k ¼ 0:21, at
which two pairs of unstable eigenvalues emerge from the spectrum. The imaginary
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Fig. 13 Numerical evolution
of the solution shown in
Fig. 9 for X ¼ 0:1 and
k ¼ 0:2
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Fig. 14 Numerically
obtained FAs for a ðþþÞ-
configuration with X ¼ 0:1,
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part of the unstable eigenvalues becomes zero at k ¼ 0:38 showing that the
solution is stable for k � 0:38. The eigenvalues structure for X ¼ 0:1 and k ¼ 0:25
is shown in Fig. 15. Since this solution changes into a dark soliton at k ¼ 0:38, so
the dark soliton is unstable for k\0:38 but becomes stable for k � 0:38. The
stability curve for X ¼ 0:1 is shown in Fig. 16 by solid line. The real part of the
most unstable eigenvalue as a function of k is displayed in the same figure by
dashed line. At k ¼ kce, the ðþþÞ-configuration in FA solutions merges with dark
solitons, similarly to the case of ðþ�Þ-configuration in a pitchfork bifurcation.
Note that our analytical result (30) cannot be used to approximate the instability of
the ðþþÞ-configuration. It is because (30) only yields purely imaginary eigen-
values while the instability of the solution here is oscillatory.

The results obtained for the ðþþÞ-configuration of FA solutions above are also
verified by direct numerical integration of the time-dependent system (1). A
typical evolution of unstable FA solutions is shown in Fig. 17 for X ¼ 0:1 and
k ¼ 0:1. In a similar fashion as the ðþ�Þ-configuration (see Fig. 13), the FAs repel
each other. One difference between Figs. 13 and 17 is that in the latter case the
break up is preceded by oscillations of the soliton pair. This is caused by the fact
that the instability is oscillatory.
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4 Conclusion

We have studied the existence and stability of multiple FAs and coupled dark
solitons in linearly coupled Bose–Einstein condensates. In the absence of a har-
monic trap, we have shown numerically that the interactions of the solitary waves
are strongly inelastic, especially in the case of slow incoming velocities. Sym-
metric and asymmetric interactions of coupled dark solitons as well as FA solu-
tions for different values of velocity were discussed. Interesting outcomes, such as
breathers that do not exist in the uncoupled case, due to the inelastic collisions of
FAs were observed. In the presence of a magnetic trap, bound states of solitons
were shown to exist. The effects of variation of the trapping strength on the
existence and stability of the multiple solitary waves were investigated numeri-
cally. It is found that for FAs with the ðþ�Þ-configuration, the critical coupling for
existence kce decreases while the critical value for stability kcs increases with the
magnetic strength X. For the ðþþÞ-configuration, both kce and kcs increase with X.
An analytical approximation was derived based on variational formulations to
calculate the oscillation frequency of FA solutions with the ðþ�Þ-configuration,
where a qualitatively good agreement was obtained.
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Symmetry-Breaking Effects for Polariton
Condensates in Double-Well Potentials

A. S. Rodrigues, P. G. Kevrekidis, J. Cuevas, R. Carretero-González
and D. J. Frantzeskakis

Abstract We study the existence, stability, and dynamics of symmetric and
anti-symmetric states of quasi-one-dimensional polariton condensates in double-
well potentials, in the presence of nonresonant pumping and nonlinear damping.
Some prototypical features of the system, such as the bifurcation of asymmetric
solutions, are similar to the Hamiltonian analog of the double-well system
considered in the realm of atomic condensates. Nevertheless, there are also some
nontrivial differences including, e.g., the unstable nature of both the parent and the
daughter branch emerging in the relevant pitchfork bifurcation for slightly larger
values of atom numbers. Another interesting feature that does not appear in the
atomic condensate case is that the bifurcation for attractive interactions is slightly
sub-critical instead of supercritical. These conclusions of the bifurcation analysis
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are corroborated by direct numerical simulations examining the dynamics of the
system in the unstable regime.

1 Introduction

Over the past few years, a novel direction in the study of Bose–Einstein con-
densation has captured a considerable amount of attention. This concerns the
observation of exciton–polariton Bose–Einstein condensates (BECs) in semicon-
ductor microcavities [1–4]. A fundamental feature of these exciton–polariton
BECs is that, upon confinement, the excitons (bound pairs of electrons and holes)
couple strongly to the incident light creating the polariton quasi-particles [5, 6].
The resulting exciton–polariton BEC possesses a number of remarkable properties
that we briefly touch upon below.

The radiative lifetime of the polaritons is the shorter relaxation time scale of the
system being of the order of 1–10 ps [7]. On the other hand, the light mass of the
exciton–polaritons provides this system with a significantly higher condensation
temperature. The photonic component of the exciton–polaritons is responsible for
their short lifetime which, in turn, does not allow thermalization; instead, it pro-
duces a non-equilibrium condensate, wherein the presence of external pumping
from an exciton reservoir is critical towards a counter-balance of the polariton loss.
In such genuinely non-equilibrium condensates, numerous remarkable features
have been not only theoretically predicted but also experimentally established;
these include the flow without scattering (analog of the flow without friction) [8],
the existence of vortices [9] (see also Ref. [10] for vortex dipole dynamics and
Ref. [11] for observations thereof), the collective dynamics [12], as well as
remarkable applications such as spin switches [13] and light emitting diodes [14]
operating even near room temperatures.

Perhaps the most customary approach to modeling exciton–polariton BECs
involves the coupling of the evolution of the polaritons to that of the exciton
reservoir which enables their production (and which features diffusive spatial
dynamics of the excitons); this way, the model takes the form of two coupled
complex Ginzburg–Landau (cGL) equations describing the evolution of exciton
and photon wavefunctions [15–17]. Nevertheless, it has been proposed in Refs.
[18–20] that a single cGL equation for the macroscopically occupied polariton state
can also be used in a way consistent with experimental observations [21]. A similar
approach was followed in Ref. [22] where a BEC of magnon quasi-particles,
incorporating a source term rather than an amplification of the field, was shown to
be phenomenologically described by a system two nonlinearly coupled cGL-type
equations. In the context of the single cGL model for the polaritons, there exists a
localized (pumping) region of gain and a nonlinear saturating loss term, in addition
to all the standard terms (quantum pressure, external parabolic trapping and
repulsive interatomic interaction) that one encounters in atomic BECs [23–25].
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Furthermore, it should be pointed out that the prototypical setting where experi-
ments have been conducted is two-dimensional in nature. Yet, highly anisotropic
traps (similar to what has been done in atomic BECs [23–25]) can be envisioned
which reduce the effective dynamics to a quasi one-dimensional (1D) setting
[26–31]. Moreover, recent experimental advances have enabled the use of thin
microwires in order to guide the condensates along the direction of the wire [32].
In this setting, the recent analysis of Ref. [33] presented a number of striking
characteristics due to the interplay of gain and loss terms with the standard ones of
atomic BECs. Prominent examples included the destabilization of the nodeless state
of the system and the creation of stability inversions (where states with nodes would
be more robust), as well as the existence of bubble-like and sawtooth-like solutions
in the system.

A very interesting research direction in the physics of atomic and polariton
BECs concerns the dynamics of the condensates in a double-well potential. The
latter can be created in atomic BEC experiments through the combination of a
parabolic trap and a periodic (so-called optical lattice) potential generated through
the interference of laser beams illuminating the BEC [34]. Relevant experiments in
atomic BECs [35, 36] have paved the way towards the exploration of numerous
features such as tunneling and Josephson oscillations for small numbers of atoms
in the condensate, and macroscopic quantum self-trapped states, as well as sym-
metry-breaking effects for large atom numbers. On the other hand, double-well
potentials can also be created in polariton BEC experiments in microcavities by
applying stress [2, 37], by employing photolithographic techniques [26, 27], or
allowing natural formation during the sample growth [38]. Importantly, the latter
technique was used for the study of a ‘‘polariton Josephson junction’’ [38], in the
spirit of earlier studies on ‘‘bosonic Josephson junctions’’ [39] in the context of
atomic BECs. Importantly, a large volume of theoretical studies has accompanied
these developments, first in the context of atomic BECs, through investigations
related to finite-mode reductions and symmetry-breaking bifurcations [40–49],
quantum effects [50], and nonlinear variants of the double-well potential [51], and
more recently in the context of polariton condensates, especially as concerns
Josephson oscillations therein [52–55]. It should be mentioned in passing that
similar (spontaneous symmetry breaking) effects have been monitored in the realm
of nonlinear optics: in this context, formation of asymmetric states in dual-core
fibers [56–62], self-guided laser beams in Kerr media [63], and optically-induced
dual-core waveguiding structures in photorefractive crystals [64] have been
reported.

It is the aim of the present work to combine these two themes, namely the focus
on the exciton–polariton BEC with pumping and loss and the fundamental interest
in the understanding of double-well trapping potentials in a spirit similar to the
proposal of Ref. [15]. In particular, we will consider the single-component model
of Refs. [18–20] combined with a double-well potential in a quasi-1D (e.g.,
microwire) setting. We will attempt a systematic (Galerkin) finite-dimensional
reduction of the system via projection to the two principal eigenstates of the
potential, and will derive a damped-driven system of ordinary differential
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equations (ODEs) that have been shown in the Hamiltonian case to capture the
essence of the statics [65] and dynamics [66] of double-well potentials. We will
then examine the bifurcation structure of the resulting ODEs and compare it to that
of the original partial differential equation (PDE) model. This already provides us
with a number of interesting features that distinguish this system from its Ham-
iltonian analog. For instance, in the case of attractive interatomic interactions
(which is studied together with that of repulsive interactions) the relevant sym-
metry-breaking pitchfork bifurcation is subcritical instead of supercritical as in the
Hamiltonian case. Furthermore, both branches that emerge from the pitchfork
bifurcations, the stable asymmetric one and the (now) unstable ‘‘parent’’ branch,
both appear to become destabilized in this polariton BEC setting for slightly larger
nonlinearities, posing the natural question of what is the stable dynamics for larger
values of the nonlinearity. These questions will in part be addressed via direct
numerical simulations.

Our presentation will be structured as follows. First, in Sect. 2, we will present
the model and its theoretical study via the Galerkin analysis. In Sect. 3, we will
study the model numerically and compare the results of the numerical bifurcation
analysis with the prediction of the Galerkin approximation. We will also com-
plement these results with direct numerical simulations of the original model.
Finally, in Sect. 4 we summarize our results and present our conclusions.

2 Model Setup and Analytical Predictions

In our analysis below, we adopt the model of Refs. [18–20]. It has been argued
in these works that the original exciton–polariton system given by a set of two
coupled equations can be effectively reduced to a single cGL equation with a
nonlinear saturating loss term. This reduction can be used when the reservoir
mean-field potential is negligible and the spot size is large compared with the
condensate size (i.e., if we can consider that the spot width is the same as the
spatial extent of the system). In particular, the amplification of the existing field
introduces a gain and hence acts as a generator of polaritons. Then the loss term
saturates this gain beyond a certain threshold. These two terms are analogous to
the pumping of polaritons from the excitons and to the natural decay of the
polaritons. This reduced model can be expressed in dimensionless form as
follows:

iotu ¼ �o2
xu þ sjuj2u þ VðxÞu � lu þ i vðxÞ � rjuj2

h i
u: ð1Þ

The above model is actually a complex Ginzburg–Landau equation [67] for the
complex order parameter uðx; tÞ; which is assumed to evolve in the presence of
the effectively-1D double-well potential VðxÞ: Equation (1) can be applied to
both the contexts of atomic and polariton BECs: in the first case, the two last
terms in the right-hand side of Eq. (1) are absent, and the model—known as the
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Gross-Pitaevskii equation [23–25]—describes the evolution of the macroscopic
wavefunction for the cold atoms and l is the chemical potential; in the second
case, uðx; tÞ denotes the polariton wavefunction, and the last two terms in the
right-hand side are included in the model. More specifically, in the context of
polariton condensates, Eq. (1) incorporates (a) the spatially dependent gain term
of the form

vðxÞ ¼ aHðxm � jxjÞ; ð2Þ

where H is the step function generating a symmetric pumping spot of ‘‘radius’’ xm

and strength a for the gain, and (b) a nonlinear saturation loss term, characterized by
its strength r:As concerns the parameter s � �1; it sets the type of nonlinearity (i.e.,
the type of interactions between atoms or polaritons): for s ¼ þ1 the nonlinearity is
defocusing (i.e., the interactions are repulsive), while for s ¼ �1 the nonlinearity is
focusing (i.e., the interactions are attractive). In the context of atomic BECs, the
value of s depends on the atom species (e.g., s ¼ þ1 for 87Rb or 23Na; while s ¼ �1
for 7Li or 85Rb atoms). On the other hand, in the context of polariton condensates, the
sign of the effective mass of polaritons [i.e., the sign of the first term in the right-hand
side of Eq. (1)] may become either positive or negative, depending on the values of
transverse momentum: in fact, the transition from positive to negative mass is
associated with the inflection point of the energy-momentum diagram [68, 69]. Here,
we will consider both cases of s ¼ �1 to take into regard that the effective polariton
mass may be positive or negative, respectively. We finally note that the relevant
physical time and space scales, as well as physically relevant parameter values
associated with Eq. (1), can be found in Ref. [18].

In what follows, we will use the Galerkin (few mode truncation) approach of
Ref. [49]. A similar approach, in the absence of external confining potential,
has been used in Ref. [70] for a polariton laser. We start by considering the
corresponding linear eigenproblem which reads:

Hu � �o2
xu þ VðxÞu ¼ xu; ð3Þ

whose spectrum consists of a ground state, u0ðxÞ; and excited states, uiðxÞ (with
i� 1). Then, in the weakly nonlinear regime, we consider a superposition of the
two lowest linear eigenmodes,

uðx; tÞ ¼ c0ðtÞu0ðxÞ þ c1ðtÞu1ðxÞ; ð4Þ

where c0;1ðtÞ are unknown time-dependent complex prefactors; obviously, the
above ansatz is relevant for values of the chemical potential l such that higher
order modes can be safely ignored. Substituting this ansatz into Eq. (1) we obtain:

i _c0u0 þ _c1u1ð Þ ¼ ðx0 � lÞu0c0 þ ðx1 � lÞu1c1 þ sjuj2 c0u0 þ c1u1ð Þ
þ i vðxÞ � rjuj2

h i
c0u0 þ c1u1ð Þ; ð5Þ
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where the juj2 has not been expanded only for reasons of compactness but should
actually be thought as expanded according to Eq. (4). Next, projecting on u0 and
u1 (i.e., multiplying the above equation by u0 and u1 and integrating over x), and
using the orthogonality of the states ui; we respectively derive the following
equations:

i _c0 ¼ ðx0 �lþ ia0Þc0

þðs� irÞ A0jc0j2c0 þ c2
0c�1 þ 2jc0j2c1

� �
C0 þ 2jc1j2c0 þ c2

1c�0

� �
Bþjc1j2c1C1

n o
;

ð6Þ

and

i _c1 ¼ ðx1 �lþ ia1Þc1

þðs� irÞ C0jc0j2c0 þ c2
0c�1 þ 2jc0j2c1

� �
Bþ 2jc1j2c0 þ c2

1c�0

� �
C1 þjc1j2c1A1

n o
:

ð7Þ

In the above equations, overdots denote time derivatives, the involved constants
(depending on the eigenbasis fuig) take the values A0 ¼

R
u4

0dx; A1 ¼
R

u4
1dx;

B ¼
R

u2
0u2

1dx; C0 ¼
R

u1u3
0dx; and C1 ¼

R
u0u3

1dx; while the effective gain coef-
ficients read: a0 ¼

R
vðxÞu2

0dx and a1 ¼
R

vðxÞu2
1dx: We now use amplitude and

phase variables for the time-dependent prefactors, i.e., ci ¼ qie
i/i (with the

amplitudes qi and phases /i being real functions), to derive a set of four equations
for the unknown functions q0;1 and /0;1: Introducing the relative phase of the first
two modes as u � /1 � /0; the above mentioned set of equations takes the fol-
lowing form:

_q0 ¼ a0q0 � r A0q
3
0 þ 2Bq2

1q0

� �
þ s C1q

3
1 þ C0q

2
0q1

� �
sin u

þ sBq2
1q0 sin 2u � r C1q

3
1 þ 3C0q

2
0q1

� �
cos u � rBq2

1q0 cos 2u;
ð8Þ

_/0 ¼ � ðx0 � lÞ � s A0q
2
0 þ 2Bq2

1

� �
� r C0q0q1 þ C1q

3
1=q0

� �
sin u

� rBq2
1 sin 2u � s 3C0q0q1 þ C1q

3
1=q0

� �
cos u � sBq2

1 cos 2u;
ð9Þ

_q1 ¼ a1q1 � r A1q
3
1 þ 2Bq2

0q1

� �
� s C0q

3
0 þ C1q

2
1q0

� �
sin u

� sBq2
0q1 sin 2u � r C0q

3
0 þ 3C1q

2
1q0

� �
cos u � rBq2

0q1 cos 2u;
ð10Þ

and

_/1 ¼ � ðx1 � lÞ � s A1q
2
1 þ 2Bq2

0

� �
þ r C1q1q0 þ C0q

3
0=q1

� �
sin u

þ rBq2
0 sin 2u � s 3C1q1q0 þ C0q

3
0=q1

� �
cos u � sBq2

0 cos 2u:
ð11Þ

Subtracting Eq. (9) from Eq. (11), we can readily obtain an equation for u;
namely:
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_u ¼ � Dx � s A1q
2
1 � A0q

2
0

� �
� sB 2 þ cos 2u½ � q2

0 � q2
1

� �

� s
cos u
q0q1

C0q
2
0ðq2

0 � 3q2
1Þ þ C1q

2
1ð3q2

0 � q2
1Þ

� �

þ r
sin u
q0q1

C0q
2
0ðq2

0 þ q2
1Þ þ C1q

2
1ðq2

0 þ q2
1Þ

� �
þ rB sin 2uðq2

0 þ q2
1Þ;

ð12Þ

where Dx � x1 � x2: This way, we have arrived to a system of three equations
[cf. Eqs. (8), (10) and (12)] for the unknown functions q0;1 and u: These equations
are subject to an additional constraint stemming from the balance condition

dN=dt ¼ 0; where N �
Rþ1
�1 juj2dx is the number of polaritons (mathematically

the squared L2 norm). The evolution of the latter, can readily be found by mul-
tiplying Eq. (1) by u�; the complex conjugate of Eq. (1) by u; and then adding and
integrating the resulting equations. It is straightforward to find that the condition
for equilibrium is:

Z þ1

�1
vðxÞ � rjuj2

� �
juj2dx ¼ 0: ð13Þ

Substituting Eq. (4) into Eq. (13), also using the polar decomposition for ciðtÞ
[and assuming a definite—even in our considerations—parity for the function
vðxÞ], we find that the balance condition (13) takes the form:

a0q
2
0 þ a1q

2
1

� �
� r A0q

4
0 þ q4

1A1 þ 4q2
0q

2
1B

� �
� 4r q3

0q1C0 þ q3
1q0C1

� �
cos u

� 2rq2
0q

2
1B cos 2u ¼ 0;

ð14Þ

which essentially fixes q1 once q0 and u are found and thus reducing the effective
number of degrees of freedom for our approximations to only two ðq0 and uÞ:

Below, we will consider the case of a symmetric double-well potential, for
which C1 ¼ C0 ¼ 0: In this case, Eqs. (8), (10) and (12) are reduced to the fol-
lowing simpler form,

_q0 ¼ a0q0 � r A0q
3
0 þ 2Bq2

1q0

� �
þ sBq2

1q0 sin 2u � rBq2
1q0 cos 2u; ð15Þ

_q1 ¼ a1q1 � r A1q
3
1 þ 2Bq2

0q1

� �
� sBq2

0q1 sin 2u � rBq2
0q1 cos 2u; ð16Þ

_u ¼ �Dx � s A1q
2
1 � A0q

2
0

� �
� sB 2 þ cos 2u½ � q2

0 � q2
1

� �
þ rB sin 2uðq2

0 þ q2
1Þ;
ð17Þ

while the equilibrium condition is accordingly simplified as:

a0q
2
0 þ a1q

2
1

� �
� r A0q

4
0 þ q4

1A1 þ 4q2
0q

2
1B

� �
� 2rq2

0q
2
1B cos 2u ¼ 0: ð18Þ
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We can now turn to the study of stationary solutions (i.e., _q0 ¼ _q1 ¼ _u ¼ 0)
resulting from the Galerkin truncation analysis. Particularly, from Eq. (15) we
obtain two possible solutions:

ðiÞ q0 ¼ 0;
ðiiÞ a0 � r A0q2

0 þ 2Bq2
1

� �
þ sBq2

1 sin 2u � rBq2
1 cos 2u ¼ 0;

�
ð19Þ

while from Eq. (16) we obtain:

ðiÞ q1 ¼ 0
ðiiÞ a1 � r A1q2

1 þ 2Bq2
0

� �
� sBq2

0 sin 2u � rBq2
0 cos 2u ¼ 0:

�
ð20Þ

Next, multiplying the nontrivial equilibria of Eq. (19) by q2
0; the one from

Eq. (20) by q2
1; and adding the resulting equations, we obtain:

cos 2u ¼
ða0q2

0 þ a1q2
1Þ � r A0q4

0 þ A1q4
1 þ 4Bq2

0q
2
1

� �

2rBq2
0q

2
1

; ð21Þ

while subtracting Eq. (20) from Eq. (19) yields:

r A1q
4
1 � A0q

4
0 þ 2Bðq2

0 � q2
1Þ þ Bðq2

0 � q2
1Þ cos 2u

� �
þ sBðq2

0 þ q2
1Þ sin 2u

þ ða0 � a1Þ ¼ 0:

ð22Þ

Combining now Eq. (22) with Eq. (17) we finally obtain the result:

ðq2
0 þ q2

1Þ sin 2u ¼ rDx � sða0 � a1Þ
Bðr2 þ s2Þ : ð23Þ

Let us now focus again on Eqs. (15) and (16): it is clear that if Eq. (16) is
satisfied for q1 ¼ 0 then q2

0 ¼ a0
rA0

; and if Eq. (15) is satisfied with q0 ¼ 0 then

q2
1 ¼ a1

rA1
: Aside from these trivial symmetric and anti-symmetric solutions, past

the critical point for the symmetry breaking bifurcation, an asymmetric solution is
expected to exist which possesses non-vanishing q0 and q1 (as well as a non-zero
relative phase between them), which can be computed from Eq. (21). It is antic-
ipated that the presence of loss and gain will not (generically) modify the nature of
the bifurcations in comparison to the Hamiltonian case [49]. Namely, an asym-
metric solution will bifurcate from the symmetric one in the focusing nonlinearity
case of s ¼ �1; due to a non-vanishing contribution of the anti-symmetric part in
the solution, while on the contrary, an asymmetric mode will emanate from the
anti-symmetric one in the defocusing nonlinearity setting of s ¼ 1 (due to a
symmetric contribution within the solution). These results are detailed for a par-
ticular case example potential in what follows and compared to full numerical
results.
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3 Numerical Results

In our theoretical approximations, the double-well potential is constructed by
placing a localized barrier at the center of the parabolic trap potential of strength X:
Particularly, the double-well potential is assumed to be of the form:

VðxÞ ¼ 1
2

X2x2 þ V0sech
x

w

� �
; ð24Þ

where w is the width of the barrier and V0 its height. The results presented below are
for the potential parameters X2 ¼ 0:1; V0 ¼ 5; and w ¼ 0:2; we have checked that
other parameter values lead to qualitatively similar results. For the gain we consider
a strength a ¼ 0:2 and a spot size of xm ¼ 2:0: The damping parameter r is used to
vary the number of atoms, N; in order to do the continuation. For the above double-
well potential, the values of the linear eigen-energies are x0 ¼ 0:515729 and x1 ¼
0:677697: The potential setting under consideration is depicted in Fig. 1.

We have performed a continuation of symmetric, anti-symmetric and asym-
metric states in both cases of repulsive and attractive interactions. The continua-
tions have been performed by increasing the damping parameter r; which is
tantamount to decreasing the norm or chemical potential. It is important to note
that the chemical potential is no longer a free parameter in the present setting in
sharp contrast to what is the case in the Hamiltonian regime of atomic BECs (see
also the discussion of Refs. [18, 33]). Similar results can be obtained by decreasing
the pumping parameter a: However, a crucial realization that emerges from con-
sidering variations of the different parameters is that the spot size xm must be
chosen in a very limited range in order for the three above mentioned nonlinear
modes to co-exist and be potentially stable; outside this range, instabilities lead to
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Fig. 1 The parabolic
trapping potential and the
localized barrier creating
the double-well potential
configuration. The
parameter values used are:
X2 ¼ 0:1; w ¼ 0:2; and
V0 ¼ 5; the shaded area
corresponds to the region
where the pumping acts, i.e.,
jxj\xm ¼ 2 (Color online)
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breathing multi-bump coherent structures. In what follows, the values of xm ¼ 2
and a ¼ 0:2 have been used unless explicitly indicated otherwise.

3.1 Repulsive Case

We start by considering the case of the repulsive interaction with s ¼ þ1 (and vary r
as mentioned above). The family of symmetric solutions is found to be always stable.
As expected, on the other hand, and in agreement to our expectation from the realm of
atomic BECs, the anti-symmetric solutions are exponentially unstable for small r;
which is tantamount to large polariton population numbers N: They become stable
after the symmetry-breaking pitchfork bifurcation occurring at r ¼ 1:045 (i.e., for
l\lcr ¼ 0:7574 and for N\Ncr ¼ 0:5333). The asymmetric branch that emerges
through this bifurcation is stable for l\0:7603 and N\0:5509; i.e., for a narrow
parametric interval past the bifurcation critical point. However, past this secondary
critical point, the asymmetric solutions are prone towards an oscillatory instability
emerging through a Hopf bifurcation (the critical loss strength in this case is
r ¼ 0:989). The relevant bifurcation diagrams are presented in Fig. 2, which shows
the dependence of l on r; as well as the dependence of N on l (note that the latter
form of the bifurcation diagram is more commonly used in relevant studies).
The latter graph also contains the results of the theoretical analysis for the symmetric
branch of Eq. (20) and for the anti-symmetric one of Eq. (19), as well as for the
asymmetric branch which is theoretically predicted for the parameters of our double-
well potential to bifurcate from the anti-symmetric solution for l [ 0:7722 and

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0.6

0.65

0.7

0.75

0.8

0.85

σ

μ

symmetric

asymmetric anti−symmetric

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

μ

N

an
ti−

sy
m

m
et

ric

sy
m

m
et

ric

as
ym

m
et

ric

Fig. 2 Bifurcation diagrams for the symmetric, anti-symmetric and asymmetric branches for
defocusing (repulsive) nonlinearity ðs ¼ 1Þ: Left Dependence of the chemical potential on the
damping parameter. Right Dependence of the (normalized) number of polaritons on the chemical
potential. Unstable solutions are depicted by dashed lines on the left panel. On the right solid
lines display numerical results obtained by a nonlinear (Newton-Raphson) solver of the steady
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Galerkin approach. The linear modes are located at l ¼ 0:5157 and 0:6667 (Color online)
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N [ 0:6661: As can be seen (also from Fig. 2), there is good agreement between
theoretical predictions and numerical findings.

Some case examples of solution profiles for the different branches, together
with the results of their corresponding linear stability analysis as performed by
means of the Bogolyubov-de Gennes (BdG) ansatz [23–25] are shown in Figs. 3
and 4. The BdG analysis is represented by the spectral plane of the linearization
eigenfrequencies x ¼ ReðxÞ þ iImðxÞ: Contrary to what is the case in the
Hamiltonian setting of Ref. [49] (where the spectrum is chiefly on the imaginary
axis), here the spectrum contains predominantly decaying modes with ImðxÞ\0:
For the stable symmetric ground state in Fig. 3, all modes are decaying except for
the symmetry mode associated with x ¼ 0; while for the unstable anti-symmetric
mode of the bottom panel the eigenfrequency associated with the growth is purely
imaginary with ImðxÞ[ 0: On the other hand, for the asymmetric modes of
Fig. 4, it is evident that shortly past the critical point for their emergence, a
genuine (now that the system is dissipative, in nature) Hopf bifurcation arises
through the crossing of a complex conjugate pair through the axis of ImðxÞ ¼ 0:
Additional Hopf bifurcations happen for smaller values of r (larger values of N), a
case example of which is evident in the bottom panel of Fig. 4. The dependence of
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Fig. 3 Left Real and imaginary part of the wavefunction profile for a symmetric (top) and anti-
symmetric (bottom) solution. Right Their corresponding stability eigenvalues. In all cases r ¼ 1
and the interactions are repulsive ðs ¼ þ1Þ (Color online)
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the imaginary part of the relevant eigenvalues for the anti-symmetric and asym-
metric solutions with respect to r is shown in Fig. 5, illustrating, respectively, the
relevant pitchfork (left panel) and multiple Hopf bifurcations (right panel). Nat-
urally, the Hopf bifurcation of the asymmetric branch is anticipated to give rise to
a limit cycle attractor within the dynamics [the relevant solution is expected to be
periodic in the squared modulus of the wavefunction, hence quasi-periodic in the
original field uðx; tÞ].

Two examples of the dynamics of unstable anti-symmetric solutions are illus-
trated in Fig. 6. It is observed that the unstable solutions generically tend to the
stable attractors. However, interestingly, in the r ¼ 1 case, the attractor of rele-
vance consists of an asymmetric steady state, while in the r ¼ 0:8 case it consists
of a symmetric one (the ground state of the system). The symmetry and asymmetry

of the configurations can be easily seen from the time series of the densities juj2�
and juj2þ measured, respectively, at the bottom of the left and right wells. These
time series are depicted in the lower panels of the figure. The relevance of the
asymmetric attractor, especially for larger values of N (smaller values of r; where
the only stable steady state is the symmetric one) is confirmed by the simulation
shown in the left panel of Fig. 7, where the dynamics of an unstable asymmetric
solution is traced, leading indeed to the same attractor. The right panel of Fig. 7
shows the evolution of a perturbed asymmetric state close to the Hopf bifurcation;
in that case, it is observed that the soliton relaxes to a quasi-periodic asymmetric
solution. [Recall that these solutions have a quasi-periodic evolution for the
wavefunction (due to the periodic evolution of the phase through e�ilt) but the
evolution in density is periodic as the panels show]. We have observed that
perturbations of the asymmetric solution lead to quasi-periodic dynamics for
r 2 ½0:970; 0:990�:
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3.2 Attractive Case

In the case of attractive interactions ðs ¼ �1Þ; the scenario is similar in nature, except
for the origin of the symmetry breaking bifurcation. More specifically, now, the
asymmetric solution branch, which stabilizes at r ¼ 0:923 ðl ¼ 0:4182 and N ¼
0:7199Þ; bifurcates from the symmetric solutions branch at r ¼ 1:118 ðl ¼
0:4101 and N ¼ 0:7741Þ: Figures 8 and 11 are the equivalent to Figs. 2 and 5,
respectively, but for s ¼ �1: Nevertheless, we observe that both the dependence of
the chemical potential l on the nonlinear saturation parameter r and that of N on l is,
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Fig. 5 Dependence of the imaginary part of the stability eigenvalues with respect to r for the
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in fact, non-monotonic for this example in the case of the bifurcating asymmetric
branch. This clearly indicates (see the right panel of Fig. 8) that the relevant bifur-
cation is subcritical
(as the chemical potential l is decreased, which is the natural direction of variation
off of the linear limit). This is contrary to the corresponding supercritical expectation
of its Hamiltonian analog [49, 65]. It should be noticed, however, that other examples
where such subcritical bifurcations have been previously reported in Refs. [71, 72]
although in neither case was the nonlinearity purely cubic as was the case here (and
they did not contain driving/damping effects). Importantly, it should also be pointed
out that the analytical prediction of the Galerkin approach suggests a supercritical
scenario for l\0:4247 and N [ 0:6590: Despite the inability of the approximation
to capture the short subcritical segment of the bifurcating branch, we nevertheless see
that the Galerkin method is a useful tool for obtaining an estimate of the relevant
critical point.

An additional feature worth pointing out concerns the nature of the instabilities
of the different branches as detailed in Figs. 9 and 10. While the symmetric branch
becomes unstable at the relevant critical point by developing an imaginary
eigenfrequency with ImðxÞ[ 0 (the rest of the spectrum has ImðxÞ\0), the anti-
symmetric state remains dynamically robust. On the other hand, the asymmetric
branch emerges as stable at the critical point of the symmetry breaking but shortly
thereafter (for r\0:923), it becomes subject to a Hopf bifurcation through the
crossing of the axis with ImðxÞ ¼ 0 of a complex eigenvalue pair. In fact, for
r\0:74; a secondary Hopf bifurcation has occurred and is mirrored in the two
complex pairs with ImðxÞ[ 0 shown in Fig. 10. This phenomenology is enforced
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by Fig. 11 which illustrates the dependence of the relevant stability eigenvalues
on the nonlinear loss parameter r (see the right panel for the sequence of Hopf
bifurcations, while the left panel highlights the symmetry-breaking induced
crossing of a single eigenfrequency pair for the symmetric branch). As in the
repulsive case, the Hopf bifurcation of the asymmetric branch is anticipated to give
rise to a limit cycle attractor within the dynamics.

The dynamics of Figs. 12 and 13 naturally reflects the above conclusions. In
particular, the evolution of the symmetric state in the double-well potential of the
left panel of Fig. 12 gives rise to the asymmetric state as the latter is stable and
indeed an attractor for the value of r ¼ 1: The right panel of the figure displays the
evolution of a perturbed symmetric solution tending to an anti-symmetric one; in
that case, the asymmetric solution is unstable and no longer a dynamical attractor.

On the other hand, Fig. 13 shows different case examples of the (unstable via the
Hopf) asymmetric branch for different values of r: In those cases, the asymmetric
branch is no longer a stable stationary state and as a result the dynamics becomes
periodic in the modulus (quasi-periodic in the original field) for r 2 ½0:74; 0:92�: It
is interesting to follow the changes in the dynamics for these periodic states as r is
decreased below the bifurcating point from the asymmetric branch. In particular,
close to bifurcation point, the periodic evolution remains proximal to the state from
which it emanates, namely the asymmetric state as it can be seen in the left panels of
Fig. 13. However, as r is decreased further from the bifurcation point, the insta-
bility of the asymmetric state is stronger and the departure from the asymmetric
solution is more significant. In particular, it is interesting to notice that for smaller
values of r; the solution tends to display strong oscillations of the densities
resembling the symmetric tunneling of matter from one well to the other. An
example of this evolution for r ¼ 0:8 is depicted in the right panels of Fig. 13
where it is evident that the oscillations in the two wells become similar to each other
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but with a phase shift between them, leading to an effective re-symmetrization of
the dynamics.

It is also interesting to highlight here the difference between the repulsive case
of Figs. 6 and 7 and the attractive case of Figs. 12 and 13. In the former case,
when the emerging asymmetric branch is unstable the dynamics typically is found
to lead to the stable ground state of the system (the symmetric one). On the other
hand, for the attractive case, when both the symmetric and the asymmetric branch
are destabilized, the dynamics does not resort to the excited (yet stable) anti-
symmetric state. Instead, it leads to periodic oscillations in the density between the
two wells.

Finally, we have considered the effect of varying the spot size fixing r ¼ 1: In
the repulsive case, the symmetric branch is stable for xm 2 ½0:9; 5:7�; out of this
range, the instabilities are caused by a Hopf bifurcation cascade and develop into
non-stationary multi-dark soliton waveforms, similar to the states that were
previously reported in Ref. [33] (but for a purely parabolic trap). The anti-
symmetric branch, which is unstable for every xm (for this value of r), experiences a
Hopf bifurcation cascade for xm � 2:0 and xm � 5:3: The instabilities for xm 2
ð2:0; 5:3Þ are the exponential ones previously explored. However, considering
higher values of r; a stability range appears which is enlarged for growing r:
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Fig. 9 Left Real and imaginary part of the wavefunction profile for a symmetric (top) and anti-
symmetric (bottom) solution. Right Their corresponding stability eigenvalues. In all cases r ¼ 1
and the nonlinearity is attractive ðs ¼ �1Þ (Color online)
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A similar effect is observed for the asymmetric branch, i.e., there is a small stability
interval xm 2 ½1:9; 2:0� that is enlarged when r is decreased. Outside this range, the
branch experiences Hopf bifurcation cascades.
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Fig. 10 Left Real and imaginary part of the wavefunction profile for an asymmetric solution with
r ¼ 1 (top) and r ¼ 0:7 (bottom). Right Their corresponding stability eigenvalues. Notice the
Hopf bifurcations and the associated oscillatory instabilities through two complex pairs which
have occurred in the latter case. Here, the nonlinearity is attractive ðs ¼ �1Þ (Color online)
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Fig. 11 Dependence of the imaginary part of the stability eigenvalues with respect to r for
symmetric (left) and asymmetric solutions (right). Here, again, the nonlinearity is attractive
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The above mentioned scenario is almost equivalent for the attractive case,
except that the symmetric and anti-symmetric branches are interchanged. In that
case, the anti-symmetric branch is stable for xm 2 ½2:0; 4:8�; the symmetric branch
is now stable for xm 2 ½1:0; 1:9�; starting the Hopf cascade at xm ¼ 4:5: The
asymmetric branch is stable for xm 2 ½1:0; 2:0�; while being oscillatorily unstable
for other values of xm:
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4 Conclusions and Future Challenges

In the present work, we studied the existence of solutions, their spectral stability and
nonlinear dynamics for the case of a polariton condensate confined in a quasi-1D
double well potential. Motivated by recent developments for the study of polaritons in
such settings [26–32, 52–55], and by the work of Ref. [15] which proposed a two-well
model, we presented a systematic Galerkin analysis for the model with the gain over a
localized spot and nonlinear saturation loss formulated in Refs. [18–20]. It was theo-
retically predicted that nonlinear states emanate from the corresponding linear ones of
the potential and that bifurcations are expected to arise, similarly to the Hamiltonian
analog of this setting studied earlier in the context of atomic BECs. Such symmetry
breaking pitchfork events emerge from the anti-symmetric, first excited state in the
case of the repulsive interactions, while they arise from the symmetric ground state
branch in the case of attractive ones. Despite the similarities with the atomic BEC case,
nontrivial differences exist as well. One of them concerns the nature of the bifurcation,
which in the attractive case was found to be weakly subcritical (instead of supercritical)
upon decrease of the chemical potential. Importantly also, the resulting asymmetric
branches aside from narrow intervals of stability are generically found to be unstable
due to genuine Hopf bifurcations, which, in turn, give rise to periodic orbits (in the
density). While in the repulsive case, the dynamics of anti-symmetric and asymmetric
branches is found to be attracted to the ground state when both of them are unstable, the
periodic orbits are essential to the evolution in the case of attractive interactions as they
seem to constitute the robust dynamical attractor.

This is merely the first step in the examination of the similarities (but also the
differences) of the polariton BECs and their atomic counterparts within a setting
that contains the interplay of a double-well potential and nonlinear interactions.
Yet, our study paves the way for a number of potential future avenues. On the one
hand, one can consider the more detailed model of Refs. [15–17] and examine
whether the inclusion of the diffusive dynamics of the exciton population induces
any qualitative differences in the features reported herein. On the other hand, and
bearing in mind the predominantly two-dimensional nature of the polariton
dynamics, one can envision generalizations of the potential considered herein in a
2D realm. Relevant possibilities may include not only the straightforward gener-
alization of a double well encompassing two quasi-one-dimensional tracks, but
also that of a genuinely two-dimensional four well potential that has recently been
examined in detail in atomic BECs [73]. Even in the context of the present model,
there are further possibilities to explore, including the systematic investigation of
the emergent periodic orbits and their Floquet spectral stability analysis. Such
studies are currently in progress and will be reported in future publications.
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M.H. Szymańska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang,
Nature 443, 409 (2006)

2. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Science 316, 1007 (2007)
3. W. Lai, N.Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M.D. Fraser, T. Byrnes, P. Recher,

N. Kumada, T. Fujisawa, Y. Yamamoto, Nature 450, 529 (2007)
4. H. Deng, G.S. Solomon, R. Hey, K.H. Ploog, Y. Yamamoto, Phys. Rev. Lett. 99, 126403 (2007)
5. G. Björk, S. Machida, Y. Yamamoto, K. Igeta, Phys. Rev. A 44, 669 (1991)
6. C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992)
7. B. Deveaud (eds), The Physics of Semiconductor Microcavities (Wiley-VCH, Weinheim, 2007)
8. A. Amo, J. Lefrère, S. Pigeon, C. Abrados, C. Ciuti, I. Carusotto, R. Houdré, E. Giacobino,

A. Bramati, Nat. Phys. 5, 805 (2009)
9. K.G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, L.S. Dang,

B. Deveaud-Plédran, Nat. Phys. 4, 706 (2008)
10. M.D. Fraser, G. Roumpos, Y. Yamamoto, New J. Phys. 11, 113048 (2009)
11. G. Roumpos, M.D. Fraser, A. Loffler, S. Höffling, A. Forchel, Y. Yamamoto, Nat. Phys. 7,

129 (2011)
12. A. Amo, D. Sanvitto, F.P. Laussy, D. Ballarini, E. del Valle, M.D. Martin, A. Lemaitre,

J. Bloch, D.N. Krizhanovskii, M.S. Skolnick, C. Tejedor, L. Viña, Nature 457, 291 (2009)
13. A. Amo, T.C.H. Liew, C. Adrados, R. Houdré, E. Giacobino, A.V. Kavokin, A. Bramati, Nat.

Photonics 4, 361 (2010)
14. S.I. Tsintzos, N.T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, P.G. Savvidis, Nature 453,

372 (2008)
15. M. Wouters, I. Carusotto, Phys. Rev. Lett. 99, 140402 (2007)
16. M. Wouters, I. Carusotto, C. Ciuti, Phys. Rev. B 77, 115340 (2008)
17. C. Ciuti, I. Carusotto, Phys. Stat. Sol. (b) 242, 2224 (2005)
18. J. Keeling, N.G. Berloff, Phys. Rev. Lett. 100, 250401 (2008)
19. M.O. Borgh, J. Keeling, N.G. Berloff, Phys. Rev. B 81, 235302 (2010)
20. J. Keeling, N.G. Berloff, Contemp. Phys. 52, 131 (2011)
21. G. Tosi, G. Christmann, N.G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P.G. Savvidis,

J.J. Baumberg, Nat. Phys. 8, 190 (2012)
22. B.A. Malomed, O. Dzyapko, V.E. Demidov, S.O. Demokritov, Phys. Rev. B 81, 024418 (2010)
23. C.J. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge University

Press, Cambridge, 2002)
24. L.P. Pitaevskii, S. Stringari, Bose–Einstein Condensation (Oxford University Press,

Oxford, 2003)
25. P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero-González (eds), Emergent Nonlinear

Phenomena in Bose–Einstein Condensates: Theory and Experiment (Springer, Heidelberg, 2008)
26. R. Idrissi Kaitouni, O. El Daïf, A. Baas, M. Richard, T. Paraïso, P. Lugan, T. Guillet,

F. Morier-Genoud, J.D. Ganière, J.L. Staehli, V. Savona, B. Deveaud, Phys. Rev. B 74,
155311 (2006)

27. O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut, R.I. Kaitouni, J.L. Staehli, F. Morier-Genoud,
B. Deveaud, Appl. Phys. Lett. 88, 061105 (2006)

28. D. Bajoni, E. Peter, P. Senellart, J.L. Smirr, I. Sagnes, A. Lemaître, J. Bloch, Appl. Phys.
Lett. 90, 051107 (2007)

29. D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, J. Bloch, Phys. Rev. Lett.
100, 047401 (2008)

30. R. Cerna, D. Sarchi, T.K. Paraïso, G. Nardin, Y. Léger, M. Richard, B. Pietka, O. El Daïf, F.
Morier-Genoud, V. Savona, M.T. Portella-Oberli, B. Deveaud-Plédran, Phys. Rev. B 80,
121309(R) (2009)

31. M. Wouters, T.C.H. Liew, V. Savona, Phys. Rev. B 82, 245315 (2010)

528 A. S. Rodrigues et al.



32. E. Wertz, L. Ferrier, D.D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes,
R. Grousson, A.V. Kavokin, P. Senellart, G. Malpuech, J. Bloch, Nat. Phys. 6, 860 (2010)

33. J. Cuevas, A.S. Rodrigues, R. Carretero-González, P.G. Kevrekidis, D.J. Frantzeskakis, Phys.
Rev. B 83, 245140 (2011)

34. O. Morsch, M.K. Oberthaler, Rev. Mod. Phys. 78, 179 (2006)
35. M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, M.K. Oberthaler, Phys. Rev. Lett.

95, 010402 (2005)
36. T. Zibold, E. Nicklas, C. Gross, M.K. Oberthaler, Phys. Rev. Lett. 105, 204101 (2010)
37. R.B. Balili, D.W. Snoke, L. Pfeiffer, K. West, Appl. Phys. Lett. 88, 031110 (2006)
38. K.G. Lagoudakis, B. Pietka, M. Wouters, R. André, B. Deveaud-Plédran, Phys. Rev. Lett.

105, 120403 (2010)
39. R. Gati, M.K. Oberthaler, J. Phys. B Atomic Mol. Opt. Phys. 40, R61 (2007)
40. S. Raghavan, A. Smerzi, S. Fantoni, S.R. Shenoy, Phys. Rev. A 59, 620 (1999)
41. S. Raghavan, A. Smerzi, V.M. Kenkre, Phys. Rev. A 60, R1787 (1999)
42. A. Smerzi, S. Raghavan, Phys. Rev. A 61, 063601 (2000)
43. E.A. Ostrovskaya, Yu.S. Kivshar, M. Lisak, B. Hall, F. Cattani, D. Anderson, Phys. Rev.

A 61, 031601(R) (2000)
44. K.W. Mahmud, J.N. Kutz, W.P. Reinhardt, Phys. Rev. A 66, 063607 (2002)
45. V.S. Shchesnovich, B.A. Malomed, R.A. Kraenkel, Physica D 188, 213 (2004)
46. D. Ananikian, T. Bergeman, Phys. Rev. A 73, 013604 (2006)
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Classical Dynamics of a Two-species
Bose-Einstein Condensate in the Presence
of Nonlinear Maser Processes

B. M. Rodríguez-Lara and R.-K. Lee

1 Introduction

A great deal of attention has been granted to research about unifying concepts in classical
and quantum physics through experimental demonstrations involving Bose-Einstein
Condensates (BECs) at a macroscopic scale [1]. For example, by considering BECs
loaded in a double-well potential, the quantum tunnelling between two trapped
condensates provides a possibility to study and understand symmetry-breaking, self-
trapping, and Josephson oscillation; all of them are fundamental problems in quantum
physics. Macroscopic quantum self-trapping [2] and bosonic Josephson junction [3]
have been demonstrated recently, and successfully described by a mean-field approach.
The realization of these macroscopic quantum self-trapped modes opens up new avenues
for research; e.g., generation of squeezed atomic states [4] and atomic interferometry [5].

By using the symmetric and asymmetric stationary eigenstates of the Gross–
Pitaevskii equation for a macroscopic condensate trapped in a symmetric double-
well potential (SDW), the nonlinear Hamiltonian (in units of �h) describing
coherent atomic tunnelling between two zero-temperature BECs is equivalent to
that of a nonrigid pendulum [6, 7], i.e.,

HSDW ¼ K
2

z2 �
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
cos U; ð1Þ
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where the length of pendulum decreases with the angular momentum z; which
denotes the fractional relative population between the condensates in the two
wells. The ratio of the on-site interaction energy and the coupling matrix element
is characterized by the parameter K; while the tilt angle U shows the phase
difference between the two condensates.

This nonlinear system allows for macroscopic quantum self-trapping (i.e.,
localized oscillations of the fractional population difference z), which can be easily
deduced from the equations of motion of the system,

_z ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
sin U; ð2Þ

_U ¼ Kz þ z
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p cos U: ð3Þ

The fixed points of such equations of motion present a pitchfork bifurcation at the

critical point Kc ¼ 1; i.e., fzp ¼ 0;U ¼ pg for K\1 and fzp ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � 1

p
=K;

U ¼ pg for K [ 1: This bifurcation signals a symmetry-breaking in the dynamics
of the system from Rabi to Josephson dynamics; such that for symmetric initial
conditions, fz� ¼ �z0;U ¼ pg; the trajectories will be identical in the Rabi
regime, K\1; but localize in opposite hemispheres of phase space in the
Josephson regime, K [ 1: Figure 1 shows an example of such symmetry-breaking
phenomena. The transition from Rabi to Josephson dynamics due to the pitchfork
bifurcation of the fixed points has been confirmed experimentally in an equivalent
model consisting of two hyperfine states of a single atomic specie BEC coupled by
a classical two-photon transition in the semi-classical limit [8].

0 1

-1

0

1

-1

0

1

2.8 3.2 3.62

(a) (b)

Fig. 1 a Fixed points for the equations of motion of a BEC in a double-well potential, described
by Eqs. (2 and 3), at U ¼ p: The bifurcation of a single stable fixed point in the Rabi regime
(solid purple) split into two fixed points in the Josephson regime (dotted blue and dashed red) is
shown at the critical value, Kc ¼ 1: The unstable fixed point, or separatrix, in the Josephson
regime (dash-dotted black) is also shown. b Examples of trajectories for identical Rabi
oscillations (solid purple) around the fixed point A ðK ¼ 0:5Þ and localized Josephson
oscillations around the fixed points B (dotted blue) and C (dashed red) ðK ¼ 1:5Þ are
demonstrated with symmetrical initial conditions fz� ¼ �0:5;U ¼ pg (Color online)
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Recently, strong coupling between a BEC and the quantized field mode of an
ultrahigh-finesse optical cavity has been demonstrated [9–11]. The spectra of these
strongly-coupled systems shows a level splitting attributed to different hyperfine
structures of the given atomic species. Motivated by these experiments, here, we
consider a gaseous BEC, composed of bosonic atoms populating two hyperfine
levels, coupled to a quantized field cavity mode, including nonlinear interactions
among the ultracold atoms. Instead of two trapped BECs interacting through
quantum tunnelling in a double-well potential, the hyperfine levels of the two-
species condensate are driven by the quantized cavity field. It will be demonstrated
later that the Hamiltonian describing this system consisting of a BEC in a cavity
can be reduced into a nonlinear Dicke model with an additional atom-atom
quadratic interaction term; in the semi-classical limit, this system can be thought
of as a pendulum with changeable mass. In order to study a general model, we
consider second and third order nonlinear processes for the field. Our goal is to
present a steady-state analysis of the equations of motion in the large-ensemble-
size limit for the collective dynamics of this system. In Sect. 2, the model and
possible physical realizations are presented and discussed. In order to present
analytical results, a weak regime is defined in Sect. 3 for weak coupling and
nonlinearities (compared to the frequency of the driving field). The symmetry of
Josephson dynamics is shown to break by the driving quantum field. Finally,
Sect. 4 closes with a summary.

2 Model

The proposed model Hamiltonian describing the interaction of a single electro-
magnetic cavity mode â coupled to a BEC with two internal hyperfine structure

levels b̂# and b̂" can be obtained from the Gross–Pitaevskii equation describing a
two-species BEC interacting with a quantum field [12] and is written as,

Ĥ0 ¼xf â
yâ þ

X

j¼";#
Ejb̂

y
j b̂j þ

1
2

Gjjb̂
y
j b̂

y
j b̂jb̂j

� �

þ g
ffiffiffiffi
N

p â þ ây� �
b̂y
"b̂# þ b̂y

#b̂"

� �
þ G"#b̂y

"b̂y
#b̂#b̂";

ð4Þ

where the frequency xf is the cavity mode frequency, the parameter g is the
coupling strength between the cavity mode and condensed atoms, and N is the
number of atoms in the condensate. The energies of two internal hyperfine levels
are labelled as E# and E" with an intra-atomic transition frequency xa � E" � E#:
Here, we suppose the interaction Hamiltonian as a coupled two-component BEC
[13], by introducing Gjjðj ¼" and #Þ and G"# for the inter-atomic and intra-
atomic interactions, respectively.

The Hamiltonian in Eq. (4) can be further reduced by regarding all atoms as
spin 1=2 particles and defining collective angular momentum operators via
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Schwinger transformation, Ĵx ¼ b̂þ
" b̂# þ b̂"b̂þ

#

� �
=2; Ĵy ¼ b̂þ

" b̂# � b̂"b̂
þ
#

� �
=2i; and

Ĵz ¼ b̂þ
" b̂" � b̂þ

# b̂#

� �
=2, alongside the raising and lowering operators Ĵþ ¼ b̂þ

" b̂#

and Ĵ� ¼ b̂"b̂
þ
# : The reduced Hamiltonian is given by the expression,

ĤDLMG ¼ D Ĵz þ
g
ffiffiffiffi
N

p â þ ây� �
Ĵx þ

n
N

Ĵ2
z ; ð5Þ

where we have dropped the constant energy term N
2 E" þ E# � 1

2 G"" þ G##
� �	 


þ
N2

8 G"" þ G## þ 2G"#
� �

: The average interaction energy of each atom is defined as

n=N ¼ 1
2 G"" þ G## � 2G"#
� �

to account for the collective interaction among the
condensates. The frequency detuning between cavity field and hyperfine transition
is given by D ¼ xa � xf : In the following analysis, only positive values of n are
considered (repulsive interaction) for the case of inter-species interaction, G"" or
G##; larger than the intra-species interaction, G"#:

Equation (5), the starting Hamiltonian for our analysis, corresponds to a gen-
eralized Dicke Hamiltonian without the rotating wave approximation and an
additional atom–atom quadratic nonlinear interaction. It is well known that the
Dicke Hamiltonian describes the collective dynamics for an ensemble of two-level
systems driven by a quantum field cavity mode within a quantum electrodynamics
(QED) configuration [14]. From many-body physics, the Hamiltonian in Eq. (5) is
also equivalent to the Lipkin–Meshkov–Glick (LMG) model in the limit g ¼ 0 [15].
Through the interaction among ensemble atoms, the LMG model, originally for N
fermions distributed in two N-fold degenerate levels and interacting via a mono-
pole-monopole force, was used to describe the Josephson effect in a two-species
BEC and found to produce a maximal pairwise entanglement of formation at the
phase transition of its ground state [16, 17]. Schemes proposed to implement a
dissipative LMG model in optical cavity-QED [18] and in circuit-QED [19] have
been discussed. The Hamiltonian in Eq. (5) hereby will be called the Dicke-LMG
(DLMG) Hamiltonian. Recently, it has been theorized that the ground state of the
DLMG model supports phase transitions [20]. In the semi-classical limit, both
pitchfork and asymmetric bifurcations of the stable fixed points were found for this
model [21]. Also, the full quantum analysis of such a system showed a highly
entangled ground state near the values of the semi-classical critical parameters [22].

Now, we extend the DLMG Hamiltonian to include a Kerr medium [23, 24] and
degenerate parametric amplification [25] with nonlinear parameters j and v;
respectively. The model Hamiltonian for such a system is given by the expression:

Ĥ ¼ x0âyâ þ jðâyâÞ2 þ v â2 þ ây2
� �

þ xa Ĵz þ
n
N

Ĵ2
z þ g

ffiffiffiffi
N

p â þ ây� �
Ĵx; ð6Þ

where the modified field frequency x0 ¼ xf � j þ 2v involves the modifications

arising from the original Kerr and parametric amplifier terms, ây2â2 and â þ ây� �2
:

Experimental realizations providing an assorted range of tunable parameters for
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the DLMG model may include a two-hyperfine-structure-defined-modes BEC
coupled to a quantum cavity field mode through a one microwave photon process;
e.g., trapped hyperfine ground states of a Sodium BEC inside a microwave cavity
[26]. Arrays of interacting superconducting qubits coupled to the quantum field
mode of a coplanar waveguide resonator may be considered as a physical reali-
zation limited by small ensemble sizes [27].

In the literature, similar model Hamiltonians have been considered without the
feedback from the BEC on the electromagnetic field; e.g., a second-order phase
transition from immiscibility to miscibility is revealed in such a two-species
system by considering a linear mixing between the binary components [28]. Stable
domain-wall solutions, on top of flat continuous wave asymmetric bimodal states,
can also be found near the point of the symmetry-breaking bifurcations [29]. The
relative phase of domain-walls and breather-like dynamics for these dressed two-
species BECs has also been studied by considering a classical external driving field
[30, 31]. Our results with a driven quantum field differs considerably from earlier
studies: It is found that even in the semi-classical limit, the quantum field drive
manifests in the excitation ratio parameter. When this excitation parameter is small
or close to one, a discrete total excitation strongly modifies the classical dynamics
of the system, producing localized asymmetric dynamics where some of the phase
space trajectories present a running phase; e.g., Fig. 3a, b.

The proposed Hamiltonian in Eq. (6) may be experimentally realized by a two-
species BEC, where the species are defined by two hyperfine-structure levels. The
condensate is confined and coupled to a quantum cavity field mode through a one-
microwave-photon process in the presence of a Kerr and a vð2Þ medium. In general,
the model described by Hamiltonian (6) has complex dynamics that deserve a
study on their own. In order to give a clear interpretation, here, we limit ourselves
to an analytical approach in the weak regime where intra-ensemble and ensemble-
field couplings, as well as nonlinearities, are small compared to the field and
hyperfine transition frequencies.

3 Weak Regime

The full Hamiltonian in Eq. (6) does not conserve the total number of excitations,

N̂ ¼ âyâ þ Ĵz; i.e., ½Ĥ; N̂ � 6¼ 0: This fact prevents a simple approach like those
given in the literature [8, 21]. This inconvenience may be bridged in the regime
where nonlinearities and couplings are weak compared to the field and transition
frequencies. In this weak regime it is possible to define a couple of unitary
transformations [32]

T̂ ¼ eg â2�ây2ð Þ; ð7Þ

Û ¼ e�im âþâyð Þ Ĵy : ð8Þ
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The first of these transformations is equivalent to consider a squeezed basis; while
the second one is similar to a polariton transformation and provides an effective
rotating wave approximation, with the introduction of the small parameters g ¼
v=x0 � 1 and m ¼ gð1 � 2gÞ= xa þ x0 � 4vgð Þ � 1; respectively. The following
effective Hamiltonian, up to a constant and in units of �h; is obtained by neglecting
all the products of couplings with nonlinearities (i.e., j; n; v; k; g and m are all at
least a couple orders of magnitude smaller than the field and atom frequencies) and
moving into the frame defined by the total excitation number rotating at frequency
x ¼ x0 � 4vg;

Ĥeff ¼ d Ĵz þ j âyâ
� �2þn

N
Ĵ2

z þ k
ffiffiffiffi
N

p â Ĵþ þ ây Ĵ�
� �

: ð9Þ

Here, the frequency detuning is given by d ¼ xa � x and the effective ensemble-
field coupling is k ¼ xm: This effective Hamiltonian in the weak regime is nothing
else than the extended Dicke model studied in reference [22] plus a Kerr term. The

Hamiltonian in Eq. (9) conserves the total number of excitations, ½Ĥeff ; N̂ � ¼ 0:
Note that the exact dynamics defined by Hamiltonian Eq. (9) can be calculated by
quantum inverse methods [33].

3.1 Semi-Classical Limit

In order to link our proposed configuration to a generalized pendulum problem, we
apply the mean-field approach to study the semi-classical dynamics of this two-
species BEC coupled to an optical cavity mode. It is possible to approximate the
expectation values by considering the system in a separable state composed of a
coherent photon state [34, 35], j

ffiffiffi
n

p
eıUi; and a coherent spin 1=2 state [36, 37],

jz; hi; respectively. The expectation values for the field with the photon number n
and optical phase / are:

hâi � a ¼
ffiffiffi
n

p
ei/; ð10Þ

hâyi � a� ¼
ffiffiffi
n

p
e�i/; ð11Þ

hâyâi � jaj2 ¼ n: ð12Þ

If the ensemble is large enough, such that N � 1 but less than the restriction
brought by the two-mode approximation [12, 38], the expectation values for the
ensemble operators may be approximated by those in the thermodynamic limit,

h Ĵzi � Jz 	
N

2
z; ð13Þ
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h Ĵ�i � J� 	 N

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
e�ih; ð14Þ

where the fractional population difference is defined by the rotating angle in the
corresponding atomic Bloch sphere, i.e., z ¼ cosh: The conserved quantity in our
system is the mean total excitation number, which is given by the expression:

hN̂ i � N ¼ n þ N

2
z: ð15Þ

This mean-field approximation plus the definition of a total phase variable,
U ¼ / þ h; and an excitation ratio, k ¼ 2N =N; allow us to write the weak regime
effective Hamiltonian in units of �hNk=2 and up to a constant as:

H ¼ D þ K
2

z

� �
z þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk � zÞð1 � z2Þ

p
cos U; ð16Þ

where the re-scaled transition detuning is now shifted by the self-phase modulation
from the Kerr nonlinearity, D ¼ ðd þ jÞ=k: Moreover, the re-scaled coupling ratio
is defined as K ¼ n=k: This mean-field Hamiltonian is equivalent with that of the
DLMG model in [22], with the difference that in this case the Kerr and vð2Þ

nonlinearities play important roles in the frequency detuning D and the charac-
teristic interaction ratio K; respectively.

Equation (16) may be viewed as a more general pendulum with nonlinear
pendulum length and changeable pendulum mass described by the excitation ratio,
k: This distinguishes our system from the double-well configuration which is
equivalent to a pendulum with just nonlinear pendulum length. Also, note the
restriction k � z [ 0 induced by the model Hamiltonian. Our system is equivalent
to the case of a BEC in an asymmetric double-well (ADW) via a phase p-shift and
a restriction given by k � z ¼ 1=2;

HADW ¼ D þ K
2

z

� �
z �

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
cos U; ð17Þ

3.2 Fixed Points of the System

The dynamics of the semi-classical system is given by the equations of motion for
the dimensionless fractional population difference and total phase variable,

_z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1 � z2ð Þ k � zð Þ

p
sin U; ð18Þ

_U ¼ D þ Kz � 1 þ 2kz þ 3z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1 � z2ð Þ k � zð Þ

p cos U: ð19Þ
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Stationary states are found at the total phase variables values of U ¼ 0 and p: Due
to the p phase difference with Eq. (1), here the plasma and p oscillations will
exchange places appearing at U ¼ p and U ¼ 0; respectively.

The fixed points of this Hamiltonian coincide with the critical points as _z �
�oH=oU and _U � oH=oz [21]. Stationary states are found for the phase variable
values U ¼ 0; p and the excitation parameter value

k ¼ 3z2 � 1
2z

þ ð1 � z2ÞjðD þ KzÞj
4z2


 jD þ Kzj � D þ Kzð Þ2�4z
h i1=2

� �
: ð20Þ

Notice that, in order to obtain a real excitation ratio, k; the allowed fractional

population difference is bounded to the range z 2 ½�1; z�� [ ½zþ; 1�; where z� ¼
½2 � DK � 2ð1 � DKÞ1=2�=K2 sets the condition D� 1=K:

An example of fixed points in the weak regime is shown in Fig. 2. When the
value of the excitation ratio k is less than or within the order of the magnitude of
one, we have a quantum drive compared to a classical one ðk � 1Þ: It is the
introduction of the quantum drive and nonlinear processes that brings a peculiar
breaking of the symmetry, different from the pitchfork bifurcation of the classical
driving. It is possible to numerically sample the parameter space, fD;K; kg; and
see that for any given excitation ratio, k; the fixed points satisfy mirror inversion at
K ¼ 0; i.e., zðK; jDjÞ ¼ zð�K;�jDjÞ: Also, if the frequency detuning, d; is set to
compensate the Kerr nonlinearity, d ¼ �j; it is possible to recover results that
have been studied in the past; e.g., Fig. 2b, e correspond to Fig. 2 in [21].

From the mean-field Hamiltonian in Eq. (16), it is straightforward to see that
the quantum drive restricts the phase space accessible to Rabi oscillations for low
excitation ratio, k\1; in order to keep the mean effective energy real, as shown in

(a) (b) (c)

(d) (e) (f)

Fig. 2 Example of fixed points in the weak regime, described by Eqs. (18 and 19), for excitation
ratios (a–c) k ¼ 0:1 and (d–f) k ¼ 10; respectively. Different tunning ratios, D ¼ ðd þ jÞ=k; are
shown: (a, d) D ¼ �0:5; (b, e) D ¼ 0; (c, f) D ¼ 0:5: Solid and dotted black lines correspond to
stable and unstable fixed points for p�oscillations; while dashed grey lines correspond to fixed
points for plasma oscillations
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Fig. 3a, b. Figure 3c, d allow us to see that the quantum drive also breaks the
symmetry of symmetric initial conditions as isoenergetic lines are not symmetric
with respect to the horizontal axis even when the whole phase space is accessible.

Figure 4 shows an example of asymmetric Rabi and Josephson oscillations
brought by the quantum driving field. A parameter set fD ¼ 0:5; k ¼ 10g is taken
and the fixed points found in Fig. 4a. From the fixed points, two coupling ratios are
chosen in the Rabi, K ¼ 1; and Josephson, K ¼ 8; regimes; this procedure delivers
one stable fixed point, fAg; in the Rabi regime and two stable, fB;Cg; and one
unstable, fDg; fixed points in the Josephson regime. Figure 4b shows typical
trajectories in these two regimes, where it is possible to see that symmetric initial
conditions, i.e., fz�ðt ¼ 0Þ ¼ �z0;Uðt ¼ 0Þ ¼ 0g; do not deliver symmetric tra-
jectories. The latter can be seen straightforward from the position of the unstable
fixed point, also called separatrix, and trajectories starting close to it.

In the limit where the couplings ratio is large, K ! 1; it is possible to see a
pitchfork bifurcations depending on the excitation ratio; an approximate critical
excitation ratio can be calculated as kc 	 K2=2: At this critical value, a stable fixed
point bifurcates into two new stable fixed points and the original fixed point
becomes an unstable fixed point acting as a separatrix in phase space. There is a
symmetry breaking in the dynamics due to the bifurcation, a transition from Rabi
to Josephson oscillations; i.e., two initial symmetric states share identical
dynamics in the Rabi regime, while in the Josephson regime they localize in
different regions of phase space. Figure 5 shows an example of this symmetry

(a) (b)

(d)(c)

Fig. 3 Normalized mean value of the effective Hamiltonian energy in Eq. (16), where a
compression of the available phase space is shown for parameter sets fD;K; kg ¼ (a) f�0:5; 1; 0:1g
and (b) f0:5; 8; 0:1g:Also, the existence of asymmetric trajectories for symmetric initial parameters
is intuited from the lack of symmetry with respect to the horizontal axis of the normalized mean
value effective energy for parameter sets in the Rabi and Josephson regimes, fD;K; kg ¼
(c) f�0:5; 1; 10g and (d) f0:5; 8; 10g; in that order (Color figure online)
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-1

0

1

-1 0 1
-1

0

1a) (b)

Fig. 4 Fixed points and typical trajectories for parameter set fD ¼ �0:5;K ¼ 1 and 8; k ¼ 10g:
a Fixed points for the equations of motion in the weak regime, described by Eqs. (18 and 19) at
u ¼ 0; showing the splitting of a single stable fixed point in the Rabi regime (solid purple) into
two fixed points in the Josephson regime (dotted blue and dashed red). The unstable fixed point,
or separatrix, in the Josephson regime (dash-dotted black) is also shown. b Examples of
trajectories with symmetrical initial conditions fz� ¼ �0:5;U ¼ 0g; leading to asymmetrical
Rabi oscillations (purple dotted for zþ and dashed for z�) around the fixed point A; and
asymmetrically localized Josephson oscillations around the fixed point B (blue dotted for zþ) and
C (red dashed for zþ). Two trajectories starting slightly above and below the separatrix D are also
shown (dash-dotted black) (Color figure online)

00 0.5 1
-1

0

1

-1

0

1

0.4-0.4

(a) (b)

Fig. 5 Off resonance, d 6¼ 0; with D ¼ d þ jð Þ=k ¼ 0; i.e., d ¼ �j: a Fixed points for the
equations of motion in the weak regime, described by Eqs. (18 and 19) at U ¼ 0; in the large
couplings ratio limit, K ¼ n=k ! 1 (numerical value K ¼ 1;000), showing the bifurcation of a
single stable fixed point in the Rabi regime (solid purple) into two fixed points in the Josephson
regime (dotted blue and dashed red). The unstable fixed point, or separatrix, in the Josephson
regime (dash-dotted black) is also shown. b Examples of trajectories with symmetrical initial
conditions fz� ¼ �0:5;U ¼ 0g; identical Rabi oscillations (purple solid) around the fixed point
A (numerical value k ¼ 75;0000), and symmetrically localized Josephson oscillations around the
fixed point B (blue dotted) and C (red dashed). Two trajectories starting slightly above and below
the separatrix D are also shown (dash-dotted black) (numerical value k ¼ 25;0000) (Color figure
online)
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breaking in the dynamics, in which for large coupling ratios, K � 1; i.e., g � k; it
is possible to locate a pitchfork bifurcation point, kcþ 	 K2=2 even for the
off-resonance condition, d 6¼ 0: Now the transition between the two-level system
and the field d is different from zero but balances off the nonlinearity, i.e., D ¼ 0:
This condition, g � k; relates to the phase space region where maximal shared
bipartite concurrence in the atomic ensemble may be obtained in the quantum
treatment of this model [22]. The difference comes from the large excitation
parameter ratio arising in this semi-classical analysis, kcþ � 1; i.e., Nq � n

as zc 	 3=K2 � 1:

4 Conclusion

In summary, we have presented an analysis of the classical dynamics of a two-
species BEC large in size driven by a quantized field in the presence of nonlinear
processes. In the weak regime, we find that the nonlinear phase from the Kerr
nonlinearity, j; shifts the transition detuning of the effective Hamiltonian of a
generalized Dicke model; while the vð2Þ nonlinear coefficient re-scales the cou-
pling ratio. This mean-field Hamiltonian is equivalent to a nonrigid, nonlinear
pendulum, for which a transition from Rabi to Josephson dynamics is identified
depending on both the intra-BEC interactions to field-ensemble coupling ratio and
the ratio between the total excitation number and the ensemble size. Moreover, we
find that the symmetry of Josephson dynamics is broken by the quantum field, and
an actual pitchfork bifurcation point is found in the regime where the intra-
ensemble interaction is larger than the field-ensemble coupling. Furthermore, It is
known that symmetry-breaking in the classical dynamics of BEC may herald
entangled quantum states [39, 40]. Our results may provide a deeper understanding
about the collective dynamics of interacting BECs and give another example in
favour of the aforementioned conjecture relating classical and quantum regimes
for nonlinear systems.

Acknowledgments B.M.R.L. is grateful for the hospitality and camaraderie of the Theoretical
Optics Group at National Tsing Hua University, Taiwan.

References

1. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University
Press, Cambridge, 2002)

2. M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, M. K. Oberthaler, Phys. Rev. Lett.
95, 010402 (2005)

3. S. Levy, E. Lahoud, I. Shomroni, J. Steinhauer, Nature 449, 579 (2007)
4. J.A. Dunningham, K. Burnett, M. Edwards, Phys. Rev. A 64, 015601 (2001)

Classical Dynamics of a Two-species Bose-Einstein Condensate 541



5. E. Andersson, T. Calarco, R. Folman, M. Andersson, B. Hessmo, J. Schmiedmayer, Phys.
Rev. Lett. 88, 100401 (2002)

6. A. Smerzi, S. Fantoni, S. Giovanazzi, S. R. Shenoy, Phys. Rev. Lett. 79, 4950 (1997)
7. S. Raghavan, A. Smerzi, S. Fantoni, S.R. Shenoy, Phys. Rev. A 59, 620 (1999)
8. T. Zibold, E. Nicklas, C. Gross, M.K. Oberthaler, Phys. Rev. Lett. 105, 204101 (2010)
9. F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, T. Esslinger, Nature 450, 268

(2007)
10. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, J. Reichel, Nature 450, 272

(2007)
11. K. Baumann, C. Guerlin, F. Brennecke, T. Esslinger, Nature 464, 1301 (2010)
12. G. Chen, Z. Chen, J.-Q. Liang, EuroPhys. Lett. 80, 40004 (2007)
13. C. Lee, Phys. Rev. Lett. 102, 070401 (2009)
14. R.H. Dicke, Phys. Rev. 93, 99 (1954)
15. H.J. Lipkin, N. Meshkov, A.J. Glick, Nucl. Phys. 62, 188 (1965)
16. J. Vidal, G. Palacios, R. Mosseri, Phys. Rev. A 69, 022107 (2004)
17. J. Vidal, G. Palacios, C. Aslangul, Phys. Rev. A 70, 062304 (2004)
18. S. Morrison, A.S. Parkins, Phys. Rev. Lett. 100, 040403 (2008)
19. J. Larson, Europhys. Lett. 90, 54001 (2010)
20. Q.-H. Chen, T. Liu, Y.-Y. Zhang, K.-L. Wang, Phys. Rev. A 82, 053841 (2010)
21. B. M. Rodríguez-Lara, R.-K. Lee, Phys. Rev. E 84, 016225 (2011)
22. B.M. Rodríguez-Lara and R.-K. Lee, arXiv: 1008.2572v1 (2010)
23. S. Chi, T.Y. Wang, S. Wen, Phys. Rev. A 47, 3371 (1993)
24. B. Deb, D.S. Ray, Phys. Rev. A 48, 3191 (1993)
25. M.J. Collett, C.W. Gardiner, Phys. Rev. A 30, 1386 (1984)
26. A. Görlitz, T.L. Gustavson, A.E. Leanhardt, R. Low, A.P. Chikkatur, S. Gupta, S. Inouye,

D.E. Pritchard, W. Ketterle, Phys. Rev. Lett. 90, 090401 (2003)
27. D.I. Tsomokos, S. Ashhab, F. Nori, Phys. Rev. A 82, 052311 (2010)
28. I.M. Merhasin, B.A. Malomed, R. Driben, J. Phys. B: At. Mol. Opt. Phys. 38, 877 (2005)
29. N. Dror, B.A. Malomed, J. Zeng, Phys. Rev. E 84, 046602 (2011)
30. D.T. Son, M.A. Stephanov, Phys. Rev. A 65, 063621 (2002)
31. S.D. Jenkins, T.A.B. Kennedy, Phys. Rev. A 68, 053607 (2003)
32. B.M. Rodríguez-Lara, R.-K. Lee, J. Opt. Soc. Am. B 27, 2443 (2010)
33. N.M. Bogoliubov, R.K. Bullough, J. Timonen, J. Phys. A: Math. Gen. 29, 6305 (1996)
34. E.C.G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963)
35. R.J. Glauber, Phys. Rev. 131, 2766 (1963)
36. G. Nienhuis, van S.J. Enk, Phys. Scr. T 48, 87–93 (1993)
37. F.T. Arecchi, E. Courtens, R. Gilmore, H. Thomas, Phys. Rev. A 6, 2211 (1972)
38. G.J. Milburn, J. Corney, E.M. Wright, D.F. Walls, Phys. Rev. A 55, 4318 (1997)
39. A. Micheli, D. Jacksch, J. I. Cirac, P. Zoller, Phys. Rev. A 67, 013607 (2003)
40. A. P. Hines, R. H. McKenzie, G.J. Milburn, Phys. Rev. A. 71, 042303 (2005)

542 B. M. Rodríguez-Lara and R.-K. Lee



Existence, Stability and Nonlinear
Dynamics of Vortices and Vortex Clusters
in Anisotropic Bose-Einstein Condensates

J. Stockhofe, P. G. Kevrekidis and P. Schmelcher

Abstract This chapter is devoted to the study of vortex excitations in one-com-
ponent Bose-Einstein condensates, with a special emphasis on the impact of
anisotropic confinement on the existence, stability and dynamical properties of
vortices and particularly few-vortex clusters. Symmetry breaking features are
pervasive within this system even in its isotropic installment, where cascades of
symmetry breaking bifurcations give rise to the multi-vortex clusters, but also
within the anisotropic realm which naturally breaks the rotational symmetry of the
multi-vortex states. Our first main tool for analyzing the system consists of a
weakly nonlinear (bifurcation) approach which starts from the linear states of the
problem and examines their continuation and bifurcation into novel symmetry-
broken configurations in the nonlinear case. This is first done in the isotropic limit
and the modifications introduced by the anisotropy are subsequently presented.
The second main tool concerns the highly nonlinear regime where the vortices can
be considered as individual topologically charged ‘‘particles’’ which precess
within the parabolic trap and interact with each other, similarly to fluid vortices.
The conclusions stemming from both the bifurcation and the interacting particle
picture are corroborated by numerical computations which are also used to bridge
the gap between these two opposite-end regimes.
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1 Introduction

The study of topologically charged vortex states is a theme of wide appeal in
numerous fields such as superfluid helium [1], type-II superconductors [2], non-
linear optics [3, 4] and atomic Bose-Einstein condensates (BECs) [5–7], among
many others [8]. Admittedly, BECs constitute one of the most pristine settings
where structural and dynamical properties of single- and multi-vortex (both of the
same and of opposite charge) and multi-charged-vortex states can be investigated
not only theoretically and computationally but also by means of a wide array of
experimental techniques.

The main focus of study within this theme of vortex dynamics over the past decade
has been the examination of single- and multi-charge vortices, as well as of highly
structured vortex lattices [7]. On the other hand, far less attention has been paid to the
dynamics of small clusters of (few) vortices. In this context, it is particularly relevant
to understand both the potential existence of stationary or periodic orbits in such
systems, and their dynamical stability, as well as the motion near such ‘‘equilibria’’,
but also the generic motion of the vortices in these clusters far from their equilibrium
configurations. Questions concerning also the integrable or non-integrable structure
of the vortex trajectories and the existence of chaotic dynamics therein constitute a
fascinating topic for further investigation. Much of the relevant literature has been
reserved to the fundamental (beyond the single vortex) building block of the vortex
dipole [9–17]. Recently, this state has also received considerable experimental
attention [18–20] but other configurations have been considered theoretically as well
[12, 13, 16, 21] and are becoming amenable to experiments [22]. Let us remark that
from the theoretical side small vortex clusters have also been studied in the presence
of periodic lattice potentials [23], and it was demonstrated how introducing different
lattice parameters along the different axes can significantly affect their stability
properties. In the presence of a periodic lattice potential, also more complex entities
such as super-vortices have been constructed [24]. Recently, there has also been an
increase in interest in so-called azimuthon excitations, i.e. vortices accompanied by
azimuthal density modulations around their cores [25, 26]. Clusters of these have
been studied in [27].

Our aim here, in considerable extension of the recent discussion of [28], is to
examine the context where vortex clusters become subject to anisotropy in the
harmonic trapping potential. Although some effort has been invested in such
investigations in the context of co-rotating vortex systems by the works of [29–31],
very little attention has been paid to this subject in the case of counter-rotating
vortices. In that light, we offer a perspective encompassing two complementary
approaches: close to the linear limit, we develop a weakly nonlinear (bifurcation)
approach which examines the continuation of various states and their bifurcation
into novel symmetry-broken states in the nonlinear regime; far from the linear
regime (in fact, in the highly nonlinear regime), the vortices can be considered as
individual topologically charged ‘‘particles’’ for which (ordinary differential)
equations of motion describing their precessions and interactions are devised and
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analyzed. Our numerical analysis of the system corroborates these limits and
bridges them by means of detailed computations1.

The presentation of this chapter will be structured as follows. In Sect. 2, we
present the model and its theoretical setup. Upon a discussion of the highly
nonlinear particle-type description of vortex dynamics in anisotropic traps in
Sect. 3, we focus on aligned vortex clusters in Sects. 4 and 5 from the particle and
bifurcation perspectives, respectively. In Sect. 6, we address non-aligned vortex
clusters, which are examined in the presence of anisotropy in Sect. 7. Finally, in
Sect. 8, we summarize our findings and present our conclusions.

2 Model and Theoretical Setup

Our prototypical model for the pancake-shaped Bose-Einstein condensates under
consideration is the 2D Gross-Pitaevskii equation (GPE) for the condensate
wavefunction wðx; y; tÞ which can be cast into a convenient dimensionless form by

measuring length, time, energy and density jwj2 in units of az (harmonic oscillator
length in the z-direction), x�1

z (inverse trap strength in the z-direction), �hxz and

ð2
ffiffiffiffiffiffi
2p

p
jajazÞ�1, respectively. Here, a denotes the s-wave scattering length,

encoding the low-energy limit of the interaction between the bosons [6]. In the
rescaled variables the model of interest is given by:

iotwðx; y; tÞ ¼ � 1
2
r?

2 þ Vðx; yÞ þ rjwðx; y; tÞj2
� �

wðx; y; tÞ; ð1Þ

where r denotes the sign of the s-wave scattering length a. In the following we will
exclusively discuss the case of repulsive interaction, r ¼ þ1, which ensures sta-
bility of the condensate against collapse.

In Eq. 1, the harmonic (parabolic trap) potential that will be considered in this
work is given by Vðx; yÞ ¼ ðx2

xx2 þ x2
yy2Þ=2, where the trapping frequencies in

the plane have already been rescaled by the trap strength in the z-direction. All
equations will be presented in dimensionless units for simplicity.

Below, we will analyze the existence and linear stability of the stationary
modes of Eq. 1. These are obtained in the form wðx; y; tÞ ¼ /ðx; yÞ expð�iltÞ,
where l denotes the chemical potential. Substituting into Eq. 1 yields the sta-
tionary 2D Gross-Pitaevskii equation for /ðx; yÞ. Numerically the relevant

1 The connection provided through the numerical results is often essential as some configurations
may e.g. be stable in the above two limits but possess instabilities in finite intermediate ranges of
parameter values that would not be observable by restricting our view to the analytically tractable
limits. A notable example of this type is offered by the vortex quadrupole configuration (see e.g.
Fig. 8 of [16] and equivalently the isotropic limit of both Fig. 10d and e below). Such a state is
found to be linearly stable in both of the above quasi-analytical limits and its intermediate range
of instability parameter values is only detected by the bridging numerical continuation.
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nonlinear stationary states will be identified as a function of the chemical
potential l and often as a function of the anisotropy by means of a Newton-
Krylov scheme over a rectangular two-dimensional domain with suitably small
spacing. Linear stability will be explored by means of the Bogoliubov-de Gennes
(BdG) analysis. This involves the derivation of the BdG equations, which stem
from a linearization of the GPE Eq. 1 around the stationary solution /ðx; yÞ by
using the ansatz [7]

wðx; y; tÞ ¼ /ðx; yÞ þ aðx; yÞe�ixt þ b�ðx; yÞeþix�t
� �

e�ilt; ð2Þ

where � indicates complex conjugation, and expanding to first order in a; b.
The solution of the ensuing BdG eigenvalue problem yields the eigenvectors
aðx; yÞ; bðx; yÞð Þ and eigenfrequencies x. As concerns the latter, we note that

due to the Hamiltonian nature of the system, if x is an eigenfrequency of the
Bogoliubov-de Gennes spectrum, so are �x; x� and �x�. Notice that a lin-
early stable configuration is tantamount to ImðxÞ ¼ 0, i.e., all eigenfrequencies
being real.

An important quantity resulting from the BdG analysis is the energy carried by
the normal mode with eigenfrequency x, namely,

E ¼ x
Z

dxdyðjaj2 � jbj2Þ: ð3Þ

The sign of this quantity, known as Krein sign [32], is a topological property of
each eigenmode. Let us remark that for a real mode x, both ðx; a; bÞ and
ð�x; b�; a�Þ solve the BdG equations, such that both modes of this pair have the
same E and the same Krein signature according to Eq. 3. For eigenfrequencies
with a nonvanishing imaginary part, one can show that E ¼ 0 [7].

A BdG mode for which the sign of E is negative is called anomalous mode [5],
or negative energy mode [33], or mode with negative Krein signature [32]. If in the
course of tuning one of the system’s parameters such a mode becomes resonant
with a mode with positive Krein signature then, typically, complex frequencies
appear in the excitation spectrum, i.e., a dynamical instability arises [34].

3 A Vortex Particle Picture in Anisotropic Traps

Let us in the following consider a harmonic trapping potential Vðx; yÞ ¼ ðx2
xx2þ

x2
yy2Þ=2, where the two dimensionless trapping frequencies xx; xy can be dif-

ferent. The parameter a ¼ xy=xx will be used to quantify the anisotropy of the
trap. For simplicity, we restrict the discussion to singly-charged vortices with
charge s 2 f�1g, although generalizations to multiply-quantized vortices are
available [35]. In [35, 36] a set of vortex precession ODEs is derived within
the full three-dimensional Gross-Pitaevskii framework which also holds in the
anisotropic regime of xx 6¼ xy. Matching this result to the expressions obtained in
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[37] for the two-dimensional GPE in the isotropic limit, we find the following set
of ordinary differential equations governing the precessional dynamics of a single
vortex of charge s:

_x ¼ �sx2
yQy; _y ¼ sx2

xQx: ð4Þ

where Qðl;xx;xyÞ ¼ ln Al=xeffð Þ=ð2lÞ; xeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

x þ x2
yÞ=2

q
, and the numer-

ical constant A � 8:88.
It is straightforward to check that ðx2=x2

y þ y2=x2
xÞ is a constant of motion for

this dynamical system. Thus, these equations describe elliptical vortex orbits in
the anisotropic trap, where the precession frequency at which both the x and y
coordinates perform harmonic oscillations is given by xpr ¼ xxxyQ. We note
that in isotropic traps the precession frequency is known to increase as a function
of displacement from the trap center [35], but this correction is small for vortices
close to the center and we will neglect it here for simplicity. Additionally, we
point out that the above mentioned elliptical orbits of a single vortex inside the
parabolic trap naturally degenerate into circular ones in the isotropic limit of
xx ¼ xy.

In the presence of more than one vortex, there is an additional interaction
contribution to the equations of motion: Each vortex moves with the local velocity
field created by all the other vortices [38, 39]. Neglecting modifications of the
velocity field profiles due to the inhomogeneous condensate background in the
presence of the trap, we can employ the interaction term that has also been used in
[16, 20], yielding

_xk ¼ �skx
2
yQyk þ B

X

j 6¼k

sj
yj � yk

2q2
jk

; _yk ¼ skx
2
xQxk � B

X

j 6¼k

sj
xj � xk

2q2
jk

; ð5Þ

where q2
jk ¼ ðxj � xkÞ2 þ ðyj � ykÞ2. B is a numerical constant, which in earlier

works for isotropically trapped quasi two-dimensional condensates of aspect ratio
xr=xz ¼ 0:2 (which coincides with the isotropic limit in our simulations) has been
found to be B � 1:35 from fits of the dipole’s equilibrium position [16, 20]. We
will use this value of B whenever numerically evaluating results from the above
ODE system.

The ‘‘particle picture’’ of Eq. 5 will be used throughout this work to study
equilibrium positions, linearization frequencies and dynamics of few-vortex
arrangements in anisotropic traps.

Before concluding this section, let us remark that the above equations of
motion for the vortices can also be obtained from a suitable Hamiltonian with a
logarithmic interaction potential [39]. A similar type of interaction term has also
been used in the study of mesoscopic systems, in particular to model electrostat-
ically interacting charged balls of millimetre size free to move on a plane
conductor [40, 41].

Existence, Stability and Nonlinear Dynamics of Vortex Clusters 547



4 Aligned Vortex States in the Particle Picture

One particular class of stationary vortex clusters in Bose-Einstein condensates has
received considerable attention in the past years, namely configurations where a number
of singly-charged vortices is located along one of the symmetry axes of the trap, and the
sign of the vortex charges is alternating between adjacent vortices, see e.g. [12, 13, 16].
We will refer to these solutions of the Gross-Pitaevskii equation as ‘‘aligned vortex
states’’. In the following, we will apply the particle picture ODEs to determine equilibrium
positions and linearization frequencies of the aligned vortex cluster states. In contrast to
numerous previous works on the theme of counter-rotating vortices (see [16] for a recent
discussion of the relevant literature), we will not restrict the analysis to isotropic traps, but
allow for different trapping frequencies in the x- and y-direction. This will turn out to
have important consequences for the stability of the vortex clusters. It should be
noted again, on the other hand, that the subject of co-rotating vortices in the presence
of anisotropy has been considered in some detail in the series of works [29–31].

4.1 Single Vortex

To start out, we numerically determine the stationary single vortex solution to the
full Gross-Pitaevskii equation for different values of a ¼ xy=xx by representing
the Laplacian in terms of finite differences on a spatial grid and employing a
Newton-Krylov method as described in [42]. Technically, to scan a, we fix xx ¼
0:2 throughout this work and vary xy. The chemical potential is held fixed at
l ¼ 2:5, high enough for the Thomas-Fermi (TF) large-density approximation to
be applicable. As expected, and predicted by the particle picture, the stationary
single vortex is located at the trap center x ¼ y ¼ 0 for any value of a. A typical
profile of the state’s density and phase structure is shown in the left and middle
panel of Fig. 1. Let us remark that these profiles do not show the full size of the
grid used in our numerical simulations.

x

y

−10 0 10

−10

0

10 0 0.5 1 1.5 2

x

y

−10 0 10

−10

0

10 −2 0 2

0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

R
e(

)

Fig. 1 Profiles (density in the left panel and phase in the middle panel) and BdG spectrum (right
panel) of the single vortex state, precession frequency from the particle picture in black,
coinciding with the anomalous BdG mode (dark gray line made up of circular markers). Chemical
potential fixed at l ¼ 2:5
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Having numerically identified the vortex solution in various anisotropic set-
tings, we calculate its BdG spectrum as a function of a by diagonalizing the
ensuing BdG matrix. The resulting spectrum is shown in Fig. 1, together with the
linearization frequency calculated from the particle picture (black line).
The spectrum contains one anomalous (negative Krein) mode indicated by the gray
circles. This anomalous mode in the BdG spectrum is connected to the preces-
sional motion of the vortex [43]. Exciting it slightly shifts the vortex from its
equilibrium position and makes it precess around the trap center. Obviously, this
mode’s numerically found dependence on a is very well described by the pre-
cession frequency of the particle picture, both in the isotropic limit and in
anisotropic settings. Finally, we stress that the BdG spectrum contains no eigen-
frequencies with non-zero imaginary part, indicating that the single vortex state is
dynamically stable in arbitrary anisotropic traps.

Apart from the anomalous mode responsible for vortex precession, the full BdG
spectrum exhibits a large number of ‘‘background modes’’ which are not captured
by the vortex particle picture. The x ¼ 0 mode present for any value of a can be
identified as the Goldstone mode related to the Uð1Þ invariance of the Gross-
Pitaevskii equation. In addition, there is always a so-called Kohn or dipolar mode
with frequency xx (which assumes the value 0:2 independent of a in Fig. 1).
Similarly there is a dipolar mode (linear in a in Fig. 1) with frequency xy. These
modes involve a collective oscillation of the entire cloud around the center of the
trap in each of these two directions.

4.2 Vortex Dipole

Let us perform the same analysis for the so-called vortex ‘‘dipole’’, i.e. two vor-
tices with opposite charges, say s1 ¼ þ1, s2 ¼ �1. The existence of stationary
configurations of such a vortex-antivortex pair (as it is sometimes called) was first
demonstrated in [10], followed by more detailed discussions [12, 13, 15]. Stability
properties of the dipole have been studied in a number of works, but the results
were partially incoherent, in particular when anisotropic trapping was taken into
account [13, 16]. Recently, interest in the vortex dipole has been renewed by
experimental progress in the field, allowing to controllably create and observe such
structures with unprecedented precision [18, 19, 14, 20].

The particle picture predicts two equilibrium positions of the vortices along
each of the trap’s main axes. Fixing the dipole along the y-axis, these read

x1 ¼ 0; y1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=ð4x2

yQÞ
q

; x2 ¼ 0; y2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=ð4x2

yQÞ
q

. Naturally, the solu-

tions associated with the two different signs can be transformed into each other by
simply interchanging the positive- and the negative-charge vortex.

The middle panel of Fig. 2 compares the numerically found equilibrium positions
of the vortices forming the stationary dipole to this prediction. Technically, from
the numerically calculated wavefunctions the vortex locations are extracted by
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evaluating the z-component of the superfluid vorticity. The vortices then show up as
sharp, well localized extrema. It can be observed that the agreement between the
numerical data and the ODE prediction is better in the a[ 1 regime, and for small a
the errors become larger. Partially, this inaccuracy of the particle picture in the low a
regime can presumably be attributed to the radial dependence of the vortex preces-
sion frequency which we do not take into account. Another factor that should be taken
into consideration here and accounts for the observed discrepancy is the modification
of the vortex-vortex interaction due to the non-homogeneous, modulated TF density,
especially near the condensate boundaries. The latter effect has been implicitly
included in the equations through a shift of the B factor away from its background
value. However, the deviations in the middle panel of Fig. 2 suggest that including
effects due to the presence of the trap (and the ensuing non-homogeneous condensate
background) on the vortex-vortex interaction by using an effective B is not suffi-
ciently accurate for full quantitative agreement. A refined description of vortex
interaction in the trapped condensate, taking into account not only the vortices’
positions but also the non-trivial shape of the background density distribution and the
ensuing deformation of the velocity fields around the vortices, would be an inter-
esting direction for further studies and could presumably, when included into our
particle picture equations, significantly improve their quantitative predictions.

The dipole’s linearization frequencies are found to be x1;2 ¼ �
ffiffiffi
2

p
xpr; x3;4 ¼

�xpr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � a2

p
. A key consequence of this prediction is that for a [ 1, the spectrum of

the vortex dipole exhibits a purely imaginary mode, indicating instability in this
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Fig. 2 The left panels show a typical example of the density and phase of a vortex dipole for an
equilibrium position of the vortices within the PDE. The middle panel shows the equilibrium
position of the dipole configuration as a function of the 2D aspect ratio: Numerical data (line of
gray circles) and ODE prediction (black line). The right panel shows the results of the
linearization around such a dipole as a function of a. For the anomalous (internal) modes of the
two vortices the prediction from the particle equation theory is given again by the solid black
lines, while the numerical findings are given by lines of dark gray circles. Purely imaginary
modes are also denoted by gray circles. Notice the instability emerging for a [ 1. The chemical
potential is fixed at l ¼ 2:5 throughout
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regime. On the other hand, for a� 1 the dipole is stable. In this stable interval, the
spectrum contains two anomalous modes (indicated by the gray line made up of
circular markers in the right panel of Fig. 2) whose functional dependence is well
described by the linearization frequencies predicted in the particle picture. At a ¼ 1,
one of these two anomalous modes vanishes. The existence of such a zero mode in the
isotropic limit is a general feature that will be found for all subsequent aligned vortex
states: One can think of the presence of the aligned vortex configuration breaking the
rotational symmetry of the a ¼ 1 system, which leads to the emergence of a corre-
sponding Goldstone mode. For a[ 1, this former Goldstone mode in the dipole’s
spectrum becomes a purely imaginary eigenfrequency, which again is predicted
correctly by the particle picture. Intuitively, in the isotropic setting of a ¼ 1 the
dipole as a whole can be arbitrarily rotated. This neutrality is represented by the zero
mode in the BdG spectrum. When a[ 1, in our current setup, the vortex pair is
compressed along the axis of the vortex dipole, which favours ‘‘buckling’’ of the axial
structure and leads to instability, while a\1 has the opposite effect. A typical
example of the dipole’s decay at a[ 1 is shown below, in Fig. 5.

4.3 Vortex Tripole

Let us now turn to the next aligned vortex state, consisting of three vortices of
alternating charge, i.e. s1 ¼ �1; s2 ¼ �1; s3 ¼ �1. As for the vortex dipole, we
take the stationary vortices to be aligned along the y-axis, i.e. x1;2;3 ¼ 0, and for their
equilibrium y-coordinates we consider the symmetric ansatz y2 ¼ 0; y1 ¼ �y3 ¼ y.

Inserting this into the particle picture ODEs yields a fixed point for y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=ð4x2

yQÞ
q

.

Thus, the particle picture predicts a stationary ‘‘vortex tripole’’ state, where two
vortices of the same charge are placed along one of the trap’s main axes, while the
oppositely charged third vortex rests between them, at the trap center. Previous
theoretical discussions of this tripole configuration can be found in [12, 13, 21], while
a recent experimental observation has been reported in [22].

Again, we can compare the fixed point coordinates calculated from the vortex
particle picture to the vortex positions obtained from numerically identifying the
vortex tripole solution of the stationary GPE. The results are shown in Fig. 3.

Interestingly, we observe that while choosing B ¼ 1:35 led to good agreement
for the dipole configuration, this is no longer fully the case for the tripole. Here,
better quantitative agreement is achieved if the interaction constant B is taken at its
background value B ¼ 1:95, valid for vortex interaction in a homogeneous con-
densate [16] (data not shown). This discrepancy may again be regarded as a
warning sign that accounting for condensate inhomogeneities due to the trap by
rescaling B is insufficient in the general case and it is certainly desirable to take
into account the effects of the nonhomogeneous background discussed above.

Next, we calculate the linearization frequencies around the tripole equilibrium.

From the particle picture ODEs we obtain x1;2 ¼ �
ffiffiffi
2

p
xpr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � a2

p
; x3;4;5;6
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¼ �xpr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � 5a2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 þ 2a2 þ 25a4

pp
. In the isotropic limit of a ¼ 1, these equa-

tions reproduce the result of [16]. Concerning stability, the most important conclu-
sion to be drawn is that below the critical anisotropy acr ¼ 1=

ffiffiffi
6

p
� 0:408, all

linearization frequencies become real, i.e., the tripole can be completely stabilized by
means of strong enough transversal confinement. Comparing with the numerically
found BdG spectrum of the tripole essentially confirms this prediction. The particle
picture still captures the overall behaviour of the relevant vortex modes. In detail,
however, the predictions are less exact than for the vortex dipole. In particular, while
stabilization in general is correctly predicted by the particle picture, the critical value
of a for which it occurs is found to be acr � 0:53. It should also be stressed that
similarly to the dipole case, the neutral mode present for a ¼ 1 (due to isotropic
rotation of the tripole) can be tipped towards stability (for a\1) or instability (for
a [ 1) depending on the direction of anisotropic compression of the condensate with
respect to the axis of the multi-vortex state (perpendicular, or parallel, respectively).
A typical example of the dynamics following the tripole’s decay in an isotropic trap,
triggered by the imaginary linearization modes, will be shown in Fig. 5 below.

Concerning the three vortex case, one more remark is in order here. For more
than two vortices, we found it impossible to determine all fixed points of the vortex
equations of motion analytically. This is why we had to make an ansatz motivated
by the expected symmetry properties to find the tripole fixed point of the ODE
system. One result that can still be proved in full generality is that for any fixed
point ðx1; y1; ; xK ; yKÞ of a K vortex system, the x- and y-coordinates have to sum
up to zero independently. Of course, this by itself does not rule out other equi-
librium positions than the aligned tripole for the three vortex system. Thus, we
checked numerically that no other stationary vortex solutions are predicted by the
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Fig. 3 The left panels show a typical example of the density and phase of an equilibrium vortex
tripole. The position of the vortices in the tripole configuration as a function of the 2D aspect ratio
is shown in the middle panel with numerical data shown as line of gray circles and the ODE
prediction shown in black solid line. The right panel shows the eigenmodes of linearization
around the tripole: ODE theoretical predictions represented by solid lines and anomalous modes
and purely imaginary modes by lines of gray circles. Chemical potential l ¼ 2:5
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particle picture. To do so, we evaluated the functions _xj; _yj; j 2 f1; 2; 3g, within a
large region of configuration space, i.e. for a large number of test coordinates
ðx1; y1; x2; y2; x3 ¼ �x1 � x2; y3 ¼ �y1 � y2Þ and identified their roots. The results
are shown in Fig. 4, confirming that the tripole along one of the trap’s main axes
really is the only equilibrium solution predicted by the particle picture ODE
system. It should be mentioned in passing that this result is only true if the
precession frequency is identical for all vortices; if it depends on the distance of
the vortex from the center of the trap, then the above result no longer holds.

Having discussed both the vortex dipole and the vortex tripole case should render
evident the fact that anisotropy presents a remarkable handle for controlling the sta-
bility and dynamics of multi-vortex clusters at will away from the isotropic limit. In
particular, it is evident that configurations such as the vortex dipole which are struc-
turally robust in the isotropic limit can be immediately rendered unstable when
departing from that limit for values of a[ 1. On the flip side, any configuration which
is more highly excited and unstable in the isotropic limit, can instead be stabilized
when operating in a sufficiently anisotropic regime for a\1. Examples of all four of
these scenaria: perturbed but stable isotropic dipole, perturbed unstable anisotropic
dipole for a[ 1, perturbed unstable isotropic tripole and finally, perturbed but stable
sufficiently anisotropic tripole for a 	 1 are shown systematically in Fig. 5.

We would like to point out that a systematic study of vortex dynamics far from
equilibrium in the presence of the anisotropic trap, similar to the work of [17],
promises to be a very interesting direction for further investigations. At first sight,
the dynamics triggered by the decay of the vortex dipole at a[ 1 seem to be
periodic, i.e., continuing the propagation we observe a regular sequence of revivals
and decays of the dipole (Fig. 5 only shows part of the first half period). For the
decaying tripole, on the other hand, no such periodicity seems to be present. A
general investigation of these dynamics far away from the fixed points, and the
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Fig. 4 Numerically calculated fixed points of the three vortex ðs1 ¼ s3 ¼ �s2Þ ODE system.
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factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x2

xQ=B
p
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potentially different types of dynamics triggered by the different imaginary BdG
modes, is beyond the scope of this work where our main aim is to identify and
understand the parameter regimes of linear (in)stability for the equilibrium vortex
clusters. Nevertheless, we should add that the dynamical evolution results of Fig. 5
afford the more general expectation that the instability of the vortex clusters will
evolve towards smaller, more stable ‘‘building blocks’’ of the configuration. In this
sense, the anisotropic dipole can only break up towards a stable single vortex (and
one in the periphery of the cloud). Following the decay of larger vortex clusters we
particularly often observe the formation of transient vortex dipoles, i.e. pairs of
vortices of opposite charge moving together over comparably long timescales and
only unbinding to pair with other vortices. This resembles observations made in
studies of large-scale superfluid turbulence in Bose gases, see e.g. [44]. The
occurence of such transient dipoles can be observed e.g. in the isotropic tripole’s
decay in Fig. 5c and has also been checked numerically for more complex states
such as the aligned vortex quadrupole discussed below in Fig. 6. The same feature
is also present in the vortex dynamics triggered by the decay of non-aligned
clusters, see Fig. 20 in Sect. 7.
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Fig. 5 Dynamical evolution of aligned vortex states perturbed by white noise for different values
of a: (a) a ¼ 1 dipole, (b) a ¼ 1:5 dipole, (c) a ¼ 1 tripole, (d) a ¼ 0:4 tripole. All plots show
jwj2, and the elapsed dimensionless time is given in the upper left corners. Reprinted with
permission from [28]
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4.4 Aligned Vortex Quadrupole

As a final example, let us consider the case of four vortices with
s1 ¼ s3 ¼ �1; s2 ¼ s4 ¼ �1. An ansatz where these four vortices are aligned along
the y-axis, symmetrically with respect to the origin, allows us to determine the
following equilibrium positions of the aligned vortex quadrupole along the y-axis:

y1 ¼ �y4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

B

4x2
yQ

s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
2

p
� 2

qr

;

y2 ¼ �y3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

B

4x2
yQ

s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
2

p
� 2

qr

:

The central panel of Fig. 6 compares these predictions to the numerically calcu-
lated equilibrium positions. Again, qualitative (and to some extent also quantita-
tive) agreement is very good.

The linearization frequencies from the particle equations of motion could not be
obtained analytically in this case. The results calculated by numerical diagonal-
ization of the ODE system’s Jacobian at the aligned quadrupole fixed point,
together with the full BdG spectrum, are shown in Fig. 6.

Once again, we observe the onset of stabilization for small enough values of
a. This feature is contained in the particle picture predictions as well, but the
critical value acr theoretically identified is below the corresponding numerical
one. From the BdG spectrum we obtain acr � 0:37. In summary, quantitative
agreement between our particle picture predictions and the BdG modes cal-
culated from the full Gross-Pitaevskii theory somewhat deteriorates the more
vortices are considered. We assume that mainly two effects are responsible for
this: On the one hand, the more vortices are present, the further the vortex
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Fig. 6 Same as Figs. 2 and 3 but now for the aligned vortex quadrupole
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cluster stretches out into the condensate and the off-center correction term to
the precession frequency which we neglect becomes increasingly important. On
the other hand, our simple, semiclassically justified modeling of vortex inter-
action is not fully accurate in that it does not adequately account for density
inhomogeneities due to the trap i.e., the background-induced effect mentioned
above. The higher the number of vortices, the further outward the vortex cluster
extends and hence the more the density variation at the rims of the cloud
affects the result. Nevertheless, for all the cases considered the qualitative
agreement between the conclusions of the particle picture and those of the full
PDE has been excellent.

As an aside, it should be mentioned at this point that for four vortices of
alternating charge, the aligned quadrupole does not form the only possible
equilibrium position. Other quadrupole configurations, where the vortices are
located at the vertices of a non-degenerate parallelogram, will be discussed in
Sect. 6.

5 Aligned Vortex States: Bifurcations

In this section, we will show that valuable insight into aligned vortex states, and in
particular into their stability, can be obtained from the point of view of bifurcation
theory. In particular, solutions to the stationary GPE depend non-trivially on their

norm, or on the total particle number N ¼
R

dxdyjwj2, physically speaking. In the
following, we study branches of vortex cluster (and solitonic) solutions to the
stationary GPE, varying the chemical potential l. This amounts to examining a
state’s parametric dependence on the particle number N, as l is a strictly
increasing function of N and vice versa. Relevant bifurcations are identified and
related to the stability properties of the different branches. This will prove to be a
useful complementary tool to better understand the changes in stability induced by
anisotropy that we observed for the vortex states of Sect. 4.

In a sense, the above presented perspective of ‘‘particle theory’’ is the one of
the highly nonlinear limit where the individual coherent structures (the vortices)
can be clearly identified as distinct, highly localized objects which form an
effective interacting particle system. On the other hand, the discussion of the
present section will focus on the opposite limit, namely that of the weakly
nonlinear regime. In the latter, the states bifurcate from the eigenstates of
underlying linear operators which constitute the canonical starting point for the
relevant bifurcation analysis that will be presented below. Lastly, the aim of the
overall program is to connect this weakly nonlinear analysis with the strongly
nonlinear particle regime by means of numerical computations that bridge the
two limits.
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5.1 Bifurcation Approach in the Isotropic Case

In this section, we review the bifurcation analysis put forward in [16] to study
aligned vortex states within an isotropic trap for which xx ¼ xy � xr. In that
work, it was argued that aligned vortex clusters are intimately related to the dark
soliton stripe solution of the two-dimensional Gross-Pitaevskii equation. For ref-
erence, density and phase profiles of a dark soliton state (in an anisotropic setting)
are presented below, in Fig. 9. In an isotropic trap, following the soliton stripe
branch of solutions as the chemical potential l is increased, one finds that sub-
sequently new branches of fixed points bifurcate from it. These emerging branches
are identified as the aligned vortex solutions, with the dipole branch bifurcating
first, then the tripole branch and so on. Similar observations, concerning the dipole
branch only, had previously been made in [10, 15].

It has been argued in [16] that the bifurcations leading from the soliton branch
to the aligned vortex branches are of the supercritical pitchfork type. Such
pitchfork bifurcations generically occur in systems with some internal symmetry.
The transfer of stability from a symmetric (parental) branch of fixed points to two
non-symmetric branches can then be thought of as a symmetry-breaking process:
beyond the bifurcation point, the stable equilibra do not exhibit the system’s full
symmetry anymore.

Let us apply these statements to the dipole’s bifurcation from the dark soliton
stripe branch. For small values of l, the soliton is linearly stable. One can check
that its BdG spectrum exhibits no imaginary mode. Increasing the chemical
potential, for our choice of xr ¼ 0:2 at a critical value of l � 0:68 the vortex
dipole branch bifurcates from the soliton branch. More precisely, there are two
different dipole branches coming into existence at this critical l: These two can be
transformed into each other by interchanging the roles of the vortex and antivortex,
i.e. by globally flipping the vorticity. This should be thought of as a time-reversal
transformation: As known from (linear) quantum mechanics, applying the antiu-
nitary time-reversal operator is essentially tantamount to complex conjugation.
Thus, under a time-reversal transformation, the wavefunction phase changes its
sign, which in turn means that the velocity field vð~rÞ, proportional to the gradient
of the phase, changes its sign, too. The same goes for the vorticity field r� v.
Physically speaking, the superfluid flow changes its direction. Note now that the
soliton stripe state is purely real, i.e. it is invariant with respect to time-reversal.
The vortex dipoles, on the other hand, are described by complex wavefunctions.
Thus, they are not invariant under the action of time-reversal, instead they are
transformed into each other. This is the characteristic symmetry-breaking feature
expected in a supercritical pitchfork bifurcation. Furthermore, one can observe that
the two dipole branches ‘‘inherit’’ the soliton’s stability, while in the soliton’s BdG
spectrum an imaginary mode occurs. The corresponding decay mechanism is well-
known as the transversal (or ‘‘snaking’’) instability of the soliton stripe in two
dimensions, see e.g. the recent review [45] and references therein.
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Having outlined the close connection between bifurcation theory and stability
analysis, a natural question to ask is whether one can understand why certain
bifurcations occur, and at which particular critical value of l or N. This problem
has been addressed in the slightly different context of a condensate trapped in a 1D
double-well potential in [46]. In [16], the same technique has been demonstrated to
be of use for the study of vortex states in isotropic traps as well.

Lying at the heart of this approach to bifurcations in the Gross-Pitaevskii
equation is the observation that in the limit of N ! 0 the nonlinear interaction
term can be neglected, and the stationary GPE reduces to the familiar (linear)
Schrödinger equation (with the chemical potential l playing the role of energy). In
the presence of a harmonic trap, the solutions of this equation are the well-known
2D harmonic oscillator eigenfunctions cmnðx; yÞ ¼ cmðxÞcnðyÞ, where the quantum
numbers m; n are non-negative integers and the energy eigenvalue of state cmn is
given by Emn ¼ ðm þ n þ 1Þxr.

Thus, in the limit of N ! 0, the stationary solutions of the GPE have to reduce
to harmonic oscillator eigenstates asymptotically. For the soliton stripe branch and
the single vortex branch, which both exist in the linear limit of infinitesimally
small particle numbers, these linear counterparts are readily identified. Taking the
direction of its density minimum along the y-axis, the soliton stripe can be traced
back to the eigenstate c10, which is purely real and has a nodal line at x ¼ 0. The
vortex, on the other hand, approaches the complex linear combination c10 � ic01,
which in polar coordinates ðr; hÞ leads to the characteristic expð�ihÞ phase profile.
Due to the isotropic trap, c01 and c10 are degenerate, and thus their superposition is
also a solution of the linear Schrödinger equation. Let us remark that a continu-
ation of this linear solution into the vortex state for the case of an attractive cubic
nonlinearity has been performed in [47], where also the doubly charged vortex we
will encounter in the next section was studied.

We now turn to branches of states which do not exist in the limit of vanishing
N, but bifurcate close to it, such as the vortex dipole. While these states cannot be
expected to reduce to a single eigenfunction of the Schrödinger equation, it has
been demonstrated that they can be approximated as linear combinations of non-
degenerate harmonic oscillator functions [9, 10, 16]. One can think of this as a
Galerkin-type method, where the nonlinear GPE problem is approximately dis-
cretized by projecting onto suitable eigenspaces of the Schrödinger Hamiltonian.
From the point of view of such a few-mode expansion, the dipole is described as a
superposition of c10 and c02, with a constant relative phase of �p=2. In other
words, as l and N are increased away from the linear limit, the soliton stripe
branch is still approximated by c10, and the dipole’s bifurcation is then attributed
to an admixture of �ic02 that sets in at a critical particle number (or chemical
potential, equivalently).

In such a setting, considering a linear combination of the two relevant linear
modes u0, u1 and requiring that it be stationary can be shown to lead to a pre-
diction for the critical values where the bifurcation from the branch starting as u0

due to an admixture of u1 at a relative phase of �p=2 occurs [46, 16]
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Ncr ¼
E1 � E0

A0000 � A0011
; ð6Þ

lcr ¼ E0 þ A0000Ncr: ð7Þ

Here, A0000 ¼
R

dxdyu4
0; A0011 ¼

R
dxdyu2

0u
2
1 and A1111 ¼

R
dxdyu4

1 denote the
two modes’ nonlinear overlap integrals, E0; E1 their energies. Several generic
assumptions are made in the derivation of Eqs. 6, 7. The linear modes are taken to
be real, ‘‘mixed’’ overlap integrals A0001 ¼

R
dxdyu3

0u1; A0111 ¼
R

dxdyu0u
3
1 are

assumed to vanish, and use of the inequalities A0000 [ A0011; A1111 [ A0011 is
made.

Let us now return to the aligned vortex states bifurcating from the soliton
branch. Generally, the bifurcation of the aligned vortex state with n vortices
ðn 2Þ can be attributed to an admixture of �ic0n to the soliton’s c10 mode. With
this two-mode picture in mind, one can apply the Galerkin approach to predict
critical particle numbers and chemical potentials for the bifurcations. In [16], it has
been demonstrated that excellent agreement with the numerical data is obtained for
the lowest-lying bifurcations, leading to the dipole and tripole. For higher numbers
of vortices, the Galerkin predictions tend to be less exact. This is understandable,
as the corresponding bifurcations happen at comparably large values of N, far
away from the linear limit, which impairs the applicability of the near-linear few-
mode expansion.

5.2 Modified Bifurcation Approach in Anisotropic Settings

Extending this analysis to the anisotropic regime is essentially straightforward. Let
us in the following explain how insight into qualitative changes in the bifurcation
diagram due to a 6¼ 1 (and the ensuing implications for stability) can be gained
using the Galerkin approach. Linear eigenfunctions in the anisotropic trap still
factorize according to cmnðx; yÞ ¼ cmðxÞcnðyÞ, where the one-dimensional modes
now read

cmðxÞ / Hmð
ffiffiffiffiffiffi
xx

p
xÞ expð�xxx2=2Þ;

cnðyÞ / Hnð
ffiffiffiffiffiffi
xy

p
yÞ expð�xyy2=2Þ;

where normalization constants have been omitted and Hn denotes the n-th Hermite
polynomial. The energy eigenvalue of state cmn is given by

Emn ¼ m þ 1=2 þ aðn þ 1=2Þð Þxx:

Thus, for the two linear modes used to predict the bifurcation of aligned vortex
clusters, c10 and c0n, the difference between the eigenenergies is found to be
E0n � E10 ¼ ðna � 1Þxx. This energy difference crucially enters the expression for
the critical particle number of the bifurcation predicted by the Galerkin approach,
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Eq. 6, and in turn the position of the critical point is controlled by the anisotropy
parameter a.

The theoretical predictions for lcr are shown in Fig. 7, together with the
bifurcation points obtained from our numerical simulations. We find that for any of
the bifurcations considered the Galerkin approach gives correct results as long as
the bifurcation happens sufficiently close to the linear limit. As a is increased, the
bifurcation points are shifted to higher values of the particle number N, and the
Galerkin approximation is less accurate.

Intuitively, for a [ 1, that is xy [ xx, the energy of the c0n ðn 1Þ states is
higher than in the isotropic limit, while the energy of the c10 state is only weakly
affected. In particular, the degeneracy of c10 and c01 (that constitute the one-vortex
state) is lifted: In contrast to the isotropic case, the admixture of a c01 component
to the c10 soliton state is suppressed, and thus the bifurcation of the single vortex is
shifted away from the linear limit to a nonzero value of N. By the same reasoning,
all the other aligned vortex states bifurcate further away from the linear limit, too.
We note that this has implications also for the stability of the higher aligned multi-
vortex states, since the only stable bifurcating state will be the single charge vortex
inheriting the soliton’s initial stability and the remaining aligned states will, by
necessity, be more unstable (by one eigenmode) than before, a feature corrobo-
rated in the previous section by the particle picture for a[ 1.

On the other hand, for a\1 the energy of the c0n states is lower than in the
isotropic case, that is their admixture to the c10 soliton state is favored. For values
of a just below 1, the consequences are most drastic for the single vortex state. As
the energy of the c01 state is now lower than that of the c10 soliton state, it is no
longer the case that the vortex emerges by an admixture of �ic01 to c10. Rather,
this picture is reversed, with the vortex emerging by an admixture of �ic10 to the
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(energetically favourable) c01 state. In other words, the vortex branch now
bifurcates from the soliton stripe oriented along the x-axis. Similar arguments
apply to the other aligned vortex states if the value of a is further decreased. For
a ¼ 1=2, the energies of the c10 soliton state and the c02 state (whose admixture
leads to the vortex dipole) are the same, and thus the vortex dipole emerges from
the linear limit. For even smaller values of a, the vortex dipole no longer bifurcates
from the single soliton, but rather from the two soliton state c02 parallel to the x-
axis (through an admixture of �ic10). Obviously, this goes for any aligned vortex
state: For a ¼ 1=n, the states c10 and c0n are degenerate and the vortex state
emerges from the linear limit. For smaller values than this, the bifurcation picture
is reversed and the vortex state no longer bifurcates from the single soliton stripe
along the y-axis, but rather c0n becomes the lower energy state to which �ic10 gets
admixed.

Now that we have understood the structural dependence of the bifurcation
diagram on a, let us summarize the conclusions on the stability properties of
aligned vortex states in the presence of anisotropy.

We consider the regime of a [ 1 first. As in the isotropic case, the soliton stripe
is stable when it emerges from the linear limit. The first bifurcation (which now
leads to the single vortex state) renders it unstable, with the vortex inheriting the
soliton’s stability. The vortex dipole then bifurcates from this already unstable
soliton stripe and is thus unstable as well (in contrast to the isotropic case).
The higher aligned vortex states (tripole, quadrupole...) are all more unstable by
the same reasoning. Remember that, as stated above, (further) destabilization of
the dipole, tripole and aligned quadrupole for a[ 1 is also predicted by the
particle picture and confirmed by our numerical computations.

We can also draw some conclusions on the stability of the soliton stripe itself.
For a[ 1, we find that the length of the interval between the emergence of the
soliton from the linear limit and the first bifurcation point increases as a function of
a, see Fig. 7. The Galerkin approach predicts a linear increase. This corresponds to
a growing range of values of the chemical potential for which the soliton stripe is
stable. This, in turn, reflects the fact that for a � 1 we progressively approach the
1D regime where the soliton stripe—ultimately, the 1D dark soliton—is stable for
all values of l for which it exists (which is consonant with the prediction of the 1D
Gross-Pitaevskii theory).

On the other hand, for a\1 the aligned vortex clusters with the vortices located
along the y-axis tend to get stabilized. In the interval 1=2� a� 1 the vortex dipole
is the first state bifurcating from the soliton and is thus stable, while the soliton
stripe gets destabilized. For 1=3� a� 1=2 the vortex dipole no longer bifurcates
from the soliton and the tripole takes its place (and its stability properties) as the
first emerging state. So for a� 1=2 the vortex tripole (which is unstable in iso-
tropic traps) is expected to be stabilized. By the same reasoning, the aligned
quadrupole gets stabilized for a� 1=3, the vortex quintupole for a� 1=4, and so
on. It can further be argued that the aligned vortex states are still stable when a is
so small that they no longer bifurcate from the soliton stripe along the y-axis. In
this case (as discussed above) the state with n vortices aligned bifurcates from the
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c0n branch through an admixture of �ic10. Similarly to the c01 soliton stripe
branch, the general c0n solitonic branch can be expected to be stable when it
emerges from the linear limit, and the admixture of �ic10 will induce the first
bifurcation from it, thus leading to a stable vortex cluster state (while the n soliton
state gets destabilized). Thus, in total, the states with n vortices aligned along the
y-axis are expected to be stable for any a� 1=ðn � 1Þ, which is in very good
agreement with our numerical results for the single vortex, vortex dipole, tripole
and quadrupole shown above. It has been demonstrated numerically in [28] that
even large aligned vortex clusters of up to n ¼ 17 vortices can be stabilized by
strong enough transversal confinement, and that the anomalous BdG eigenmodes
of such a linear cluster are reminiscent of standing waves on a classical string, see
Fig. 8. Interestingly, in such a vortex string, there will be n (i.e., in the above
example 17) internal (anomalous) modes of vibration in its spectrum, which will,
in turn, correspond to the n normal modes of such a vortex lattice.

At this point, a remark is in order. We have demonstrated in this section how on
the one hand insight into the stability of vortex clusters can be gained by identi-
fying the relevant bifurcations from the solitonic branch. Tuning the anisotropy
parameter a can lead to qualitative changes in the bifurcation diagram, which carry
over to changes in the stability properties of vortex clusters close to their emer-
gence from the soliton. From this, one can learn about the stability of vortex
clusters in the limit of small values of N or l. On the other hand, in the limit of
large chemical potentials we have the results from the particle picture ODEs and
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Fig. 8 Anomalous modes of a stabilized 17-vortex cluster, resembling the fundamental and first
harmonic modes of a classical string. Note the different scaling in the x- and y-axes. Reprinted
with permission from [28]
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the corresponding stability analysis. In the preceding section it has been shown
that predictions concerning the stability obtained from these two opposite end
regimes agree very well. However, it is not to be taken for granted that in the
course of tuning the chemical potential l from small values to larger ones the
stability properties of each state have to be preserved. In fact, the BdG spectra, of
course, do not only depend on a but in general also on l. We have performed
extensive numerical scans to cover the whole parameter space and make sure that
no essential dependence of the stability on l is missed. Indeed, we find that in
almost all cases tuning the chemical potential at fixed a only weakly affects the
BdG spectrum and does not lead to the appearance or vanishing of purely imag-
inary modes (which are the ones that the bifurcation approach can tell us about).
However, in numerous cases we observe collisions between modes of positive and
negative Krein signature, resulting in the emergence of complex mode quartets
that persist for a limited range of values of l and then split again into two real,
stable modes (see also the relevant footnote at the end of the Introduction). For the
vortex dipole in isotropic traps, e.g., the presence of these complex ‘‘bubbles’’ at
intermediate l is well-known [16], and it is no surprise that such intervals of weak
oscillatory instability can also be found in anisotropic settings. Let us note that in
general neither the near-linear bifurcation approach nor the highly nonlinear
particle picture can provide information about these complex quartets at inter-
mediate chemical potentials, and these are only captured by the detailed numerical
continuations discussed (wherever relevant) herein.

Finally, let us point out that our findings presented in this section are consistent
with previous results on the stability of the one soliton state in anisotropic settings
[11]. In this work it was found (employing box boundary conditions and keeping
the particle density fixed) that in the regime corresponding to our a � 1 relaxing
the confinement in the y-direction (i.e. approaching a ¼ 1) opens up an increasing
number of decay channels for the soliton, with the first one leading to a single
vortex, the second one leading to a vortex dipole and so on: In our analysis, these
‘‘decay channels’’ correspond to the imaginary modes in the soliton’s BdG spec-
trum, induced by supercritical pitchfork bifurcations from the soliton branch
having happened at lower values of N (or l) than the one under consideration.

Furthermore, the authors of [11] report the numerical observation of a ‘‘soli-
tonic vortex’’ solution to the GPE in anisotropic settings, i.e. a stationary state with
its density and phase properties in between those of a soliton stripe and a single
vortex. This is reported to bifurcate from the dark soliton stripe as the anisotropy
of the confinement is varied. Even though different boundary conditions are
employed, this agrees well with our findings: If a 6¼ 1, the single vortex state
bifurcates from the soliton stripe at a finite particle number (due to the non-
degeneracy of c01 and c10). This, in turn, necessarily means that close to the
bifurcation point the vortex state will still show some similarity to the soliton
solution from which it just bifurcated. Figure 9 shows an example of the single
vortex state close to its bifurcation from the soliton stripe. Clearly, the density
shows remnants of the soliton stripe. The phase runs from �p to þp continuously,
a characteristic of the singly charged vortex, however the azimuthal phase gradient
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is not constant (as it is for the known vortex solution in isotropic settings). Rather,
the phase changes very sharply in the region around the y-axis, again owing to the
state’s former solitonic properties.

6 Non-Aligned Vortex Clusters: The Isotropic Limit

Let us now apply the methods developed so far to stationary clusters of vortices
that are not necessarily aligned along one axis. Having extensively discussed
aligned vortex states bifurcating from the one soliton stripe branch (which reduces
to c01 or c10 in the linear limit), the natural next step is to turn to the next higher
excited harmonic oscillator states, namely c20; c02 and c11, and study solitonic and
vortex-type branches of states that reduce to linear combinations of these modes in
the linear limit. Again, the strategy is to gain insight into the stability properties of
vortex clusters under the influence of anisotropy by locating their bifurcations
from solitonic branches. Subsequently, calculations within the particle picture
ODE system and full dynamical simulations will be employed in Sect. 7 to access
the problem from different directions and to provide a unifying picture.

Before entering the discussion of bifurcation diagrams in anisotropic settings, in
this section we will first take a detailed look at the isotropic case where
xx ¼ xy � xr. Figure 10 collects density and phase profiles of the different
branches of states which emerge from the linear limit at a chemical potential of
l ¼ 3xr, i.e. which reduce to superpositions of harmonic oscillator states
c20; c11; c02 as N ! 0. NðlÞ bifurcation diagrams including a number of these
plus some additional branches (which emerge further away from the linear limit
and are therefore not relevant for our present discussion) can be found in [21].

For a ¼ 1 there are three different (apart from trivial rotations) solitonic
branches emerging from the linear limit at l ¼ 3xr: The first of these is a state
with two parallel soliton stripes, see Fig. 10a. It can be traced back to the harmonic
oscillator eigenstate c20 as N ! 0, where again we fix the y-axis parallel to the
density minima of the soliton stripes. The other two are the dark ring soliton,
Fig. 10c, and the two diagonally crossed dark solitons, Fig. 10b, which can
asymptotically (for small N) be decomposed as c20 þ c02 and c20 � c02,
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respectively (where again overall normalization constants are omitted). Of the
three solitonic states, two (namely, the ring and the cross) are unstable right from
the linear limit, while the two soliton stripe state is stable for small l. As l is
increased, vortex states bifurcate from all the solitonic branches leading to (fur-
ther) destabilization.

Additionally, there is a number of vortex states that also emerge from the linear
limit at l ¼ 3xr: The most prominent cluster state of these is probably the
(nonaligned) vortex quadrupole, consisting of four singly charged vortices of
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(a) Two parallel soliton stripes
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(b) Soliton cross
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(c) Ring soliton
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(d) Vortex quadrupole, orientation A
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(e) Vortex quadrupole, orientation B
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(f) Doubly charged vortex
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(g) Tripole with doubly charged center
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Fig. 10 Density and phase profiles of states emerging from the linear limit at l ¼ 3xr . Chemical
potential is chosen to be l ¼ 1:2 except where stated otherwise. a Two parallel soliton stripes
b Soliton cross c Ring soliton d Vortex quadrupole, orientation A e Vortex quadrupole,
orientation B f Doubly charged vortex g Tripole with doubly charged center h Tripole with
doubly charged center, l ¼ 3
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alternating vorticity which in the isotropic trap are located at the vertices of a
square, and opposite vortices have the same charge. This state has been identified
and discussed in [12, 13, 16, 48]. Having in mind the extension to anisotropic
settings, we already distinguish two different orientations of this vortex quadru-
pole, even if at a ¼ 1 they can be transformed into each other by a trivial rotation.
We speak of orientation A if the four vortices sit at the trap’s x- and y-axes as in
Fig. 10d. In this case, the state’s linear decomposition as N ! 0 is identified to be
c20 þ c02 � i

ffiffiffi
2

p
c11, where we take the linear modes to be normalized to unity and

omit the overall normalization constant. On the other hand, if the vortices are
located along the diagonals of the coordinate system as in Fig. 10e, we call this
orientation B. The corresponding linear limit reads c20 � ic02. For a ¼ 1, the
quadrupole state (in any orientation) is stable for arbitrary chemical potentials
(apart from an oscillatory instability window, see also [16]), and no other sta-
tionary states are found that bifurcate from it.

Next, we turn to a branch of states that to our knowledge has not been described
before, see Figs. 10g and 10h. Our findings indicate that it starts as c20 � ic11 in the
linear limit, and for small N it shows some similarity to the vortex quadrupole in
orientation A: There are four singly charged vortices situated at the trap’s axes. In
contrast to the quadrupole configuration, these four vortices do not form a square,
however. Instead, two of them (which have the same charge) are located closer to
each other near the center of the trap, while the other two are further away from the
trap center, in regions of low density. Increasing the chemical potential, we find
that the two central vortices finally merge to form one vortex of charge 2. The
whole configuration then has a tripole-like structure, where the charges of the three
vortices in the tripole are given by �1;�2;�1. Fig. 10h illustrates this tripole
profile at larger chemical potentials. Concerning stability, we find that in an iso-
tropic setting this branch only suffers from relatively weak oscillatory instabilities
when emerging from the linear limit, before at l � 1:4 one small purely imaginary
mode arises in its BdG spectrum. This destabilization is again due to a pair of
symmetry-broken states bifurcating from the tripole with the doubly charged
center, but in contrast to the prototypical bifurcations of vortex clusters from dark
solitonic branches encountered so far, the symmetry that is broken is of a different
kind: while the density of the tripole with the doubly charged center is symmetric
with respect to reflections about both the x- and y-axes, the clusters of six vortices
that bifurcate from it break the axial symmetry with respect to the y-direction, see
Fig. 11. To be more precise, the tripole state itself (not just its density) is invariant
with respect to a combined reflection about y and time-reversal transformation, and
this symmetry is not shared by the vortex branches emerging in the bifurcation. As
can be seen in Fig. 11, the newly found symmetry-broken clusters are made up of
six singly charged vortices, three of each sign. One vortex is located in the trap
center, surrounded by a triangular configuration of three oppositely charged vor-
tices. The remaining two vortices are of the same charge as the central one and
they are located close to the edge of the cloud near the y-axis equilibrating the
whole structure. As l is decreased towards the bifurcation point, the cluster
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straightens along the y-axis and a vortex-antivortex pair in the center vanishes in
the zero density core of a third vortex, until at the critical value the precursor of the
tripole with the doubly charged center as shown in Fig. 10g is recovered. As one
would expect in this type of supercritical pitchfork bifurcation, the symmetry-
broken six vortex clusters are stable in the sense that their BdG spectra do not
exhibit purely imaginary modes as we have checked. Let us remark, however, that
their spectra exhibit weak oscillatory instabilities to which our theoretical bifur-
cation analysis cannot provide access, but which can only be tracked numerically,
see also the remark at the end of the preceding section.

The next (and final) branch emerging from the linear limit at l ¼ 3xr is again
well-known: It is the charge 2-vortex branch, see Fig. 10f. In the linear limit, this
vortex state consists of c20 � c02 � i

ffiffiffi
2

p
c11, which in polar coordinates ðr; hÞ leads to

the expected azimuthal variable dependence / expð�i2hÞ characteristic of a doubly
charged vortex. Apart from small oscillatory instability ‘‘bubbles’’ that arise due to
subsequent collisions of positive and negative Krein signature modes, and then
disappear and reappear again as l is increased, we find the doubly charged vortex to
be stable. This agrees with the results obtained in [49]. It should be noted here that the
instability of such a higher charged vortex is towards splitting into lower charge
vortices, a feature which by now has been observed experimentally, see e.g. [50].

Having commented on all branches that emerge from the linear limit, let us now
turn to the first bifurcations from them. Increasing the chemical potential, we find
bifurcations leading to vortex states for all three solitonic states.

For the two soliton stripe state, these bifurcations lead to pairs of aligned vortex
configurations, analogous to those discussed in the one soliton case. Their emer-
gence can be explained by subsequent admixtures of �ic0n, where n 2. In a
degenerate sense, the vortex quadrupole in orientation B is the first example in this
line of double aligned vortex states. The lowest-lying bifurcation happening at
finite N leads to a double tripole (2 x 3). The numerically found critical chemical
potential is lcr � 0:87, while the Galerkin approach predicts lcr ¼ 283

67 xr � 0:84.
At this bifurcation, the two soliton stripe state is rendered unstable, while the 2 x 3
vortex state inherits its stability (that is, its BdG spectrum shows no purely
imaginary mode). All the higher double aligned vortex states then bifurcate from
the destabilized two soliton branch and are thus unstable. None of them will be
touched upon in this work.
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The same goes for the vortex states bifurcating from the ring soliton branch.
These are known as ‘‘vortex necklace’’ states [51], and they are characterized by
an even number (4, 6, ...) of alternately charged vortices, hence resulting into to net
topological charge, located at the vertices of a regular polygon. One can also
consider the vortex quadrupole as the first, again degenerate, example of such a
necklace state, followed by a vortex hexagon, octagon, and so on. Theoretically,
the bifurcations of the necklace states have been studied in great detail in [48]. In
this work, we will omit a detailed analysis of the unstable necklace states.

Concerning the first bifurcations from the soliton cross, there are two branches
of stationary states emerging from it at essentially the same critical value of l. On
the one hand, we find a six vortex state, similar to the double tripole bifurcating
from the parallel soliton stripes, but with the vortices located along the former
soliton cross, see Fig. 12a. Numerically, we find that this bifurcation happens at
lcr � 0:92. In the linear picture, it is convenient to analyze this bifurcation in the
rotated coordinate frame, where the soliton cross branch reduces to c11 in the linear
limit. Numerical decomposition of the numerically obtained branch of solutions
into its harmonic oscillator components indicates that the emergence of the 2 x 3
crossed vortex state is then explained by an admixture of �iðc30 � c03Þ, where the
relative sign between c03 and c30 decides along which direction the two central
vortices in the cross configuration are located. With these linear modes, the
Galerkin equations yield lcr ¼ 111

25 xr � 0:89. Finally, a second branch (which also
has not been identified before, to our knowledge) emerges from the soliton cross at
the same critical chemical potential as the crossed 2 x 3 vortex branch. This new
branch is characterized by one of the soliton stripes formerly forming the cross
staying intact while the other is replaced by two vortices, i.e., this is a ‘‘hybrid’’
state containing both solitonic stripes and vortex waveforms as shown in Fig. 12b.
As in the symmetry-breaking bifurcation either of the soliton stripes can stay
intact, there are actually again two different branches here, which can be trans-
formed into each other by a rotation. The numerically found critical chemical
potential is lcr � 0:92. The bifurcation leading to this hybrid one soliton/two
vortex state is also easier to understand if the axes are rotated by p=4, in which
case the cross state coincides with c11 in the linear limit. Our numerical data
indicates that the linear admixture causing the bifurcation is then given by �ic03 or
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�ic30, depending on which of the soliton stripes is preserved and which is replaced
by vortices. In this rotated frame, evaluating the Galerkin equations is straight-
forward and again leads to lcr ¼ 111

25 xr � 0:89, the same result as for the crossed
2 x 3 vortex branch. Thus, the near-linear picture confirms that both branches
should emerge at the same critical chemical potential, in agreement with our
numerical findings. As the soliton cross is unstable from the linear limit on, the
bifurcating crossed 2 x 3 vortex branch and the one soliton/two vortex branch
inherit this instability, and consequently their BdG spectra exhibit imaginary
modes, a feature that has been numerically checked. It is worth noting that as l is
increased further, the 2 x 3 vortex states bifurcating from the parallel soliton
stripes and the soliton cross, respectively, become more and more similar, and
finally identical. At a critical value of l � 1:35 a saddle-node bifurcation occurs
and the two stationary states annihilate, as has also been observed in [21].

7 Non-Aligned Vortex Quadrupoles in the Presence
of Anisotropy

We now leave the isotropic limit and turn to cases where a 6¼ 1. Our primary
(although not sole) focus will be on the vortex quadrupole state in its different
orientations, as this state has received the most theoretical attention [12, 13] and
with its comparably small number of vortices also seems experimentally more
accessible than other, more complex non-aligned clusters. In the first part of this
section, we will therefore focus on the branches of states which are relevant for the
emergence and stability of the quadrupole in its different orientations.

The first observation we make is that as soon as the rotational invariance is
broken, the vortex quadrupole can no longer exist in arbitrary orientations. In the
presence of anisotropy, the four vortices can either be located at the trap’s main
axes, forming a rhombus centered at x ¼ y ¼ 0 (this is the anisotropic general-
ization of orientation A), or alternatively, the four vortices can form a rectangle
centered at x ¼ y ¼ 0 whose edges are parallel to the trap’s main axes (this is the
orientation B).

Let us now try to get insight into the bifurcation diagram including the two
quadrupole branches. First, it is useful to note that, due to their symmetry, studying
the quadrupoles in the a [ 1 regime is in principle sufficient: the way we scan a
(by keeping xx fixed and varying xy), going from a to 1=a for the quadrupoles
merely corresponds to a rotation of the coordinate frame by p=2, followed by
complex conjugation of the order parameter (flipping the signs of the vortex
charges) and a rescaling of the overall trapping frequency (which, in turn, sets the
scale for the chemical potential l). Thus, all properties of the quadrupole solutions
in the a\1 regime can be inferred from the results of the a [ 1 regime by
accurately rescaling l and N. The BdG spectra of the quadrupoles shown below
illustrate this symmetry property.
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Having this in mind, we can restrict the discussion of the relevant bifurcations
to a [ 1. In the opposite regime of anisotropy, the topology of the bifurcation
diagram (with all states rotated by p=2) is identical, even if the critical values
where bifurcations occur are rescaled due to the different overall trapping.

In contrast to the isotropic case, for a 6¼ 1 the harmonic oscillator states c02; c20

and c11 are no longer degenerate which leads to numerous modifications of the
bifurcation diagram. Specifically, for a [ 1; c20 is energetically most favourable
and thus exists for the smallest value of l. Continuing this linear eigenstate to
finite particle numbers, we find that the ensuing nonlinear mode progressively
increasingly resembles a dark soliton ring. The additional two branches which
become the two parallel dark soliton stripes and the diagonal (‘‘cross’’) configu-
ration in the isotropic limit emerge in a saddle-node bifurcation detached from the
above dark soliton ring branch. The critical particle number at which this saddle-
node bifurcation occurs increases very rapidly as a function of a, and both states
emerging in it tend to be highly unstable for a[ 1.

Let us therefore in the following concentrate on the c20 branch, that near the
linear limit is reminiscent of two dark solitons but as l is increased progressively
acquires a ring-shaped profile. The first vortex cluster bifurcating from this ini-
tially stable solitonic branch is the quadrupole in configuration A. In linear terms,
this bifurcation can be approximately understood by an admixture of �ic11, as for
any a[ 1 this mode is lower in energy than c02 and can be expected to dominate
the quadrupole’s bifurcation, while the quadrupole’s characteristic c02 component
smoothly arises only well above the critical point. We remind the reader that the
pure �ic11 admixture previously (i.e., in the isotropic case) led to the modified
tripole with the doubly charged vortex in the center of Fig. 10g, while the
anisotropy changes this scenario and our results indicate that only one pitchfork
bifurcation from the c20 soliton branch involving the �ic11 admixture remains at
a[ 1, namely the one leading to the quadrupole A. The role of the tripole with the
doubly charged center in the a[ 1 regime will be addressed below.

Again, the first supercritical pitchfork bifurcation renders the soliton branch
unstable, while the quadrupole A inherits its stability. The second bifurcation,
then, leads to the quadrupole B, through a dominant admixture of �ic02, and this
quadrupole configuration inherits the solitonic instability. From this analysis, we
expect the quadrupole in configuration B to be unstable for any a[ 1, while
configuration A should remain stable when leaving the isotropic limit.

Let us at this point also address the other two vortex clusters shown in Fig. 10,
namely the doubly charged vortex and the tripole with the doubly charged center.
Our findings indicate that these two branches also detach from the others as soon
as a[ 1, and when lowering the particle number at some point they collide and
vanish in a saddle-node bifurcation (with the doubly charged vortex playing the
role of the more stable branch). Due to the different net topological charge of the
doubly charged vortex and the tripole with the doubly charged center, it is
interesting to study how these branches can become identical and annihilate. In
fact, we observe that close to the bifurcation point both branches exhibit four
vortex-type phase singularities, two of each sign, reminiscent of the profile shown
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in Fig. 10g. In the tripole branch as l is increased two of these merge to form the
doubly charged center while the other two remain located at the y-axis. In the
doubly charged vortex branch, on the other hand, the central singularities merge to
form the s ¼ 2 vortex, while the other two phase singularities are pushed out to
regions of zero density and vanish there as l is increased away from the bifur-
cation point. In the immediate vicinity of the isotropic limit this bifurcation sce-
nario is hard to clearly confirm by numerical simulations (as the expected saddle-
node bifurcation still happens very close to the quadrupole branch), but for a ¼ 1:6
the detaching of the two branches is clearly observable, see Fig. 13.

A major change in the bifurcation diagram occurs when a reaches the value 2.
As discussed in the section on aligned clusters, above this critical value of the
anisotropy the vortex dipole along the x-axis no longer bifurcates from the single
soliton branch starting at c01, but instead from the c20 two soliton branch con-
sidered here. This dipole branch is now the first to bifurcate from this solitonic
branch, rendering it unstable and inheriting its stability. From this observation one
would expect the quadrupole A branch to be unstable for a[ 2, as in this regime it
bifurcates from the destabilized solitonic branch. By the same reasoning, the
quadrupole B should have two imaginary eigenfrequencies in the a[ 2 regime
(i.e., one more than in the 1\a\2 regime), as it is the third state to bifurcate from
the c20 solitonic branch. We will discuss these predictions in more detail below.

Numerically continuing the relevant branches of states in the parameters l and
a, we can track the dependence on the anisotropy parameter a of the critical
chemical potentials at which bifurcations from the c20 branch occur. Figure 14
shows the numerically found critical values, together with the theoretical predic-
tions from the Galerkin approach. In addition to the vortex branches discussed
above, it also depicts the bifurcation points of the 2 x 3 double tripole branch,
which for a\1 is the first to bifurcate from the c20 solitonic branch.
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Fig. 13 NðlÞ bifurcation diagram at a ¼ 1:6 including the two non-aligned quadrupoles (which
for large l can hardly be distinguished by their NðlÞ dependence) and the additional two
branches emerging from a nearby saddle-node bifurcation as seen in the blown up inset
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The numerical data shown in Fig. 14 is obtained by stepwise continuations of the
vortex quadrupole states, the 2 x 3 vortex state and the vortex dipole, respectively,
from high values of l to lower ones, until eventually the parental solitonic branch is
reached. These scans over the parameter l were repeated at different values of the
anisotropy parameter a. Next, we employed two different methods for numerically
identifying the critical chemical potentials. On the one hand, we compared the
particle number of the branch under consideration with the particle number of the c20

soliton branch and identified the bifurcation point as the parameter value of l at
which the difference in N becomes nonzero. On the other hand, we also made use of
an indirect method, tracking down the emergence of the expected linear admixtures
in the linear decomposition of the investigated branch. Both approaches lead to
consistent results. Altogether, the data shown in Fig. 14 supports our interpretation
of the linear combinations underlying the bifurcating vortex states. In general, the
numerically found bifurcation points agree well with the theoretical predictions,
especially when the bifurcations happen close to the linear limit. For increasing
critical chemical potential (and thus increasing critical particle number) the Galerkin
approach is no longer exact and the deviations get larger.

As an interesting aside, let us comment on the two different 2 x 3-type vortex
clusters that we discussed in the isotropic case, the one bifurcating from the c20

branch included in Fig. 14, and the one shown in Fig. 12a which bifurcates from
the cross-like solitonic branch. As stated above, in the isotropic case an increase in
l eventually leads to a saddle-node bifurcation in which these two states collide
and vanish. Going to a[ 1, we find that the critical values of l where these two
vortex clusters bifurcate from their respective solitonic parents increases. At the
same time, the value of l where they collide and annihilate in the saddle-node
bifurcation decreases. Thus, the range of chemical potentials for which these two
vortex branches exist becomes smaller as a is increased away from 1, and even-
tually for aJ1:1 they do not exist for any value of l.
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Finally, we discuss in a bit more detail whether the Galerkin approach can be
expected to be applicable to the bifurcations encountered here. To this end,
remember that in deriving the expressions for Ncr and lcr, it is assumed that the
integrals A0001 ¼

R
u3

0u1dxdy and A0111 ¼
R

u0u
3
1dxdy vanish. As the harmonic

oscillator states are parity eigenstates and one typically integrates over a product of
an odd and an even function, this is valid in most of the cases we discuss here. For
example, for the c10 � ic0n combinations discussed in the context of aligned vortex
states, the integrals are zero due to the different parity of c1ðxÞ and c0ðxÞ. Now we
encounter the first case where this assumption is not true, namely the quadrupole B
composed of c20 � ic02. Explicitly, with u0 ¼ c20; u1 ¼ c02, the overlap integrals

are calculated to be A0000 ¼ A1111 ¼ 41
ffiffi
a

p

128p xx; A0011 ¼ 9
ffiffi
a

p

128p xx; A0001 ¼ A0111 ¼
�

ffiffi
a

p

128p xx. Note that the ‘‘mixed’’ integrals A0001 and A0111 do not vanish, yet are
considerably smaller than the decisive integrals A0000 and A0011, which one may
take as a hint that the results from the Galerkin equations can still be of use. In
fact, as Fig. 14 shows, this is justified, as the predictions from the Galerkin
approach for the quadrupole B are in good agreement with the numerically found
bifurcation points.

7.1 Non-aligned Quadrupoles in the Particle Picture

Let us now employ the particle picture ODEs to obtain the equilibrium positions
and linearization frequencies of the non-aligned quadrupoles. Making an ansatz
with rhombic symmetry, we find the vortices’ equilibrium positions in orientation
A to be given by

x1;3 ¼ y2;4 ¼ 0;

x2 ¼ �x4 ¼
ffiffiffiffiffiffiffiffiffi

B

x2
xQ

s

� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2 � 1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9a4 � 14a2 þ 9

pp ;

y1 ¼ �y3 ¼
ffiffiffiffiffiffiffiffiffi

B

x2
xQ

s

� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 � a2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9a4 � 14a2 þ 9

pp ;

where the charges were taken to be s1 ¼ s3 ¼ �s2 ¼ �s4. We were not able to
give analytical solutions for the linearization frequencies as a function of a for this
state (although they can be straightforwardly computed numerically).

On the other hand, the rectangular configuration of orientation B is captured by
a fixed point of the particle picture system with

y1;2 ¼ �y3;4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

B

4x2
xQ

s

� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a þ a2

p ; x2;3 ¼ �x1;4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

B

4x2
xQ

s

� 1
ffiffiffiffiffiffiffiffiffiffiffi
1 þ a

p :
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Here, we can give analytical expressions for the linearization frequencies around

this equilibrium position, namely x1;2 ¼ �2
ffiffiffi
2

p
xpr; x3;4 ¼ �xpr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � a�2

p
;

x5;6 ¼ �xpr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � a2

p
; x7;8 ¼ �ixpr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � 1=aÞ2ð1 þ 4a þ a2Þ

q
. While the first

mode x1;2 stays real over the whole range of a; x7;8 (forming the zero mode due
to rotational invariance in isotropic settings) becomes imaginary as soon as a 6¼ 1.
The remaining modes x3;4 and x5;6 become purely imaginary for a\1=

ffiffiffi
2

p
and

a[
ffiffiffi
2

p
, respectively.

We now compare these predictions to the numerical results, obtained by solving
the full GPE. Fig. 15a and b show the numerically found equilibria positions of the
vortices in the quadrupole states for different values of the anisotropy parameter a,
together with the fixed points of the ODE system calculated above. Generally, both
quadrupole configurations are qualitatively, and to a large extent also quantita-
tively, accurately described by the particle picture. As an aside, we remark that the
quantitative agreement becomes better if the non-modified value of B ¼ 1:95,
valid for vortex interaction on a homogeneous condensate background, is used for
the particle picture interaction constant (data not shown), again indicating that the
vortex-vortex interaction on the inhomogeneous background is not fully accurately
modeled by our ODEs.

Let us now turn to the BdG spectra. Figure 16 shows the numerically obtained
spectrum of the quadrupole in orientation B as a function of a. The chemical
potential l is fixed to l ¼ 2:5. The particle picture again captures the main fea-
tures: For any a 6¼ 1, the existence of a purely imaginary mode is correctly pre-
dicted. Furthermore, there are additional imaginary BdG modes arising in regimes
of larger anisotropy. While the particle picture predicts these to occur at a [

ffiffiffi
2

p

and a\1=
ffiffiffi
2

p
, respectively, numerically they are found even further away from the

linear limit, at aJ2 and a.1=2. Finally, there is one purely real anomalous mode
eigenfrequency whose general functional dependence on a is correctly captured by
the ODE description. In the spectrum shown here, this anomalous mode collides
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with a background mode at a � 2:2, resulting in the emergence of a complex
quartet (represented by open square symbols). This process is not contained in the
particle picture predictions, and it cannot be expected to be: in fact, this oscillatory
instability in the quadrupole’s spectrum at large a is only present for comparably
small values of the chemical potential, and the fact that it shows up at large a here
merely indicates that for the particle picture to hold in the aJ2 regime, one has to
study the spectrum at a higher value of l (remember that the particle picture ODEs
are derived under the assumption of the large l Thomas-Fermi limit, where the
highly localized vortex structures can be identified as individual particles).

We decided to still show the spectrum containing the oscillatory mode here
because it illustrates our introductory remarks on the quadrupole’s symmetry with
respect to a ! 1=a. In general, this transformation is an exact symmetry if it is
accompanied by an appropriate rescaling of the other variables, in particular of the
particle number and the chemical potential. In the special case encountered here,
the spectrum’s symmetry around a ¼ 1 (up to an overall scaling of the modes’
numerical values) is clearly visible. However, as we keep l fixed while scanning,
the underlying symmetry is not obvious in our numerical data: Increasing a
effectively increases the trapping frequency, and consequently the effective
chemical potential (measured in units of the trapping frequency) becomes smaller.
Eventually, the oscillatory instabilities appear, which are not captured by the
particle picture as they vanish when further approaching the appropriate Thomas-
Fermi limit.

Before turning to the other quadrupole configuration, let us recall the bifurca-
tion picture discussed above. In the a[ 1 regime we have seen there that for
1\a\2 the quadrupole B is the second branch to bifurcate from the c20 soliton
branch, thus inheriting one unstable mode. For a 2 there is also the vortex dipole
along the x-axis which bifurcates from the c20 soliton branch, thus inducing a
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Fig. 16 BdG spectra of the
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second instability which is passed on to the quadrupole B. By symmetry of the
quadrupole, the same effects must occur in the a\1 regime: For 1=2\a\1,
the quadrupole A branch is the first to bifurcate from the c02 soliton branch, before
the quadrupole B, and for a� 1=2 additionally the vortex dipole along the y-axis
becomes relevant. Thus, the discussion of the bifurcation diagram (and its
approximate analytical description in terms of the Galerkin approach) correctly
describes the imaginary modes arising in the spectrum of the quadrupole B in
different regimes of anisotropy.

Next, let us discuss the spectrum of the quadrupole A branch of Fig. 17.
Interestingly, for this configuration (where we had to find the roots of the char-
acteristic polynomial numerically) the particle picture predicts not only the onset
of purely imaginary modes, but also the existence of oscillatory instabilities in
anisotropic regimes, namely for aJ1:4; a.0:7 in our case. In Fig. 17 the modes
predicted by the ODEs are shown as black solid lines, with the oscillatorily
unstable modes distinguished by small additional square markers. In the numeri-
cally found BdG spectrum such oscillatory instabilies emerge at a � 1:9 and
a � 0:58, respectively, where a positive energy mode (which forms the Goldstone
mode associated with the rotational invariance at a ¼ 1) and an anomalous mode
collide as qualitatively correctly predicted by the particle picture. As a final fea-
ture, the ODEs predict purely imaginary modes for aJ1:22; a.0:8. Indeed we
observe the presence of such an imaginary mode in the full BdG spectrum below
a � 0:4, in qualitative agreement with, but quantitatively quite far away from the
particle picture prediction. In the a[ 1 part of the spectrum, a corresponding
imaginary mode at l ¼ 2:5 cannot be found, which can again be attributed to the
effective rescaling of the chemical potential due to our way of scanning a:
Scanning the a[ 1 regime at l ¼ 6:5, the imaginary mode is present, and fur-
thermore the agreement between the numerical data and the other predicted modes
is better than at l ¼ 2:5, which is expected when approaching the Thomas-Fermi
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limit, see Fig. 17b. Finally, let us remark that the very small purely imaginary
mode that seems to be present in the above spectra near a ¼ 1 is only due to the
finite resolution of our numerical grid, we have observed that it diminishes the
smaller the grid spacing is chosen.

Generally, we can conclude from the above that the particle picture still gives
qualitatively and, to some extent, also quantitatively accurate results when applied
to the non-aligned quadrupole configurations. In comparison to the aligned vortex
states, the predictions are less exact, which can be attributed to a number of
possible sources of error. On the one hand, in the quadrupole A and B all four
vortices are located off-center which leads to an effective change in their pre-
cession frequency that we do not take into account. Furthermore, in these regions
of relatively low and inhomogeneous densities, the assumption of an undisturbed
velocity field around the individual vortices that implicitly underlies our modeling
of the vortex-vortex interaction is no longer justified. Both effects must be
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Fig. 18 BdG spectra of the vortex quadrupoles as a function of l at fixed a. The quadrupole A
branch is continued down to its solitonic origin at small l: The dipole’s bifurcation from the
branch at lcr � 0:9 induces an imaginary mode in the spectrum. At lcr � 1:25 (indicated by the
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turns imaginary again as is correctly predicted by the particle picture ODEs. In contrast, for
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expected to lead to a modification of the effective vortex dynamics, which our
simple ODE system does not appropriately correct for. Amending these aspects of
the model would be a natural direction for future work that could improve the
quantitative agreement with the full model of the Gross-Pitaevskii equation.

We have already made a remark concerning the imaginary mode in the a [ 1
regime of quadrupole A which indicates that our previous strategy of explaining
the emergence of instabilities at different values of a from the bifurcation diagram
will not be straightforward to apply here. The bifurcation analysis allows state-
ments about the number of unstable modes in a state’s spectrum right after its
bifurcation from the parental branch. No predictions can be made on what happens
to these modes as l is increased, away from the critical value. In the case of
quadrupole A, the fact that at l ¼ 6:5 an imaginary mode is present at a ¼ 2:5
which cannot be observed at l ¼ 2:5 implies that there is a substantial dependence
of the number of imaginary modes on the chemical potential in this branch.
Indeed, we found direct numerical proof for this shifting of the imaginary modes as
a function of l at fixed anisotropy: For the quadrupole A at a ¼ 2:5, Fig. 18a, we
expect one imaginary mode at low l, caused by the dipole’s bifurcation from the
c20 branch and then passed on to the quadrupole. Indeed, such a mode is present,
but as l is increased, it quickly crosses to the real axis again. Only at large l an
imaginary mode reappears, which is the one that we have seen in the spectrum as a
function of a, Fig. 17b, and which is contained in the particle picture’s predictions.
In contrast, for the quadrupole B at a ¼ 1:5, Fig. 18b, the imaginary mode that is
present for small l and explained by the previous bifurcations stays present over
the whole range of chemical potentials.

Finally, we have probed the stability of vortex quadrupoles in different regimes
of anisotropy by simulating their time-evolution according to the full Gross-Pi-
taevskii equation. The results are as expected: For a ¼ 0:75, the quadrupole in
orientation A is fully stable, while the quadrupole in orientation B is weakly
unstable and starts to rotate if initially disturbed, see Fig. 19. For much larger
values of a, the quadrupole A is unstable as well, and adding a noise signal leads to
the onset of vortex dynamics. As can be seen in Fig. 20, when moving through the
condensate the four vortices have a tendency to form dipole-like vortex-antivortex
pairs.

8 Conclusions and Outlook

In this chapter, we illustrated how dramatically the dynamics of vortices may be
affected by the presence of anisotropy in Bose-Einstein condensates. Although the
single vortex remains dynamically robust under the effect of anisotropic trapping,
all other encountered configurations are subject to fundamental changes in their
stability and nonlinear dynamics through the critical handle of distinct trapping
strengths in the different axial directions. More specifically, it was found that
compressions parallel to the axis of an aligned vortex cluster always destabilize it
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by breaking its symmetry of rotational invariance, while compressions perpen-
dicular to the axis of the cluster may eventually stabilize even highly unstable
vortex clusters. It was demonstrated how these aligned vortex states arise from
nonlinear variants of linear states of the system through symmetry breaking
bifurcations, and that an analysis of these bifurcations can shed light on their
observed (de)stabilization due to anisotropy. The phenomenology is even more
complex for the multitude of non-aligned multi-vortex solutions identified (many
of which are generically unstable). However, the critical role of the anisotropy in
improving or completely eliminating the stability of such states was confirmed in
this case as well.

This investigation indicates a high level of experimental control that can be
achieved in the coherent multi-vortex states of BECs. This control could be used
for transport, manipulation, dynamical localization and numerous other similar
scopes both in this more pristine context but also in other related fields, e.g. in
nonlinear optics. A natural direction for extending these investigations is the
context of multi-component condensates. There, novel states including vortex-
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Fig. 20 Time propagation of vortex quadrupole A, seeded with white noise at a ¼ 2:5, initial
l ¼ 6:5. The strong anisotropy of the trap renders orientation A unstable as well
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Fig. 19 Time propagation of the vortex quadrupoles, seeded with white noise at a ¼ 0:75, initial
l ¼ 2:5. While configuration A is stable, configuration B is dynamically unstable and starts to
rotate. a Orientation A b Orientation B
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bright solitary waves can be seen to arise [52] and understanding the dynamics and
interactions of multiple ones of these structures is far more complex (due to the
‘‘dual’’ character—soliton and vortical—of the interactions). On the other hand,
another natural extension consists of the three-dimensional generalizations of the
present states, namely of vortex rings which have already been experimentally
observed [53, 54]. Yet, it would be of particular interest to devise a description of
both their near linear as well as especially of their highly nonlinear phenome-
nology analogous to the one presented herein, both in isotropic and in anisotropic
settings. Such themes are presently under investigation and will be reported in
future publications.
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Josephson Tunneling of Excited States
in a Double-Well Potential

H. Susanto and J. Cuevas

Abstract We study the dynamics of matter waves in an effectively one-dimen-
sional Bose–Einstein condensate in a double well potential. We consider in par-
ticular the case when one of the double wells confines excited states. Similarly to
the known ground state oscillations, the states can tunnel between the wells
experiencing the physics known for electrons in a Josephson junction, or be self-
trapped. Numerical existence and stability analysis based on the full equation is
performed, where it is shown that such tunneling can be stable. Through a
numerical path following method, unstable tunneling is also obtained in different
parameter regions. A coupled-mode system is derived and compared to the
numerical observations. The validity regions of the two-mode approximation are
discussed.

1 Introduction

One fundamental physical phenomenon observable on a macroscopic scale is the
Josephson tunneling of electrons between two superconductors connected by a
weak link, predicted by Josephson in 1962 [1]. It is due to the macroscopic wave
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functions with global phase coherence that have a small spatial overlap. The first
observation of this effect was reported by Anderson et al. [2].

Since the only requirement for the occurrence of Josephson tunneling is a weak
coupling, [3] other weakly connected macroscopic quantum samples were also
expected to admit such tunneling. For neutral superfluids, Josephson tunneling has
been observed in liquid 3He [4] and 4He [5]. In the context of Bose–Einstein
condensates (BECs) [6–12], the prediction was made by Smerzi et al. [13–15],
followed by the experimental observation where a single [16, 17] and an array [18]
of short Bose–Josephson junctions (BJJs) were realized. The idea of BJJs has also
been extended to a long BJJ [19, 20], which mimics long superconducting
Josephson junctions. Such a junction can be formed between two parallel quasi
one-dimensional BECs linked by a weak coupling. Atomic Bose–Josephson vor-
tices (BJVs) have also been proposed in [19, 20]. The solutions are akin to
Josephson fluxons in superconducting long Josephson junctions [21] due to the
relative phase of the solitons that has a kink shape with the topological phase
difference equal to 2p: Moreover, it was emphasized that a BJV can transform
from and to a dark soliton, due to the presence of a critical coupling at which the
two solitonic structures exchange their stability [22]. In addition to BJVs that can
be considered as domain-walls in the phase field, recently it is shown in [23] that a
similar linearly coupled system may also admit solutions whose density difference
forms a kink shape, i.e. the solutions are domain walls in the density field.

The study of Josephson tunneling in BECs considers the tunneling of the
Thomas-Fermi cloud, i.e. a continuation of the ground state. The tunneling
dynamics has been explained using a two-mode approximation [13, 15]. The
validity of the approximation has been shown in [24, 25]. To improve the appli-
cability regime of such an approximation, modified coupled-mode equations have
been presented in, e.g., [26–30].

It is important to note that in addition to the ground state, nonlinear excitations, such
as dark matter waves, can also be created in BECs. Dark soliton dynamics in BECs with
single well potentials has been studied theoretically (see reviews [31, 32]) and experi-
mentally [33–35, 37]. Interesting phenomena on the collective behavior of a quantum
degenerate bosonic gas, such as soliton oscillations [34–36] and frequency shifts due to
soliton collisions [37] were observed. The evolution of solitons is of particular interest as
the extent to which their behavior can be described in a particle picture is an open
question and merits further experimental and theoretical investigation. A combination of
soliton physics with the dynamics at weak links within double well potentials will shed
light on the collective behavior of excited Bose–Einstein condensates in non-trivial
potentials. In this paper, we present an analysis of the dynamics of dark matter waves in a
double well potential. Static properties of such a configuration have been recently
studied in [38, 39]. Here, we show that dark matter waves can also experience stable
quantum tunneling between the wells. This implies that localized excitations in higher
dimensions, such as vortices, may also experience Josephson tunneling. The (in)stability
is obtained using numerical Floquet analysis. The numerical calculations are necessary
as the stability of the observed tunneling is not immediately obvious. This is especially

584 H. Susanto and J. Cuevas



the case because dark solitons are higher-order excited states. The possibility that modes
with lower energy will be excited is not ruled out by a coupled-mode approximation.

The present paper is outlined as follows. In Sect. 2, we discuss the governing
equation used in the current study. We then solve the equation numerically, where we
obtain stable and unstable Josephson tunneling through a numerical path following
method. The stability analysis is performed through calculating the Floquet multipliers
of the solutions. In Sect. 3, we derive a coupled-mode approximation describing the
tunneling dynamics. Good agreement between the numerics and the approximation is
obtained and shown. We also discuss the failure of the coupled-mode approximation in
capturing unstable Josephson tunneling. Finally we conclude the work in Sect. 4.

2 Josephson Tunnelings

2.1 Mathematical Model

We consider the normalized nonlinear Schrödinger (NLS) equation modelling the
BECs (see, e.g., [40] for the scaling)

iwt þ wxx þ sjwj2w � VðxÞw ¼ 0; ð1Þ

where w is the bosonic field, and t and x is the time and position coordinate,
respectively. The parameter s ¼ �1 characterizes the attractive and repulsive
nonlinear interaction, respectively, and VðxÞ is the external double well potential,
which for simplicity is taken as

V ¼ 1
2
X2ðjxj � aÞ2; ð2Þ

with the parameters X and a controlling steepness and position of the two minima.
The total number of atoms N in the trap is conserved with

N ¼
Zþ1

�1

jwj2dx: ð3Þ

Throughout the present paper, we set s ¼ �1; i.e. we consider repulsive interac-
tions between particles.

For non-interacting particles ðs ¼ 0Þ in a single well potential ða ¼ 0Þ; the
governing equation (1) can be solved analytically to yield wn ¼ e�iEnt/nðxÞ; where
/n satisfies

/nþ1 ¼ X
ffiffiffi
24

p x �
ffiffiffi
24

p

X
ox

� �
/n; n ¼ 0; 1; 2; . . .; ð4Þ

with
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/0 ¼ e�
X

2
ffiffi
2

p x2

;

and the chemical potential En is given by

En ¼ 1
2

ffiffiffi
2

p
ð2n þ 1ÞX:

The excitations /n can be continued to nonzero s; which has been considered
in, e.g., [41–51] (see also [52] for discussions on stationary solutions of the NLS
equation with a multi-well potential that do not reduce to any of the eigenfunctions
of the linear Schrödinger problem). Similar numerical continuations for localized
modes in two-dimensional settings have been presented in, e.g., [53, 54]. The
existence and the stability analysis of continuations of /n in a double-well
potential has been discussed in [55], where it was shown that there is a symmetry
breaking of the corresponding solutions, i.e. a change of stability from a symmetric
to an asymmetric state. One typical manifestation of the instability is a periodic
transfer of atoms between the wells, i.e. Josephson tunneling.

As most of Josephson tunneling studied in BECs considers the tunneling of a
ground state cloud, which is a continuation of /0; here we consider in particular
the tunneling of dark solitons as continuations excited states /1.

2.2 Numerical Periodic Solutions

To look for time-periodic solutions describing Josephson tunneling, we seek
solutions that fulfills the relation wðx; TÞ ¼ wðx; 0Þ; with T being the period of the
Josephson oscillations. Such solutions posses double periodicity, i.e. one due to the
solitonic nature with a period 2p=E; where E is the chemical potential (intra-well
oscillations) and the other one caused by the Josephson effect (inter-well oscil-
lations). Consequently, we can express the solutions in terms of a Fourier series
multiplied by a factor related to the stationary character of dark solitons

wðx; tÞ ¼ expð�iEtÞ
X1

k¼�1
zkðxÞ expðikxtÞ; ð5Þ

where x ¼ 2p=T is the Josephson oscillation frequency. These solutions are
denoted as commensurate if the commensurability condition E ¼ ðq=pÞx ¼
ð2qpÞ=ðpTÞ is fulfilled, with fq; pg 2 N. In what follows, we fix p ¼ 1.

Commensurate solutions are consequently fixed points of the map wðx; 0Þ !
wðx; TÞ and can be found either by using shooting methods in real space or algebraic
methods in Fourier space. In order to do that, we will transform the problem into a
discrete one by means of a finite difference discretization with spatial step Dx ¼ 0:2
and apply the techniques developed for discrete breathers in Klein–Gordon lattices
[56, 57]. If a shooting method were used, a time step Dt ¼ 0:02 would be necessary.
As the considered oscillations herein have periods about 1,500 time units, this
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method would imply many integration steps. In addition to that, the lack of an
analytical Jacobian would also imply the necessity of the numerical determination of
this matrix. These facts suggest the suitability of the proposed Fourier space method,
which, apart from transforming the set of differential equations into an algebraic one,
provides an analytical expression for the Jacobian.

Truncating the Fourier series at km; i.e. the maximum value of jkj; which has
been chosen to be 9 in most of the calculations due to computational reasons,
Eq. (1) yields a set of nonlinear equations with the kth component of the
dynamical equation set given by

FkðxÞ � ðE � xkÞzk þ o2
xzk � VðxÞzk � s

Xkm

m¼�km

Xkm

n¼�km

zmznzk�mþn ¼ 0: ð6Þ

We then obtain the following expression for each component of the Jacobian

oFkðxÞ
oznðx0Þ

¼ ½E � xk � VðxÞ�dðx � x0Þ þ o2
xx

� �
dk;n

� sdðx � x0Þ
X

m

z�mzk�nþm þ zmðzk�mþn þ z�nþm�kÞ
� �

;
ð7Þ

where we have written zk � zkðxÞ in both equations.
Once a periodic solution, say Wðx; tÞ; is obtained, to study its (linear) orbital

stability one needs to analyze the time evolution of a small perturbation nðx; tÞ to
Wðx; tÞ. The equation satisfied to leading order by nðx; tÞ is

int þ nxx � sð2jWj2n þ W2n�Þ � VðxÞn ¼ 0: ð8Þ

Then, the stability properties of commensurate solutions can be determined by
means of a Floquet analysis. It is performed by diagonalizing the monodromy
matrix M which is defined as

Reðnðx; TÞÞ
Imðnðx; TÞÞ

	 

¼ M Reðnðx; 0ÞÞ

Imðnðx; 0ÞÞ

	 

: ð9Þ

The linear stability of the solutions requires that the monodromy eigenvalues (also
called Floquet multipliers) must be at the unit circle (see, e.g., [56, 58, 59] for
details). In order to get the monodromy with enough accuracy, the simulations
must be performed using a time step around Dt ¼ 0:001.

We have calculated commensurate solitons for X ¼ 0:1 and a ¼ 10 using the
method described above and analysed the stability of those solutions. Presented in
the top panels of Fig. 1 are two periodic solutions that we obtained in a double
well potential. The left and right panel respectively corresponds to Josephson
tunneling and a transition to macroscopic quantum self-trapping, similarly to the
dynamics of the ground state oscillations [13, 15].

In the middle panels of Fig. 1, we present the distribution of the Floquet
multipliers of the two solutions depicted in the top panels in the complex plane. It
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is worth noting that as there is a quartet of multipliers that do not lie on the unit
circle, one can conclude that the solution in the top right panel is unstable.
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Fig. 1 (Top) The first few oscillations of the atom density jwðx; tÞj2 for dark solitons in a double
well potential with X ¼ 0:1; a ¼ 10; and (left) x ¼ 0:00450 and (right) x ¼ 0:00520; which
respectively corresponds to N ¼ 0:0340 and N ¼ 0:7677: In both cases, the initial conditions are
obtained from a numerical continuation with q ¼ 47 (see the text). (Middle) Floquet multiplier
distributions corresponding to solutions in the top left and right panel, respectively. (Bottom)
Longer time evolutions of the top panels where one can see that the solution in the top right panel
is indeed unstable
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We show in the bottom panels of Fig. 1 a longer time evolution of the solutions
in the top panels, where one can see that the solution in the top right panel is
indeed unstable. The instability we reported here is a clear evidence that the
nonlinearity term in the governing equation (1) plays an important role, as all the
solutions would have been stable otherwise. A typical instability dynamics is a
repulsive interaction between the dark solitons in different wells so that they start
to oscillate about the minimum of the wells as shown in the bottom right panel of
Fig. 1. This is a typical dynamics due to the presence of complex eigenvalues, i.e.
oscillatory instabilities.

We have also obtained periodic solutions for various parameter values. In the top
left panel of Fig. 2 we show the dependence of the norm (number of atoms) N of
tunneling dark solitons when the inter-well oscillation frequency is varied. In the
panel, several representative values of q are considered. Note that the possible values
of q are not limited to those shown in the graph. As x is increased further, there is a
critical value above which solutions are unstable. Unstable solutions are indicated as
dashed lines in the top left panel. The solutions can also be continued for decreasing
frequencies x down to a critical value. Below this critical value, the only existing
solutions are non-oscillating ones. In the top right panel of Fig. 2 we show the
dependence of the growth rate (the logarithm of the maximum modulus of the
Floquet multipliers) with respect to x for q ¼ 47. We also present the growth rate of
Josephson tunneling for a fixed x and q and variable separation distance between the
two wells a in the bottom panels of the same figure, i.e. x ¼ 0:0049 and q ¼ 47. For
small a; the solutions tend to a non-oscillating one with one dark soliton in each well,
analogously to what occurs for small x and fixed a.

3 Coupled-Mode Approximations and Their Validity

To describe dark soliton dynamics reported in the previous section, we will readily
use a two-mode approximation derived in [27, 28]. Following [27, 28], we write

w ¼
ffiffiffiffi
N

p
b2ðtÞU2ðxÞ þ b3ðtÞU3ðxÞð Þ; U2;3 ¼ UþðxÞ � U�ðxÞffiffiffi

2
p ; ð10Þ

where U�ðxÞ is a continuation of /2;3 (4) for nonzero a satisfying

oxxU� þ b�U� � VðxÞU� þ sNU3
� ¼ 0; ð11Þ

with the constraint
Rþ1
�1 UjUkdx ¼ dj; k; i; j ¼ þ;�. Two examples of Uj; which

corresponds to the norm N in the Fig. 1 are presented in Fig. 3. We obtained UjðxÞ
numerically by solving (11) using a fixed point algorithm, i.e. in this case a
Newton–Raphson method.

Next, for simplicity we write bjðtÞ ¼ jbjðtÞjeihjðtÞ. Equations (3) and (10) imply

that jb2ðtÞj2 þ jb3ðtÞj2 ¼ 1. Defining
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zðtÞ ¼ jb2ðtÞj2 � jb3ðtÞj2; DhðtÞ ¼ h3ðtÞ � h2ðtÞ; ð12Þ

one can obtain the equations satisfied by z and Dh [27, 28]

dz

dt
¼ � oH

oDh
;

dDh
dt

¼ oH

oz
; ð13Þ

where

H ¼ 1
2

Az2 � B
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
cos Dh þ 1

2
Cð1 � z2Þ cos 2Dh; ð14Þ

A ¼ 10cþ� � cþþ � c��
4

; B ¼ b� � bþ þ cþþ � c��
2

; ð15Þ

C ¼ �2cþ� þ cþþ þ c��
4

; ð16Þ
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Fig. 2 The top left panel presents the dependence of the norm with respect to x for dark solitons
with a ¼ 10: Central panel shows the minimum transmission coefficient for those solutions.
Dashed lines indicate unstable solutions. Here, q sweeps the values between 40 and 50. The top
right panel shows the dependence of the growth rate with respect to x for q ¼ 47: Bottom panels
depict the norm and the growth mode of tunneling dark solitons with fixed x ¼ 0:0049 and
q ¼ 47 for varying a
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cjk ¼ �sN

Z1

�1

U2
j ðxÞU2

kðxÞdx; ð17Þ

with j; k ¼ þ;�. In the ðDh; zÞ-plane, Uþ and U� correspond to the equilibrium
point ð0; 0Þ and ð�p; 0Þ; respectively.

We plot the phase-portrait of (13) in Fig. 4 for the two values of N in Fig. 1. To
compare the two-mode approximation with the top panels of Fig. 1, we calculate
the variable z from the numerics of the full equation (1) as [27, 28]

z ¼
R 0
�1 jwðx; tÞj2dx � N=2

NS
; S ¼

Z0

�1

UþU�dx

������

������
;

where in the present case S � 0:5. As Dh can be calculated immediately, one can
compare the numerics and the approximation right away. Shown in Fig. 4 are the
comparisons, where satisfactory agreement is obtained. The bold trajectory in the
right panel is obtained from the top right panel of Fig. 1, i.e. only the first few
oscillations are used such that the instability has not developed yet.

The phase portrait in the left panel of Fig. 4 has two families of periodic
oscillations, i.e. one centred at Dh ¼ 0 and the other at �p. The latter is known as
p-oscillations [14]. The stable solution in the top left panel of Fig. 2 with q ¼ 50
and the same norm belongs to this family. As for the phase portrait in the right
panel of Fig. 4, one can also observe that there are two types of solutions, i.e.
Josephson oscillations and running states. The latter type is also referred to as
macroscopically quantum self-trapped states.

As for the instability of the solution in the top right panel that develops at a later
time, it is clearly beyond the validity of the two-mode approximation presented
herein. One would need a better ansatz for the approximation to capture the
stability of the periodic solutions. We conjecture that the invalidity of the
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Fig. 3 The second and third
collective modes of the
confining potential VðxÞ
(dash-dotted) for (solid) N ¼
0:034 and (dashed) N ¼
0:7677; with s ¼ �1
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approximation is caused by the assumption that the basis functions U2 and U3 are
thought to be stable (time-independent), which are not necessarily the case. Note
that the validity issue mentioned here is completely different from that in [27, 28].
In [27, 28], the issue is related to the fact that the approximation does not capture
the Josephson oscillation of the full equation directly from the beginning, which
typically occurs when jsNj � 1; while in our case jsNj\1 and the approximation
does capture the existence, but not the stability.

To analyse further the above conjecture, we have calculated the stability of the
bases U�. The linear stability of Uj is determined by solving for the eigenvalues k
and eigenvectors aðxÞ and bðxÞ of the eigenvalue problem

ka ¼ bj þ dxx � VðxÞ þ 2sNUj
2

� 
a þ sNUj

2b;

�kb ¼ bj þ dxx � VðxÞ þ 2sNUj
2

� 
b þ sNUj

2a;

obtained by the substitution of

wðx; tÞ ¼
ffiffiffiffi
N

p
UjðxÞ þ � aðxÞeikt þ b�ðxÞe�ik�t

� �h i
e�ibjt

into (1) and linearization in the formal small parameter �: As the eigenvalues are
generally complex, i.e. k ¼ kr þ iki; instability corresponds to ki 6¼ 0 due to the
Hamiltonian structure of the equation. The stability analysis of the bases U� as a
function the norm N is summarized in Fig. 5.

From our numerical analysis, U� becomes unstable at N � 0:056: At this point,
a pair of eigenvalues bifurcates from the zero eigenvalues into the imaginary axis,
i.e. an exponential instability. This change of stability is due to a symmetry-
breaking (pitchfork) bifurcation with an asymmetric solution, which is accurately
predicted by the two-mode approximation above (see, e.g., [38]). Note that the
equilibrium ðDh; zÞ ¼ ð�p; 0Þ in the left and right panel of Fig. 4 has different
stability. The stability does change at the critical norm above. The typical outcome
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Fig. 4 The phase-portraits of (13) for the two values of N in Fig. 1, i.e. (left) N ¼ 0:0340 and
(right) N ¼ 0:7677: Thick symbols correspond to the periodic solutions shown in the top panels of
Fig. 1
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of the instability is a stable time-periodic solution, which is in agreement with the
two-mode approximation.

When N is increased further, there is a critical norm N � 0:21 above which Uþ
becomes unstable. It is important to note that in this case the critical eigenvalue is
complex, i.e. the solution suffers from an oscillatory instability, as shown in the top
panel of Fig. 6 for N ¼ 0:3: From the middle panel, it can be seen that the unstable
mode creates out-of-phase oscillations of the dark soliton pairs in the wells.
Computing the atom imbalance zðtÞ and the phase-difference DhðtÞ between atoms
in the wells, interestingly we obtain that the unstable dynamics still yields the
equilibrium point ðDh; zÞ ¼ ð0; 0Þ: Another interesting observation is that super-
posing Uþ with U� may suppress the instability provided that the coefficient of U�
is sufficiently large. As shown in the bottom panel of Fig. 6, even a coefficient as
small as

ffiffiffiffiffiffiffi
0:1

p
� 0:32 already reduces the instability of Uþ: These may likely be

related to the numerical results in Fig. 2, where we still obtained stable periodic
solutions with norms slightly larger than N ¼ 0:3:

Next, we increased N further and observed that for the stability of U� there is a
pair of complex eigenvalues that bifurcates in the complex plane at N � 0:58: The
eigenvalue structure of the solution for N ¼ 0:7677 is shown in the top panel of
Fig. 7. Hence, in addition to an exponential instability, now U� also suffers from
an oscillatory instability. The typical dynamics of the state is presented in the
middle panel, where initially the exponential instability creates partial tunneling of
atoms from one well to the other followed by in-phase oscillations of the dark
soliton pairs. As opposed to stabilization of Uþ due to a superposition of U� when
it becomes unstable, in the present case we did not observe any instability sup-
pression. It may be because both Uþ and U� are already unstable due to complex
eigenvalues. This is also in agreement with the numerics in Fig. 2 where all the
numerically obtained periodic solutions are unstable above N � 0:58 due to
complex eigenvalues (see the middle, right panel of Fig. 1).
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4 Conclusion and Future Work

We have studied dynamics of excited states in a double well potential, where it has
been shown that such states can experience tunnelings between the wells.
Numerical stability analysis based on the full governing equation has been per-
formed to show that the time-periodic solutions can be stable. Through path fol-
lowing methods, unstable solutions were also obtained. The instability is because
of complex eigenvalues, i.e. oscillatory instability. A coupled-mode approximation
has been derived to explain the numerical results. The break-down of the
approximation has been discussed as well, where it was shown through a hand-
wavy argument that two-mode approximations are not able to capture instability
due to complex eigenvalues. Nevertheless, it was also shown trough numerical
simulations that an instability caused by a quartet of complex eigenvalues can be
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suppressed by Josephson tunneling. In that regard, it is interesting to mention that
the lifetime of purely black stationary solitons can be short due to quantum
depletion [60], as atoms tunnel in to fill up the notch at the soliton center. In a
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Fig. 8 (Top) The first two oscillations of the atom density jwðx; tÞj2 for a Thomas-Fermi cloud in
a double well potential with X ¼ 0:1; a ¼ 7:5; (left) q ¼ 10 and (right) q ¼ 13: In both cases, the
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double-well potential, because the soliton dip can effectively tunnel from one well
to the other and hence a periodic transfer of atoms in each well, Josephson tun-
neling may provide an alternative way to obtain a long-lived dark soliton by
suppressing the depletion-induced decay of the soliton.

A natural problem to follow the analysis reported herein is the existence and
stability of time-periodic solutions of the ground states (Thomas-Fermi cloud).
A two-mode approximation for this case has been derived and discussed in, e.g.,
[27, 28]. Using the approximation, periodic solutions should be stable. We have
performed preliminary computations presented in Fig. 8 where we also obtained
unstable periodic solutions due to multipliers leaving at 1, i.e. exponentially unstable.
Different from the dark soliton case, the instabilities here do not lead to the
destruction of the periodicity of the solutions, but to a change in the oscillation period
of the tunneling. Hence, again a coupled-mode approximation breaks down here.
Nevertheless, our analysis presented above cannot be used in this case as the bases,
which are continuations of /0 and /1 (see (4) and (11)), do not experience any
oscillatory instability [55]. This is an ongoing work and will be reported elsewhere.

Several other directions that currently we work on include, on the one hand, the
extension of the dark soliton tunneling to non-commensurate solutions using the
technique developed in [61], and, on the other hand, an analysis of Josephson
tunneling of excitations in polaritonic Bose–Einstein condensates [62] whose
description includes gain and damping terms in the Gross–Pitaevskii equation [63].

Acknowledgments JC acknowledges financial support from the MICINN project FIS2008-
04848
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Solitons in a Parametrically Driven
Damped Discrete Nonlinear Schrödinger
Equation

M. Syafwan, H. Susanto and S. M. Cox

Abstract We consider a parametrically driven damped discrete nonlinear
Schrödinger (PDDNLS) equation. Analytical and numerical calculations are per-
formed to determine the existence and stability of fundamental discrete bright
solitons. We show that there are two types of onsite discrete soliton, namely onsite
type I and II. We also show that there are four types of intersite discrete soliton,
called intersite type I, II, III, and IV, where the last two types are essentially the
same, due to symmetry. Onsite and intersite type I solitons, which can be unstable
in the case of no dissipation, are found to be stabilized by the damping, whereas
the other types are always unstable. Our further analysis demonstrates that saddle-
node and pitchfork (symmetry-breaking) bifurcations can occur. More interest-
ingly, the onsite type I, intersite type I, and intersite type III–IV admit Hopf
bifurcations from which emerge periodic solitons (limit cycles). The continuation
of the limit cycles as well as the stability of the periodic solitons are computed
through the numerical continuation software Matcont. We observe subcritical
Hopf bifurcations along the existence curve of the onsite type I and intersite type
III–IV. Along the existence curve of the intersite type I we observe both super-
critical and subcritical Hopf bifurcations.
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1 Introduction

In this chapter, we consider a lattice model governed by a parametrically driven
damped discrete nonlinear Schrödinger (PDDNLS) equation

i _/n ¼ �eD2/n þ K/n þ c/n � ia/n � rj/nj2/n: ð1Þ

In the above equation, /n � /nðtÞ is a complex-valued wave function at site n; the
overdot and the overline indicate, respectively, the time derivative and complex
conjugation, e represents the coupling constant between two adjacent sites,
D2/n ¼ /nþ1 � 2/n þ /n�1 is the one-dimensional (1D) discrete Laplacian, c is
the parametric driving coefficient with frequency K; a is the damping constant,
and r is the nonlinearity coefficient. Here we confine our study to the case of
focusing nonlinearity, i.e., by setting positive valued r which then can be scaled,
without loss of generality, to r ¼ þ1:

In the absence of parametric driving and damping, i.e., for c ¼ 0 and a ¼ 0;
Eq. (1) reduces to the standard discrete nonlinear Schrödinger (DNLS) equation
which appears in a wide range of important applications [1]. It is known that the
DNLS equation admits bright and dark solitons with focusing and defocusing
nonlinearities, respectively. The stability of discrete bright solitons in the DNLS
system has been discussed, e.g., in Refs. [2–4], where it was shown that one-
excited-site (onsite) solitons are stable and two-excited-site (intersite) solitons are
unstable, for any coupling constant e: Moreover, the discrete dark solitons in such
a system have also been examined [5–9]; it is known that intersite dark solitons are
always unstable, for any e; and onsite solitons are stable only in a small window of
coupling constant e:

Furthermore, the parametrically driven discrete nonlinear Schrödinger (PDNLS)
equation, i.e, Eq. (1) with no damping ða ¼ 0Þ; has been studied in [10] for the case
of focusing nonlinearity, where it was reported that an onsite bright discrete soliton
can be destabilized by a parametric driving. The study of the same equation was
extended for the other variants of discrete solitons in [11], showing that a parametric
driving can not only destabilize onsite bright solitons, but also stabilize intersite
bright discrete solitons as well as onsite and intersite dark discrete solitons. In the
latter, the PDNLS model was particularly derived, using a multiscale expansion
reduction, from a parametrically driven Klein-Gordon system describing coupled
arrays of nonlinear resonators in micro- and nano-electromechanical systems
(MEMS and NEMS).

The discrete nonlinear Schrödinger equation with the inclusion of parametric
driving and damping terms as written in Eq. (1) was studied for the first time, to
the best of our knowledge, by Hennig [12] focusing on the existence and stability
of localized solutions using a nonlinear map approach. He demonstrated that,
depending upon the strength of the parametric driving, various types of localized
lattice states emerge from the model, namely periodic, quasiperiodic, and chaotic
breathers. The impact of damping constant and driving (but external) in the
integrable version of the DNLS system, i.e., the discrete Ablowitz-Ladik equation,
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has also been studied [13] which confirmed the existence of breathers and mul-
tibreathers. In deriving Eq. (1), one can follow, e.g., the method of reduction
performed in [11] by including a damping term in the MEMS and NEMS reso-
nators model.

On the other hand, the continuous version of the PDDNLS (1), i.e., when
/n � / and eD2/n � o2

x/; was numerically discussed earlier in [14] resulting in a
single-soliton attractor chart on the ðc; aÞ-plane from which one may determine the
regions of existence of stable stationary solitons as well as stable time-periodic
solitons (with period-1 and higher). Instead of using direct numerical integration as
performed in the latter reference, Barashenkov et al. [15] recently proposed
obtaining the time-periodic one-soliton and two-soliton [16] solutions as solutions
of a two-dimensional boundary-value problem.

Our objective in the present chapter is to examine the existence and stability of
the fundamental onsite and intersite excitations of bright solitons in the focusing
PDDNLS (1). The analysis of this model is performed through a perturbation
theory for small e which is then corroborated by numerical calculations. Such
analysis is based on the concept of the so-called anticontinuum (AC) limit
approach which was introduced initially by MacKay and Aubry [17]. In this
approach, the trivial localized solutions in the uncoupled limit e ¼ 0 are continued
for weak coupling constant. Moreover, our study here is also devoted to exploring
the relevant bifurcations which occur in both stationary onsite and intersite dis-
crete solitons, including time-periodic solitons emerging from Hopf bifurcations.
For the latter scheme, we employ the numerical continuation software Matcont to
path-follow limit cycles bifurcating from the Hopf points.

The presentation of this chapter is organized as follows. In Sect. 2, we firstly
present our analytical setup for the considered model. In Sect. 3, we perform the
existence and stability analysis of the discrete solitons through a perturbation
method. Next, in Sect. 4, we compare our analytical results with the corresponding
numerical calculations and discuss bifurcations experienced by the fundamental
solitons. The time-periodic solitons appearing from the Hopf bifurcation points of
the corresponding stationary solitons are furthermore investigated in Sect. 5.
Finally, we conclude our results in Sect. 6.

2 Analytical Formulation

Static localized solutions of the focusing system (1) in the form of /n ¼ un; where
un is complex valued and time-independent, satisfy the stationary equation

�eD2un þ Kun þ cun � iaun � junj2un ¼ 0; ð2Þ

with spatial localization condition un ! 0 as n ! �1: We should notice that
Eq. (2) (and accordingly Eq. (1)) admits the reflection symmetry under the
transformation
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un ! �un: ð3Þ

Following [14–16], we assume that both the damping coefficient a and the driving
strength c are positive. For the coupling constant e; we also set it to be positive (the
case e\0 can be obtained accordingly by the so-called staggering transformation
un ! ð�1Þnun and K ! ðK � 4eÞ). The range of the parameter K is left to be
determined later in the following discussion.

In the undriven and undamped cases, the localized solutions of Eq. (2) can be
chosen, without lack of generality, to be real-valued (with K [ 0) [2]. This is no
longer the case for non-zero c and a in the stationary PDDNLS (2), therefore we
should always take into account complex-valued un: By writing un ¼ an þ ibn;
where an; bn 2 R; and decomposing the equation into real and imaginary parts, we
obtain from Eq. (2) the following system of equations:

�eD2an þ ðK þ cÞan þ abn � ða2
n þ b2

nÞan ¼ 0; ð4aÞ

�eD2bn þ ðK � cÞbn � aan � ða2
n þ b2

nÞbn ¼ 0: ð4bÞ

Thus, the solutions of Eq. (2) can be sought through solving the above system for
an and bn:

Next, to examine the stability of the obtained solutions, let us introduce the
linearization ansatz /n ¼ un þ d�n; where d � 1: Substituting this ansatz into
Eq. (1) yields the following linearized equation at OðdÞ:

i_�n ¼ �eD2�n þ K�n þ c�n � ia�n � 2junj2�n � u2
n�n: ð5Þ

By writing �n ¼ gneixt þ nne�ixt; Eq. (5) can be transformed into the eigenvalue
problem (EVP)

eD2 � K þ ia þ 2junj2 u2
n � c

c � u2
n �eD2 þ K � ia � 2junj2

� �
gn

nn

� �
¼ x

gn

nn

� �
: ð6Þ

The stability of the solution un is then determined by the eigenvalues x; i.e., un is
stable only when ImðxÞ� 0 for all eigenvalues x:

As the EVP (6) is linear, we can eliminate one of the eigenvectors, for instance
nn; so that we obtain the simplified form

LþðeÞL�ðeÞ � 4ðanbnÞ2
h i

gn ¼ ðx � iaÞ2gn; ð7Þ

where the operators LþðeÞ and L�ðeÞ are given by

LþðeÞ � � eD2 � ða2
n þ 3b2

n � K þ cÞ;
L�ðeÞ � � eD2 � ð3a2

n þ b2
n � K � cÞ:
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3 Perturbation Analysis

Solutions of Eq. (2) for small coupling constant e can be calculated analytically
through a perturbative analysis, i.e., by expanding un in powers of e as

un ¼ uð0Þ
n þ euð1Þ

n þ e2uð2Þ
n þ � � � : ð8Þ

Solutions un ¼ uð0Þ
n correspond to the case of the uncoupled limit e ¼ 0: For this

case, Eq. (2) permits the exact solutions uð0Þ
n ¼ að0Þ

n þ ibð0Þ
n in which að0Þ

n ; bð0Þ
n

� �
can

take one of the following values

ð0; 0Þ; ðsAþ;�sB�Þ; ðsA�;�sBþÞ; ð9Þ

where

A� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
ÞðK �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
Þ

2c

s

;

B� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
ÞðK 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
Þ

2c

s

;

and s ¼ �1: Due to the reflection symmetry (3), we are allowed to restrict con-
sideration to the case s ¼ þ1:

Following the assumption c; a [ 0; we can easily confirm that nonzero
ðAþ;�B�Þ and ðA�;�BþÞ are together defined in the following range of parameters

K[ c� a[ 0: ð10Þ

In particular, when c ¼ a; the values of ðAþ;�B�Þ are exactly the same as
ðA�;�BþÞ:

Once a configuration for uð0Þ
n is determined, its continuation for small e can be

sought by substituting expansion (8) into Eq. (2). In this chapter, we only focus on
two fundamental localized solutions, i.e., one-excited site (onsite) and in-phase
two-excited site (intersite) bright solitons. Out-of-phase two-excited site modes
also referred to as twisted discrete solitons (see, e.g., [18]), which exist in the
model considered herein, are left as a topic of future research.

Next, to study the stability of the solitons, we also expand the eigenvector
having component gn and the eigenvalue x in powers of e as

gn ¼ gð0Þn þ egð1Þn þOðe2Þ; x ¼ xð0Þ þ exð1Þ þ Oðe2Þ: ð11Þ

Substituting these expansions into Eq. (7) and collecting coefficients at successive
powers of e yield the Oð1Þ and OðeÞ equations which are respectively given by

Lgð0Þn ¼ 0; ð12Þ
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Lgð1Þn ¼ fn; ð13Þ

where

L ¼ Lþð0ÞL�ð0Þ � 4ðað0Þ
n bð0Þ

n Þ2 � ðxð0Þ � iaÞ2; ð14Þ

fn ¼ L�ð0ÞðD2 þ 2að0Þ
n að1Þ

n þ 6bð0Þ
n bð1Þ

n Þ þ Lþð0ÞðD2 þ 2bð0Þ
n bð1Þ

n þ 6að0Þ
n að1Þ

n Þ
h

þ8að0Þ
n bð0Þ

n ðað0Þ
n bð1Þ

n þ að1Þ
n bð0Þ

n Þ þ 2xð0Þxð1Þ � 2iaxð1Þ
i
gð0Þn :

ð15Þ

One can check that the operator L is self-adjoint and thus the eigenvector

h ¼ colð. . .; gð0Þ�1; g
ð0Þ
0 ; gð0Þ1 ; . . .Þ is in the null-space of the adjoint of L:

From Eq. (12), we obtain that the eigenvalues in the uncoupled limit e ¼ 0 are

xð0Þ
C ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � c2

q
þ ia; ð16Þ

and

xð0Þ
E ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþð0ÞL�ð0Þ � 4ðað0Þ

n bð0Þ
n Þ2

q
þ ia; ð17Þ

which correspond, respectively, to the solutions uð0Þ
n ¼ 0 (for all n) and

uð0Þ
n ¼ að0Þ

n þ ibð0Þ
n 6¼ 0 (for all n). For bright soliton solutions having boundary

condition un ! 0 as n ! �1; the eigenvalues xð0Þ
E and xð0Þ

C have, respectively,
finite and infinite multiplicities which then generate a corresponding discrete and
continuous spectrum as e is turned on.

Let us first investigate the significance of the continuous spectrum. By intro-
ducing a plane-wave expansion gn ¼ leijn þ me�ijn; one can obtain the dispersion
relation

x ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2eðcos j � 1Þ � KÞ2 � c2

q
þ ia; ð18Þ

from which we conclude that the continuous band lies between

xL ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � c2

q
þ ia; when j ¼ 0; ð19Þ

and

xU ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � c2 þ 8eðK þ 2eÞ

q
þ ia; when j ¼ p; ð20Þ

From the condition (10), one can check that all the eigenvalues x 2 �½xL;xU 

always lie on the axis ImðxÞ ¼ a[ 0 for all e; which means that the continuous
spectrum does not give contribution to the instability of the soliton. Therefore, the
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analysis of stability is only devoted to the discrete eigenvalues. Discrete eigen-
values that potentially lead to instability are also referred to as critical eigenvalues.

3.1 Onsite Bright Solitons

When e ¼ 0; the configuration of an onsite bright soliton is of the form

uð0Þ
n ¼ 0 for n 6¼ 0; uð0Þ

0 ¼ A þ iB; ð21Þ

where ðA;BÞ 6¼ ð0; 0Þ: From the combination of nonzero solutions (9), we can
classify the onsite bright solitons, indicated by the different values of ðA;BÞ; as
follows:

(i) Type I, which has ðA;BÞ ¼ ðAþ;�B�Þ;
(ii) Type II, which has ðA;BÞ ¼ ðA�;�BþÞ;

which we denote hereinafter by un �f g and un 	f g; respectively.
The continuation of the above solutions for small e can be calculated from the

expansion (8), from which one can show that an onsite soliton type I and type II,
up to Oðe2Þ; are respectively given by

un �f g ¼
ðAþ � iB�Þ þ ðAþ�iB�Þe

Kþ
ffiffiffiffiffiffiffiffiffi
c2�a2

p ; n ¼ 0;

ðAþ�iB�Þe
Kþ

ffiffiffiffiffiffiffiffiffi
c2�a2

p ; n ¼ �1; 1;

0; otherwise;

8
>><

>>:
ð22Þ

and

un 	f g ¼
ðA� � iBþÞ þ ðA��iBþÞe

K�
ffiffiffiffiffiffiffiffiffi
c2�a2

p ; n ¼ 0;

ðA��iBþÞe
K�

ffiffiffiffiffiffiffiffiffi
c2�a2

p ; n ¼ �1; 1;

0; otherwise:

8
>><

>>:
ð23Þ

In particular, when a ¼ c; the onsite type I and type II become exactly the same.
To examine the stability of the solitons, we need to calculate the corresponding

discrete eigenvalues for each of type I and type II, which we elaborate
successively.

3.1.1 Onsite Type I

One can show from Eq. (12) that at e ¼ 0; an onsite bright soliton type I has a
leading-order discrete eigenvalue which comes as the pair
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xð0Þ
�f g ¼ �

ffiffiffiffi
P

p
þ ia; ð24Þ

where

P ¼ 4K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
þ 4c2 � 5a2: ð25Þ

The eigenvector corresponding to the above eigenvalue has components gð0Þn ¼ 0

for n 6¼ 0 and gð0Þ0 ¼ 1:
We notice that P can be either positive or negative depending on whether

a7ath; where

ath ¼ 2
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5c2 � 2K2 þ K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K2 þ 5c2

qr

: ð26Þ

Therefore, the eigenvalue xð0Þ
�f g can be either

x1
ð0Þ
�f g ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
þ 4c2 � 5a2

q
þ ia; ð27Þ

for the case a\ath; or

x2
ð0Þ
�f g ¼ i a �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5a2 � 4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2

q� �
; ð28Þ

for the case ath\a� c:
The continuation of the eigenvalues (27) and (28) for nonzero e can be eval-

uated from Eq. (13) by applying a Fredholm solvability condition. As the corre-
sponding eigenvector has zero components except at site n ¼ 0; we only need to
require f0 ¼ 0; from which we obtain the discrete eigenvalue of un �f g for small e;

up to Oðe2Þ; as follows.

(i) For the case a\ath:

x1 �f g ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
þ 4c2 � 5a2

q
� ð4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
Þe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
þ 4c2 � 5a2

q þ ia:

ð29Þ

(ii) For the case ath\a� c:

x2 �f g ¼ i a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5a2 � 4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2

q
	 ð4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
Þe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5a2 � 4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2

q

0

B@

1

CA:

ð30Þ
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We should note here that the above expansions remain valid if �P are Oð1Þ:
Let us now investigate the behavior of the above eigenvalue in each case. In

case (i), the imaginary part of x1
ð0Þ
�f g (i.e., when e ¼ 0) is a; which is positive. We

also note that jx1
ð0Þ
�f gj?jxð0Þ

C j when a7acp; where

acp ¼ 1
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25c2 � K2

q
: ð31Þ

As e increases, the value of jx1 �f gj also increases. As a result, the eigenvalues
x1 �f g will collide either with the upper band (xU) of the continuous spectrum for
a\acp; or with the lower band (xL) for acp\a\ath: These collisions then create a
corresponding pair of eigenvalues bifurcating from the axis Im x1 �f g

	 

¼ a: This

collision, however, does not immediately lead to the instability of the soliton as it

does for a ¼ 0 [10, 11]. In addition, the distance between x1
ð0Þ
�f g and xð0Þ

C increases

as a tends to 0, which means that the corresponding collisions for smaller a happen
at larger e: From the above analysis we hence argue that for a\ath and for
relatively small e; the onsite soliton type I is stable.

In case (ii), it is clear that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5a2 � 4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2

q
� a which implies

0�minðImðx2
ð0Þ
�f gÞÞ\a; the latter indicates the soliton is stable at e ¼ 0: As e

increases, both maxðImðx2 �f gÞÞ and minðImðx2 �f gÞÞ tend to a at which they
finally collide. From this fact, we conclude that for small e and for ath\a� c; the
soliton remains stable. In particular, when a ¼ c; we have minðImðx2 �f gÞÞ ¼ 0 for
all e; which then implies that the soliton is always stable.

3.1.2 Onsite Type II

Performing the calculations as before, we obtain that the discrete eigenvalue (in
pairs) of an onsite bright soliton type II is given, up to Oðe2Þ; by

x 	f g ¼ i a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2 þ 5a2

q
� ð4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
Þe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2 þ 5a2

q

0

B@

1

CA:

ð32Þ

Again, we should assume that the term ð4K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2 þ 5a2Þ in the above

expansion is Oð1Þ:
When a\c; we simply have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2 þ 5a2

q
[ a; from which we

deduce minðImðxð0Þ
	f gÞÞ\0; meaning that at e ¼ 0 the soliton is unstable. In fact, as

e increases, the value of minðImðx 	f gÞÞ decreases. Therefore, in this case we infer
that the soliton is unstable for all e:
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When a ¼ c; by contrast, the value of minðImðx 	f gÞÞ is zero for all e; which
indicates that the soliton is always stable. In fact, the stability of an onsite type II
in this case is exactly the same as in type I. This is understandable as the onsite
type I and type II possess the same profile when a ¼ c:

3.2 Intersite Bright Solitons

Another natural fundamental solution to be studied is a two-excited site (intersite)
bright soliton whose mode structure in the uncoupled limit is of the form

uð0Þ
n ¼

A0 þ iB0; n ¼ 0;
A1 þ iB1; n ¼ 1;

0; otherwise;

8
<

:
ð33Þ

where ðA0;B0Þ 6¼ ð0; 0Þ and ðA1;B1Þ 6¼ ð0; 0Þ: The combination of the nonzero
solutions (9) gives the classification for the intersite bright solitons, indicated by
different values of ðA0;B0Þ and ðA1;B1Þ; as follows:

(i) Type I, which has ðA0;B0Þ ¼ ðA1;B1Þ ¼ ðAþ;�B�Þ;
(ii) Type II, which has ðA0;B0Þ ¼ ðA1;B1Þ ¼ ðA�;�BþÞ;
(iii) Type III, which has ðA0;B0Þ ¼ ðAþ;�B�Þ and ðA1;B1Þ ¼ ðA�;�BþÞ;
(iv) Type IV, which has ðA0;B0Þ ¼ ðA�;�BþÞ and ðA1;B1Þ ¼ ðAþ;�B�Þ:

Let us henceforth denote the respective types by un ��f g; un 		f g; un �	f g; and
un 	�f g:

From the expansion (8), we obtain the continuation of each type of solution for
small e; which are given, up to order e2; by

un ��f g ¼

ðAþ � iB�Þ þ 1
2

ðAþ�iB�Þe
Kþ

ffiffiffiffiffiffiffiffiffi
c2�a2

p ; n ¼ 0;

ðAþ � iB�Þ þ 1
2

ðAþ�iB�Þe
Kþ

ffiffiffiffiffiffiffiffiffi
c2�a2

p ; n ¼ 1;

ðAþ�iB�Þe
Kþ

ffiffiffiffiffiffiffiffiffi
c2�a2

p ; n ¼ �1; 2;

0; otherwise;

8
>>>>><

>>>>>:

ð34Þ

un 		f g ¼

ðA� � iBþÞ þ 1
2

ðA��iBþÞe
K�

ffiffiffiffiffiffiffiffiffi
c2�a2

p ; n ¼ 0;

ðA� � iBþÞ þ 1
2

ðA��iBþÞe
K�

ffiffiffiffiffiffiffiffiffi
c2�a2

p ; n ¼ 1;

ðA��iBþÞe
K�

ffiffiffiffiffiffiffiffiffi
c2�a2

p ; n ¼ �1; 2;

0; otherwise;

8
>>>>><

>>>>>:

ð35Þ
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un �	f g ¼

ðAþ�iBþÞe
Kþ

ffiffiffiffiffiffiffiffiffi
c2�a2

p ; n ¼ �1;

ðAþ � iB�Þ þ 1
2

ðAþ�iB�Þe
cðKþ

ffiffiffiffiffiffiffiffiffi
c2�a2

p
Þ
; n ¼ 0;

ðA� � iBþÞ þ 1
2

ðA��iBþÞe
cðK�

ffiffiffiffiffiffiffiffiffi
c2�a2

p
Þ
; n ¼ 1;

ðA��iB�Þe
K�

ffiffiffiffiffiffiffiffiffi
c2�a2

p ; n ¼ 2;

0; otherwise;

8
>>>>>>>>><

>>>>>>>>>:

ð36Þ

un 	�f g ¼

ðA��iB�Þe
K�

ffiffiffiffiffiffiffiffiffi
c2�a2

p ; n ¼ �1;

ðA� � iBþÞ þ 1
2

ðA��iBþÞe
cðK�

ffiffiffiffiffiffiffiffiffi
c2�a2

p
Þ
; n ¼ 0;

ðAþ � iB�Þ þ 1
2

ðAþ�iB�Þe
cðKþ

ffiffiffiffiffiffiffiffiffi
c2�a2

p
Þ
; n ¼ 1;

ðAþ�iBþÞe
Kþ

ffiffiffiffiffiffiffiffiffi
c2�a2

p ; n ¼ 2;

0; otherwise;

8
>>>>>>>>><

>>>>>>>>>:

ð37Þ

where

A� ¼ 2cA� þ ðK �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
ÞA	; ð38Þ

B� ¼ 2cB	 � ðK �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
ÞB�: ð39Þ

All solutions above are defined on the region (10) and exhibit the same profiles
when a ¼ c: One can check that intersite type III and IV are symmetric, thus they
should really be considered as one solution. However, we write them here as two
‘different’ solutions because, as shown later in the next section, they form two
different branches in a pitchfork bifurcation (together with intersite type I).

Let us now examine the stability of each solution by investigating their cor-
responding discrete eigenvalues.

3.2.1 Intersite Type I

By considering Eq. (12) and carrying out the same analysis as in onsite type I, we
obtain that the intersite type I has the double leading-order discrete eigenvalue

x1
ð0Þ
��f g ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
þ 4c2 � 5a2

q
þ ia; ð40Þ

for a\ath; and

x2
ð0Þ
��f g ¼ i a �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5a2 � 4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2

q� �
; ð41Þ

for ath\a� c: The corresponding eigenvector for the above eigenvalues has

components gð0Þn ¼ 0 for n 6¼ 0; 1; gð0Þ0 6¼ 0; and gð0Þ1 6¼ 0:
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One can check, as in onsite type I, that the position of x1
ð0Þ
��f g relative to xð0Þ

C

depends on whether a7acp ¼ 1
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25c2 � K2

p
; i.e., the value of jx1

ð0Þ
��f gj is greater

(less) than jxð0Þ
C j when a is less (greater) than acp:

The next correction for the discrete eigenvalues of an intersite type II can be
calculated from Eq. (13), for which we need a solvability condition. Due to the
presence of two non-zero components of the corresponding eigenvector at
n ¼ 0; 1; we only require f0 ¼ 0 and f1 ¼ 0: Our simple analysis then shows

gð0Þ0 ¼ �gð0Þ1 from which we obtain that each of double eigenvalues (40) and (41)
bifurcates into two distinct eigenvalues, which are given, up to order e2; as follows.

(i) For the case a\ath:

x11 ��f g ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
þ 4c2 � 5a2

q
� ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
Þe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
þ 4c2 � 5a2

q þ ia;

ð42Þ

x12 ��f g ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
þ 4c2 � 5a2

q
	 2ðK þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
Þe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
þ 4c2 � 5a2

q þ ia:

ð43Þ

(ii) For the case ath\a� c:

x21 ��f g ¼ i a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5a2 � 4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2

q
	 ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
Þe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5a2 � 4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2

q

0

B@

1

CA;

ð44Þ

x22 ��f g ¼ i a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5a2 � 4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2

q
� 2ðK þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
Þe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5a2 � 4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2

q

0

B@

1

CA:

ð45Þ

As before, we assume here that the terms �ð4K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
þ 4c2 � 5a2Þ are Oð1Þ

so that the above expansions remain valid.
Let us first observe the behavior of the eigenvalues in case (i). In the uncoupled

limit e ¼ 0; the imaginary part of x11
ð0Þ
��f g ¼ x12

ð0Þ
��f g is a[ 0 which indicates that

the soliton is initially stable. When e is turned on, the value of jx11 ��f gj increases
but jx12 ��f gj decreases. Therefore, we can determine the mechanism of collision
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of these two eigenvalues with the inner or outer boundary of continuous spectrum
(xL or xU) as follows.

• For a\acp; the first collision is between x12 ��f g and xU : Because xU moves
faster (as e is varied) than x11 ��f g; the next collision is between these two
aforementioned eigenvalues.

• For a [ acp; the mechanism of collision can be either between x11 ��f g and xL;

or between x12 ��f g and itself.

All of the mechanisms of collision above generate new corresponding pairs of eigen-
values bifurcating from their original imaginary parts, which is a: Yet these collisions do
not immediately cause an instability, because a [ 0: Therefore, we may conclude
that for sufficiently small e and for a\ath; an intersite bright soliton type I is stable.

Next, we describe the analysis for the eigenvalues in case (ii). When e ¼ 0;

we have 0� minðImðx21
ð0Þ
��f gÞÞ ¼ minðImðx22

ð0Þ
��f gÞÞ\a: As e is increased, min

ðImðx21 ��f gÞÞ increases but minðImðx22 ��f gÞÞ decreases. The latter then becomes
negative, leading to the instability of the soliton. By taking minðImðx22 ��f gÞÞ ¼ 0;
one obtains

ecr ¼
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5a2 � 4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2

q

2ðK þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
Þ

� 5a2 � 4K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2

2ðK þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
Þ

; ð46Þ

which yields an approximate boundary for the onset of instability, e.g., in the
ðe; aÞ-plane for fixed K and c:

3.2.2 Intersite Type II

From our analysis of Eqs. (12) and (13), we obtain the discrete eigenvalues for an
intersite bright soliton type II, which are given, with errors of order e2; by

x1 		f g ¼ i a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2 þ 5a2

q
� ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
Þe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2 þ 5a2

q

0

B@

1

CA;

ð47Þ

x2 		f g ¼ i a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2 þ 5a2

q
� 2ðK �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
Þe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2 þ 5a2

q

0

B@

1

CA;

ð48Þ

assuming the term ð4K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2 þ 5a2Þ is Oð1Þ: Notice that x1 		f g and

x2 		f g are equal when a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c2 � K2

p
=2:
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When a\c; both minðImðx1 		f gÞÞ and minðImðx2 		f gÞÞ are negative at e ¼ 0
and always decrease as e is increased; the decrement of minðImðx2 		f gÞÞ
is greater than minðImðx1 		f gÞÞ for a[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c2 � K2

p
=2: When a ¼ c;

minðImðx1 		f gÞÞ and minðImðx2 		f gÞÞ are zero at e ¼ 0: At nonzero e; the for-
mer remains zero, but the latter becomes negative and decreases as e increases.
These facts allow us to conclude that an intersite bright soliton type II is always
unstable, except at a ¼ c and e ¼ 0: One can check that when a ¼ c; the eigen-
values of intersite type II are the same as in intersite type I.

3.2.3 Intersite Type III and IV

As intersite type III and IV are symmetric, their eigenvalues are exactly the same.
Our calculation shows the following.

(i) For the case a\ath; the eigenvalues of the intersite type III and IV, up to
Oðe2Þ; are

x11 �	f g ¼ x11 	�f g ¼ ia �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
þ 4c2 � 5a2

q

� ð2c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� Kc þ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � c2 þ a2

p
Þe

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
þ 4c2 � 5a2

q ;
ð49Þ

x12 �	f g ¼ x12 	�f g ¼ i a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2 þ 5a2

q
0

B@

�ð2c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
þ Kc � a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � c2 þ a2

p
Þe

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2 þ 5a2

q

1

CA:

ð50Þ

(ii) For the case ath\a� c; the eigenvalues, up to order e2; are

x21 �	f g ¼ x21 	�f g ¼ i a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5a2 � 4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2

q
0

B@

	ð2c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� Kc þ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � c2 þ a2

p
Þe

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5a2 � 4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2

q

1

CA;

ð51Þ
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x22 �	f g ¼ x22 	�f g ¼ i a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2 þ 5a2

q
0

B@

�ð2c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
þ Kc � a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � c2 þ a2

p
Þe

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2 þ 5a2

q

1

CA:

ð52Þ

We should assume again that the terms �ð4K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
þ 4c2 � 5a2Þ and

ð4K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p
� 4c2 þ 5a2Þ in the above expansions are of Oð1Þ:

In the first case, the eigenvalues (50) are apparently pure imaginary, with an
imaginary part whose minimum value is negative for all e: In the second case, it is
clear that for a\c the minimum value of the imaginary part of the eigenvalues
(51) is positive (less than a) initially at e ¼ 0 and then increases as e increases.
However, for this case (a\c), the minimum value of the imaginary part of the
eigenvalues (52), which are exactly the same as the eigenvalues (50), is negative at
e ¼ 0 and then decreases as e is turned on. In contrast, for a ¼ c the minimum
value of the imaginary part of the eigenvalues (51) and (52) remains zero for all e:
The above fact shows that both intersite soliton type III and IV are always
unstable, except at a ¼ c: In fact, as shown in the numerical calculation later, the
intersite type III and IV are no longer defined along this line, due to a pitchfork
bifurcation with intersite type I.

4 Comparisons with Numerical Results, and Bifurcations

In order to find the numerical solutions for each soliton discussed in the previous
section, we solve the stationary equation (2) [cf. Eqs. (4a), (4b)] using a Newton-
Raphson (NR) method. The evaluation is performed in domain n 2 ½�N;N
; i.e.,
for a lattice of 2N þ 1 sites, with periodic boundary conditions u�ðNþ1Þ ¼ u	N : As
an initial guess, we use the corresponding exact soliton solutions in the uncoupled
limit e ¼ 0 from which we then numerically continue for nonzero e: As an illus-
trative example, the numerical solutions for each type of onsite and intersite bright
soliton with parameter values ðe;K; c; aÞ ¼ ð0:1; 1; 0:5; 0:1Þ are depicted in Fig. 1.
The corresponding analytical approximations are also plotted therein showing
good agreement with the numerical results.

To examine the stability of each soliton, we solve the eigenvalue problem (6)
numerically and then compare the results with the analytical calculations. More-
over, we show later that the relevant solitons experience saddle-node and/or
pitchfork bifurcations. To depict the diagram of these bifurcations, we use a
pseudo-arclength method which allows us to continue the solution past turning
points (by varying one parameter). In addition, our analysis of the eigenvalues for
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some particular solutions leads to the fact of the presence of Hopf bifurcations.
We will determine the nature of Hopf bifurcation points and perform continuation
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Onsite type III Onsite type IV

Intersite type I Intersite type II

Fig. 1 Profiles of onsite (a, b) and intersite (c–f) bright solitons of different types, as indicated in
the caption of each panel, for parameter values ðe;K; c; aÞ ¼ ð0:1; 1; 0:5; 0:1Þ: Solid lines show
the numerical results while dashed lines indicate the analytical approximations given by
Eqs. (22) and (23) for the onsite type I and II, respectively, and by Eqs. (34), (35), (36) and (37)
for the intersite type I, II, III, and IV, respectively. The circle and cross markers correspond to the
real and imaginary part of the solutions, respectively
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of the bifurcating limit cycles in the next section by employing the numerical
continuation package Matcont.

In all illustrative examples below, we use N ¼ 50 which is large enough to capture
the behavior of the soliton in an infinite domain but not too costly in numerical
computations. In addition, for the sake of simplicity, we set K ¼ 1 and c ¼ 0:5:

4.1 Onsite Bright Solitons

4.1.1 Onsite Type I

We start by testing the validity of our analytical approximation for the critical
eigenvalues given by Eqs. (29) and (30). We present in Fig. 2 comparisons
between the analytical and numerical results for the critical eigenvalues as func-
tions of e: We plot comparisons for three values a ¼ 0:1; 0:485; 0:497 to represent
the cases a\acp; acp\a\ath; and ath\a\c; respectively (see again the relevant
discussion in the previous section). From the figure, we conclude that our pre-
diction for small e is relatively close to the numerics.

For the three values of a given above, we now present in Fig. 3 the eigenvalue
structure of the soliton and the corresponding diagram for the imaginary part of the
critical eigenvalues as functions of e: Let us now describe the results in more detail.

First, we notice that at e ¼ 0 the critical eigenvalues for a ¼ 0:1 lie beyond the
outer band of the continuous spectrum, while for a ¼ 0:485 they are trapped
between the two inner bands of the continuous spectrum. As e is turned on, the
corresponding critical eigenvalues for a ¼ 0:1 and a ¼ 0:485 collide with,
respectively, the outer and the inner bands, leading to the bifurcation of the cor-
responding eigenvalues. The minimum imaginary part of these bifurcating
eigenvalues, however, does not immediately become negative. Hence, for rela-
tively small e we conclude that the soliton is always stable; this in accordance with
our analytical prediction of the previous section. The critical values of e at which
minðImðxÞÞ ¼ 0 indicating the onset of the instability are depicted by the star
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Fig. 2 Comparisons between
the critical eigenvalues of an
onsite bright soliton type I
obtained numerically (solid
lines) and analytically (dashed
lines). The upper and middle
curves correspond, respectively,
to a ¼ 0:1 and a ¼ 0:485;
which are approximated by
Eq. (29), whereas the lower
corresponds to a ¼ 0:497;
which is approximated by
Eq. (30)

Solitons in a Parametrically Driven 617



markers in Fig. 3c, f. Interestingly, for a ¼ 0:485 there is a re-stabilization of the
soliton as shown by the larger e star marker in panel (f).

Next, for a ¼ 0:497 the discrete eigenvalues initially (at e ¼ 0) lie on the imagi-
nary axis; they come in pairs and are symmetric about the line ImðxÞ ¼ a ¼ 0:497;
furthermore the minimum one is above the real axis. When e increases, both
eigenvalues approach one another and finally collide at the point ð0; a ¼ 0:497Þ
creating a new pair of discrete eigenvalues along the line ImðxÞ ¼ a ¼ 0:497: Each
pair of the eigenvalues then again bifurcates after hitting the inner edge of the
continuous spectrum. However, the minimum imaginary part of these bifurcating
eigenvalues is always greater than zero even for larger e [see panel (i)]. From this fact,
we therefore conclude that the soliton in this case is always stable. This conclusion
agrees with our analytical investigation.
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Fig. 3 The first (a, d, g) and second (b, e, h) columns of panels show the ðReðxÞ; ImðxÞÞ-plane
of the eigenvalues of onsite bright solitons type I for several values of a and e; as indicated in the
caption of each panel (each row of panels depicts three different values of a). For a ¼ 0:1 and
a ¼ 0:485; the corresponding left and middle panels illustrate the eigenvalues of stable and
unstable solitons. The third column (c, f, i) shows the path of the imaginary part of the critical
eigenvalues xcrit as functions of e for the corresponding a: The locations of e at which ImðxcritÞ ¼
0 are indicated by the star markers
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The minimum value of ImðxÞ (in color representation) of the onsite bright soliton
type I for a relatively large range of e and a gives the (in)stability region in the ðe; aÞ-
plane as presented in Fig. 4. The stable region is indeed determined whenever
min ImðxÞð Þ� 0 for each e and a: The lower and upper dotted horizontal lines in this
figure, i.e., respectively, a ¼ acp � 0:4583 and a ¼ ath � 0:49659; represent the
boundaries of the regions which distinguish the description of the eigenvalue
structure of the soliton. The solid line in this figure indicates the (in)stability
boundary, i.e., when min ImðxÞð Þ ¼ 0: Three representative points (star markers)
lying on this line reconfirm the corresponding points in Fig. 3c, f. As shown in the
figure, there is an interval of a in which the soliton is stable for all e:This is interesting
as the onsite soliton, which was shown [10, 11] to be destabilized by a parametric
driving, now can be re-stabilized by a damping constant.

Let us revisit Fig. 3 for a ¼ 0:1 and a ¼ 0:485: We notice that at zero-crossing
points ec (shown by the star markers in panels (c) and (f)), the following conditions
hold:

(i) There is a pair (equal and opposite) of non-zero real eigenvalues, and
(ii) The e-derivative of the imaginary part of the pair of eigenvalues mentioned in

(i) is non-zero at ec:
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Fig. 4 The (in)stability region of onsite bright solitons type I in the ðe; aÞ-plane. The
corresponding color represents the minimum value of ImðxÞ (for all eigenvalues x) for each e
and a: Thus, the region in which min ImðxÞð Þ� 0 indicates the region of stable soliton, otherwise
unstable. The boundary of stable–unstable regions, i.e., when min ImðxÞð Þ ¼ 0; is given by the
solid line (three representative points (star markers) on this line correspond to those points in
Fig. 3c, f). The boundary curve also indicates the occurrence of Hopf bifurcations with one
degenerate point, i.e. a double-Hopf bifurcation, at e � 1:46 as indicated by the white-filled
circle. The lower and upper horizontal dotted lines correspond to Eqs. (31) and (26), respectively
(see text) (Color figure online)
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The second condition is also called the transversality condition. We assume that
the so-called first Lyapunov coefficient of the zero-crossing points is nonzero, i.e.
the genericity condition. According to the Hopf bifurcation theorem (see, e.g., Ref.
[19], keeping in mind that our eigenvalue is denoted by ix), the above conditions
imply that at e ¼ ec; Eq. (1) has time-periodic (limit cycle) solutions bifurcating
from a (steady-state) onsite bright soliton type I. We then call such a critical point
ec a Hopf point. By applying the centre manifold theorem, for example, we can
generally determine the nature of a Hopf point ec through its first Lyapunov
coefficient l1ðecÞ (see, e.g., Ref. [19]); the Hopf bifurcation is subcritical iff
l1ðecÞ[ 0 and supercritical iff l1ðecÞ\0:

Because the occurrence of Hopf bifurcation in the onsite type I also indicates the
onset of (in)stability, the collection of Hopf bifurcation points in the ðe; aÞ-plane
therefore lies precisely on the (in)stability boundary line (see again Fig. 4). However,
at the stationary point e � 1:46 the condition (ii) for the occurrence of a (non-
degenerate) Hopf bifurcation does not hold. At this special point, we have a saddle-
node bifurcation of Hopf points, i.e. a double-Hopf (Hopf-Hopf) bifurcation. Due to
the violation of the transversality condition, there may be no periodic solution or even
multiple periodic solutions at the degenerate point. We will examine this point later
in Sect. 5, where it will be shown through numerical continuations of limit cycles
near the degenerate point that the former possibility occurs.

4.1.2 Onsite Type II

For this type of solution, a comparison between the critical eigenvalues obtained
by analytical calculation, which is given by Eq. (32), and by numerics, is presented
in Fig. 5. We conclude that our analytical prediction for small e is quite accurate.

The eigenvalue structure of onsite solitons type II for a ¼ 0:1 and the two
values e ¼ 0:1; 1 and the corresponding curve of imaginary part of the critical
eigenvalues are given in Fig. 6. This figure shows that the soliton is always
unstable even for a large e: This fact is consistent with the analytical prediction.
We notice in the figure that there is a new pair of discrete eigenvalues bifurcating
from the inner edge of continuous spectrum at relatively large e [see panel (b)].
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Fig. 5 Comparison between
the critical eigenvalues of
onsite bright solitons type II
for a ¼ 0:1 produced by
numerics (solid line) and by
analytical approximation (32)
(dashed line)
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By evaluating the minimum value of ImðxÞ for a relatively large e and a; we
obtain that the soliton is always unstable for a\c ¼ 0:5 and, contrastingly, stable
for a ¼ c: In the latter case, the eigenvalues of the onsite type II are exactly the
same as in the onsite type I; the minimum value of the imaginary part remains zero
for all e:

4.1.3 Saddle-Node Bifurcation of Onsite Bright Solitons

We observed from numerics and analytics that when approaching a ¼ c; the onsite
bright soliton type I and type II possess the same profile as well as the same
stability, consistent with the saddle-node bifurcation experienced by the two sol-
itons. A diagram of this bifurcation can be produced, e.g., by plotting the norm of
the numerical solution of these two solitons as a function of a for fixed e ¼ 0:1: To
do so, we apply a pseudo-arc-length method to perform the numerical continua-
tion, starting from the onsite type I at a ¼ 0: The obtained diagram is presented in
Fig. 7 and the corresponding analytical approximation is also depicted therein. As
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Fig. 6 The top panels (a, b) show the eigenvalue structure of onsite bright solitons type II for
a ¼ 0:1 and two values of e as indicated in the caption. The bottom panel (c) depicts the
imaginary part of the critical eigenvalues as a function of e
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shown in the figure, the onsite type I, which is stable, turns into the onsite type II,
which is unstable. Both numerics and analytics give the same turning point [or
so-called limit point (LP)] at a ¼ c ¼ 0:5: We also conclude that the analytical
approximation for the norm is quite close to the numerics, with the accuracy for
the onsite type I better than type II. Indeed, their accuracy could be improved if
one uses smaller e:

4.2 Intersite Bright Solitons

4.2.1 Intersite Type I

Let us first compare our analytical prediction for the critical eigenvalues, given by
Eqs. (42)–(43) and (44)–(45), with the corresponding numerical results. We present
the comparisons in Fig. 8 by considering three values of a ¼ 0:1; 0:465; 0:497 as
representative points for the three cases discussed in the previous section. From the
figure we see that the double eigenvalues which coincide originally at e ¼ 0 then
split into two distinct eigenvalues as e increases. We conclude that our approxi-
mation for small e is generally quite accurate.

Next, we move on to the description of the eigenvalue structure of the intersite
bright solitons type I and the corresponding imaginary part of the two critical
eigenvalues as functions of e; these are depicted in Fig. 9 for the three values of a
used before. The first and second columns in the figure represent conditions of
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Fig. 7 A saddle-node bifurcation of onsite bright solitons for e ¼ 0:1: The onsite type I (stable)
merges with the onsite type II (unstable) at a limit point (LP) a ¼ c ¼ 0:5: The solid and dashed
lines represent the norm of the solutions obtained by numerical calculation and analytical
approximation, respectively. The insets depict the profile of the corresponding solutions at the
two values a ¼ 0:1; 0:5
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stability and instability, respectively. For a ¼ 0:1; the two critical eigenvalues
successively collide with the outer band of the continuous spectrum and the cor-
responding bifurcating eigenvalues coming from the first collision contribute to the
instability. For a ¼ 0:465; the first collision is between one of the critical eigen-
values with the inner edge of the continuous spectrum. The second collision is
between the other critical eigenvalue with its pair. In contrast to the previous case,
the instability in this case is caused by the bifurcating eigenvalues coming from the
second collision. Moreover, for a ¼ 0:497; contribution to the instability is given
by one of the critical eigenvalues moving down along the imaginary axis. All the
numerical results described above are in accordance with our analytical observa-
tions in Sect. 3.

Let us now focus our attention on the right panels of Fig. 9 by particularly
discussing the properties of the critical points of e at which the curve of the
minimum imaginary part of the critical eigenvalues crosses the real axis (these are
shown by the star markers). The first and third points (from left to right) in panel
(c) as well as the points in panels (f) and (i) indicate the onset of stable-to-unstable
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Fig. 8 Comparisons of the two distinct critical eigenvalues of intersite bright solitons type I
obtained numerically (solid lines) and analytically (dashed lines) for three values of a as
indicated in the caption of each panel. The upper and lower curves in a and b are plotted from,
respectively, Eqs. (42) and (43), while in c from Eqs. (45) and (44)
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transition. Contrastingly, the second point in panel (c) illustrates the beginning of
the re-stabilization of solitons. In fact, the first three points in panel (c) mentioned
above admit all conditions for the occurrence of a Hopf bifurcation (see again the
relevant explanation about these conditions in our discussion of onsite type I);
therefore, they also correspond to Hopf points. In addition, the fourth point of zero
crossing in panel (c), which comes from one of the purely imaginary eigenvalues,
indicates the branch point of a pitchfork bifurcation experienced by the solutions
of intersite type I, III, and IV. We will discuss this type of bifurcation in more
detail in the next section.

The (in)stability region of intersite bright solitons type I in the ðe; aÞ-plane is
given in Fig. 10. In the figure, we also depict the two distinguishable (solid and
dashed) lines representing the two distinct critical eigenvalues whose imaginary
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Fig. 9 The first (a, d, g) and second (b, e, h) columns of panels show the structure of eigenvalues
of intersite bright solitons type I in the complex plane, for three values of a; each of which uses
two different values of e; to depict the condition of stability (left panel) and instability (middle
panel). The third column (c, f, i) shows the imaginary part of the two distinct critical eigenvalues
as functions of e for the corresponding a: The locations of zero-crossings in these panels are
indicated by the star markers
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parts become zero. The star points on the lines correspond to those points in the
right panels of Fig. 9. The boundary line which separates the stable and unstable
regions in the figure is shown by the bold (solid and dashed) lines. The lower and
upper dotted horizontal lines in the figure represent, respectively, a ¼ acp � 0:4583
and a ¼ ath � 0:49659 which divide the region into three different descriptions of
the eigenvalue structure. Interestingly, for ath\a; we can make an approximation
for the numerically obtained stability boundary (see the inset). This approximation
is given by Eq. (46) which is quite close to the numerics for small e:

We notice in Fig. 10 that the solid line (not the rightmost) and dashed line also
represent Hopf bifurcations, with one special point (the white-filled circle) which
does not meet the second condition for the occurrence of a (non-degenerate) Hopf
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analytical approximation given by Eq. (46). The Hopf bifurcation lines are depicted by the solid (not
the rightmost) and dashed lines. The white-filled circle indicates a degenerate Hopf point. The
branch points of pitchfork bifurcation are shown by the rightmost solid lines (Color figure online)
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bifurcation mentioned above. We will analyze the special point in the next section.
We see from the figure that the bold parts of the Hopf lines coincide with the
(in)stability boundary, while the nonbold ones exist in the unstable region. In
addition, we also observe that the rightmost solid line in Fig. 10 indicates the
collection of branch points of pitchfork bifurcation experienced by the intersite type
I, III, and IV; the bold part of this line also indicates the (in)stability boundary.

4.2.2 Intersite Type II

For intersite bright solitons type II, we present in Fig. 11 a comparison of two
critical eigenvalues between the numerics and the analytical calculation given by
Eqs. (47) and (48). We see from the figure that our approximation for relatively
small e is quite close to the numerics. The snapshot of the eigenvalue structure of
this type of solution for two points ða; eÞ and the path of the imaginary part of
corresponding two discrete eigenvalues are depicted in Fig. 12. We conclude that
the intersite soliton type II is unstable even for large e:

Moreover, the evaluation of the minimum value of ImðxÞ of the intersite bright
solitons type II in the ðe; aÞ-plane gives the (in)stability window (not shown here).

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

Re(ω)

Im
(ω

)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

Re(ω)

Im
(ω

)

0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

1.5

ε

Im
(ω

cr
it)

(a)

(c)

(b)

α = 0.3

α = 0.3, ε = 0 .1 α = 0.3, ε = 2

Fig. 12 a–b The eigenvalue structure of intersite bright solitons type II for two values ða; eÞ as
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It is shown that the soliton, except at the point a ¼ c ¼ 0:5 and e ¼ 0; is always
unstable. This result agrees with our analytical prediction.

4.2.3 Intersite Type III and IV

Now we examine the intersite bright soliton type III which, due to symmetry, has
exactly the same eigenvalues as type IV. Shown in Fig. 13 is the analytical
approximation for two critical eigenvalues given by Eqs. (49)–(50) or (51)–(52),
which are compared with the corresponding numerical results. We conclude that
the approximation is quite accurate for small e and that the range of accuracy is
wider for smaller value of a:

The structure of the eigenvalues of this type of solution and the curves of the
imaginary part of the corresponding two critical eigenvalues are given in Fig. 14
for the three values of a used in Fig. 13. The figure reveals the condition of
instability of solitons up to the limit points of e at which the minimum imaginary
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Fig. 13 Comparisons between two critical eigenvalues of intersite bright solitons III and IV
obtained numerically (solid lines) and analytically (dashed lines) for values of a as shown in the
caption. In a and b, the upper and lower dashed curves correspond, respectively, to Eqs. (49) and
(50), whereas in c they correspond to Eqs. (51) and (52)
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part of the eigenvalues becomes zero; these conditions are indicated by the cor-
responding vertical lines in the third column. In fact, these limit points indicate the
branch points of pitchfork bifurcation experienced by the intersite solitons type I,
III, and IV (we will discuss this bifurcation in more detail in the next section).

The first and second columns of Fig. 14 respectively present the condition just
before and after a collision of one of the discrete eigenvalues which does not con-
tribute to the instability of solitons. Interestingly, as shown in panel (c), such an
eigenvalue also crosses the real axis at some critical e as indicated by the empty
circle. The latter condition, in fact, indicates a Hopf bifurcation, which occurs when
the soliton is already in unstable mode. This is different from the previous discussions
where the Hopf bifurcations also indicate the change of stability of solitons.

Presented in Fig. 15 is the (in)stability window for intersite bright solitons type
III and IV which is defined as the area to the left of the solid line; this line
represents the set of the branch points of pitchfork bifurcation in the ðe; aÞ-plane.
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Fig. 14 (First and second columns) The structure of eigenvalues of intersite bright solitons type III
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From the figure, we conclude that the intersite type III and IV are always unstable.
The area to the right of the solid line belongs to the unstable region of intersite
type I. One can check that this line is exactly the same as the rightmost solid line in
Fig. 10. In addition, the dashed line appearing in Fig. 15 depicts the occurrence of
Hopf bifurcations. However, there is one special point indicated by the white-filled
circle, at which the e-derivative of the imaginary part of the corresponding critical
eigenvalue is zero; this degenerate point will be discussed further in Sect. 5. The
empty circle lying on the Hopf line reconfirms the corresponding point in Fig. 14c.

4.2.4 Saddle-Node and Pitchfork Bifurcation of Intersite Bright Solitons

From both numerical and analytical results discussed above, we observed that the
intersite type I and type II have the same profile and stability when approaching
a ¼ c: This fact indicates the appearance of a saddle-node bifurcation undergone
by the two solitons. Moreover, there also exists a pitchfork bifurcation experienced
by the intersite type I, III, and IV.

One can check that the norm of the intersite type III and IV is exactly the same
for all parameter values so that this quantity can no longer be used for depicting a

clear bifurcation diagram. Therefore, we now simply plot the value of ju0j2 for
each solution, e.g., as a function of a and fixed e ¼ 0:1; this is shown in Fig. 16
where the numerics (solid lines) is obtained by a pseudo-arc-length method. As
seen in the figure, the intersite type I, III, and IV meet at a (pitchfork) branch point
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(BP) a � 0:49: At this point, the stability of the intersite type I is switched.
Furthermore, the intersite type I and II also experience a saddle-node bifurcation
where they merge at a limit point (LP) a ¼ c ¼ 0:5: Just before this point, the
intersite type I possesses one unstable eigenvalue, while the type II has two
unstable eigenvalues. The two critical eigenvalues for the intersite type I and II
then coincide at LP. We confirm that our analytical approximation for the value of

ju0j2 is relatively close to the corresponding numerical counterpart.

Next, let us plot the value of ju0j2 for each soliton by fixing a ¼ 0:1 and varying
e (presented in Fig. 17). The pitchfork bifurcation experienced by the intersite
type I (solid line), type III (upper dashed line), and type IV (lower dashed line) is
clearly shown in the figure. The three solitons meet together at a branch point BP.
We also depict in the figure the points at which Hopf bifurcations emerge (labelled
by indexed H). For the shake of completeness, we also plot the relevant curve for
the intersite type II (dotted line).

5 Nature of Hopf Bifurcations and Continuation
of Limit Cycles

If there is only one pair of non-zero real eigenvalues and the other eigenvalues
have strictly positive imaginary parts, a Hopf bifurcation also indicates the change
of stability of the steady state solution. In this case, the periodic solutions

Fig. 16 Saddle-node and pitchfork bifurcations of intersite bright solitons by varying a and
fixing e ¼ 0:1: The curves depict the value of ju0j2 of each solutions obtained numerically (solid
lines) and analytically (dashed lines). The profiles of the corresponding solutions at some values
of a are shown in the relevant insets. The intersite type I, III, and IV merge at a branch point (BP)
a � 0:49 and the intersite type I and II meet at a limit point (LP) a ¼ c ¼ 0:5
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bifurcating from the Hopf point coexist with either the stable or unstable mode of
the steady state solution. If the periodic solutions coexist with the unstable steady
state solution, they are stable and the Hopf bifurcation is called supercritical. On
the other hand, if the periodic solutions coexist with the stable steady state solu-
tion, they are unstable and the Hopf bifurcation is called subcritical.

To numerically calculate the first Lyapunov coefficient for a Hopf point and
perform a continuation of the bifurcating limit cycle, we use the numerical con-
tinuation package Matcont. Due to the limitations of Matcont, we evaluate the
soliton using 21 sites. In fact, this setting does not affect significantly the soliton
behavior compared to that used in the previous section.

In this section, we examine the nature of Hopf points and the stability of cycle
continuations in onsite type I, intersite type I, and intersite type III–IV.

5.1 Onsite Type I

For this type of solution, in particular at a ¼ 0:1; we have one Hopf point,
which occurs at ec � 0:3077 (see again Fig. 3c). From Matcont, we obtain
l1ðec � 0:3077Þ[ 0 which indicates that the Hopf point ec is subcritical and hence
the limit cycle bifurcating from this point is unstable. A continuation of the cor-
responding limit cycle is given in Fig. 18a. As the Hopf point in this case also
indicates the change of stability of the stationary soliton, one can confirm that the
bifurcating periodic solitons are stable because they coexist with the stable onsite
type I; this agrees with the computed first Lyapunov coefficient above.
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Fig. 17 A pitchfork bifurcation of intersite bright solitons for fixed a ¼ 0:1 and varied e: The
curves represent the numerical value of ju0j2 for the corresponding solutions as a function of e:
The intersite type I (solid line), type III (upper dashed line), and type IV (lower dashed line)
merge at a branch point (BP). The occurrence of Hopf bifurcation ðHiÞ is detected in intersite type
I, III, and IV. The dotted line corresponds to the intersite type II
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Interestingly, the continuation of the limit cycle also experiences saddle-node and
torus bifurcations, as indicated by the points labelled limit point cycle (LPC) and
Neimark-Sacker (NS), respectively. The profile of a representative periodic soliton
over one period is shown in Fig. 18b, from which we clearly see the typical
oscillation in the soliton amplitude.

From the previous discussion we have mentioned that there is one degenerate
point for Hopf bifurcations in onsite type I, which is indicated by the white-filled
circle in Fig. 4. In Fig. 19, we depict numerical continuations of periodic orbits of
two Hopf bifurcations near the degenerate point. We obtained that the limit cycle
branches bifurcating from the Hopf points are connected and form a closed loop.
This informs us that as a approaches the critical value for a degenerate Hopf point,
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Fig. 18 a The continuation of the limit cycle from a Hopf point H for an onsite soliton type I
with a ¼ 0:1: The first Lyapunov coefficient for H calculated by Matcont is positive, i.e. H is
subcritical. The bold solid line represents the norm of the stationary soliton while the solid and
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the ‘‘radius‘‘ of the loop tends to zero. Hence, one may conclude that at the double-
Hopf point, there is no bifurcation of periodic orbits.

5.2 Intersite Type I

In particular for a ¼ 0:1; there are three Hopf points detected for the intersite
type I (see again Fig. 17). For point H1 (e � 0:2782), Matcont gives a negative
value for the first Lyapunov coefficient, which means that the bifurcating periodic
soliton is stable or H1 is supercritical. The corresponding cycle continuation is
presented in Fig. 20a. As shown in the figure, the limit cycle bifurcating from H1

coexist with the unstable mode of the (steady-state) intersite type I which confirms
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Fig. 20 a The cycle continuation from Hopf point H1 for intersite bright soliton type I with
a ¼ 0:1: In this case, H1 is supercritical. The bold solid line indicates the value of ju0j2 for the
stationary soliton, which is the same as that shown in Fig. 17. The solid and dashed lines

represent, respectively, the maximum and minimum value of ju0j2 for the bifurcating periodic
solitons, which also experience a pitchfork cycle bifurcation. The branches of the cycle are
depicted by the dash-dotted (maximum ju0j2) and dotted (minimum ju0j2) lines; b the profile of a
stable periodic soliton (as H1 is supercritical) over one period (T � 5:5265) corresponding to the
star point in a; c, d enlargements of, respectively, the upper and the lower rectangles in a
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the supercritical H1: This is valid because the Hopf bifurcation in this case also
indicates the change of stability of the soliton. We also see from the figure that the
cycle continuation contains NS, LPC, and branch point cycle (BPC) points which
indicate the occurrence of, respectively, torus, saddle-node, and pitchfork bifur-
cations for limit cycle. The branches of the cycle continuation from the BPC point
are shown in the figure. A representative periodic soliton (in one period) which
occurs at one representative point along the cycle continuation is depicted in
Fig. 20b, which shows the oscillation between the two excited sites.

Next, for H2 ðe � 0:3871) and H3 (e � 0:4934), the first Lyapunov coefficients
given by Matcont are negative and positive valued, respectively. Thus, H2 is
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Fig. 21 a As Fig. 20a, but for H2 and H3; where the inset gives the zoom-in for the
corresponding region showing that H2 and H3 are supercritical and subcritical, respectively. The
bold solid line is the same as that shown in Fig. 17, i.e., representing the value of ju0j2 for the
stationary intersite soliton. The solid (dashed) and dash-dotted (dotted) lines shows the maximum
(minimum) value of ju0j2 for the periodic soliton which bifurcates from, respectively, H2 and H3;
b, c the profile of periodic solitons over one period T � 6:708 and T � 3:4985 which
corresponds, respectively, to the star and the black-filled circle in a. From the nature of H2 and
H3; periodic solitons in b and c are stable and unstable, respectively
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supercritical while H3 is subcritical, which implies that the limit cycle bifurcating
from H2 and H3 are stable and unstable, respectively. The continuations of the
corresponding limit cycles are shown in Fig. 21a. From the figure, we see that the
limit cycles bifurcating from H2 and H3 respectively coexist with the unstable and
stable stationary intersite soliton type I. This fact is consistent with the nature of
H2 and H3 as given by Matcont. In addition, as shown in the figure, a period-
doubling (PD) bifurcation also occurs in the cycle continuation coming from H3:
This bifurcation seems to coincide with the turning point of cycle (LPC) which
appears in the cycle continuation starting from H2: The profile of one-period
periodic solitons at the two representative points near H2 and H3 are presented in
Fig. 21b, c, respectively. We cannot see clearly the typical oscillation of the
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Fig. 23 a The cycle continuation from Hopf point H4 for intersite bright soliton type III with
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periodic soliton in Fig. 12.21b as it occurs very near to H2: By contrast, the
oscillation in the soliton amplitude is clearly visible in Fig. 12.21c.

Similarly to the onsite type I, we also noticed the presence of a double-Hopf
bifurcation in the intersite type I, i.e., the white-filled circle in Fig. 10. To investigate
the point, we evaluate several Hopf points nearby the bifurcation point and perform
numerical continuations for limit cycles, which are presented in Fig. 22. Unlike the
case in the onsite type I, here the (non-degenerate) Hopf points are not connected to
each other by a closed loop of a branch of limit cycles. As we observe this scenario at
any Hopf point that is arbitrarily close (up to a numerical accuracy) to the degenerate
(codimension 2) bifurcation, it indicates that at the double-Hopf point, there is a
bifurcation of at least two branches of periodic solutions.

5.3 Intersite Type III and IV

As intersite bright soliton type III and IV possess the same eigenvalue structures,
the nature of the corresponding Hopf bifurcation and the stability of the contin-
uation of each limit cycle will be the same as well. Therefore it is sufficient to
devote our discussion to intersite type III only.

As shown in Fig. 17, there is one Hopf point, namely H4; for the intersite
type III at a ¼ 0:1: In this type of solution, the Hopf bifurcation occurs while other
eigenvalues already give rise to instability; this is different from the type of Hopf
bifurcation discussed previously. Therefore we cannot perform the analysis as
before in determining the stability of the bifurcating periodic soliton. In fact,
according to calculation given by Matcont, the first Lyapunov coefficient for H4 is
positive (subcritical), which means that the bifurcating periodic soliton is unstable.

Figure 23a shows the continuation of the corresponding limit cycle from H4:
A representative one-period periodic soliton at e near H4 (indicated by the
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black-filled circle) is shown in Fig. 23b, from which we can see clearly the
oscillation in the amplitude of soliton.

Next, we study the double-Hopf bifurcation for the intersite type III–IV shown
by the white-filled circle in Fig. 15. Presented in Fig. 24 is the continuation of
the limit cycles from two Hopf points about the degenerate point, from which we
see that they are connected to each other. Therefore, as for the case of the onsite
type I, we argue that there is no bifurcation of periodic solutions at the degen-
erate point.

6 Conclusion

In this chapter, we have considered a parametrically driven damped discrete
nonlinear Schrödinger (PDDNLS) equation. The existence and stability of fun-
damental discrete bright solitons have been examined analytically through a per-
turbation theory for small e and then corroborated by numerical calculations. We
showed that there are two types of onsite discrete soliton, namely onsite type I and II.
For onsite type I, we found an interval in a for which the soliton is stable for any
coupling constant, i.e., a damping can re-stabilize a driven onsite soliton. Con-
trastingly, the onsite type II was found to be always unstable for all e: These two
solitons experience a saddle-node bifurcation with the limit point a ¼ c for any e:

We also showed that there are four types of intersite discrete soliton, called
intersite type I, II, III, and IV. In fact, intersite type III and IV are essentially
considered as one solution due to its symmetry. We obtained that intersite type I in
the region of instability in the non-dissipative case can be stabilized by damping
while intersite type II and III–IV are always unstable. A saddle-node bifurcation,
as for the onsite soliton, was found to be undergone by intersite type I and II.
Moreover, we also obtained that intersite type I, III, and IV experience a pitchfork
bifurcation. The branch points of such a bifurcation in the ðe; aÞ-plane have been
calculated numerically.

More interestingly, we observed that Hopf bifurcation also occurs in onsite type I,
intersite type I, and intersite type III–IV, which confirms the existence of the
corresponding periodic solitons (limit cycles) in the PDDNLS equation. The
continuation of the limit cycles as well as the stability of the periodic solitons have
been demonstrated numerically using the numerical continuation software Mat-
cont. In particular, subcritical Hopf bifurcations for onsite type I and intersite type
III–IV were observed. Moreover, we obtained three Hopf bifurcations for intersite
type I. It was shown that two of these points generate stable periodic solitons, i.e.
the bifurcations are supercritical.

Note that similar studies for the continuum limit of Eq. (1) have been put
forward in, e.g., Refs. [14–16]. Hopf bifurcations and the corresponding periodic
solitons were reported and discussed therein. The connection between the results
presented in this work, which correspond to weakly coupled lattices, and those of
[14–16] are proposed for future study.
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Conditions and Stability Analysis
for Saddle-Node Bifurcations of Solitary
Waves in Generalized Nonlinear
Schrödinger Equations

Jianke Yang

Saddle-node bifurcations of solitary waves in generalized nonlinear Schrödinger
equations with arbitrary forms of nonlinearity and external potentials in arbitrary
spatial dimensions are analyzed. First, general conditions for these bifurcations are
derived. Second, it is shown analytically that the linear stability of these solitary
waves does not switch at saddle-node bifurcations, which is in stark contrast with
finite-dimensional dynamical systems where stability switching takes place. Third,
it is shown that this absence of stability switching does not contradict the
Vakhitov–Kolokolov stability criterion or the results in finite-dimensional
dynamical systems. Fourth, it is shown that this absence of stability switching
holds not only for real potentials but also for complex potentials. Lastly, various
numerical examples will be given to confirm these analytical findings. In partic-
ular, saddle-node bifurcations with both branches of solitary waves being stable
will be presented.

1 Introduction

Saddle-node bifurcation is the generic and most common bifurcation in finite-
dimensional dynamical systems [1]. In this bifurcation, there are two fixed-point
branches on one side of the bifurcation point and no fixed points on the other side,
and the stability of these two fixed-point branches switches at the bifurcation point
(one branch stable and the other branch unstable). In nonlinear partial differential
equations (which can be viewed as infinite-dimensional dynamical systems),
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this bifurcation occurs as well (it is also called fold bifurcation in the literature).
For instance, solitary waves in nonlinear physical systems often exhibit this type of
bifurcation. Examples include the Boussinesq equations and the fifth-order
Korteweg-de Vries equation in water waves [2–4], the Swift–Hohenberg equation
in pattern formation [5], the nonlinear Schrödinger (NLS) equations with localized
or periodic potentials in nonlinear optics and Bose–Einstein condensates [6–9],
and many others. Motivated by stability switching of saddle-node bifurcations in
finite-dimensional dynamical systems, it is widely believed that in nonlinear
partial differential equations, stability of solitary waves also always switches at
saddle-node bifurcations (see [5–8] for examples). Even though it was claimed on
numerical evidence that both branches of saddle-node bifurcations were stable for
various solitons in a Kronig–Penney model with cubic-quintic nonlinearity [10],
that numerical evidence was not reliable since many solitons which the authors
claimed to be stable are actually unstable. Thus that work could not shake this
pervasive belief of stability switching.

In this paper, we show that this belief of universal stability switching at saddle-
node bifurcations in nonlinear partial differential equations is incorrect. Specifi-
cally, we show that in generalized nonlinear Schrödinger equations with arbitrary
forms of nonlinearity and external real or complex potentials, stability of solitary
waves actually does not switch at saddle-node bifurcations. This fact is proved
analytically in two ways by using the general conditions of saddle-node bifurca-
tions, eigenvalue-bifurcation analysis and the method of contradiction. It is also
verified numerically by several examples, where both branches of solitary waves
are stable at saddle-node bifurcations. In addition, we show that this absence of
stability switching does not contradict the Vakhitov–Kolokolov stability criterion
even though the lower and upper branches of the saddle-node bifurcation have
opposite signs of power slopes. Reconciliation of our results with those in finite-
dimensional dynamical systems is also provided.

2 Conditions for Saddle-Node Bifurcations

We consider generalized nonlinear Schrödinger equations with arbitrary forms of
nonlinearity and external potentials in arbitrary spatial dimensions,

iUt þr2U þ FðjUj2; xÞU ¼ 0; ð1Þ

where r2 is the Laplacian in the N-dimensional space x ¼ ðx1; x2; � � � ; xNÞ, and
Fð�; �Þ is a general function which contains nonlinearity as well as external poten-
tials. These equations include the Gross–Pitaevskii equation in Bose–Einstein
condensates and nonlinear light-transmission equations in linear potentials and
nonlinear lattices as special cases [11–14]. Below, we will first focus on the case
where the function F is real-valued, which applies when the system (1) is conser-
vative. Extension to the non-conservative case of complex functions of F will be
considered in Sect. 6 later.
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When the function F is real, Eq. (1) admits stationary solitary waves of the form

Uðx; tÞ ¼ eiltuðxÞ; ð2Þ

where uðxÞ is a localized real function satisfying

r2u � lu þ Fðu2; xÞu ¼ 0; ð3Þ

and l is a real propagation constant which is a free parameter. Under certain
conditions, these solitary waves undergo saddle-node bifurcations at special values
of l [6–9]. A signature of these bifurcations is that on one side of the bifurcation
point l0, there are no solitary wave solutions; but on the other side of l0, there are
two distinct solitary-wave branches which merge with each other at l ¼ l0: To
derive conditions for these bifurcations, we introduce the linearization operator of
Eq. (3),

L1 ¼ r2 � l þ ou½Fðu2; xÞu�: ð4Þ

We also introduce the standard inner product of functions

hf ; gi ¼
Z 1

�1
f �ðxÞgðxÞdx; ð5Þ

where the superscript ‘*’ stands for complex conjugation. Our analysis starts with
the basic observation that, if a bifurcation occurs at l ¼ l0, by denoting the
corresponding solitary wave and the linearization operator as

u0ðxÞ ¼ uðx; l0Þ; L10 ¼ L1jl¼l0; u¼u0
; ð6Þ

then the linear operator L10 should have a discrete zero eigenvalue. This is a
necessary condition for all types of bifurcations (not just for saddle-node bifur-
cations). To derive sufficient conditions for saddle-node bifurcations, let us make
the following assumption.

Assumption 1 It is assumed that this zero eigenvalue of L10 is discrete and
simple.

This assumption holds for all bifurcations in one spatial dimension since L10 in
this case is a Sturm–Liouville operator whose discrete eigenvalues are all simple.
This assumption holds for many bifurcations in higher spatial dimensions as well.
Under this assumption, we denote the unique discrete (localized) eigenfunction of
L10 at the zero eigenvalue as wðxÞ, i.e.,

L10w ¼ 0: ð7Þ

Since L10 is a real operator, we can normalize the eigenfunction w to be a real
function and hence require w real below. We also denote

Gðu; xÞ ¼ Fðu2; xÞu; GkðxÞ ¼ ok
uGju¼u0

; ð8Þ
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where k ¼ 1; 2; 3; � � �. Then the sufficient condition for saddle-node bifurcations of
solitary waves is given by the following theorem.

Theorem 1 Under Assumption 1 and the above notations, if hu0;wi 6¼ 0 and
hG2;w

3i 6¼ 0, then a saddle-node bifurcation of solitary waves occurs at l ¼ l0 in
Eq. (1).

Proof Solitary waves which exist near l ¼ l0 admit the following perturbation
series expansions

uðx; lÞ ¼
X1

k¼0

ðl � l0Þk=2ukðxÞ: ð9Þ

Inserting this expansion into Eq. (3), we get the following equations for uk at order

ðl � l0Þk=2, k ¼ 0; 1; 2;:

r2u0 � l0u0 þ Fðu2
0; xÞu0 ¼ 0; ð10Þ

L10u1 ¼ 0; ð11Þ

L10u2 ¼ u0 � G2u2
1=2!; ð12Þ

and so on. Equation (10) for u0 is satisfied automatically since u0 is a solitary wave
at l ¼ l0: The u1 solution to Eq. (11) is found from (7) as

u1 ¼ b1w; ð13Þ

where b1 is a constant. The u2 function satisfies the linear inhomogeneous equation
(12). Due to the Fredholm Alternative Theorem and the fact that L10 is self-adjoint,
Eq. (12) admits a localized solution for u2 if and only if the homogeneous solution
w is orthogonal to the inhomogeneous term, i.e.,

hw; u0 � G2u2
1=2i ¼ 0: ð14Þ

Inserting the solution (13) into this orthogonality condition and recalling the
conditions in Theorem 1, we find that

b1 ¼ �b; b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hu0;wi
hG2;w

3i

s

: ð15Þ

Thus, we get two b1 values �b which are opposite of each other. Inserting the
corresponding u1 solutions (13) into (9), we then get two perturbation-series
solutions of solitary waves uðx; lÞ as

u�ðx; lÞ ¼ u0ðxÞ � bðl � l0Þ1=2wðxÞ þ Oðl � l0Þ: ð16Þ

If hu0;wi and hG2;w
3i have the same sign, then b is real. Recalling that u0ðxÞ and

wðxÞ are both real as well, we see that these perturbation-series solutions (16) give
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two real-valued (legitimate) solitary waves when l [ l0, but these solitary waves
do not exist when l\l0. On the other hand, if hu0;wi and hG2;w

3i have the
opposite sign, b is purely imaginary. In this case, the perturbation series (16) give
two real-valued solitary waves when l\l0 but not when l [ l0:

The above perturbation calculations can be continued to higher orders. We can
show that the two real solitary-wave solutions (16), which exist on only one side of

l ¼ l0, can be constructed to all orders of ðl � l0Þ1=2: In addition, these two
solitary waves u�ðx; lÞ merge with each other when l ! l0: We can also show
that except these two solitary-wave branches, there are no other solitary-wave
solutions near the bifurcation point. Thus a saddle-node bifurcation occurs at
l ¼ l0: This completes the proof of Theorem 1. h

Using the perturbation expansion (16) of solitary waves, we can also calculate
the power function PðlÞ of these waves near the saddle-node bifurcation point l0.
The power P of a solitary wave uðxÞ is defined as

P ¼
Z 1

�1
u2ðxÞdx: ð17Þ

Using (16) and the condition in Theorem 1, we readily find that

P�ðlÞ ¼ P0 � ðl � l0Þ1=2P1 þ Oðl � l0Þ; ð18Þ

where coefficients P0 and P1 are

P0 ¼ hu0; u0i; P1 ¼ 2bhu0;wi 6¼ 0;

and b is given in Eq. (15). It is seen that the power function is a horizontally-
oriented parabola, which is not surprising for a saddle-node bifurcation.

3 Stability Analysis for Saddle-Node Bifurcations

Stability properties of solitary waves near saddle-node bifurcations is an important
issue. In finite-dimensional dynamical systems, the stability of fixed points is
known to switch at saddle-node bifurcations, and this switching is caused by a
linear-stability eigenvalue of the fixed points crossing zero along the real axis [1].
For solitary waves in nonlinear partial differential equations (which can be viewed
as fixed points in infinite-dimensional dynamical systems), it is widely believed
that their stability also always switches at saddle-node bifurcations. We find that
this belief is incorrect. Below, we show that for solitary waves (2) in the gen-
eralized NLS equations (1), there are no linear-stability eigenvalues crossing zero
at a saddle-node bifurcation point, thus stability-switching does not occur.

To study the linear stability of solitary waves (2) in Eq. (1), we perturb them as [13]

Uðx; tÞ ¼ eilt uðxÞ þ ½vðxÞ þ wðxÞ�ekt þ ½v�ðxÞ � w�ðxÞ�ek�t
n o

; ð19Þ
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where v;w � 1 are normal-mode perturbations, and k is the mode’s eigenvalue.
Inserting this perturbed solution into (1) and linearizing, we obtain the following
linear-stability eigenvalue problem

LU ¼ �ikU; ð20Þ

where

L ¼ 0 L0

L1 0

� �
; U ¼ v

w

� �
; ð21Þ

L0 ¼ r2 � l þ Fðu2; xÞ; ð22Þ

and L1 has been given in Eq. (4).
At a saddle-node bifurcation point l ¼ l0, we denote

L00 ¼ L0jl¼l0; u¼u0
; L0 ¼ Ll¼l0; u¼u0 : ð23Þ

Then in view of Eq. (3), we have

L00u0 ¼ 0; ð24Þ

thus zero is a discrete eigenvalue of L00: From this equation as well as (7), we have

L0
0
u0

� �
¼ L0

w
0

� �
¼ 0; ð25Þ

thus zero is also a discrete eigenvalue of L0:
On the bifurcation of the zero eigenvalue in L0 when l moves away from l0,

we have the following main result.

Theorem 2 Assuming that zero is a simple discrete eigenvalue of L00 and L10,
then at a saddle-node bifurcation point l0, no eigenvalues of the linear-stability
operator L cross zero, thus no stability switching occurs.

Proof The idea of the proof is to show that, when l moves away from l0, the
algebraic multiplicity of the zero eigenvalue in L does not decrease, thus the zero
eigenvalue in L cannot bifurcate out to nonzero.

At the saddle-node bifurcation point l ¼ l0, ð0; u0ÞT and ðw; 0ÞT are two lin-
early independent eigenfunctions of the zero eigenvalue in L0 in view of Eq. (25).
Here the superscript ‘T’ represents the transpose of a vector. Under the assumption
of Theorem 2, zero is a simple discrete eigenvalue of L00 and L10: Thus it is easy to
see that L0 does not admit any additional eigenfunctions at the zero eigenvalue,
which means that the geometric multiplicity of the zero eigenvalue in L0 is two.
To determine the algebraic multiplicity of the zero eigenvalue in L0; we need to
examine the number of generalized eigenfunctions of this zero eigenvalue. The
lowest-order generalized eigenfunction ðf1; g1ÞT to the eigenfunction ð0; u0ÞT of
this zero eigenvalue satisfies the equation
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L0
f1

g1

� �
¼ 0

u0

� �
; ð26Þ

so the equation for f1 is

L10f1 ¼ u0: ð27Þ

From Eq. (7), we see that this inhomogeneous equation has a homogeneous
localized solution w: In addition, from conditions of saddle-node bifurcations in
Theorem 1, hu0;wi 6¼ 0: Furthermore, L10 is a self-adjoint operator. Thus, from the
Fredholm Alternative Theorem, the inhomogeneous equation (27) does not admit

any localized solution, which means that the eigenfunction ð0; u0ÞT of the zero
eigenvalue in L0 does not have any generalized eigenfunctions. Similarly, we can
show that the eigenfunction ðw; 0ÞT of the zero eigenvalue in L0 does not have any
generalized eigenfunctions either. Hence the algebraic multiplicity of the zero
eigenvalue in L0 is equal to its geometric multiplicity and is two.

Away from the bifurcation point (i.e., l 6¼ l0,) L always has a zero eigenmode

L 0
u

� �
¼ 0 ð28Þ

in view of Eq. (1). In addition, by differentiating Eq. (1) with respect to l, we also get

L ul

0

� �
¼ 0

u

� �
; ð29Þ

thus ðul; 0ÞT is a generalized eigenfunction of the zero eigenvalue in L: This
means that the algebraic multiplicity of the zero eigenvalue in L is at least two
when l 6¼ l0:

If nonzero eigenvalues bifurcate out from the zero eigenvalue in L, the alge-
braic multiplicity of this zero eigenvalue must decrease. Our results above show
that, when l moves away from l0, the algebraic multiplicity of the zero eigenvalue
in L does not decrease, thus there cannot be nonzero eigenvalues of L bifurcating
out from zero. Consequently, no eigenvalues of L cross zero at the saddle-node
bifurcation point, thus no stability switching occurs. This completes the proof of
Theorem 2. h

We would like to add that under the assumption of Theorem 2, we can readily
show that in the neighborhood of a saddle-node bifurcation point (0\jl � l0j � 1),
L does not admit any additional eigenfunctions or generalized eigenfunctions at the
zero eigenvalue, thus the algebraic multiplicity of the zero eigenvalue inL is exactly
two. This means that the algebraic multiplicity of L’s zero eigenvalue does not
change when l moves away from the bifurcation point l0, thus there is no eigenvalue
bifurcation out of the origin at a saddle-node bifurcation.

Alternative Proof Theorem 2 can also be proved by the following alternative
method of contradiction. For the eigenvalue problem (20), i.e.,
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L0w ¼ �ikv; L1v ¼ �ikw; ð30Þ

by taking the inner product of the first equation with the solitary wave uðxÞ and
noticing that L0 is a self-adjoint operator, we get

�ikhu; vi ¼ hu; L0wi ¼ hL0u;wi ¼ 0:

Thus, for any non-zero eigenvalue k, its eigenfunction v must be orthogonal to
u, i.e.,

hu; vi ¼ 0: ð31Þ

Similarly, by taking the inner product of the second equation in (30) with ul

and recalling L1ul ¼ u from (29), we get

�ikhul;wi ¼ hul; L1vi ¼ hL1ul; vi ¼ hu; vi:

Thus for any non-zero eigenvalue k, in view of the orthogonality (31), we see
that ul and w must be orthogonal as well, i.e.,

hul;wi ¼ 0: ð32Þ

Now suppose at a saddle-node bifurcation point l0, non-zero eigenvalues
bifurcate out from the origin. Then when l is very close to l0, these non-zero
eigenvalues are very small. Thus, from the eigenvalue Eq. (30) and our assumption
in Theorem 2, we see that

ðv;wÞ ! ðc1w; c2u0Þ; when l ! l0; ð33Þ

where c1 and c2 are certain constants which cannot be zero simultaneously. In
addition, we see from (16) that when l ! l0, ul / w: Upon substituting these
expressions into the orthogonality conditions (31) and (32) and taking the limit of
l ! l0; we find that

c1hu0;wi ¼ 0; c2hw; u0i ¼ 0: ð34Þ

Since at a saddle-node bifurcation, hu0;wi 6¼ 0 (see Theorem 1), the above
relations then give c1 ¼ c2 ¼ 0, which contradicts our earlier requirement that c1

and c2 not being zero simultaneously. Thus there cannot be eigenvalues bifurcating
out from the origin at a saddle-node bifurcation. This also proves Theorem 2. h

4 Consistency with the Generalized VK Criterion for Positive
Solitary Waves

The above result of no stability switching at a saddle-node bifurcation in the
generalized NLS equations (1) applies to general real-valued solitary waves,
certainly including positive (or equivalently sign-definite) solitary waves.
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For positive solitary waves in NLS-type equations, the stability result best known
in the physical community is the Vakhitov–Kolokolov (VK) stability criterion,
which says that the solitary wave uðx; lÞ is linearly stable if its power slope P0ðlÞ
is positive and linearly unstable if P0ðlÞ is negative [12, 13, 15]. Near a saddle-
node bifurcation, we know from Eq. (18) that the power function is a horizontally-
oriented parabola. Thus the lower and upper branches always have opposite signs
of power slope. Then from this VK stability criterion, one might conclude that the
lower and upper branches should have opposite stability as well, which would
contradict our result in Theorem 2. The error in this reasoning is that the above
(original) VK criterion, which derives linear stability exclusively from the power

slope, applies only when Eq. (1) has no external potentials (i.e., F ¼ FðjUj2Þ only)
[13]. This no-potential condition for the use of the original VK criterion is not well
recognized in the physical community. Saddle-node bifurcations, however, can
only occur when F depends also on x explicitly, i.e., Eq. (1) has external potentials
such as linear or nonlinear potentials (the latter means that the coefficients of
nonlinear terms are spatially modulated [14]). In this case, the original VK cri-
terion must be generalized. The generalized VK criterion derives linear stability
not only from the power slope but also from the number of positive eigenvalues in
the operator L1 [13]. Thus even though the lower and upper branches of a saddle-
node bifurcation have opposite signs of power slope, if the number of positive
eigenvalues in L1 also changes between the two branches, then both branches can
still have the same linear stability. Below we will show that the number of positive
eigenvalues in L1 does change at a saddle-node bifurcation, thus there is no
contradiction between our analytical result in Theorem 2 and the generalized VK
criterion. In Example 1 of the next section, we will further see explicitly that
Theorem 2 and the generalized VK criterion give exactly the same stability results.

Our result on positive eigenvalues in L1 near a saddle-node bifurcation is given
in the following theorem.

Theorem 3 Assume the conditions of Theorem 1 (for a saddle-node bifurcation)
hold. Then across this saddle-node bifurcation point (from the lower branch to the
upper one or vise versa), a simple real eigenvalue of L1 crosses zero, thus the
number of positive eigenvalues in L1 changes by one.

Proof The eigenvalue problem for the linear Schrödinger operator L1 is

L1W ¼ KW; ð35Þ

where K is a real eigenvalue and W is the associated eigenfunction. At the saddle-
node bifurcation point l ¼ l0, L10w ¼ 0 (see Eq. 7), thus K ¼ 0 is a discrete
eigenvalue of L1: In addition, due Assumption 1, K ¼ 0 is also a simple eigenvalue
of L1: Next we calculate how this simple zero eigenvalue of L1 bifurcates out when
l is away from the bifurcation point l0:

Before we start, we first expand the operator L1 as

L1 ¼ L10 þ ðl � l0Þ
1=2L11 þ ðl � l0ÞL12 þ � � � : ð36Þ
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The solitary wave uðxÞ is also expanded by Eq. (9). Upon substituting these two

expansions into the relation L1ul ¼ u out of (29), at order ðl � l0Þ
�1=2, we get

L10u1 ¼ 0: ð37Þ

This is consistent with our earlier formula (13) for u1: At Oð1Þ, we get

L11u1 ¼ 2ðu0 � L10u2Þ: ð38Þ

This relation will be needed later.
Now we expand K and W into the following perturbation series,

K ¼ ðl � l0Þ1=2c1 þ ðl � l0Þc2 þ � � � ; ð39Þ

W ¼ W0 þ ðl � l0Þ1=2W1 þ ðl � l0ÞW2 þ � � � : ð40Þ

Substituting these expansions as well as the expansion of L1 above into the
eigenvalue equation (35), at Oð1Þ we get

L10W0 ¼ 0: ð41Þ

For convenience, instead of taking the W0 solution as w, we take it as

W0 ¼ u1: ð42Þ

Note that u1 is related to w by a non-zero constant [see Eqs. (13) and (15)].

At order ðl � l0Þ1=2, we get the equation for W1 as

L10W ¼ c1u1 � L11u1: ð43Þ

Inserting (38) into this equation and imposing the Fredholm solvability condition
(which says that its right hand side must be orthogonal to the homogeneous
solution u1), we find that the eigenvalue coefficient c1 is obtained as

c1 ¼ 2hu1; u0i
hu1; u1i

: ð44Þ

For the two branches of the saddle-node bifurcation, the solutions u1 are given by
Eqs. (13) and (15), i.e.,

u1 ¼ �bw: ð45Þ

Inserting this u1 into the c1 formula (44) and then back into the eigenvalue
expansion (39), we find that the leading-order term of the eigenvalues on the two
solution branches are

K� ¼ �ðl � l0Þ1=2a; ð46Þ
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where

a � 2hu0;wi
bhw;wi 6¼ 0: ð47Þ

This eigenvalue formula shows that as the solution moves from the lower to the
upper branches (or vise versa), this eigenvalue crosses zero and changes sign. Thus
the number of positive eigenvalues in L1 changes by one. This completes the proof
of Theorem 3. h

5 Numerical Examples

In this section, we use two examples to confirm the above analytical findings.

Example 1 Consider Eq. (1) with a symmetric double-well potential and cubic-
quintic nonlinearity, i.e.,

iUt þ Uxx � VðxÞU þ jUj2U � jUj4U ¼ 0; ð48Þ

where the double-well potential

VðxÞ ¼ �3 sech2ðx þ 1:5Þ þ sech2ðx � 1:5Þ
� �

ð49Þ

is shown in Fig. 1a, and the quintic nonlinearity has the opposite sign of the cubic
nonlinearity. A similar model and its various solitary waves were considered in
[16]. Solitary waves in this conservative system (48) are of the form (2), where
uðxÞ is real. We have computed these solitary waves by the Newton-conjugate-
gradient method [13], and their power curve is plotted in Fig. 1b. It is seen that a
saddle-node bifurcation occurs at l0 	 2:16: Two solitary waves at l ¼ 2:1 on the
lower and upper branches near this bifurcation point are displayed in Fig. 1c, d. To
determine the linear stability of these solitary waves, we have computed their
linear-stability spectra by the Fourier collocation method [13], and these spectra
are shown in Fig. 1e, f respectively. It is seen that none of the spectra contains
unstable eigenvalues, indicating that these solitary waves on both lower and upper
branches are linearly stable. We have also performed this spectrum computation
for other solitary waves on the power curve of Fig. 1b, and found that they are all
linearly stable. Thus there is no stability switching at the saddle-node bifurcation
point, in agreement with our analytical result. Additionally, we have found
numerically that the zero eigenvalue for all these solitons has algebraic multi-
plicity two, again in agreement with our analytical result.

In the spectra of Fig. 1e, f, one may notice that there is a pair of purely imaginary
eigenvalues �k near the origin and may wonder whether that pair of eigenvalues
ever collide at the origin at the saddle-node bifurcation point. Numerically we have
tracked this pair of eigenvalues as the solitary wave crosses the bifurcation point,
and the eigenvalue k (with a negative imaginary part) versus l is shown in Fig. 1g.
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Here the plotted quantity is ik , which is real positive. We find that as the solitary
wave crosses the saddle-node bifurcation point, this pair of imaginary eigenvalues
never collide at or cross the origin. This confirms our analytical result in Theorem 2
that no eigenvalues cross zero at the saddle-node bifurcation point.

The solitary waves in Fig. 1 are positive, thus the generalized VK stability
criterion applies. Now we show that this generalized VK criterion predicts linear
stability for both branches of these solitary waves as well. For this purpose, we
have numerically computed the largest eigenvalue K in operator L1 for each
solitary wave, and this K versus l is plotted in Fig. 1h. We see that this K crosses
zero at the saddle-node bifurcation point, in agreement with Theorem 3. In addi-
tion, on the lower branch of the power curve (where the power slope is positive),
K [ 0, thus L1 has a single positive eigenvalue; whereas on the upper branch of
the power curve (where the power slope is negative), K\0, thus L1 has no positive
eigenvalues. Then according to the generalized VK stability criterion [13], solitary
waves on both branches of the power curve are linearly stable, in agreement with
Theorem 2 and the numerical spectra in Fig. 1e, f.

Lastly, we have also checked numerically that zero is a simple discrete
eigenvalue for both L10 and L00 (the zero eigenvalue being simple in L10 is already
clear from Fig. 1h). In addition, hu0;wi 6¼ 0 and hG2;w

3i 6¼ 0. Thus assumptions
of Theorems 1–3 are all met, hence these theorems apply to this example.
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Fig. 1 Saddle-node bifurcation and linear-stability behaviors of solitary waves in Example 1.
a Potential (49); b power curve of solitons; c, d soliton profiles at points marked by the same
letters in (b); e, f stability spectra of solitons in(c, d); g the imaginary discrete eigenvalue k (near
the origin) versus l ; h the largest real eigenvalue K in L1 versus l . The letters ‘c, d’ in
(g, h) correspond to those on the power curve in (b) to show correspondence of solution branches
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In saddle-node bifurcations in Eq. (1), solitary waves sometimes possess a
non-zero minimum power, and the power curve assumes a slanted U-shape [7, 13].
In some reports of such bifurcations, the two solution branches were marked with
opposite stability, giving readers the impression that stability switching occurs at
the saddle-node bifurcation point (see [7], Fig. 3). Those markings contradict our
Theorem 2 and are incorrect. What happens is that the stability switching actually
occurs at the power minimum point (see [13], Sect. 5.4). Since this power minima
is often very close to the saddle-node bifurcation point, one might get the wrong
impression of stability switching at the saddle-node bifurcation instead. In the next
example, we will clarify this issue explicitly.

Example 2 In this example, we consider the NLS equation with an asymmetric
double-well potential,

iUt þ Uxx � VðxÞU þ jUj2U ¼ 0; ð50Þ

where the asymmetric potential VðxÞ is taken as

VðxÞ ¼ �3:5sech2ðx þ 1:5Þ � 3sech2ðx � 1:5Þ ð51Þ

and is shown in Fig. 2a. Solitary waves in this conservative system are of the
form (2), where uðxÞ is a real localized function. A family of solitary waves with
more of their energy located at the right (shallower) potential well exists
(see Fig. 2c), and their power curve is shown in Fig. 2b. It is seen that this power
curve exhibits a slanted U-shape with a non-zero minimal power, and a saddle-
node bifurcation occurs. We have determined the linear stability of these solitary
waves and the results are indicated on the power curve of Fig. 2b (with solid blue
for stable waves and dashed red for unstable ones). From first sight, one may see
that the lower branch is stable and the upper one unstable, thus stability switching
seems to occur at the saddle-node bifurcation point (as Fig. 3 of [7] conveys to the
reader). However, when we amplify the bifurcation region of the power curve
(see Fig. 2d), we find that stability switching actually occurs at the minimum-
power point (as explained in [13]) rather than the saddle-node bifurcation point.
Indeed, from the spectra for solitary waves on the lower and upper branches very
close to the saddle-node bifurcation point (see Fig. 2e, f), we see that both waves
are linearly unstable, thus there is no stability switching at the saddle-node
bifurcation, in agreement with Theorem 2.

6 Extension to Complex Potentials

In this section, we extend the above results to complex potentials, i.e., the function
Fð�; �Þ in (1) is complex-valued. In this case, if F admits parity-time (PT)
symmetry

F�ðjUj2; xÞ ¼ FðjUj2;�xÞ;
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then solitary waves (2) can still exist over a continuous range of real l values
[17, 18], and saddle-node bifurcations can also occur. By slightly modifying the
previous analysis, we can show that there is no stability switching at saddle-node
bifurcations in these nonconservative systems either. Details of these slight
modifications will not be presented here. For our purpose, it would suffice to
present a numerical example.

Example 3 We still consider Eq. (48) in Example 1 but now with a complex PT-
symmetric localized potential

VðxÞ ¼ � 3 sech2ðx þ 1:5Þ þ sech2ðx � 1:5Þ
� �

þ 0:25i sech2ðx þ 1:5Þ � sech2ðx � 1:5Þ
� �

;
ð52Þ

see Fig. 3a. This nonconservative system still admits solitary waves (2) for con-
tinuous real ranges of l, but uðxÞ is complex-valued now. We have numerically
obtained a family of these solitons by the Newton-conjugate-gradient method
applied to a normal equation [13], and the power curve of these solitons is plotted
in Fig. 3b. Again a saddle-node bifurcation can be seen at l0 	 2:02: For solitary
waves on the lower and upper branches near this bifurcation point (see Fig. 3c, d),
their stability spectra lie entirely on the imaginary axis (see Fig. 3e, f), indicating
that they are all linearly stable. Hence no stability switching occurs at saddle-node
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Fig. 2 Saddle-node bifurcation and linear-stability behaviors of solitary waves in Example 2.
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bifurcations in this nonconservative system either. For this system, the zero
eigenvalue of all solitons on the power curve also has algebraic multiplicity two as
in the previous two examples. This explains why no zero-eigenvalue bifurcation
occurs in this case either.

7 Summary and Discussion

In summary, we have derived analytical conditions for saddle-node bifurcations of
solitary waves in generalized NLS equations (1) with arbitrary nonlinearities and
potentials. More importantly, we have shown, both analytically and numerically,
that for real as well as complex potentials, stability of solitary waves does not
switch at saddle-node bifurcations. This disproves a wide-spread belief that such
stability switching should always occur in nonlinear partial differential equations.
We have also shown that for positive solitary waves in Eq. (1), this absence of
stability switching at a saddle-node bifurcation is consistent with the generalized
Vakhitov–Kolokolov stability criterion. Since the generalized NLS equations (1)
arise frequently in nonlinear optics, Bose–Einstein condensates and other physical
disciplines, our finding could have broad impact.

How can one reconcile our result of no-stability-switching in the generalized
NLS equations (1) with the widely accepted result of stability switching in finite-
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Fig. 3 Saddle-node bifurcation and linear stability of solitons in PT-symmetric potentials of
Example 3. a PT potential (52); solid blue is the real part of the potential and dashed red is the
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the real part of u and dashed red is the imaginary part; e, f stability spectra of solitons in (c, d)
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dimensional dynamical systems? One might argue that Eq. (1) is an infinite-
dimensional dynamical system, thus results from finite-dimensional dynamical
systems do not apply. While this explanation sounds reasonable, it is not the key
reason in our opinion. We believe the key reason is that, when the result of
stability switching is derived in finite-dimensional dynamical systems, it is always
assumed that zero is a simple eigenvalue of the Jacobian (linearization) matrix of
the system at a saddle-node bifurcation point (see Ref. [1], Theorem 3.4.1,
Hypothesis SN1). For the generalized NLS equations (1), the counterpart of this
Jacobian matrix is the linearization operator L0 defined in Eq. (23), but zero is not
a simple eigenvalue of L0 in view of Eq. (25). Thus the assumption for stability
switching is not met in our system, hence our result of no stability switching does
not contradict that in finite-dimensional dynamical systems.

This work is supported in part by the National Science Foundation and the Air
Force Office of Scientific Research.
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Escape Time of Josephson Junctions
for Signal Detection

P. Addesso, G. Filatrella and V. Pierro

Abstract In this Chapter we investigate with the methods of signal detection the
response of a Josephson junction to a perturbation to decide if the perturbation
contains a coherent oscillation embedded in the background noise. When a
Josephson Junction is irradiated by an external noisy source, it eventually leaves
the static state and reaches a steady voltage state. The appearance of a voltage step
allows to measure the time spent in the metastable state before the transition to the
running state, thus defining an escape time. The distribution of the escape times
depends upon the characteristics of the noise and the Josephson junction. More-
over, the properties of the distribution depends on the features of the signal
(amplitude, frequency and phase), which can be therefore inferred through the
appropriate signal processing methods. Signal detection with JJ is interesting for
practical purposes, inasmuch as the superconductive elements can be (in principle)
cooled to the absolute zero and therefore can add (in practice) as little intrinsic
noise as refrigeration allows. It is relevant that the escape times bear a hallmark of

An erratum to this chapter is available at 10.1007/10091_2012_21.

P. Addesso (&)
Department of Electronic and Computer Engineering, University of Salerno,
Via Ponte Don Melillo, 1, 84084, Fisciano, Italy
e-mail: paddesso@unisa.it

G. Filatrella
Department of Sciences for Biological, Geological, and Environmental Studies
and Salerno unit of CNSIM, University of Sannio, Via Port’Arsa 11, 82100,
Benevento, Italy
e-mail: filatrella@unisannio.it

V. Pierro
Department of Engineering, University of Sannio, Corso Garibaldi, 107,
82100, Benevento, Italy
e-mail: pierro@unisannio.it

Progress Optical Sci., Photonics (2012): 657–678 657
DOI: 10.1007/10091_2012_9
� Springer-Verlag Berlin Heidelberg 2012
Published Online: 3 July 2012

http://dx.doi.org/10.1007/10091_2012_21


the noise itself. The spectrum of the fluctuations due to the intrinsic classical
(owed to thermal or environmental disturbances) or quantum (due to the tunnel
across the barrier) sources are different. Therefore, a careful analysis of the escape
times could also assist to discriminate the nature of the noise.

1 Introduction

The Josephson effect, early observed in superconductivity [4], essentially consists
in particles tunneling between two weakly coupled systems, each described by a
macroscopic wave functions. The effect is for instance observed when two
superconductors are placed close enough (few nanometers) to let the bosonic
waveforms of the charge carriers (Cooper’s pairs) overlap. However, The effect is
generic, and has been predicted [28] and observed [39] also between Bose-Einstein
bosonic condensates [15]. The main features of the Josephson effect in super-
conductivity are the possibility of a non dissipative flow of Cooper’s pairs from
one superconductor to the other (the so called d.c. Josephson effect) and the
appearance of a voltage proportional to the derivative of the phase difference
between the superconductors’ wave functions (the a.c. Josephson effect). The two
effects give rise to a nonlinear device, a Josephson Junction (JJ). A Josephson
Junction (JJ) can be used as a threshold detector [13, 46], i.e. as a device capable to
discriminate a signal with a sharp transition from a state to another [1, 23].
Threshold detection is a suboptimal tool in signal processing, because in typical
applications the optimal choice is linear matched filtering. However in some cir-
cumstances analogue devices might prove competitive, for optimal strategies
cannot be efficiently implemented, when: ðiÞ the amount of data necessary to claim
a detection at very low Signal to Noise Ratio (SNR) is too high (such as all-sky all-
frequency search of gravitational wave emitted by a pulsar [34, 49]); ðiiÞ the
amplitude of the signal is too low, and amplification introduces a significant
additional noise; ðiiiÞ the frequency band of the signal falls in the THz range,
where standard digital sampling procedures fails (e.g. THz sensing [45]).

When numerical analysis of the sampled data is impractical one should resort
analogue techniques. A hysteretic JJ can be employed as signal detector, because a
sinusoidal waveform corrupted by noise eventually forces the junction to switch
from the zero voltage to a finite voltage state. The switch occurs when the gauge
invariant phase crosses a threshold: the maximum of the potential that hooks the
phase in the superconducting state. The appearance of a voltage step thus flags that
the JJ phase has exceeded the threshold and makes it possible to measure how
much time the JJ has been in the superconducting state before to overcome the
energy barrier. The measure of the escape time in JJ is a well established tech-
nique, inasmuch it has been for more than 50 years a standard tool to characterize
the properties of the metastable state [3]. For instance it has been employed to
prove the existence of Macroscopic Quantum Tunneling (MQT) [17], i.e. the
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possibility that the escape occurs even at zero temperature for the quantum nature
of the Josephson phase [10].

The behaviour of the Josephson phase cannot be directly observed, it is just
possible to detect the change of the voltage (proportional to the phase derivative)
associated with the passage over the barrier. Moreover, it is not possible to recover
the Josephson phase sampling the derivative (i.e. the junction voltage).In fact the
measured signal is altered by the application of a very selective filtering stage to
avoid that environmental noise reaches the device. Moreover, voltage oscillations
fall on a frequency scale (close to the Josephson frequency) outside the band of
conventional electronic devices. Thus it makes good-sense to assert that the
available information is to be confined to the escape time.

From the point of view of data analysis, a further loss of information occurs
when the analysis of the escape time sequence is limited to the average lifetime.
Apart from the simplicity of the analysis, so much information can be depleted
because the average escape time retains most of the physics of the escape from a
static potential. In fact in Kramer theory [50] the average escape time is related to
the most important parameter of the escape process, the ratio between the potential
well and the intensity of the fluctuations. Recently, suitable statistics (e.g. variance
and skewness) of the lifetime distribution have been analyzed to highlight the
Poissonian nature of the process [48] or to detect the transition from the under-
damped to moderately damped regime [20, 42]. Detection theory allows to take a
further step and to exploit the full distribution of the escape times to improve the
performances of the JJ as a detector [1]. In this Chapter after the discussion of the
JJ model (Sect. 2), we will show how the analysis of the distribution of the escape
times can be performed with the methods of signal processing (Sect. 3) The main
features of detectors based on JJ are described in Sect. 4. In Sect. 5 we discuss
about some practical issues in real experimental scenarios together with a brief
discussion about the possibility of distinguishing between the quantum or classic
nature of the noise. The last Sect. 6 is, as usual, devoted to the conclusions.

2 Physical Model of a JJ Detector

The dynamic variable of a JJ is the gauge invariant superconducting phase, u;
ruled by the celebrated Josephson equations [4]:

I ¼ Ic sinðuÞ

V ¼ �h

2e

du
dt

ð1Þ

Ic denotes the Josephson critical current, or the maximum current of Cooper’s
pairs (whose charge is 2e) which can tunnel without an applied voltage. However,
a practical device is far more complicated than this. First, a real junction is also
characterized by a resistance and a capacitance, second the JJ is dc and ac biased,
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and third the environment at finite temperature disturbs the junction with noise.
The resulting Langevin model equation of a JJ biased with a sinusoidal signal
corrupted by additive noise nðtÞ and subject to thermal fluctuations nðtÞ reads [23]:

C�h

2e

d2u
dt2

þ �h

R2e

du
dt

þ Ic sinðuÞ ¼ Ib þ S0 sinðXt þ u0Þ þ
ffiffiffiffi
D

p
nðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=R

p
nðtÞ:

ð2Þ

Here C and R are the capacitance and the resistance of the JJ, respectively (we
consider JJ in the underdamped regime, i.e. that the capacitance is not negligible).
Furthermore Ib is the dc bias current, S0 the amplitude of the ac term of frequency
X and initial phase u0: In Eq. (2) two random terms appear: nðtÞ; with intensityffiffiffiffi

D
p

; that represents an additive noise corrupting the external signal and nðtÞ; with

intensity
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=R

p
; that represents thermal current (kB denotes the Boltzmann

constant and T the temperature). The terms nðtÞ and nðtÞ are white Gaussian noise
stochastic processes, whose correlators read \nðtÞnðt0Þ[ ¼ 2dðt � t0Þ; and
\nðtÞnðt0Þ[ ¼ 2dðt � t0Þ: For signal detectors it is important that in Eq. (2)

thermal fluctuations
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=R

p
can be neglected with respect to the signal noise

intensity
ffiffiffiffi
D

p
: In fact JJ can be cooled down at a temperature T much below the

signal noise temperature viz. T � DR=kB; an assumption that we will retain for
the remaining of the Chapter.

The low temperature condition is favored when the junction resistance is high
(i.e. when dissipation is low) because Eq. (2) is based on a parallel lumped circuit
model (see the inset to Fig. 1).

To assume that the signal is corrupted only by an additive term is a simplifi-
cation: noise can affect the signal in several ways, for instance as a multiplicative
noise [40, 41] or phase and frequency fluctuations [29]. In the following we will
limit our analysis to the standard additive noise case; however we expect that the
results can be indicative of the behavior also for other noise sources. For instance
frequency fluctuations of the JJ driving signal can be treated, in some limits, as an
additive noise [22]. A special mention is deserved to the role of quantum fluctu-
ations. Tunneling of the macroscopic phase u has been demonstrated in early
measurements [16, 18] as a saturation of the escape times at very low tempera-
tures. The experiments are performed while decreasing the bath temperature to
reduce the fluctuations; if one eventually observes a constant escape rate in spite of
the change in temperature, it is concluded that the rate itself should be due to some
other fluctuation source, such as MQT. It has been shown that quantum fluctua-
tions contribute as an equivalent thermal source of temperature h� ¼ exJ=ðpIcÞ [2]

where xJ ¼ ½2eIc=ð�hCÞ�1=2 is the characteristic frequency (called the Josephson
frequency). If only the average escape time is considered, quantum noise and
stochastic effects are nearly equivalent, with the fundamental difference that
quantum noise is unavoidable and operates also in the zero temperature limit.
Further details about the differences between quantum and classical noise will be
reported in Sect. 3.
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We recast Eq. (2) introducing the dimensionless time s ¼ xJ t; normalized with
respect to xJ : Dividing for the critical current Ic; and rearranging the terms,
Eq. (2) reads

d2u
ds2

þ xJ

RIc

�h

2e

du
ds

þ sinðuÞ ¼ Ib

Ic
þ S0

Ic
sinðX

xJ
s þ u0Þ þ

ffiffiffiffiffiffiffiffiffi
xJD

p

Ic

~nðsÞ; ð3Þ

where the correlator reads \~nðsÞ~nðs0Þ[ ¼ 2dðs � s0Þ: With the definitions c ¼
Ib=Ic as the normalized bias current, a ¼ ðxJ=RIcÞð�h=2eÞ as the normalized dis-
sipation, e ¼ S0=Ic as the normalized signal amplitude and

ffiffiffiffi
en

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxJD=I2

c Þ
p

as
the normalized noise intensity, Eq. (3) becomes:

d2u
ds2

þ a
du
ds

þ sinðuÞ ¼ c þ e sinðxs þ u0Þ þ
ffiffiffiffi
en

p ~nðsÞ: ð4Þ

Eq. (4) is a well established framework for periodically driven stochastic sys-
tems [35]. The analysis of the asymptotic or stationary states can be performed
with the analysis of the corresponding Fokker-Planck equation [50]. Unfortu-
nately, to profitably apply the methods of signal detection it is important to
accurately know the distribution of the shortest escape times, which is not easily
retrieved from the analysis of the Fokker Planck equation.

The schematic of the physics of the device is depicted in Fig. 1 by the zero
noise limit phase plane of Eq. (4). The thick line is the separatrix between confined
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Fig. 1 Phase plane portrait of Eq. (4) for c ¼ 0:3; a ¼ 0:05; e ¼ en ¼ 0: Thin curves denote the
phase lines, while the solid thick curves denote the separatrix between the asymptotic running
state (dashed curve) and the static solution (thick dots). The symbol þ denotes the instable fix
point. The inset shows the electric circuit model of Eq. (2)
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oscillations and running states. In fact a JJ is also a practical realization of the
prototypal washboard potential

UðuÞ ¼ �cu � cosðuÞ: ð5Þ

For c\1 Eq. 4) gives rise to a barrier [4, 7]:

DUðcÞ ¼ 2½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2

p
� c cos�1ðcÞ�: ð6Þ

If the oscillating current is zero (e ¼ 0) for low noise (en\\DU) escape occurs at
a rate rK [50]

rK / T�1
K exp �DU

en

� �
: ð7Þ

Such a rate is related to the average escape time l0 ¼ 1=rK and TK is the Kramer
prefactor [50]. The individual escape times can be directly measured in a variety of
conditions [55, 16], including high-Tc supercondutors [5, 6]; in the case of un-
derdamped JJ (a\1) when the system overcomes the energy barrier DU; it
switches from the locked state to a finite voltage running state [4]:

\V [
V0

¼ \
du
ds

[ ’ c
a
; ð8Þ

where \ � [ indicates the temporal moving average and the voltage is normal-
ized with respect to V0 ¼ �hxJ=2e: The efficiency of this voltage switching is less
evident for moderately damped (i.e. 0:25\a\1) JJ, when the Josephson phase
after the passage over the barrier could be retrapped in another well by the noise
(this corresponds in Fig. 1 to cross the separatrix in the reverse direction, from the
running to the static state) [42].

The escape process is illustrated in Fig. 2 : The Josephson phase u fluctuates at
the bottom of the washboard potential until it is driven across the separatrix (the
vertical line) and the running state is reached. The elapsed time is the escape time
si of the metastable state.

The acquisition of escape times is a process that should be carefully performed
to retain maximal information about the presence of signal. In particular, the initial
phase is a crucial parameter because the signal to noise mixture can be applied to
the JJ in different ways [23, 56] to acquire the escape time sequence s ¼ fsigN

i¼1:
Indeed, after the JJ has switched to the running state there are a variety of methods
to reset the system. If the frequency of the signal is perfectly known, in principle it
is possible to reapply the signal with the same initial phase u0: This acquisition
strategy is called coherent. To apply the signal again with the same initial phase
some fraction of the signal is lost waiting for the correct time to restart the process
(see Fig. 2).

When the frequency cannot be easily controlled or the time measurement
precision is too low, another possibility arises, i.e. incoherent acquisition. It
consists in reapplying the signal with any phase it might have after the reset
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procedure and therefore with an essentially random initial value of u0: We
investigate two extreme experimental situations.

• Instantaneous signal reset: the initial phase coincides with the exit phase across
the separatrix of the previous escape.

• Random signal reset: the initial phase is supposed uniformly distributed in
½0; 2p�:

In both cases much of the information carried by the initial phase parameter is
lost. In the next Section we analyze the escape time distributions and we use
statistical decision theory to seek efficient methods for detection of noisy harmonic
signals.

3 Detection Theory for Josephson Junctions Threshold
Detection

Detection theory methods are aimed to discern the presence of a known waveform
embedded in a random (noisy) background. In this framework the analysis of the
escape times serves to discern if the time dependent bias, the right hand side of

Eq. (4), consists of just the constant bias c and the unavoidable noise
ffiffiffiffi
en

p ~nðtÞ; or
contains also a sinusoidal oscillation of amplitude e; frequency x and phase u0:

The system is characterized by a SNR related to the ratio e=
ffiffiffiffi
en

p
; which weights

the signal against the intensity of the noise correlations. In the language of signal
detection one formulates two hypothesis:
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Fig. 2 Examples of the time dependent trajectories of the phase u for the coherent acquisition
strategy. The lower part of the figure shows the applied signal e sinðxs þ u0Þ: The dotted vertical
lines denote the transitions across the separatrix [the threshold is u ¼ p � sin�1ðc)] that
determines the escape times s1; s2; . . .sN : After the switching has occurred, the JJ is restarted with
static state initial condition (u ¼ sin�1 cð Þ; du=ds ¼ 0) and the signal is applied with the same
initial phase u0 (continuous vertical line). Parameters of the simulations are: c ¼ 0:8; a ¼
0:05; eN ¼ 0:0175: The signal parameters are: e ¼ 0:05; u0 ¼ 0 and x ¼ 0:7
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• H0 : the JJ is uniquely driven by noise;
• H1 : the JJ is driven by noise and a sinusoidal excitation.

If one collects the escape times, obtained with numerical simulations of Eq. (4)
[43], it is possible to estimate the Probability Density Functions (PDF) as in Fig. 3
. Here we show three cases: ðiÞ the signal is absent ðH0Þ; ðiiÞ the signal is present
and escape times are acquired by the coherent strategy (H1 coherent); ðiiiÞ the
signal is present and escape times are acquired by the incoherent strategy with
instantaneous signal reset (H1 incoherent).

It is evident that the three curves have significantly distinct shapes, even if they
share an exponential decay. In particular the PDFs related to the signal presence
have approximately the same slope (i.e. the same average escape time), which
differs from the slope of the H0 hypothesis. Moreover both H1 PDFs exhibit
oscillations. The oscillations, related to the signal amplitude and frequency, are
most evident for the coherent acquisition strategy. In the coherent case the
oscillations also depend upon the signal initial phase u0: Noticeably, the inco-
herent acquisition with instantaneous signal reset exhibits oscillations due to a
synchronization of the signal exit phase around p; as can be seen in the inset to
Fig. 3 (more precisely the density is peaked around 4p=5). These oscillations are

Fig. 3 PDFs of the escape times. The three curves represent: Signal absence (H0 : dotted line);
signal acquired by a coherent strategy (H1 : dashed line); signal acquired by an incoherent
strategy with instantaneous signal reset (H1 : continuous line). The inset shows the PDFs of the
signal initial phase u0 for the incoherent acquisition with instantaneous signal reset (continuous
line), and with random signal reset (dashed line). Parameters of the simulations are: c ¼ 0:8; a ¼
0:05; eN ¼ 0:0175: The signal parameters are: e ¼ 0:05; u0 ¼ 0 and x ¼ 0:7
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definitively smaller in the incoherent case with random signal reset (not shown in
Fig. 3), which only preserves the same slope of the other two H1 curves.

Several strategies can be designed to discriminate the presence from the
absence of the sinusoidal signal. A starting point is that the PDF of the type shown
in Fig. 3 are approximately exponential and exhibit a change of slope, i.e. the
statistical average of escape times under the two hypotheses (say l0 ¼ E½sjH0� and
l1 ¼ E½sjH1�) are different. In this case, it is possible to use a detection strategy
based on the Sample Mean (SM). In fact by averaging N identically distributed
escape times s ¼ sif gi2½1;N�; it is possible to define a detector based on the fol-

lowing test:

AðsÞ ¼ s

N

XN

i¼1

si

H1

[
\
H0

f; ð9Þ

where s ¼ signðl1 � l0Þ and f is a suitable threshold. The SM strategy, analyzed
in detail in [23], has the great advantage of simplicity, but it is obviously sub-
optimal. Indeed in the coherent and the incoherent (with instantaneous signal reset)
acquisition strategies escape time PDFs exhibit oscillations (see Fig. 3). Thus it is
important to identify a strategy that fully exploits the information carried by the
escape time statistics. the Neyman-Pearson lemma [51] indicates that an optimal
strategy, based on the Likelihood Ratio Test (LRT), exists. The analysis can be
performed by comparing the product of the ratio between the PDF, evaluated at the
escape time samples si; with and without the signal. If we denote by f0;1ð�Þ the
PDFs of the escape times under the hypothesis H0;1; the test can be written as:

AðsÞ ¼ s

N

XN

i¼1

si

H1

[
\
H0

f; ð10Þ

A useful transformation, by means of the log nonlinearity, leads to the statistics:

KðsÞ ¼ 1
N

XN

i¼1

log
f1ðsiÞ
f0ðsiÞ

� � H1

[
\
H0

f: ð11Þ

where the new threshold is f ¼ logðf0Þ=N:
Optimality of the LRT concerns the minimization of the error rate. Two types

of error assess the quality of a detector:

• the false alarm probability Pf ; also known as Type I error probability, i.e. the
probability to decide for the hypothesis H1 when H0 is true;

• the miss probability Pm; also known as Type II error probability, i.e. the
probability to decide for the hypothesis H0 when H1 is true.
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Under the hypothesis that the JJ parameters (a and c), the noise variance en

(which does not depend on the particular hypothesis in force) and the signal
parameters (e; x and u0) are perfectly known, LRT minimizes, among all possible
tests, the miss probability Pm at a fixed false alarm level Pf : In this framework,
both Pf and Pm are functions of the threshold f: Thus a popular way to summarize
the results of signal analysis is to compute the Receiver Operator Characteristic
(ROC) of the test statistic, that is the plot of Pf versus Pm for different values of f:

A ROC example is presented in Fig. 4, in which the unavoidable trade-off
between the two error probabilities is shown. The performance of the LRT strat-
egies, especially in the case of coherent acquisition, are significantly better than
the SM ones. For sake of clarity, we have shown only one SM curve (in the
coherent case), because in the other cases the performances are approximately the
same. Noticeably, due to the lack of oscillations, in the incoherent random signal
reset case the SM detector performs as well as the LRT one. Indeed SM is the
optimal strategy for exponential distributions because the sample mean is a suf-
ficient statistic [51], and the statistics KðsÞ and AðsÞ coincide.

To simplify the performance analysis of the detector we introduce a synthetic
index. To this aim, we consider the intersection between the ROC and the bisector
of the first quadrant angle, which is very close to the point of ROC curve with the
minimum distance from the axis origin. At this point Pf ¼ Pm; and we can
unambiguously define the error rate Pe � Pf ¼ Pm; which is representative of the
detector behavior1.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5Fig. 4 Typical ROCs of a JJ
based detector under the
hypothesis of complete
parameter knowledge. The
three curves are related to:
LRT Coherent(continuous
line); LRT Incoherent with
instantaneous signal reset
(dotted line); SM Coherent
(dashed line). Parameters of
the simulations are: c ¼
0:8; a ¼ 0:05; eN ¼ 0:0175:
The signal parameter are e ¼
0:05 and x ¼ 0:7: The
simulations are performed
setting the mean observation
time under
H0; E½TobsjH0� ¼ 500

1 In ref. [1] it has been shown that, for large sample size N; it is possible to relate Pe with the
well-known Kumar-Carrol index dKC [36].
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To characterize the detectors, it is necessary to specify the time Tobs in which
the N escape times are collected. The average escape time depends upon the
hypothesis in force, and so does the number of escapes collected in a fixed time
interval. However, to properly use the LRT strategy in its classical formulation the
sample size has to be fixed. We have adopted the solution to compute N with
constant mean observation time under H0 hypothesis, E½TobsjH0�: In the incoherent
case with the instantaneous signal reset strategy, we have

N ¼ E½TobsjH0�
l0

: ð12Þ

Equation (12) is to be changed for the coherent case because of the time lost to
reset the signal with the same initial phase. This loss leads to the approximated
relation [1]:

N �

E½TobsjH0�
2p=x

; l0 	
p
x

E½TobsjH0�
l0 þ p=x

; l0 [
p
x

8
>><

>>:
ð13Þ

In the incoherent case with random signal reset strategy, it is hard to map the mean
observation time to a fixed number of escapes. To perform a fair comparison, we
have supposed that no more of a signal period is lost. So the relationship is:

N ¼ E½TobsjH0�
l0 þ p=x

: ð14Þ

Another more challenging issue arises when using LRT that, as evident from
the Eq. (11), improves detection by using the whole PDF. Unfortunately, the
escape time distributions are not theoretically known for the system described by
Eq. (4). Even in the case S0 ¼ 0 the Arrhenius law is approximately valid for rare
escapes [17] (in the unperturbed oscillator time scale xJ), while for fast escapes
(that are interesting for signal analysis) only approximated analytical estimates
exist [53]. When the signal is applied the knowledge of the escape time distri-
butions is even poorer, and essentially limited to the overdamped case [9]. Thus we
are compelled to numerically estimate the PDFs; however, it is possible to do
better than just accumulate data with extensive simulations using a suitable non-
parametric statistical technique, such as the Kernel Density Estimation (KDE)
[54]. This technique generalizes the basic idea of histogram by means of a so-
called Kernel function Kð�Þ; usually a symmetric PDF (we employ a standard
normal distribution). For the random sample X ¼ Xif gi2½1;N� of size N the kernel

estimator is

bgðxÞ ¼ 1
Nw

XN

i¼1

K
x � Xi

w

� �
: ð15Þ
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The parameter w is the bandwidth (also called smoothing parameter). The optimal
choice for this parameter depends on the sample size, the kernel and the PDF
which has to be estimated. In several scenarios it is computed by means of the
relation

w ¼ 4
3

� �1=5

brN�1=5; ð16Þ

where br is the sample standard deviation of the random sample. In applying this
framework to escape times, we immediately encounter a first difficulty. Escape
times are positive, i.e. the PDFs, under both hypothesis H0;1; are:

fjðtÞ ¼ 0; 8t\0: ð17Þ

On the contrary, Eq. (15) leads to an estimated PDF which does not satisfy the
inequality (17). To go around this problem we can transform escape times s ¼
sif gi2½1;N� according to

X ¼ logðsÞ: ð18Þ

The obtained random sample X ¼ Xif gi2½1;N� can assume every value on the real

axis and the PDFs bgjðxÞ can be estimated with Eq. (15). Finally, the PDF bfjðtÞ is
obtained from bgjðxÞ via

bfjðtÞ ¼
bgjðlogðtÞÞ

t
; t [ 0: ð19Þ

The procedure is applied to both PDFs, bf0ð�Þ and bf1ð�Þ; with (H1) and without (H0)
the deterministic signal. The estimates are finally inserted in the statistic, Eq. (11):

bKðsÞ ¼ 1
N

XN

i¼1

log
bg1ðlogðsiÞÞ
bg0ðlogðsiÞÞ

� � H1

[
\
H0

f; ð20Þ

To obtain reliable estimations a large sample size (
 5 � 105) has been used. We
observe a slight over-smoothing, whose effect is some worsening of performances
for LRT. Indeed the PDF oscillations, which contain most of the additional
information with respect to the sample mean, are underestimated. This approach is
to be considered conservative, because the presence of artifacts in the opposite
under-smoothing case could artificially improve the LRT performances, leading to
over-estimated results.
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4 Josephson Junction Detector: Performance Evaluation

The application of the detection theory of Sect. 3 to JJ allows to improve the
possibility of exploiting JJ to reveal signals. The quality of the detection—the
parameter Pe—can greatly vary with the same noise-signal combination (or SNR)
applied to JJ with different parameters (dissipation, capacitance, constant bias). Let
us summarize the parameter region in which to expect the best detection perfor-
mances. In discussing the basic Eq. (2), we have emphasized that JJ are charac-
terized by four electrical quantities: the bias current Ib; the Josephson critical
current Ic; the junction resistance R and capacitance C: The optimization of a JJ as
a detector leads to the following results [1, 23]:

1. The dc current Ib can be assumed positive (for the symmetry of the problem)
and below the critical current [to have two solutions, see Eq. (6)]: 0	 Ib 	 Ic: In
normalized units the interval reads 0	 c	 1: The optimal bias current Ib for the
LRT strategy should be set as close as possible to c ¼ Ib=Ic ’ 1 to achieve the
lowest value of DU: For the SM strategy the currents should be set at an
intermediate value that depends on the ratio between the energy barrier and the
signal.

2. The critical current Ic normalizes (among the other quantities) the signal
amplitude and noise, e and en; respectively. This normalization, as expected,
does not change the SNR which is connected to e=

ffiffiffiffi
en

p
: However it is found

that, at a given level of SNR, larger normalized noise intensity favors detection.
The limit for the parameter en is to keep negligible the number of escapes of the
system toward the higher local minima of the potential [see Eq. (5)], i.e. toward
the stable points at the left in Fig. 1

3. The resistance R normalizes the dissipation parameter a: A low dissipation is
beneficial because results in shorter average escape time, and therefore
increases the statistic numerosity at a fixed length of the analyzed signal.

4. The capacitance C determines the normalized frequency x ¼ X=xJ of the
signal. The best performances occur around the geometrical resonance of
Eq. (4), x ’ xres; for both LRT and SM. JJ are therefore best suited for signals
whose frequency is in the range 10 � 1000 GHz:

The last property, the behavior of the JJ detector as a function of external signal
frequency deserves special attention. It amounts to use the JJ as a nonlinear filter,
with a peculiar resonance figure. In Fig. 5 it is displayed the error rate Pe for the
coherent SM an LRT strategy, compared with the same error for the incoherent
detection strategy in the instantaneous signal reset case.

Figure 5 clearly indicates that a minimum error probability occurs at the res-
onance frequency ðeÞ determined through linearization of Eq. (4) for small signal
amplitude e [4]:

xres ’ 1 � c2
� �1=4

: ð21Þ
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For non vanishing e nonlinear corrections to the second order Taylor expansion
tune the resonance: xres ¼ xresðeÞ [32]. The analysis of JJ detectors confirms the
dependence predicted by Eq. (21); there exists a suitable neighborhood of xres that
is one of the best regions for detection purpose, with a small correction for the
finite signal amplitude. The phenomenon is associated with a multivalued reso-
nance curve of the non linear plasma frequency [37]. It is remarkable, to our
opinion, that best detection performances (in terms of error probability Pe) are
reached in the same strongly non linear distortion regime as in amplifiers [58].

Focusing on the coherent case, we note that for SM strategy a second interesting
region occurs at a lower normalized signal frequency xSR (see ðbÞ in Fig. 5),
where another resonance appears at a frequency that can be also much smaller than
the geometric resonance. The position of this resonance dip depends upon the
phase and signal temperature [23], so it can be considered a stochastic resonance
[8, 26, 27, 44] or resonant activation [19, 21, 57]. In Ref. [23] it has been found
that a region of optimal detection is pinpointed if the potential well barrier (tuned
by c), the normalized signal frequency x and the normalized noise intensity en are
connected by the relation (Cðu0Þ is a function of the initial phase u0 and l0 is the
average escape time under the hypothesis H0):

0.01 0.02 0.05 0.10 0.20 0.50 1.0

0.01

0.02

0.05

0.10

0.20

0.50

(a) (b) (c) (d) (e) (f)

Fig. 5 The error rate Pe versus the angular velocity x of the applied signal. The curves
represent: LRT Coherent (thick continuous line); SM Coherent (thick dashed line); LRT
Incoherent with instantaneous signal reset (thin continuous line); SM Incoherent with
instantaneous signal reset (thin dashed line). The labeled arrows indicate the frequencies of the
PDF shown in Fig. 6. Parameters of the simulations are: c ¼ 0:8; a ¼ 0:05; eN ¼ 0:0175: The
signal parameter are e ¼ 0:05 and u0 ¼ 0: The mean observation time under H0 is
E½TobsjH0� ¼ 2000
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xSR ¼ l0

2pCðu0Þ
exp

2
en

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2

p
� c cos�1 cð Þ

h i	 

: ð22Þ

Below the stochastic resonance frequency the PDFs computed under H1 and H0 are
very similar, while above this frequency the PDFs computed under H1 develop
oscillations (see Fig. 6). This explains the disappearance of stochastic resonance of
Eq. (22) in the coherent LRT detection framework, for LRT exploits the PDFs
oscillations and does not deteriorate above the frequency (22). To see this, let us
imagine to increase the applied frequency x around xSR; marked by the label ðbÞ
in Fig. 5. The analysis of the PDF of Fig. 6 reveals that the curves shown in Fig. 5
have an intuitive explanation. In fact the crucial passages across the SR
(Fig. 6a,b,c) and the geometric resonance (Fig. 6d,e,f) are marked by a qualitative
change of the PDF. At the SR frequency xSR (Fig. 6b) the slope (and hence the
average escape time) is most changed, while above xSR (Fig. 6b) the oscillations
are clearly visible. This is the reason why, in the coherent case, SM and LRT
methods have so different behaviors. Indeed coherent SM, that just detects the
average, is most sensible to the changes of the slope and exhibits a minimum
(i.e. best performances) in correspondence of this point. Conversely LRT, that
takes into account ‘‘all’’ details of the PDF’s, can improve even when the first
momentum ceases to be an effective statistics for hypothesis discrimination. For
completeness, let us point out that inspection of Eq. (22) reveals that xSR
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Fig. 6 PDFs of the escape times acquired by means of the coherent strategy at different applied
frequency (see the arrows at the bottom of Fig. 5). a x ¼ 0:015: b x ¼ 0:06 (stochastic
resonance). c x ¼ 0:15: d x ¼ 0:3: e x ¼ 0:7 (geometric resonance). f x ¼ 0:9: Parameters of
the simulations are the same as in Fig. 5
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decreases when the normalized noise intensity en increases, and therefore a fixed
value of the external applied frequency has the effect to increase the efficiency of
the SM. Such paradoxical increase of the performances increasing the noise level
for the SM is solved by the observation that the improvement obtained at the xSR

frequency can be outperformed by the choice of a more refined detection strategy
(the LRT) that takes into account the PDFs oscillations. In this sense it is not really
possible to improve detectors increasing the noise. Indeed, see Fig. 5, the coherent
SM detector performances are always worse than the coherent LRT performances,
and this also confirms the general idea that stochastic resonance is a consequence
of a suboptimal detection scheme [25]. The practical consequence is that syner-
getic effects leading to stochastic resonance between noise and signal in JJ devices
can only be exploited in suboptimal strategies such as SM, while in optimal
detection strategies noise should only be reduced as much as the experimental set
up allows.

Turning to the incoherent detection strategies, it is evident that their perfor-
mances are worse than the corresponding coherent ones [23]. In any case, due to
the residual oscillation of the PDF under H1 hypothesis, the LRT approach
guarantees better performances than the SM for the instantaneous signal reset case.
Moreover, it is remarkable that the stochastic activation phenomenon disappears
for SM, as a consequence of the reshuffling of the initial phase in the reset pro-
cedure of the JJ.

Performances for the random signal reset case are not shown in Fig. 5. However
the SM incoherent curve represents quite well the behavior of both SM and LRT.
As expected, LRT does not significantly improve the SM, due to the absence of
oscillations.

In the above performed analysis we have fixed both the average time obser-
vation window E½TobsjH0� and the SNR (related to the ratio e=

ffiffiffiffi
en

p
). On the other

hand, they strongly affect the error rate; for large sample size N the error rate can
be expressed as [1]:

Pe ¼
1
2

erfc BY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½TobsjH0�

p e
ffiffiffiffi
en

p
� �gY

� �
ð23Þ

where BY and gY depend on the particular detection strategy (Y ¼ A;K; for the
SM and LRT respectively). If we focus on the scaling law index gY ; it is
remarkable that, for the coherent LRT case, it exhibits the nearly optimal
behaviour gK � 1: Indeed this is also the behaviour of the ideal matched filter that
directly analyzes the signal (and not the escape times) and that attains the optimal
detection performance [33]. The proposed LRT coherent strategy never outper-
forms the matched filter, because the value of BK is not optimal [1]. The perfor-
mances of SM strategy are poorer, especially for small signals, because gA � 3=2;
as shown in [23]. This type of analysis can be reformulated in more intuitive
fashion as follows. By lowering the ratio e=

ffiffiffiffi
en

p
; the average observation time

window E½TobsjH0� should be increased to preserve the same error rate according to
the law
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E½TobsjH0� /
e
ffiffiffiffi
en

p
� ��2gY

ð24Þ

Therefore for low SNR, the SM detector (characterized by gA ¼ 3=2) is very
inefficient with respect to the LRT detector (characterized by gK ¼ 1) because it
requires a much longer observation time to achieve the same error rate.

5 Practical Issues for Josephson Junction Detectors

We have so far described the analysis of the escape times across the separatrix of
Fig. 1. This corresponds to set a threshold of the phase at a fixed level, see Fig. 2,
roughly related to the appearance of a finite voltage, Eq. (8). To transform such
idea into practical realization there are several limits that further deteriorate the
performances. First, the passage across the separatrix does not cause immediately
the appearance of nonzero average voltage, for real voltmeter will measure the
voltage average over a finite time.

In Fig. 7 we compare the instantaneous voltage (continuous line) to the voltage
computed with a moving average voltage over 2 periods of the Josephson fre-
quency (dashed line). The averaging roughly corresponds to a passing bandwidth 2
times lower than the Josephson frequency xJ : In Fig. 7 the dashed vertical line
indicates to the time when the phase crosses the separatrix and the instantaneous
voltage starts increasing. The actually accessible voltage is the moving average of
the instantaneous voltage of the Josephson Eq. (2):

\V [ ¼ V0

DT

Z s

s�DT

duðs0Þ
ds0

� �
ds0: ð25Þ
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Fig. 7 Time dependence of the instantaneous and moving average voltage. The average is
computed over two periods of the Josephson frequency, see Eq. (25)
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The detection of an escape time is established with a suitable threshold on \V [ :
A realistic averaging is particularly important when the junction is in the so called
intermediate damping regime (0:25\a\1) and retrapping, that lowers \V [ ;
occurs [42].

The smoothing and the consequent loss of information of the device are shown
in Fig. 8 by a dashed line with square symbols. It is evident that LRT methods are
also in this case better than the SM approach. Moreover, it is confirmed that
stochastic resonance does not occur for optimized methods.

It is experimentally convenient to slowly ramp the bias current up to the critical
value Ic and to record the current at which the voltage appears. The escape time
distributions f0;1ðsÞ are related to the switching current distributions P0;1ðcÞ: In the
adiabatic approximation the relationship reads [24]:

P0;1ðcÞ ¼
1

f0;1ðsÞ
dc
ds

� ��1

1 �
Z c

0
P0;1ðc0Þdc0

� �
:

MA: LRT(    ) vs SM

LRT (continuos)
SM (dashed)
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Fig. 8 Error rate Pe as a function of the applied signal frequency x: The line with square
markers is computed for the LRT coherent strategy when the escape is defined through the
moving average of the voltage, Eq. (25). For sake of comparison, the LRT (continuous line) and
SM (dashed line) error rates, computed in the coherent case when the escape is defined through
the passage across the separatrix, are also shown. In the inset it is shown a closeup of the LRT
coherent (line with square markers) and SM coherent (line with circle markers), both computed
when the escape is defined through the moving average of the voltage. Parameters of the
simulations are: c ¼ 0:8; a ¼ 0:05; eN ¼ 0:0175: Moreover, when the signal is present, e ¼ 0:05
and u0 ¼ 0: The simulations are performed setting the mean observation time under
H0; E½TobsjH0� ¼ 2000
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The advantage for the experiments is twofold. First, it is possible to use the
ramping time as a sort of clock, and this enables an accurate timing easily
available in the labs. Second, and more important, the sweeping bias method
guarantees that a switch occurs during each ramp, thus fixing the time to collect
the prescribed number of escapes.

In Fig. 9a the time dependent Ib follows a simple sawtooth up to the critical
current. When the switching current is close to the critical current the sawtooth bias
method has the disadvantage that leaves the system for most of the time in the zero
voltage state, and only collects escape times in a narrow region close to Ic: To avoid
the depletion of so much time, a more sophisticated method could be employed,
applying a profile of the type displayed in Fig. 9. In this case the bias current is
quickly increased in the region where escape is not likely to occur, marked in Fig. 9
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Fig. 9 Top plot (a): current sawtooth waveform (continuous line) of the current c: Bottom plot
(b): current waveform (continuous line) with the maximum normalized current c (dashed line)
and the starting point current level c� ¼ I�b=Ic (dotted line)
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as c� ¼ I�b=Ic: At this point the current sweep is slowed down to carefully examine
the region I�b\Ib\Ic: Indeed in the second region the switching effectively occurs,
and the data are consequently recorded. Our analysis roughly corresponds to reach
very quickly (in a negligible time) c� and to sweep much more slowly in the second
region. However, apart some indications [30], a careful analysis of the conse-
quences of the bias sweep on JJ detectors is at the moment still lacking. We remark
that constant bias with an external clock allows time resolution down to nanosec-
onds and the range spans over six orders of magnitude [55].

Another relevant issue is related to the impossibility of perfect knowledge of
the JJ and signal parameters. It is unrealistic to suppose that the initial phase u0 of
the signal is known, while it is possible to exploit some guess, related to the
particular application, about the signal amplitude e and frequency x: A viable
solution, briefly analyzed in [1], is to use a Generalized LRT detection strategy
[33] that performs a joint near—optimal signal detection and phase estimation.
Unfortunately, due to the difficulties encountered in realizing perfectly repro-
ducible JJ, also some physical parameters, such as the critical current Ic or the
capacitance C; are not perfectly known. We guess that a careful analysis of the
escape time could be useful to individuate some phenomena, characterized by a
well known signature, that can be used to reduce the uncertainty.

We conclude the Section with the role of the noise sources in JJ. The distribution
of the escape times has been used to reveal the non-Gaussian character of the noise
due to the granularity of weak bias currents [47]. In Eq. (2) quantum noise has been
neglected. To include quantum fluctuations more than a simple differential equation
is required. However, quantum fluctuations can be approximated by a correlated
Gaussian noise, although there is not a single approach to the solution of the full
model (as shown for instance in Refs. [12, 38, 52]). The noise spectrum is therefore
an hallmark of quantum behavior; we speculate that the analysis of the escape times
could be employed to discriminate if the noise is correlated, and thus to go beyond
the use of the simple mean escape time. Moreover, it has been argued that several
phenomena that are characteristic of quantum behavior could be reproduced by a
classical model such as Eq. ( 2) through an appropriate choice of the temperature [14,
30, 31, 11]. We suggest that even in the case when the temperature of the junction is
not certainly known, for example if the thermal contact with the bath is not perfect,
the analysis of the full PDF with the methods of signal theory, rather than just
compare the average escape time [11], could give indications for the correct model.

6 Conclusions

We have proposed to examine the escape time dynamics of JJs from the
perspective of detection. Indeed from this standpoint JJs are potentially interesting
for two main reasons: speed and low intrinsic noise (temperature). To assess the
effectiveness of the detector, we have chosen the error rate as performance
indicator of the capability of discerning between two different conditions
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(e.g. presence and absence of a sinusoidal excitation). Moreover, the real exper-
imental set-up should be designed in view of the detection, calibrating the
parameter of the junction (Ic; C; and R) and the external bias supply (Ib). Finally,
the analysis of the data should be optimized to extract as much information as
possible from the available measurements. In this framework it is possible to find
several interesting features, for instance that low dissipation junctions are the most
suitable for signal analysis, or that the bias point should be chosen to have such a
low energy barrier as it is possible, compatibly with the speed of the electronics to
keep trace of the escape. Also the feasible criterion to decide if an escape has
actually occurred is important, because practical methods to detect a voltage
change entail a loss of information that should be carefully controlled. As a
concluding remark, we want to underline that signal detection is important for
practical purposes as the identification of a waveform embedded in a noisy
background, but the underlying theory, i.e. the statistical hypothesis testing, can
also be used as a tool to distinguish between two models. Two noticeable examples
are the retrapping regime for intermediate damping and the identification of the
escapes due to quantum tunneling. In these circumstances, the detection theory
approach allows to search for the most efficient way to distinguish which model is
best corroborated by the data. The gain with respect to an analysis confined to
intuitive statistics, such as the sample mean, could be considerable.
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Symmetry Breaking Criteria
in Electrostatically Loaded Bistable
Curved/Prebuckled Micro Beams

Lior Medina, Rivka Gilat and Slava Krylov

Abstract The symmetric and asymmetric buckling of micro beams subjected to
distributed electrostatic force is studied. The analysis is carried out for two sep-
arate cases: a case of a stress-free beam, which is initially curved by fabrication
and a case of a pre-stressed beam buckled due to an axial force. The analysis is
based on a reduced order (RO) model resulting from the Galerkin decomposition
with vibrational or buckling modes of a straight beam used as the base functions.
The criteria of symmetric, limit point, buckling and of non-symmetric bifurcation
are derived in terms of the geometric parameters of the beams. While the necessary
symmetry breaking criterion establishes the conditions for the appearance of
bifurcation points on the unstable branch of the symmetric limit point buckling
curve, the sufficient criterion assures a realistic asymmetric buckling bifurcating
from the stable branches of the symmetric equilibrium path. It is shown that while
the symmetry breaking conditions are affected by the nonlinearity of the electro-
static force, its influence is less pronounced than in the case of the symmetric snap-
through. A comparison between the results provided by the reduced order model,
and those obtained by other numerical analyses confirms the accuracy of the
symmetry breaking criteria and their applicability for the analysis and design of
micro beams.
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1 Introduction

Bi-stability, namely, the existence of two different stable configurations at the same
loading, is an intrinsic feature of many mechanical structures. The transition
between the two stable states is commonly refereed to as a snap-though buckling.
One of the most common examples is a flexible arch (or a curved beam) loaded by a
transverse uniformly distributed ‘‘mechanical’’ displacement-independent force
(load), as demonstrated in Fig. 1. The stability of bi-stable structures, mainly
arches, frames, cylindrical panels and spherical caps is a well established topic in
engineering, and is largely reported in the literature [1–6]. While the initial increase
of loading is accompanied by small displacements decreasing the arch’s height, at a
certain load level the snap-through collapse takes place and the arch suddenly shifts
its position to a new (not adjacent) stable configuration. Under subsequent
decreasing load, the structure remains in its post-buckling stable configuration till
the snap-back (release) point is reached at which the structure returns to its initial
pre-buckling state. The structure is therefore bi-stable in the interval of the force
bounded between the snap-through and the snap-back values as can be seen in
Fig. 1a. The snap-through and release points are thus defined as limit points. In
addition, the two stable states specify two stable branches upon which the arch
moves in response to the applied load. The third branch is an unstable one, which
cannot be reached under static loading. The beam’s response is bistable and hys-
teretic in nature as commonly observed in various physical systems characterized
by a double well potential. It is to note, that in order to make a conclusion about the
stability or instability of an equilibrium (fixed) point, dynamic analysis should be
carried out. Such an analysis is out of the scope of this work. Note, however, that the
stable branches of the equilibrium curves corresponds to stable nodes on a phase
plane whereas the points located at the unstable branch (dashed lines in Fig. 1) are
saddles. At the limit points stable and unstable fixed points annihilate through the
saddle-to-node bifurcation (for details, see [5, 6]).

However, the transition between the two stable states can occur symmetrically
or asymmetrically. When the ratio between the arch’s elevation and its thickness is
higher than a certain value, the asymmetric transition may take place. In this case
the dependency between the load and the displacement includes an additional
unstable branch, which emanates from the stable one prior to the symmetric limit
point as shown in Fig. 1b. The intersection point of the two branches is refereed to
as a bifurcation point. As schematically illustrated in Fig. 1b, the beam jumps to
the post-buckling state non-symmetrically due to the increase of the inner axial
force to the level of the second (associated with the asymmetric buckling) critical
Euler force. This phenomenon is commonly referred to as symmetry breaking.

Recently, emerging of new applications in the realm of micro and nanoelec-
tromechanical systems (MEMS and NEMS) stimulated a renewed interest in the
mechanics of bistable beams [7–16]. Micro and nano devices incorporating bistable
structural elements have functional advantages in applications such as switches
[17], sensors [18] and non-volatile memories [19]. On the other hand, while being a
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relatively simple structure, double-clamped micro beam actuated by a nonlinear
deflection-dependent electrostatic force, exhibits rich behavior and represents a
convenient platform for analytical, numerical and experimental investigation of the
nonlinear phenomena, which are abundant at the microscale (see reviews [20–22]
and references therein). As an example for this kind of phenomena, one can
mention intrinsic electrostatic (so-called pull-in) instability, taking place in micro
beams and associated with the softening (reducing the effective stiffness of the
structure) nonlinearity of the electrostatic forces as shown in Fig. 2a. In contrast to
straight beams, electrostatically loaded curved beams combine both geometric
mechanical nonlinearity typical for bistable structures and generic electrostatic
nonlinearity. As was recently shown in [10, 13, 15, 16], these structures may exhibit
sequential snap-through buckling and pull-in instability as depicted in Fig. 2b
(resonant behavior of this kind of devices was analyzed in [14]).

Note that in the case of curved beams of different shapes subjected to a
‘‘mechanical’’ deflection-independent loading, the limit point (snap-through) and
the symmetry breaking criteria are well established. These criteria are fully dictated
by the geometry of the beam itself—namely the ratio between the initial elevation/
curvature of the beam and its thickness—and thus, are independent on the loading
[3, 6]. However, in the case of the electrostatic actuation, the snap-through behavior
is affected by the nonlinearity of the electrostatic force parameterized by the initial
distance between the beam and the electrode, as reflected in the symmetric (limit-
point) snap-through criterion first obtained in [10] for an initially stress-free

(a) (b)

Fig. 1 ‘‘Mechanically’’ bi-stable structures, composed of an initially curved double-clamped
beam under a uniform displacement-independent loading, and schematics of the corresponding
bifurcation diagrams, which depict the dependence between the load and the midpoint
displacement of the beam. Black solid lines represent the initial shape of the beam, gray solid
lines represent deformed stable configurations; dashed lines correspond to the unstable
configurations. a and b depict symmetric and asymmetric responses, respectively
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bell-shaped beam. It was shown, that in the case of the electrostatic loading, the
snap-through may take place in beams with lower initial elevation/curvature when
compared to the case of ‘‘mechanical’’ deflection-independent loading.

In this work, we extend the stability analysis of electrostatically actuated initially
curved stress-free micro beams to the case of higher initial elevations, such that
non-symmetric buckling configurations appear. In addition, the case in which the
initial curvature of the beam is due to a compressive axial force is considered. Our
goal is to highlight the leading phenomena taking place in this type of structure, to
investigate the influence of the device parameters on its stability and to establish
criteria of symmetric and asymmetric buckling. These criteria are in a sense an
extension of the well-documented results obtained for ‘‘mechanically’’ loaded
curved beams (see [3, 6]) to the case of the intrinsic nonlinear electrostatic loading.

2 Formulation

We consider a flexible initially curved, axially loaded, double clamped prismatic

micro beam of length L having a rectangular cross-section of width b̂ and thickness

d̂ as shown in Fig. 3. The beam is assumed to be made of homogeneous isotropic

(a) (b)

Fig. 2 a Initially straight double-clamped beam under a displacement-dependent electrostatic
loading, and schematics of the corresponding bifurcation diagram, which depicts the dependence
between the voltage and the midpoint displacement of the beam. b Initially curved double-
clamped beam under a displacement-dependent electrostatic loading, and schematics of the
corresponding bifurcation diagram, which depicts the symmetric response of the beam. Black
solid lines represent the initial shape of the beam, gray solid lines represent deformed stable
configurations; dashed lines correspond to the unstable configurations
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linearly elastic material with Young’s modulus E. Since the width b̂ of a micro-

beam is typically larger than it’s thickness d̂, an effective (plane strain) modulus of
elasticity ~E ¼ E=ð1 � m2Þ is used, where m is Poisson’s ratio. The initial shape of
the stress-free (before the application of the axial force) beam is described by the

function ŵ0ðx̂Þ ¼ ĥ0z0ðx̂Þ, where ĥ0 is the initial elevation of the beam’s central
point above it’s ends, and z0ðx̂Þ is a non dimensional function such that
max

x̂2 0;L½ �
z0 x̂ð Þ½ � ¼ 1. The beam is subjected to an axial compressive force P̂ and to a

distributed electrostatic force provided by an electrode located at a distance ĝ0 (the
gap) from the beam and extended beyond it’s ends (see [10] for details).

We assume that d̂ � L; ĥ0 � L and that the deflections are small with respect
to the beam’s length. Under these assumptions, the beam’s behavior is described in
the framework of the Euler–Bernoulli theory combined with the shallow arch
approximation. The non-dimensional potential energy can we written in the form
(e.g., see [23] for the details of the development, see [10] for the case of zero axial
pre-stress P ¼ 0)

U ¼ 1
2

Z1

0

w00
0 � w00� �2

dx þ 1
4a

Z1

0

�P þ a 2u0 þ w0ð Þ2� w0
0

� �2
� �� �2

dx � b
Z1

0

dx

1 þ w

ð1Þ

Here, uðxÞ and wðxÞ are the non-dimensional axial displacement and the beam’s
elevation above the x axis, respectively; a is the stretching parameter and b is the
voltage parameter. Hereafter ðÞ0 denotes derivative with respect to the non-
dimensional coordinate 0� x� 1. The non-dimensional quantities are listed in
Table 1, where A and Iyy, are the cross-section’s area and second moment of the
area, respectively; e0 ¼ 8:854 � 10�12 F=m is the dielectric permittivity and V is
the actuation voltage. In Eq. (1), the first term is associated with bending, the
second term is associated with the stretching of the beam’s axis originated in a
constant pre-loading force P and with a nonlinear deflection-dependent stretching;
the last term is the electrostatic co-energy.

Fig. 3 Model of an initially curved axially loaded double-clamped beam actuated by distributed
electrostatic force. The dashed line corresponds to the deformed configuration. Positive directions
of the beam’s deflection and of the loading are shown
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Using the principle of stationary potential energy and calculating the variation
of Eq. (1), one obtains the following non-dimensional equilibrium equations (see
[24, 25] for the case of ‘‘mechanical’’ loading)

�P þ 2a u0 þ 1
2

w0ð Þ2� 1
2

w0
0

� �2
� �� �0

¼ 0 ð2Þ

wIV � wIV
0 þ P � 2a u0 þ 1

2
w0ð Þ2� 1

2
w0

0

� �2
� �� �

w00 ¼ � b

1 þ wð Þ2 ð3Þ

completed by homogeneous boundary conditions. Note that Eq. (3) suggests that
the applied electrostatic force is approximated by the simplest parallel capacitor
formula. Since, in accordance with Eq. (2), the axial force is constant along the
beam, Eqs. (2), (3) can be reduced to the following single non-dimensional
equation (e.g., see [25])

wIV � wIV
0 þ P � a

Z1

0

w0ð Þ2� w0
0

� �2
� �

dx

0

@

1

Aw00 ¼ � b

ð1 þ wÞ2 ð4Þ

In this work, Eq. (4) is used for the development of the buckling criteria while Eqs.
(2), (3) serve as the basis for numerical analysis. Note, that the potential energy
associated with Eq. (4) is given by the expression (see [10], see [24, 25] for the
case of ‘‘mechanical’’ loading)

U ¼ 1
2

Z1

0

w00
0 � w00� �2

dx � 1
2

Z1

0

Pðw0Þ2dx þ a
4

Z1

0

Z1

0

w0ð Þ2� w0
0

� �2
� �

dx

0

@

1

A

2

dx

� b
Z1

0

dx

1 þ w
ð5Þ

Table 1 Non-dimensional
quantities

x, x̂=L Coordinate

u, ûL=g2
0 Axial displacement

w, ŵ=ĝ0; w0 , ŵ0=ĝ0 Elevation/initial elevation

h, ĥ0=ĝ0 Initial midpoint elevation

d , d̂=ĝ0 Thickness

a, ĝ2
0A

� �
= 2Iyy

� �
Stretching parameter

P, P̂L2
� �

= EIyy

� �
Axial load

b, �0b̂V2L4
� �

= 2ĝ3
0
~EIyy

� �
Voltage parameter
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3 Initially Curved Stress-Free Beam

We first consider the beam with zero axial force. In this case the beam is stress-free
in its initial configuration and its curved shape is defined lithographically during
the fabrication (see [10]). The behavior of the beam is described by Eqs. (2), (3) or
(4) where P ¼ 0.

3.1 Reduced Order Model

In order to analyze the snap-through and pull-in behavior of the beam, a RO model
based on the Galerkin decomposition is built. The initial and deformed shapes of
the beam are approximated by the series

wðxÞ �
Xn

i¼1

qiuiðxÞ ð6Þ

where qi are the generalized coordinates and uiðxÞ are the linear undamped
eigenmodes of a straight stress-free double-clamped beam, which are given by the
expression

uiðxÞ ¼ Ci Ji cos kixð Þ � cosh kixð Þð Þ þ sin kixð Þ � sinh kixð Þð Þ ð7Þ

Here Ji ¼ cos ki � cosh kið Þ= sinh ki þ sin kið Þ; Ci are constants, which are chosen

such that max
x2 0;1½ �

ui xð Þð Þ ¼ 1; ki ¼ xið Þ1=2 qAL4=EIð Þ1=4
are the frequency parame-

ters, which are related to the eigenfrequencies xi of the beam, and are found as
solution’s to the frequency equation cos ki cosh ki ¼ 1.

Note that while beams of different initial shapes can be analyzed, we consider a
beam of an initial shape that can be expanded into series in terms of the eigen-
modes, i.e., can be represented in the form of Eq. (6) as w0ðxÞ �

Pn
i¼1 q0iuiðxÞ. By

implementing the usual Galerkin procedure, we obtain a system of coupled non-
linear algebraic equations (see [26])

B q � q0ð Þ þ a qTSq � qT
0 Sq0

� �
Sq ¼ �bQ ð8Þ

where q ¼ fqig, q0 ¼ fq0ig and ð ÞT denotes the matrix transpose. The elements
of the generalized force vector Q ¼ fQig and of the matrices B ¼ fbijg and
S ¼ fsijg, associated with the bending and stretching stiffness of the beam,
respectively, are given by
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Qi ¼
Z1

0

ui

1 þ
Pn

j¼1
qjujðxÞ

 !2 dx ð9Þ

bij ¼ dij

Z1

0

u00
i u

00
j dx sij ¼

Z1

0

u0
iu

0
jdx ð10Þ

with dij being the Kronecker delta. Hereafter we adopt a bell-shaped initial con-
figuration such that q0i ¼ 0 for i [ 1 and denote q01 ¼ h0 unless stated otherwise.
Note that the RO model, Eq. (8), can be also obtained from the variational prin-
ciple, namely by substituting the approximation (6) into Eq. (5) and by using the
Rayleigh–Ritz method.

For the investigation of the asymmetric snap-through, the RO model should include
at least two terms: the first symmetric and asymmetric modes, which are shown in
Fig. 4. By setting n ¼ 2 in Eq. (6), the RO model, Eq. (8), is reduced to the form

b11 q1 � h0ð Þ þ as2
11 q2

1 � h2
0

� �
q1 þ as11s22q2

2q1 ¼ bI11 ð11Þ

b22q2 þ as11s22 q2
1 � h2

0

� �
q2 þ as2

22q3
2 ¼ bI22 ð12Þ

where b11 ¼ 198:463; b22 ¼ 1669:859; s11 ¼ 4:878, s22 ¼ 20:218 and the integrals
I11, I22 are as follows

I11 q1; q2ð Þ ¼
Z1

0

u1

1 þ q1u1 þ q2u2ð Þ2 dx

I22 q1; q2ð Þ ¼
Z1

0

u2

1 þ q1u1 þ q2u2ð Þ2 dx

ð13Þ

Since Eqs. (11), (12) cannot be solved in a closed form due to the presence of
the integral terms, three-dimensional bifurcation diagrams, mapping all stable and
unstable equilibrium configurations in the q1; q2; b space were first built numeri-
cally. The result is presented in Fig. 5 and implies that several buckling criteria
can be established. The first one defines the minimal initial elevation necessary for

(a) (b)

Fig. 4 The first symmetric (a) and the second, non-symmetric (b) modes of a straight double
clamped beam as derived from (Eq. 7)
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the appearance of the limit points (symmetric snap-through). The second is
associated with the non-critical asymmetric buckling emerging from the unstable
symmetric branch of the equilibrium curve (the necessary condition). Finally, the
third one defines the threshold criterion sufficient for the appearance of the critical
symmetry breaking, when the asymmetric snap-through takes place under a
loading smaller than the limit-point value (the sufficient condition).

3.2 Snap-Through Criteria

In accordance with Fig. 5, the branches of the bifurcation diagram corresponding
to the non-symmetric configurations of the electrostatically loaded beam emerge
from the branches representing the symmetric response. Hence, in order to find the
position of the bifurcation points on the symmetric branch, we linearize Eqs. (11),
(12) around the path q2 ¼ 0. Taking into account that the following integrals
vanish

(a) (b)

(c) (d)

Fig. 5 Bifurcation diagram of the electrostatically loaded beam [two DOF RO model, Eqs. (11),
(12)] for d ¼ 0:2 and different initial elevations: a h0 ¼ 1, b h0 ¼ 0:3, c h0 ¼ 0:332,
d h0 ¼ 0:386. Point S and R are snap-through and release limit points; points AS and AR are
the bifurcation points corresponding to the asymmetric snap-through and release, respectively,
and point PI is the pull-in point

Symmetry Breaking Criteria 687



Z1

0

u1u2

1 þ q1u1ð Þ3 dx ¼ 0
Z1

0

u2

1 þ q1u1ð Þ2 dx ¼ 0 ð14Þ

we obtain

b11 q1 � h0ð Þ þ as2
11 q2

1 � h2
0

� �
q1 þ bI1ðq1Þ ¼ 0 ð15Þ

b22 þ as11s22 q2
1 � h2

0

� �
� 2bI2ðq1Þ

� �
q2 ¼ 0 ð16Þ

where

I1ðq1Þ ¼
Z1

0

u1

1 þ q1u1ð Þ2 dx I2ðq1Þ ¼
Z1

0

u2
2

1 þ q1u1ð Þ3 dx ð17Þ

Equation (15) is independent on q2, and corresponds to a single DOF model,
which describes the symmetric response of the beam. By expressing b in terms of
q1 using Eq. (15), requiring that db=dq1 ¼ 0 and taking into account that I1 [ 0
for q1 [ � 1, we obtain the equation

as11
2q1

2ðI3q1 � 3I1Þ þ ðI3q1 � I1Þðb11 � as2
11h2

0Þ � b11I3h0 ¼ 0 ð18Þ

whose roots qS; qR; qPI correspond to the symmetric snap-through, symmetric
release and pull-in points, respectively. Here I3 ¼ dI1=dq1. The dependence
between the location of the roots qS; qR; qPI of Eq. (18) and the initial elevation of
the beam, h0, is shown in Fig. 6a, b for two values of d. The corresponding critical
values of the voltage parameter are shown in Fig. 6c, d.

In order to obtain the symmetric snap-through criterion, we note that Eq. (18)
is quadratic in h0 and can be solved to obtain h0ðq1Þ. For a prescribed a, the
minimum of h0ðq1Þ is found by solving numerically dh0ðq1Þ=dq1 ¼ 0. This
yields the value of q1 corresponding to the minimum of the curve h0 ¼ h0ðq1Þ on
Fig. 6a, b. The snap-through criterion, namely, the minimal value of h0 required
to have the snap-through, can be obtained by substituting this value of q1 back
into the solution h0ðq1Þ of Eq. (18). The dependence of the ratio h0=d on the

relative thickness d ¼ d̂=g0 of a beam of a rectangular cross section (when
a ¼ 6=d2) is shown by solid line no. 1 in Fig. 7. Figure 6a, b indicates that the
minimum of the curve h0ðq1Þ defining the necessary condition of the symmetric
snap-through is located at small q1. Hence, we linearize the derivative dh0=dq1

in the vicinity of q1 ¼ 0, solve the equation dh0=dq1 ¼ 0 in terms of q1, sub-
stitute the result back into the dependence h0 ¼ h0ðq1Þ [obtained from Eq. (18)]
and then expand it into Taylor series up to quadratic order (in terms of d). As a
result, we obtain an simple approximation for the symmetric snap-through
criterion
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h0

d
[

ffiffiffiffiffiffiffiffi
b11

6s2
11

s

1 � m11

p1

ffiffiffiffiffiffiffiffi
b11

6s2
11

s

d

 !

ð19Þ

where p1 ¼
R1

0
u1ðxÞdx. For the adopted base functions,

h0

d
[ 1:179 � 1:054d ð20Þ

Note that Eq. (20) is in excellent agreement with the approximate symmetric snap-
through criterion first obtained in [10] using a different approach.

(a)

(c) (d)

(b)

Fig. 6 a, b Location of the critical points of the electrostatically loaded beam with rectangular
cross-section and c, d corresponding critical values of the voltage parameter for: a, c d ¼ 0:1 and
b, d d ¼ 0:2 and varying h0. The black dashed lines represents the limit points of the buckling
diagram given by Eq. (18) and corresponding to the symmetric snap-through (point S), symmetric
release (R) and pull-in (PI). The solid black lines represents bifurcation points of the asymmetric
snap-through (point AS) and asymmetric release (point AR), given by Eq. (21). Points Ts and Tr

represents the threshold for the critical asymmetric snap-through and release points, respectively
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Consider now the criteria for the asymmetric snap-through. By expressing b in
terms of q1 using Eq. (15) and by substituting this expression into Eq. (16), we
obtain an eigenvalue problem, which has a non-trivial solution when the following
equation is satisfied

2I2 q1 � h0ð Þ b11 þ as2
11q1 q1 þ h0ð Þ

� �
þ I1 b22 � as11s22 q2

1 � h2
0

� �� �
¼ 0 ð21Þ

The roots q1ðh; aÞ of Eq. (21) define the location of the bifurcation points and are
shown by the solid lines in Fig. 6a, b. As was already mentioned, two asymmetric
bifurcation criteria can be formulated.

The necessary condition is obtained by solving Eq. (21), which is quadratic in
h0, in terms of the initial mid span elevations. The non-critical bifurcation criterion
is then obtained by finding the minimum of the curve h0 ¼ h0ðq1Þ (with a being a

parameter). As a result we obtain the value of the initial elevation h0 ¼ ĥ0=g0

required for the appearance of the asymmetric bifurcation. The curve h0=d as a

function of d ¼ d̂=g0 is shown by solid line no. 2 in Fig. 7.
Similarly to the approach used for the approximation of the symmetric snap-

through criterion, we linearize the equation dh0=dq1 ¼ 0 for small q1 (in accor-
dance with Fig. 6a, b h0ðq1Þ reaches minimum in the vicinity of q1 ¼ 0), solve it in
terms of q1 and obtain the following approximation

h0

d
[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22

6s11s22

r

1 � b11m22

p1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

6s11s22b22

r

d

� �
ð22Þ

or, for the adopted base functions,

Fig. 7 Phase diagram of the
symmetrical and non
symmetrical snap-through
criteria. The black solid lines
represents the criteria for the
electrostatically loaded beam,
and the dashed grey lines
represents the criteria for a
‘‘mechanically’’ loaded beam.
Solid line no. 1 is the
necessary criterion given by
Eq. (20) (see also [10]); line 2
represents the necessary
condition; lines 3 and 4
corresponds to the sufficient
conditions for the snap-
through and release points,
respectively

690 L. Medina et al.



h0

d
[ 1:680 � 0:312d ð23Þ

In order to formulate the sufficient conditions for the non-symmetric snap-
through and release, the points of intersection between the curve corresponding to
the limit points and the curve associated with the points of bifurcation (threshold
points Ts and Tr on Fig. 6) have to be found. This is achieved by solving both Eqs.
(18) and (21) for h0ðq1Þ and equilibrating these two expressions, which results in
an implicit relation corresponding to the threshold points. For a given a, the
numerical solution of this equation provides two values of q1, which, when
substituted back into the solution h0ðq1Þ of Eqs. (18) or (21) yield the threshold
values of h0, which are sufficient for the appearance of the critical asymmetric
responses. The dependence between these values of h0 and the thickness of the
beam d is shown by lines 3, 4 in Fig. 7.

It is worth noting, that the location q1ðdÞ of the points corresponding to the
critical asymmetric responses is not symmetric with respect to q1 ¼ 0. Conse-
quently, two different sufficient criteria should be formulated: one for the critical
asymmetric snap-through and another for the asymmetric release.

Since the implicit relation based on the simultaneous solution of Eqs. (18) and
(21), which provides the sufficient criterion for the symmetry breaking, cannot be
solved in a closed form, simple approximate expression describing the dependence
between the h0=d ratio and d were obtained by using polynomial (up to quadratic
order) fits of the numerically obtained solutions

h0

d
[ 1:881 þ 0:154d � 0:585d2 ðsufficient snap-throughÞ ð24Þ

h0

d
[ 1:881 þ 0:089d ðsufficient releaseÞ ð25Þ

Figure 7 indicates, that the necessary condition is a lower-bound for bifurca-
tion. As for a certain range of d, the sufficient snap-through condition is below the
sufficient release condition, suggesting that an asymmetric snap-through followed
by a symmetric release can occur.

3.3 Numerical Validation

In order to validate the criteria and estimate their accuracy, Eqs. (2), (3) (where we
set P ¼ 0) were solved numerically. Two different tools were used for this pur-
pose: the finite difference boundary value problem solver, which is a part of the
MAPLE package [27] and a collocation-based boundary value problem solver
bvp4c, which is a part of MATLAB (see [28]).

Since we are interested in the analysis of the symmetry breaking, the initial
configuration of the beams was taken to incorporate a small initial imperfection.
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The initial shape of the beams was taken to be a combination of the first and the
second modes so that w0ðxÞ ¼ h0u1ðxÞ þ du2ðxÞ with d being the amplitude of the

imperfection. A value of d ¼ d̂=g0 ¼ 0:001 was used in all the calculations.
First, the accuracy of the two DOF RO model was estimated. The comparison

between the RO model and the numerical solution is illustrated in Fig. 8. In the
framework of the force control approach, which reflects an actual physical
experiment [11, 13], the voltage applied to the electrode was increased incre-
mentally and the deflected shape of the beam was found at each increment. Note
that only stable branches of the equilibrium curve can be tracked by this approach.
In order to get as close as possible to the limit or bifurcation points, smaller load
increments were used in the vicinity of the critical points.

Figure 8 shows that the two DOF RO model provides a reasonable accuracy.
The model accuracy slightly decreases with the increasing voltage parameter.
Specifically, a relative error of 0:01% in the critical voltage was observed at the
snap-through point of a beam with d ¼ 0:2 and h0 ¼ 0:332, Fig. 8a; errors of 4:1
and 8:1% in the critical voltages were obtained at the bifurcation and pull-in
points, respectively, for a beam with d ¼ 0:2 and h0 ¼ 0:386, Fig. 8b. Note that
errors of the same magnitude were reported in [10].

In addition, a displacement control procedure [29], was used to track both stable
and unstable responses together with the corresponding shapes of the deformed
beam. The midpoint deflection of the beam was prescribed (but the symmetry
conditions at the midpoint were not enforced, see [11] for details) and the voltage
parameter and the deformed shape of the beam were found by means of the
multidomain boundary value problem solver bvp4c implemented in MATLAB.
Note that while the displacement control approach adopted in this work may have
a limited applicability for the analysis of beams with higher initial elevations or

smaller relative gap (it is to say, larger relative thickness d̂=g0), where the con-
tribution of higher modes may lead to looping behavior [16], see also [30], it is
suitable for relatively shallow configurations analyzed in this work. To ensure that

(a) (b)

Fig. 8 Buckling diagram (wM—midpoint elevation) for beams with d ¼ 0:2 and a h0 ¼ 0:332
b h0 ¼ 0:386 where the black and grey lines represents the RO model and the force control
numerical analysis, respectively
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the contribution of higher modes is not pronounced for the considered
configurations of the beam, the results obtained by the displacement control were
compared with the results of the force control analysis, which describes the actual
behavior of the beam up to the first instability point. An excellent agreement
between the two approaches was observed.

The results for beams of three different initial elevations are shown in Fig. 9.
Note that in order to highlight the correspondence between the points on the
equilibrium curve of the beam and its deformed configurations, rotated plots of the
voltage-deflection dependence are shown. The initial elevations of the beams were
chosen in such a way that they fall within three different regions of the phase
diagram, defining the buckling behavior of the beam. A non-symmetric response is
clearly observed when the parameters of the beams are within the appropriate
region. We emphasize that Fig. 9 shows the results of the solution of a quasi static
(rather than dynamic) problem. The snapshots of the beam’s shape represent the
(stable or unstable) equilibrium configurations for corresponding voltage incre-
ments and not the snapshots of the dynamic configurations, realized during the
dynamic snap-through collapse.

Finally, we compare the location of the snap-through, release and pull-in points
extracted from the direct numerical analysis with the values provided by the RO
model, Fig. 6. The result of this comparison is shown in Fig. 10, which indicates
that the approximate and numerical values are in a good agreement. One may
conclude therefore, that the approximate criteria obtained in this work can be used
to predict the symmetry breaking in electrostatically actuated curved micro beams.

4 Initially Straight Beam Buckled due to Prestress

In this section, the behavior of initially straight micro beams buckled due to axial
load prior to the application of the electrostatic force, is studied. The behavior of
the beam is governed by Eq. (4) with w0 ¼ 0.

4.1 Reduced Order Model

The deformed shape of the beam is approximated by the series wðxÞ �Pn
i¼1 qiuiðxÞ, where for the present case ui represents the buckling eigenmodes of

a straight double-clamped beam

uiðxÞ ¼ Ci
cos kið Þ � 1
sin kið Þ � ki

sin kixð Þ � cos kixð Þ þ ki
1 � cos kið Þ
sin kið Þ � ki

x þ 1

� �
ð26Þ

which are derived from the Sturm–Liouville problem wIV þ kw00 ¼ 0 associated
with the equilibrium equation of the beam [31]. Recall that Ci are constants, which
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are chosen such that max
x2 0;1½ �

ui xð Þ½ � ¼ 1 and ki are the eigenvalues, found as a

solution to the characteristic equation cos kið Þ þ ki=2ð Þ sin kið Þ ¼ 1. The first two
modes have the qualitative shape depicted in Fig. 4.

(a)

(c)

(f)(e)

(d)

(b)

Fig. 9 a, c, e Bifurcation diagrams (wM—midpoint elevation) and b, d, f snapshots of the shape
of the beam under the corresponding level of the loading for d ¼ 0:2 and different initial
elevations of the beam: a, b h0 ¼ 0:3 (region 2 in Fig. 7); c, d h0 ¼ 0:34 (region 3 in Fig. 7);
e, f h0 ¼ 0:39 (region 4 in Fig. 7). Dashed line corresponds to the solution obtained under the
symmetry conditions enforced at the midpoint
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Galerkin’s procedure converts Eq. (4) (with w0 ¼ 0) to a system of coupled
nonlinear algebraic equations

Bq � P � aqTSq
� �

Sq ¼ �bQ ð27Þ

where the elements Qi of the force vector Q and bij; sij of the matrices B and S are
as defined by Eqs. (9) and (10), respectively. By setting n ¼ 2 in the beam’s shape
approximation, Eq. (27) is reduced to the form of two coupled equations in terms
of the generalized coordinates q1 and q2

b11q1 � P � a s11q2
1 þ s22q2

2

� �� �
s11q1 ¼ �bI11 ð28Þ

b22q2 � P � a s11q2
1 þ s22q2

2

� �� �
s22q2 ¼ �bI22 ð29Þ

where I11 and I22 are defined by Eq. (13), b11 ¼ 2p4; b22 ¼ 1667:962; s11 ¼ p2=2
and s22 ¼ 20:653. Note that since the exact buckling modes are used as the base
functions, we have from the homogeneous (b ¼ 0) linearized counterpart of

Eq. (28) that b11=s11 ¼ k2
1 ¼ 4p2 ¼ Pð1Þ

c is the exact lowest non-dimensional (see
Table 1) buckling force of the initially straight beam (Euler’s force). Similarly,

from Eq. (29), b22=s22 ¼ k2
2 ¼ 80:761 ¼ Pð2Þ

c is the second buckling force, corre-
sponding to the asymmetric buckling of the straight beam.

First, three-dimensional bifurcation diagrams, mapping all stable and unstable
equilibrium configurations in the q1; q2; b space are built numerically in the
manner described in Sect. 3.1. The results are presented in Fig. 11, which is the
counterpart of Fig. 5, illustrating the response of an electrostatically loaded ini-
tially stress-free curved beam. The expected similarity between the figures implies

Fig. 10 Location of the
beam’s midpoint
corresponding to the snap-
through, release and pull-in
points and extracted via the
numerical force control
analysis (circles) for a beam
of d ¼ 0:2. Dashed and solid
lines depict the limit-points
and the bifurcation points
resulting from Eqs. (18), (21),
respectively
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that the criteria for symmetric snap-through and for both non-critical (necessary
condition) and critical (sufficient condition) bifurcations, should be defined also in
the case of initially buckled beams. Note that at b ¼ 0, the value of q1 6¼ 0 defines
the elevation h of the beam prior to the application of the electrostatic force. This
elevation is associated with the post-buckling response of the initially straight

beam compressed by the axial force P [ Pð1Þ
c and it is given by the expression in

Eq. (30), obtained from Eq. (28) where we set b ¼ 0; q2 ¼ 0 (see [32])

h ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
a

P

Pð1Þ
c

� 1

 !vuut ð30Þ

One observes that the elevation becomes non-zero when P exceeds the axial

buckling (Euler’s) load Pð1Þ
c ¼ 4p2 and increases with the increase of P.

(a) (b)

(d)(c)

Fig. 11 Bifurcation diagram of the electrostatically loaded beam [two DOF RO model, Eqs.
(28), (29)] for d ¼ 0:2 and different axial loads: a P=Pð1Þ

c ¼ 1, b P=Pð1Þ
c ¼ 2:01, c P=Pð1Þ

c ¼ 2:27,
d P=Pð1Þ

c ¼ 3:03. Point S and R are the snap-through and release limit points; points AS and AR
are the bifurcation points of the asymmetric snap-through and release, respectively; point PI is the
pull-in point
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4.2 Snap-Through Criteria

In accordance with Fig. 11, and similarly to the case of an initially stress-free
curved beam, the equilibrium branches corresponding to the non-symmetric con-
figurations of the electrostatically loaded beam bifurcate from the equilibrium path
representing the symmetric response. Hence, in order to find the position of the
bifurcation points on the symmetric branch we linearize Eqs. (28), (29) around the
path of q2 ¼ 0. Taking into account that the integrals in Eq. (14) vanish in the case
of the base functions ui given by Eq. (26) as well, we obtain

b11q1 � P � as11q2
1

� �
s11q1 þ bI1 ¼ 0 ð31Þ

b22 � P � as22q2
1

� �
s22 � 2bI2

� �
q2 ¼ 0 ð32Þ

where I1ðq1Þ and I2ðq1Þ are defined in Eq. (17) with u1; u2, which are now given
by Eq. (26). Note that for u1 given by Eq. (26) (with i ¼ 1), we have

I1 ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ q1Þ3

q ð33Þ

4.2.1 Symmetric Snap-Through

Equation (31) is independent on q2 and corresponds to a single DOF model
describing the symmetric response of the beam. By expressing b in terms of q1

using Eq. (31) and requiring db=dq1 ¼ 0, while taking into account that I1 [ 0 for
q1 [ � 1, we obtain the equation

2q1 as2
11q2

1 þ Ps11 � b11
� �

I3 � 3as2
11q2

1 � Ps11 þ b11
� �

I1 ¼ 0 ð34Þ

where I3 ¼ dI1=dq1 ¼ �ð3=4Þð1 þ q1Þ�5=2. The roots qS; qR; qPI of Eq. (34)
correspond to the symmetric snap-through, symmetric release and pull-in limit

points of the bifurcation diagram, respectively. Since b11=s11 ¼ Pð1Þ
c and in view of

Eq. (30), we obtain from Eq. (34)

h ¼ q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3I1 � 2q1I3

I1 þ 2q1I3

s

or
P

Pð1Þ
c

¼ 1 þ aq2
1 3I1 � 2q1I3ð Þ

8 I1 þ 2q1I3ð Þ ð35Þ

The dependence between the axial force ratio, P=Pð1Þ
c , and the location of the limit

points is shown by the dashed lines in Fig. 12a, b for two different values of d. The
corresponding dependence of the limit points values of the voltage parameter on
the axial force is shown in Fig. 12c, d and is obtained by substituting the solution
of Eq. (35) back into Eq. (31).
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Similarly to the case of initially stress-free curved beams, the location (in terms
of q1) of the limit points corresponding to the symmetric snap-through and release
is not symmetric with respect to the line q1 ¼ 0 (dotted line on Fig. 12a, b). This
asymmetry is attributed to the influence of the electrostatic force and it increases
with the increase of d, with the effect of the latter being more pronounced than in
the case of initially stress-free curved beam. It is noted that for d ¼ 0:4, and under
large enough axial prestressing, the pull-in is suppressed. This is due to the fact
that the elevation of the beam in the initial (prior to the application of the

(a) (b)

(d)(c)

Fig. 12 a, b Location of the critical points of the electrostatically loaded beam and
c, d corresponding critical values of the voltage parameter for: a d ¼ 0:2 and b d ¼ 0:4 and
varying P=Pð1Þ

c . The black dashed lines represent the limit points of the buckling diagram given
by Eq. (34) for the electrostatic model and corresponding to the symmetric snap through (point S),
the symmetric snap back (point R) and the pull-in (point PI). The dashed grey lines represents the
limit points of the ‘‘mechanical’’ model. The solid lines represent bifurcation points of the
asymmetric snap-through (point AS) and release (point AR) given by Eq. (36). Points Ts and Tr

represent the threshold of the critical asymmetric snap-through and snap-back points,
respectively, where the bifurcation points coincide with the limit points. The dotted line
represent q1 ¼ 0 in (a), (b) and b ¼ 0 in (c), (d)
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electrostatic force) post-buckled configuration is higher than the distance between

the beam’s end and the electrode, i.e., ĥ [ g0 and the snap-through collapse is
followed by the contact with the electrode.

Aiming at obtaining the symmetric snap-through criterion, we note through
Fig. 12 and Eq. (35), that this criterion is defined by the minimum of P ¼ Pðq1Þ
(or of h ¼ hðq1Þ). One observes from Eq. (35) that dP=dq1 ¼ 0 at q1 ¼ 0 and
therefore the minimum value of P, above which the snap-through under

‘‘mechanical’’ or electrostatic force is possible, is Pð1Þ
c . This means that the snap-

through occurs in a beam with any non-zero elevation h originated in a buckling.
This situation is different from the case of the initially curved stress-free beam,
where the snap-through in the electrostatically loaded beam may occur at the
initial elevations, which are lower than are required for the appearance of the snap-
through in ‘‘mechanically’’ loaded beams, but higher than a certain non-zero value.
In the case of an initially straight and then buckled beam, the criteria of snap-
through are identical in ‘‘mechanically’’ and electrostatically loaded beams, as

(a)

(b)

Fig. 13 Phase diagram of
the symmetrical and non-
symmetrical snap-through
criteria. The black solid lines
represent the criteria for the
electrostatically loaded beam,
and the dashed gray lines
represent the criteria for a
‘‘mechanically’’ loaded beam.
Solid line no. 1 is the
necessary criterion; line 2
represents the necessary
condition for the appearance
of an asymmetrical snap-
through; lines 3 and 4
corresponds to the sufficient
conditions for the snap-back
and snap-through bifurcation
points, respectively

Symmetry Breaking Criteria 699



shown by the solid line 1 in Fig. 13a and b where the criteria for a beam with a
rectangular cross section (a ¼ 6=d2) are presented.

4.2.2 Asymmetric Snap-Through

Having defined the condition for the symmetric response, consider now the criteria
for the asymmetric snap-through. By expressing b in terms of q1, using Eq. (31)
and substituting it into Eq. (32), one obtains that the eigenvalue problem in
Eq. (32) has a non-trivial solution when the following equation is satisfied

2q1 as2
11q2

1 � Ps11 þ b11
� �

I2 þ as11s22q2
1 � Ps22 þ b22

� �
I1 ¼ 0 ð36Þ

or

2q1b11
a
8

q2
1 �

P

Pð1Þ
c

þ 1

 !

I2 þ b22
as11

Pð2Þ
c

q2
1 �

P

Pð2Þ
c

þ 1

 !

I1 ¼ 0 ð37Þ

The roots of Eq. (36) define the location of the bifurcation points on the equi-
librium path which corresponds to the symmetric response. Like in the case of the
initially stress-free curved beam, the location of these points given by q1 depends
on two parameters, a (and therefore d) and P [and therefore h, see Eq. (30)]. The
dependence of the location of the bifurcation points [roots of Eq. (36)] and of the

corresponding voltage parameter, b, on the axial force ratio, P=Pð1Þ
c , is shown by

the solid lines in Fig. 12, for two different values of d. Figure 12 indicates, that
two asymmetric bifurcation criteria can be formulated, one defining the conditions
required for the appearance of a bifurcation (the necessary condition) and one
defining the conditions for the appearance of the bifurcation points on the stable
branch of the symmetric response (the sufficient condition). Furthermore, from
Fig. 12 it is evident that due to the non linear nature of the electrostatic load, which
increases as the beam is closer to the electrode, the beam snaps earlier (in relation
to the deflection-independent load depicted by the gray lines). This observation
was made for the stress free beam in [10] as well. However, the asymmetric
response coincides with the asymmetric response of the ‘‘mechanical’’ model for
lower d, suggesting that the necessary condition is similar to the condition of the
linear model.

The necessary condition is obtained by finding the minimum of the curve

P=Pð1Þ
c (as a function of q1) extracted from Eq. (37) with a (or d) considered to be a

parameter. This minimum is the value of the prestressing axial load which guar-
antees the appearance of asymmetric bifurcations. The curves depicting the nec-

essary condition, namely, the variation of P=Pð1Þ
c and the corresponding h=d as a

function of d, are shown by solid lines no. 2 in Fig. 13a and b, respectively. These
lines almost coincide with the criterion defining the necessary condition for
asymmetric response in an axially compressed buckled beams subjected to
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transverse displacement-independent ‘‘mechanical’’ load (dashed lines no. 2 in
Fig. 13). Thus it can be concluded, that initially straight beams buckled under axial
compression which is greater than the second mode buckling load, may exhibit
asymmetric response due to either deflection-independent ‘‘mechanical’’ or non-
linear electrostatic transverse force.

In order to formulate the sufficient conditions for non-symmetric snap-through
and non-symmetric snap-back, the approach introduced in Sect. 3.2 is used. By
extracting from both Eqs. (35) and (37) expressions for P, and by equalizing them,
one receives an implicit relation between a and the beam’s midpoint elevations q1

corresponding to the threshold points, Ts and Tr (Fig. 12). For a given a, the
numerical solution of this equation provides two values of q1. Substitution of these
back into Eqs. (34) or (36) yields the threshold value of P which is sufficient for
the appearance of asymmetric snap-through and snap-back bifurcation points
located at the stable branches of the symmetric response. The dependence between

these values of P=Pð1Þ
c and the thickness of the beam d is shown by lines 3, 4 in

Fig. 13 where line 3 is the condition for the snap-back and line 4 is for the snap-
through. As is with the necessary condition, both sufficient conditions coincide

with the ‘‘mechanical’’ counterpart P [ Pð2Þ
c . The following fits (in terms of d) are

given as an approximation of P=Pð1Þ
c and h=d for the snap-back only

P

Pð1Þ
c

[ 2:569 þ 0:122 d � 0:408 d2 ðsufficient snap-backÞ ð38Þ

h

d
[ 1:446 þ 0:056 d � 0:187 d2 ðsufficient snap-backÞ ð39Þ

The finding that for the present case, two different criteria define the sufficient
conditions for asymmetric snap-through and snap-back is similar to the finding of
Sect. 3. Nevertheless, for the present case of initially bucked beams, the difference
between line 3 and line 4 is more pronounced than for the case of initially stress-
free curved beams (Fig. 7). This is in accordance with the previously mentioned
observation that the asymmetry between the location of the snap-through and
release limit points (Fig. 12) is more pronounced in the present case. Moreover, in
contrast to the case of initially stress-free curved beam, for the present case the
sufficient criterion for the asymmetric snap-back is lower than the asymmetric
snap-through criterion. This implies that symmetric snap-through followed by
asymmetric snap-back can occur.

4.3 Numerical Validation

The snap-through points and symmetry breaking criteria obtained in the previous
section, were developed using an approximate two degrees of freedom RO model.
In order to validate the approximation, two additional solutions were obtained
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numerically: the solution of the RO model including the first seven modes, and the
finite differences (FD) solution of Eqs. (2), (3) for w0 ¼ 0, governing the behavior
of the beam. For the latter, second order central differences with 30 intervals were
used. Both approaches were implemented in conjunction with the arc-length
method [33].

A comparison between the responses as predicted by the two DOF RO model,
the seven DOF RO model and the FD solution is presented in Fig. 14, where
variation of the midpoint deflection of the beam with the applied voltage is shown
for two values of prestress. It can be seen that for the micro beam considered here,
the two DOF RO model provides a reasonable accuracy. Yet, the difference
between the results becomes more pronounced as the voltage parameter increases,
and the distance between the beam and the electrode decreases. Under these
conditions, the contribution of the terms of the RO model associated with higher
symmetric and non-symmetric base functions could be significant. Specifically,
relative errors of 0:7 and 11:2% in the critical snap-through voltage are observed

for beams subjected to prestresses of P ¼ 2:27Pð1Þ
c and P ¼ 3:03Pð1Þ

c , respectively,
while a relative error of 13:2% in the critical pull-in voltage is observed under the
two prestressing conditions. It is noted, that these errors are somewhat larger than
those observed for initially curved stress-free beams.

In order to further validate the symmetry breaking criteria obtained on the basis
of the two DOF RO model, the location of the snap-through, release and pull-in
points predicted by the latter is compared to the location as extracted from the
numerical analyzes. This comparison, for beams under various magnitudes of
prestress, as shown in Fig. 15, indicates that the present approximation and the
numerical results are in a good agreement. This implies that the presently obtained
criteria for symmetry-breaking in electrostatically actuated prestressed micro
beams are reliable.

(a) (b)

Fig. 14 Buckling diagram (wM—midpoint elevation) for beams with d ¼ 0:2 and
a P=Pð1Þ

c ¼ 2:27 b P=Pð1Þ
c ¼ 3:03. Results are as follows: solid line depicts two DOF Galerkin

RO model, dashed line represents seven DOF Galerkin RO model and the dotted line describes
the result obtained through finite differences
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5 Conclusions

In this work, the non-symmetric buckling of both an initially curved stress free
beam and of a straight axially loaded beam subjected to an electrostatic force was
analyzed. The approximate reduced order model of the beam was built by means
of Galerkin decomposition with linear undamped eigenmodes of a straight beam as
base functions for the first case and of a buckled straight beam for the latter. Then,
the criteria of a non-symmetric buckling were developed for both beams using
models limited to two DOF. Numerical verification of the obtained results indi-
cates that the established criteria can be used for the prediction of the symmetry
breaking in electrostatically actuated curved micro beams with satisfactory
accuracy.

Since the bifurcation points associated with the non-symmetric buckling may
be located on stable or unstable branches of the symmetric equilibrium curve, two
symmetry breaking criteria were established for both models. The necessary cri-
terion provides the conditions required for the appearance of non-symmetric
solutions which may emerge from points located on an unstable branch of the
symmetric buckling path. In contrast, the sufficient criterion establishes the con-
dition for the critical non-symmetric buckling, when the bifurcation takes place at
loading and deflection smaller than the limit-point values.

It was found that the nonlinearity of the electrostatic force has a significant
influence on both buckling criteria. Specifically, the minimal values of the initial
curvature of the stress-free beam required for the appearance of the instabilities are
lower than in the ‘‘mechanical’’ case. However, for the buckled beam the criteria

Fig. 15 Location of the beam’s midpoint corresponding to the snap-through, release and pull-in
points as extracted via numerical analysis: diamond markers represent the solution of the seven
DOF Galerkin RO model; grey boxes represent the solution obtained by finite differences. Dashed
and solid lines depict the limit-points and the bifurcation points resulting from the two DOF RO
model, Eqs. (34), (36), respectively, for d ¼ 0:2
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for the cases of the ‘‘mechanical’’ and the electro-static loads are closer to each
other than in the case of the initially curved stress-free beam. Note, however, that
each of the criteria coincides with its ‘‘mechanical’’ counterpart when the distance
between the beam and the electrode is large enough and the nonlinearity of the
electrostatic force is less pronounced. Consequently, for practical purposes, the
common ‘‘mechanical’’ criterion can be used for the prediction of the critical
non-symmetric buckling of electrostatically actuated shallow micro beams.

It is worth noting, that the results presented in this work are obtained for
shallow beams. The analysis of the behavior of deep beams is planned as a part of
our future research.
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