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Abstract We consider the doping dependence of the normal
and superconducting properties of La2−xSrxCuO4 in the low
energy effective model based on the ab initio LDA+GTB
calculations. We have found that two quantum phase tran-
sitions (QPT) of the Lifshitz type correspond well to the
experimental phase diagram. For superconducting state,
we have considered both magnetic and phonon mecha-
nisms of pairing. Finally, we compare the true Fermi sur-
face and the spectral intensity map seen in ARPES within
a new norm conserving cluster perturbation theory (NC-
CPT).
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1 Introduction

Effects of strong electron correlations (SEC) hinder the con-
ventional LDA method from the correct description the elec-
tronic structure of La2−xSrxCuO4 in a wide range of dop-
ing from the underdoped antiferromagnetic (AFM) insula-
tor to the overdoped normal Fermi liquid. The multielectron
LDA+GTB approach has been developed in our group [1, 2]
to calculate the quasiparticle band structure with SEC being
incorporated. To study doping dependence of the Fermi sur-
face the k-dependence of the self-energy due to the short
AFM order is crucial [3]. This dependence results in two
QPT between underdoped and overdoped region [4]. The
first one at xc1 = 0.15 accompanies with the logarithmic sin-
gularity of the density of state (DOS) at the Fermi level; the
second one at xc2 = 0.24 results in the step singularity of the
DOS [5].

In this paper, we analyze the effect of QPT on the phase
diagram in the normal and superconducting state. Due to im-
portance of the AFM short range order, we have developed
a new approach to the cluster perturbation theory, the NC-
CPT [6]. Here, we compare the Fermi surface resulting from
the Green function pole and the spectral intensity map for
different concentrations and linewidth within the NC-CPT
method.

2 Effect of the Quantum Phase Transitions
on the Phase Diagram

An electron in SEC material within the LDA+GTB method
is a linear superposition of the Hubbard fermions. Each
fermion is a quasiparticle that corresponds to the excitation
of the initial multielectron term dn

i with the energy Ei(n)

into the final term dn+1
j with the energy Ej(n + 1). These
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Fig. 1 The concentration dependence of the Fermi level density of
states, Tc , and isotope effect. Two curves for Tc corresponds to pure
magnetic pairing (G = 0) and magnetic and phonon pairing (G = J )

terms and energies are obtained by the exact diagonalization
of the multielectron Hamiltonian inside the unit cell. The lo-
cal quasiparticle energy is equal to Ωij = Ei(n+1)−Ei(n).
The intercell hopping results the dispersion Ωij → Ωij (k).

We treat the intercell hopping as the perturbation. A sim-
plest version of the perturbation theory is given by the
Hubbard 1 approximation. Beyond it, there are spin fluc-
tuations. The self-energy was calculated [3] in the non-
crossing approximation by neglecting vertex renormaliza-
tion that is equivalent to the self-consistent Born approxi-
mation (SCBA) [7].

The concentration dependence of the electronic structure
results in the change the Fermi surface topology from the
small hole pocket centered near (π/2,π/2) at x < xc1 to
the large hole and small electronic pockets around (π,π)

at x > xc1. The electronic pocket collapses at xc2, and at
x > xc2 there is only large hole Fermi surface [4, 5].

We have considered here the thermodynamics of the nor-
mal and superconducting phases as function of doping con-
centration. We have found a remarkable kink in the kinetic
energy in the normal state at T = 0 Ekim(x) dependence at
x = xc2. Above xc2 Ekim(x)/Ekim(xc2) ≈ 1 + x, which is
expected for a conventional 2D metal with hole concentra-
tion nh = 1 + x. Below xc2

Ekim(x)/Ekim(xc2) = exp
[−4Eg(p)/J

]
,

Fig. 2 The concentration dependence of the two characteristic energy
scales Tc and T ∗ from [12] and two critical points from our calculations

where J is the exchange coupling and Eg = J (xc2 − x)/xc2

is a doping dependent pseudogap.
The mean field theory of superconductivity of the Hub-

bard fermions with simultaneous magnetic and phonon
mechanisms of pairing [8] has been developed similar to
the d-wave pairing theory in the strongly correlated regime
of the Hubbard model [9]. We have found that the log singu-
larity at xc1 results both in the maximum of the critical tem-
perature Tc and minimum in the isotope effect exponent α

(Fig. 1).
We have compared the experimental phase diagram of the

single CuO2 layer cuprates with our calculated QPT critical
points (Fig. 2). The optimal doping is determined by xc1.
The extrapolation of the pseudogap temperature T ∗(x) → 0
gives T ∗(xc2) = 0. Thus, both our calculations of the energy
and comparison with T ∗(x) dependence allow us to con-
clude that xc2 is the critical point separated the Fermi liquid
x > xc2 and non-Fermi liquid (pseudogapped) at x < xc2

regimes.

3 Comparison of the Fermi Surface and Spectral
Intensity Map

There are a lot of experimental evidences from ARPES
about weakly doping dependent Fermi arc [10]. The two
QPT picture seems to contradict such data. The Fermi sur-
face discussed above results from the poles of the Green
function, while the ARPES measures the momentum dis-
tribution curves that are proportional to the spectral inten-
sity map under assumption of the constant matrix elements.
In this section, we calculate both the poles and spectral in-
tensity maps for the hole doped Hubbard model within the
NC-CPT approach [6]. It is the new version of the cluster
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perturbation theory (CPT) with exact diagonalization of the
cluster and perturbation treatment of the intercluster hop-
ping in the X-operator representation.

We consider the one-band two-dimensional Hubbard
model

H =
∑

iσ

{
(ε − μ)niσ + U

2
niσ niσ̄

}
+

∑

i �=j,σ

tij a
†
iσ ajσ , (1)

where ε is the energy of an electron at a site, μ is the chemi-
cal potential, U is the parameter of the Coulomb interaction
at a site, tij is the hopping integral, a

†
iσ and aiσ are the cre-

ation and annihilation operators for an electron with spin σ

at site i, σ̄ = −σ , niσ = a
†
iσ aiσ .

Let us to break down the lattice on the clusters. After that
we can separate the intra and intercluster interactions

H =
∑

f

H0(f ) +
∑

f �=g

Ht (f, g), (2)

where f,g are the cluster indexes.
We determine the complete set of exact eigenvectors and

eigenvalues of the intracluster part of the Hamiltonian (2)
by the exact diagonalization method. The complete basis al-
lows us to construct X-operators for cluster and rewrite the
initial lattice Hamiltonian to the cluster Hamiltonian in the
X-representation. The Green function is obtained by the per-
turbation method. The simplest non-trivial solution is given
by the Hubbard 1 approximation. In framework of this ap-
proach, we have suggested the norm-conserving version of
CPT and determine the value (f-factor) [6], which allows us
to control the spectral weight of Hubbard fermions.

Our calculations have shown that the spectral weight of
the in-gap states is increased with the hole concentration due
to the spectral weight of the upper Hubbard band (UHB).
The position of the in-gap states dependents on a value of
the Coulomb repulsion U . In particular, for U = 8t these
states appear near the lower Hubbard band (LHB), and near
the UHB at U = 2t .

The study has revealed the presence of the pseudogap
state and a nonuniform distribution of the quasiparticle spec-
tral weight along the Fermi surface. We have obtained a cas-
cade of QPT with increasing hole concentration. In the case
of nonzero nonnearest hopping, the Fermi surface has the
form of arc (Fig. 3) in agreement with ARPES data.

In the Fig. 4, we plot the Fermi surface and spectral in-
tensity map for 3 different concentrations. For undoped re-
gion x = 0.0025, we have a small hole pocket and line of
zeros. Calculating the spectral intensity usually a small fi-
nite linewidth δ is introduced that models the experimental
resolution. The value δ/t = 0.1 results in a transformation
of the pocket into the arc (Fig. 4c), while better resolution
δ/t = 0.01 results in the map very close to the Fermi sur-
face similar to the cellular DMFT plus exact diagonaliza-
tion method [11]. With increasing doping the smaller pocket

Fig. 3 The spectral weight along the Fermi surface Af vs. the angle
φ for hole doping x = 0.025,0.05,0.1,0.15,0.25. Here, φ = 00 re-
sponds the antinodal direction ((π,0) → (π,π)), φ = 450 is the nodal
direction ((0,0) → (π,π)). The model parameters [3]: U = 2.15t ,
t ′ = −0.13t , t ′′ = 0.16t . The linewidth parameter δ = 0.1t

around (π,π) meets the line of zeros and they mutually an-
nihilated. In the Fermi liquid regime at x = 0.20, all three
columns show the same Fermi surface. We have shown that
the broadening washes out picture of the Lifshitz transition
and results in smooth filling the pseudogap (see Fig. 3).

The dispersion curves along symmetric directions are in
good agreement with other works. It was shown that in
the nodal direction the dispersion curve is divided into sec-
tions with different slopes separated by gaps. As we ignore
the phonon component, the difference in the slope associ-
ated with interaction in the electronic subsystem. Thus, the
kinks observed in experiments can result from the electron-
electron interactions that lead to a distortion of the disper-
sion curve. This conclusion is consistent with the results of
[13].

The next step we chose the clusters with shapes shown in
Fig. 5. These clusters can be divided into two types. The first
type of clusters (Fig. 5a, c) consists of sites with the same
number of nearest neighbors, i.e., sites of the same type. The
second type clusters (Fig. 5b, d, e) consisting of two types of
sites with different number of nearest neighbors. For exam-
ple, the cluster in Fig. 5b shows sites 2 and 3 of same type
with the number of nearest neighbors equaling 1 and site 1
of the other type with two nearest neighbors, i.e., attributed
to the second type.

The paper [6] describes the study of the band structure
for 4-sites cluster (Fig. 5c) in which the band is split into
two Hubbard bands for half filling and U = 8t . We have
performed calculations for 5-sites cluster (Fig. 5e), which
showed that in this case the additional splitting of each Hub-
bard band into two subbands occurs. The similar situation
was observed in paper [14], in which the authors carried
out the calculations by means of the quantum Monte-Carlo
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Fig. 4 The Fermi surface in
three concentration regions from
poles of the Green function
(a, d, g) and spectral intensity
map for high (b, e, h) and low
(c, f, i) resolution. The numbers
in (b, e, h) show the spectral
intensity for a given k-point

Fig. 5 Cluster shapes

method. This difference in the band structures of 4- and 5-
sites clusters could be explained either by taking into ac-
count the long-range spatial correlations within the cluster
or its symmetry.

We have obtained a band structure with the 3-sites clus-
ter (Fig. 5b) similar to the band structure of the 5-sites clus-
ter. Figure 6 shows the density of states for the three types
of clusters (Fig. 5b, c, e), where this analogy (the gap in
the vicinity ω = ±4t) as well as the contrast with the band
structure with the 4-sites cluster are clearly seen. The study
excludes the interpretation of the Hubbard bands splitting
by the presence of long-range spatial correlations from the
intracluster interactions.

Fig. 6 The density of states of the 3-sites (a), 4-sites (b) and 5-sites
(c) clusters for U = 8t , f > 0.95. The linewidth parameter δ = 0.001t

Additional band structure calculations for the two cluster
shapes (Fig. 5a, d) allowed us to exclude the effect of the
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cluster sites parity. Thus, the splitting of the Hubbard bands
is determined by the presence of different kinds of sites in
the cluster.
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