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Abstract Asymmetric magnetization loops with a second peak effect were parameterized by the 
extended critical state model. The magnetic field distribution in a sample is considered. Expression 
is  suggested  for  a  peak  of  the  critical  current  density  and  corresponding  depression  on  field 
dependence  of  the  depth  of  surface  layer  with  equilibrium  magnetization. These  functions 
determine the width and the asymmetry of a magnetization loop. Asymmetry of the secondary 
peak height on magnetization branches for increasing and decreasing field is reproduced on the 
computed magnetization curves.
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1 Introduction
A  secondary peak  (fish  tail)  on  field  dependence  of  magnetization  is 

observed on several bulk superconducting materials ([1] and references therein). 

Underlying increase of pinning at high fields is caused by transition of the vortex 

lattice [2,3]. Phase separation at high fields also can produce the fishtail effect 

[4,5].

In work [1] the critical state model (CSM) capable of describing the fishtail 

effect  was introduced.  CSM relates  the  magnetization  with  the critical  current 

such that a secondary peak on magnetization loop is resulted from a peak on field 

dependence of the critical current density jc(B). This jc peak can be expressed by a 

function adding to an usual decreasing  j′c(B) dependence (for instance the Kim 

model or the exponential model dependence):

jc(B) = j′c(B)+a jc0 fpeak(B), (1)

where jc0 is the critical current density at  B = 0,  a is the height of the peak with 

respect  to  jc0,  fpeak(B)  is  a  function  equal  to  1  at  the  peak  position,  Bpeak.  The 

Lorentzian [1] or Gaussian [6] terms were found to be appropriate for fpeak(B). This 

approach  describes  symmetric  hysteretic  M(H)  dependencies of  hard 

superconductors and the secondary peak. However the condition jc(B) = jc0 at B = 

0 may be violated at low and medium fields. Furthermore simple CSM fails to fit 

the magnetization loops which have asymmetry relative to the M = 0 axis. 

Recent the extended critical state model (ECSM) was developed and used to 

treat asymmetric magnetization loops [7,8]. ECSM considers the magnetization of 
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superconductor  as  sum  of  equilibrium  and  nonequilibrium  (irreversible) 

contributions. This paper is devoted to application of ECSM for both symmetric 

and  asymmetric  magnetization  loops  with  the  secondary  peak.  The  field 

dependence  of  the  critical  current  density  is  suggested  in  a  new  form  to  fit 

experimental data in a consistent manner.

2 Magnetization of type-II superconductors
Magnetization of superconductor is given by 
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where 2R is the sample size in the plane perpendicular to H, B(r) is the magnetic 

induction  in  the  sample.  Experimental  M-H loops  are  fitted  by  assigning  the 

appropriate  distribution  of  the  magnetic  field  in  the  sample  and  the  field 

dependence of the critical current density. The B(r) dependence is found from the 

critical state equation:

dB(r)/dr = ± μ0 jc(B). (3)

ECSM supposes that the equilibrium magnetization realizes in the layer at 

the  sample  surface  [7,8].  Screening  currents  act  on  vortices  [9]  and  decrease 

pinning  in  this  region.  In  work  [8]  the  corresponding  B(r)  distributions  were 

obtained. Separate sets of equations (4a,b,c) are resulted for three main parts of 

the M(H) hysteresis. During the initial field increasing from 0 to maximal value 

Hm, the B(r) dependence is determined by equation: 

Ф(B) – Ф(μ0H) = – μ0 jc0 (R–r), (4a)

where Ф(B) is a function, such that dФ(B)/dB = (jc(B)/jc0)-1 [10]. For decreasing H 

from Hm to 0 (M+(H) branch), the B(r) dependence consists of three parts which 

are described by equations:

Ф(B) – Ф(μ0H) = – μ0 jc0 (R–r),

Ф(B) – Ф(Bs) = μ0 jc0 (R–r–Ls),

Ф(B) – Ф(μ0Hm) = – μ0 jc0 (R–r), (4b)

where Ls is  the  depth  of the  layer  with  equilibrium  magnetization,  Bs is  the 

induction value at r = R−Ls. Then, for changing H from 0 to –Hm (M–(H) branch), 

also three curves are resulted:
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Ф(–B) – Ф(–μ0H) = – μ0 jc0 (R–r),

Ф(B) + Ф(–μ0H) = μ0 jc0 (R–r),

Ф(B) – Ф(μ0Hm) = – μ0 jc0 (R–r). (4c)

Asymmetry of a magnetization loop is determined by reciprocal positions of 

the M–(H) and M+(H) branches. Since the M+(H) branch position is affected by Ls 

(4b), the asymmetry correlates with the parameter Pa = Ls/R such that 0 ≤ Pa ≤ 1. 

The value of  Ls is determined by pinning and screening capability [9] such that 

Ls(B) is a increasing function of the magnetic field at the sample surface. While 

the fishtail effect is absent this field dependence of the depth of the layer with 

equilibrium magnetization is supposed to be simple:
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here Ls0 is the L′s value at H = 0, which is about the London penetration depth [8], 

parameter B* sets an increase of L′s.

To introduce the magnetization peak we should trace the  jc(B) and  Ls(B) 

behavior  during  pinning  increase.  Increase  of  jc improves  the  screening  that 

should form a depression on the Ls(B) dependence. This depression and the peak 

on the jc(B) dependence can be expressed by the single empirical function:
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where the peak is described by its center position Bpeak, the width Bw and the height 

A related to the value of j′c(B) at  B = Bpeak. Here the multiplier B/Bpeak is used to 

satisfy the conditions  jc(B) =  jc0 and Ls(B) =  Ls0 at  B = 0. Then we reorganized 

equation (1) such that the peak height is measured from the j′c(B) curve:

( ))( 1)( = )( BfABjBj peakcc +′ , (7)

where A = a jc0/ j′c(B) is the peak height related to the value of j′c(B) at B = Bpeak. 

Correspondingly
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3 Discussion
Various magnetization loops with second peaks are reproduced by approach 

described  in  Section  2.  Figure  1a  demonstrates  the  magnetization  loops  with 

different  asymmetry  related  to  the  parameter Pa0 =  Ls0/R.  For Pa =  0  the 

magnetization loop is symmetric that is realized for hard superconductors. While 

pinning decreases, Pa increases and the M+(H) branch is situated closer to the M–

(H) curve. Distance between the branches decreases fast, as Pa increases. For Pa0 = 

0.3 the M+(H) branch is near the M–(H) one. Given Pa = 1, pinning is absent and 

the  M–(H)  and  M+(H)  branches  coincide  such  that the  M(H)  dependence  is 

reversible. Figure 1b shows evolution of the M(H) dependence as the peak height 

A increases from 0 to 1.5.
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Fig. 1 Magnetization loops of II-type superconductor. (a)  M(H) dependencies with  A = 1.5 and 
different asymmetry Pa0 = 0, 0.1, 0.3. Solid line is for M–(H) branch which does not depend on Pa0. 
(b) M(H) dependencies with Pa0 = 0.1 and different secondary peak height A = 0, 0.5, 1, 1.5.

In the presented model there is no discrepancy of the center peak positions 

on the  M–(H) and  M+(H) branches that disagrees with work of Tulapurkar [11]. 

History  effect  and  metastability  are  not  considered  above  but  they  may  be 

accounted by the use of the history dependent critical current density [12,13].

Both  vortex  lattice  transition  and  phase  separation  may  produce  a  non-

monotonic jc(B) dependence. We support that the secondary peak described by the 

Gaussian term is more suitable for the phase separation. Then  A determines the 

pinning increase due to rise of a non-superconducting inclusions, Bw depends on a 

growth speed and a distribution of the inclusions size. The temperature evolution 

of  the  secondary  peak  on  experimental  magnetization  loops  may  identify 

background process. 
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4 Conclusion
ECSM  was  modified  to describe  the  secondary  peak  on  magnetization 

loops. The same term is used to express the peak on the jc(B) dependence (7) and 

the depression on the Ls(B) dependence (8). The height of the secondary peak on 

the M+(H) branch is determined by both jc(B) and Ls(B) dependencies. Instead the 

peak on the  M–(H)  branch is  influenced  by the jc(B)  dependence  only.  In  the 

presented form (2-8)  ECSM reproduces successfully  the shape of magnetization 

loops at low and high magnetic fields.
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