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Abstract We formulate and study the three-orbital model
for iron-based superconductors. Results for the band struc-
ture, Fermi surface, and the spin susceptibility in both nor-
mal and superconducting s± states are presented. We also
discuss the pairing interaction and show that the dominant
part of it should come from the intraorbital scattering.
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One of the central problems in the field of the Fe-based su-
perconductors (FeBS) is the microscopic nature of the super-
conducting pairing [1]. According to the density-functional
studies (DFT) within LDA (local-density approximation),
GGA (generalized gradient approximation), and ARPES
(angle-resolved photo-emission spectroscopy), the states
near the Fermi level in pncitides and chalcogenides originate
mostly from Fe d-orbitals. The same orbitals form the Fermi
surface (FS) that in the undoped and moderately doped sys-
tems consist of two hole and two electron sheets. Nesting
between these two groups of sheets is the driving force for
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the spin-density wave (SDW) long-range magnetism in the
undoped FeBS and the scattering with the wave vector Q
connecting hole and electron pockets is the most probable
candidate for superconducting pairing in the doped systems.
In the spin-fluctuation studies [2–4], the leading instability is
the extended s-wave gap, which changes sign between hole
and electron sheets (s± state) [5]. Further, our discussion
will be confined to the 1-Fe per unit cell Brillouin zone (BZ).

Neutron scattering is a powerful tool to measure dy-
namical spin susceptibility χ(q,ω). It carries information
about the order parameter symmetry and gap structure. For
the local interactions (Hubbard and Hund’s exchange), χ

can be obtained in the random-phase approximation (RPA)
from the bare electron-hole bubble χ0(q,ω) by summing
up a series of ladder diagrams to give χ(q,ω) = [I −
Usχ0(q,ω)]−1χ0(q,ω), where Us and I are interaction and
unit matrices in orbital space, and all other quantities are
matrices as well.

The fact that χ0(q,ω) describes particle-hole excitations
has interesting consequences in the case of an unconven-
tional superconducting state. Excitations are gapped below
approximately 2Δ0 with Δ0 being the amplitude of the
superconducting gap, and then Imχ0(q,ω) becomes finite.
Scattering between nearly nested hole and electron Fermi
surfaces in FeBS produce a peak in the normal state mag-
netic susceptibility at or near Q = (π,0). For the uniform
s-wave gap, signΔk = signΔk+Q and there is no resonance
peak. For the s± order parameter as well as for an extended
nonuniform s-wave symmetry, Q connects Fermi sheets
with the different signs of gaps. The coherence factors en-
tering χ0 are then nonzero and the imaginary part of χ0 pos-
sesses a discontinuous jump at Ωc = min(|Δk| + |Δk+Q|).
Due to the Kramers–Kronig relations, the real part ex-
hibits a logarithmic singularity. For a range of interaction
values entering matrix Us , it results in the divergence of
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Imχ(Q, iωm). Such an enhancement of the spin suscepti-
bility at a frequency below Ωc is called a “spin resonance”
[6–8]. The existence of the spin resonance in FeBS was pre-
dicted theoretically [6, 7], and subsequently discovered ex-
perimentally with many reports of well-defined spin reso-
nances in 1111, 122, and 11 systems [9–17].

Study of the spin-resonance starts with the model for
the band structure. There are several low-energy models for
pnictides already known. The simplest one is the two-orbital
model [18] correctly postulating the dominant dxz–dyz con-
tribution to the FS. It has many disadvantages including mis-
placement of the second hole pocket that should be around
the Γ point, wrong Fermi velocities as compared to ARPES
and DFT, and absence of dxy orbital contribution, which
is known to appear near or even at the Fermi level (both
ARPES and DFT). The three-orbital model was developed
sometime later [19–21]. It included dxy in addition to dxz

and dyz orbitals. As for the latter model, [19], the unex-
pected result was that the salient feature of FeBS, namely the
peak in the magnetic susceptibility around the (π,0) point,
was absent in this model [22]. Disappearance of the peak
is somehow connected with matrix elements of the orbital-
band transformation, but the exact origin is unclear.

Here, we present a simple three-orbital model for FeBS.
It comes from the three t2g d-orbitals. The xz and yz compo-
nents are hybridized and form two electron-like FS pockets
around (π,0) and (0,π) points, and one hole-like pocket
around the Γ = (0,0) point. The xy orbital is considered
to be decoupled from them and form an outer hole pocket
around the Γ point. The latter is based on the presence of
the xy orbital near the Fermi level in the vicinity of the (0,0)

point [23]. The one-electron part of the Hamiltonian is given
by

H0 =
∑

k,σ,l,m

εlm
k c

†
klσ

ckmσ , (1)

where l and m are orbital indices, ckmσ is the annihilation
operator of a particle with momentum k and spin σ .

The matrix of the one-electron energies is

ε̂k =
⎛

⎝
ε1k − μ 0 0

0 ε2k − μ ε4k
0 ε4k ε3k − μ

⎞

⎠ , (2)

where

ε1k = εxy + 2txy(coskx + cosky) + 4t ′xy coskx cosky,

ε2k = εyz + 2tx coskx + 2ty cosky + 4t ′ coskx cosky

+ 2t ′′(cos 2kx + cos 2ky),

ε3k = εxz + 2ty coskx + 2tx cosky + 4t ′ coskx cosky

+ 2t ′′(cos 2kx + cos 2ky),

ε4k = 4txzyz sin kx/2 sin ky/2.

To reproduce the topology of the FS in FeBS, we choose the
following parameters (in eV): εxy = −0.70, εyz = −0.34,
εxz = −0.34, txy = 0.18, t ′xy = 0.06, tx = 0.26, ty = −0.22,
t ′ = 0.2, t ′′ = −0.07, txzyz = 0.38.

To diagonalize (2), we use a unitary transformation with
the matrix

Û =
⎛

⎝
1 0 0
0 uk vk
0 −vk uk

⎞

⎠ , (3)

where u2
k + v2

k = 1, u2
k = 1

2

(
1 + |gk|

Dk

)
and v2

k = 1
2

(
1 − |gk|

Dk

)
,

gk = (ε2k − ε3k)2, Dk = gk + 4ε2
4k. Applying this trans-

formation, we find the energy dispersion as the following
eigenvalues, E1k = ε1k, E2,3k = 1

2 (ε2k + ε3k ± √
D).

Number of electrons n on a filled d-orbital is 6 and for the
three-orbital model we assume 2 orbitals to be completely
filled, so for doping concentration x we have n = 6−2−x =
4 − x.

In Fig. 1, we show the band dispersion and the Fermi sur-
face for the undoped material, x = 0. FS is similar to those
found in DFT calculations and five-orbital models [2, 3].

Physical susceptibility for Matsubara frequency ωm is
calculated as χ0(q,ωm) = χ11

0 (q,ωm) + χ22
0 (q,ωm) +

χ23
0 (q,ωm)+χ32

0 (q,ωm)+χ33
0 (q,ωm), where intra and in-

terband susceptibilities are

χ11
0 (q,ωm) = 1

2

∑

k

ξ1k
1k+q, (4)

χ22
0 (q,ωm) = 1

4

∑

k

(1 + γkq)ξ2k
2k+q, (5)

χ23
0 (q,ωm) = 1

4

∑

k

(1 − γkq)ξ2k
3k+q, (6)

χ32
0 (q,ωm) = 1

4

∑

k

(1 − γkq)ξ3k
2k+q, (7)

χ33
0 (q,ωm) = 1

4

∑

k

(1 + γkq)ξ3k
3k+q. (8)

Here

ξαk
βk+q = f (Eβk+q) − f (Eαk)

ωm + Eαk − Eβk+q
, (9)

γkq = gkgk+q + 4ε4kε4k+q

DkDk+q
. (10)

Calculated real part of the physical spin susceptibility at
zero frequency is shown in Fig. 2. At zero doping, there is
a peak at (π,0) point due to the nesting between hole and
electron FSs. The large hump closer to the Γ point is due to
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Fig. 1 Band dispersion (top, solid curves) and FS (bottom) for the
three-orbital model in the 1-Fe BZ. Inner FS pocket around Γ point
has a dxy orbital character, while other bands have a mixed dxz + dyz

character. Black dotted curves show bands in the 2-Fe BZ after the
folding. Boundaries of the folded BZ are also shown in the FS plot as
a rotated square

the intraband scattering. At the optimal doping x = 0.12, the
peak near the X-point becomes incommensurate and a bit
suppressed compared to the x = 0 case because the system
goes away from the perfect nesting.

Now we are going to discuss the superconducting pair-
ing. Let us assume that annihilation operator bkασ is de-
fined in the band basis (band index α) where the Hamilto-
nian H0 is diagonal, H0 = ∑

k,σ,α Ek,αb
†
kασ

bkασ . While the
dominating pairing interaction may be interband (like spin-

Fig. 2 Reχ0(k,ω) for the undoped case x = 0 (solid red curve) and
for the optimal doping x = 0.12 (dashed blue curve). (Color figure
online)

fluctuations [1]), the pairing itself is intraband only,

HΔ =
∑

k,α

(
Δ∗

kαb
†
kα↑b

†
−kα↓ + Δkαbkα↓b−kα↑

)
. (11)

If we apply the unitary transformation (3), we get a pairing
term in the orbital basis,

HΔ = HΔ1 + H
†
Δ2,3 + HΔ2,3, (12)

HΔ1 =
∑

k

(
Δ∗

k1a
†
k1↑a

†
−k1↓ + Δk1ak1↓a−k1↑

)
, (13)

HΔ2,3 =
∑

k

[(
Δk2u

2
k + Δk3v

2
k

)
ak2↓a−k2↑

+ (
Δk2v

2
k + Δk3u

2
k

)
ak3↓a−k3↑

+ ukvk(Δk3 − Δk2)(ak2↓a−k3↑ + ak3↓a−k2↑)
]
.

(14)

One can clearly see that if Δk2 = Δk3, then HΔ2,3 will con-
tain only intraorbital pairing terms,

HΔ2,3 =
∑

k

(Δk2ak2↓a−k2↑ + Δk2ak3↓a−k3↑). (15)

Therefore, if one considers only intraorbital pairing, it forces
gaps on one of the hole FS pockets and on electron FS pock-
ets to be the same. This is in qualitative agreement with
ARPES data on Ba1−xKxFe2As2 [24, 25]. Spin-fluctuation
theories also predict the pair interaction to be enhanced in
the intraorbital channel [26].

We have calculated the frequency dependence of the spin
susceptibility in both normal and superconducting states
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Fig. 3 Imχ(Q,ω), Q = (π,0), for x = 0 in the normal state (solid
green curve) and in the superconducting state with the s± order param-
eter symmetry (dashed red curve). (Color figure online)

with the s± gap symmetry; see Fig. 3. Multiorbital RPA
(random phase approximation) was used [2] with the fol-
lowing interaction parameters (in eV) U = 0.9, U ′ = 0.7,
J = J ′ = 0.1, and the gap magnitude Δ0 = 0.02 eV. Spin-
resonance appears in the s± state below the characteristic
frequency of 2Δ0. The resonance is similar to that found in
the multiorbital models for FeBS [6, 8].

Summarizing, we presented the simple three-orbital
model for FeBS allowing for exact analytical solution. It
has FSs resembling the ones observed in ARPES and DFT
studies, and the magnetic response similar to what is found
in “realistic” multiorbital models. Analysis of the supercon-
ducting pairing and comparison to ARPES data on 122 sys-
tems leads to the conclusion that the dominant pairing inter-
action should be intraorbital.
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