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COEXISTENCE OF SUPERCONDUCTIVITY AND

ANTIFERROMAGNETISM IN HEAVY-FERMION

INTERMETALLIDES

V. V. Val’kov∗† and A. O. Zlotnikov∗

Using the two-time retarded Green’s function, we study the conditions for realizing the phase of the

superconductivity and antiferromagnetism coexistence in the framework of the effective Hamiltonian for

the periodic Anderson model. Such a phase was experimentally observed in rare-earth intermetallides with

heavy fermions under an external pressure. In the chosen model, the Cooper instability is induced in the

presence of long-range antiferromagnetic ordering as a result of the combined effect of a superexchange

interaction in the subsystem of localized electrons and the hybridization between two groups of electrons.

Applying an external pressure induces an increase in the energy of the localized level accompanied by an

abrupt destruction of the long-range antiferromagnetic ordering in a certain region of the phase diagram.

The superconductivity order parameter has a maximum value at the destruction point. We show that the

decrease in the antiferromagnetic-sublattice magnetization with increasing pressure leads to a significant

increase in the masses of Fermi quasiparticles, and the sign of the current carriers reverses at the critical

point. The obtained results qualitatively agree well with the experimental data for the heavy-fermion

intermetallide CeRhIn5.

Keywords: periodic Anderson model, coexistence of superconductivity and antiferromagnetism, superex-
change interaction, heavy fermion

1. Introduction

It is well known that strong electron correlations determine the properties of weakly doped copper
oxides [1], [2] and heavy-fermion (HF) intermetallides [3]–[6] to a considerable degree. The nonphonon
mechanism for superconducting pairing is manifested in these materials [1], [7]–[9], and Cooper instability
develops either against the background of the destroyed antiferromagnetic ordering with retained short-
range antiferromagnetic correlations or in the presence of the long-range antiferromagnetic ordering but
with a significantly decreased sublattice magnetization.

The realization of a microscopically homogeneous phase of the coexistence of superconductivity (SC)
and antiferromagnetism (AFM) in strongly correlated systems recently became a subject of increased at-
tention. This occurred because applying an external pressure to a series of HF antiferromagnets leads to
an induced phase transition with the formation of the indicated coexistence phase.

It is well known that the conditions for realizing Cooper instability in conducting antiferromagnets
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are more favorable than those in ferromagnetic metals [10], [11]. This is explained by the absence of
spontaneous macroscopic magnetization and by the preservation of the degeneracy of the Fermi excitation
spectrum with respect to the direction of the spin-momentum projection. Many examples of compounds
in which the SC–AFM coexistence phase is observed are known. The phenomenon of simultaneous SC
and AFM realization in HF systems was noted in transuranium compounds UPt3 [12] and UPd2Al3 [13].
In these compounds, two of the three uranium 5f electrons are localized and are responsible for inducing
antiferromagnetic ordering [14]. The third 5f electron participates in forming the HF band. The Cooper
instability leading to the realization of the superconducting HF phase develops in the ensemble of such
electrons.

Unlike transuranium materials, in the Ce intermetallide CeRhIn5 from the group CenTmIn3n+2m (here,
T =Co, Rh, Pd, Ir, Pt; n = 1, 2; m = 0, 1), the 4f Ce electron participates in the formation of both
the long-range antiferromagnetic ordering and the Cooper instability. The entropy coincidence under the
transition from the antiferromagnetic phase to the superconducting phase under external pressure indicates
this indirectly [15]. In this case, the region in which SC and AFM coexist on the microscopic level is
realized in the vicinity of such a transition [16]. The coexistence phase is limited by the pressure range
P ≈ 1 to 1.8GPa with a maximum critical temperature near 2 K [15].

The strong SC–AFM interrelation was also established in copper oxides [17]. The coexistence of
high-temperature SC and antiferromagnetic ordering in multilayer cuprates HgBa2Ca4Cu5O12+δ [18] and
Ba2Can−1CunO2n(F,O)2 (n = 4, 5) [19] was demonstrated in measurements of the Knight shift using
nuclear magnetic resonance. The coexistence of the phases in the two-layer copper-oxide superconductor
YBa2Cu3O6+x was shown in [20].

In connection with the foregoing, it is important to theoretically analyze the nonphonon mechanism of
Cooper instability, which leads to the formation of the homogeneous superconducting phase with the d-wave
symmetry of the order parameter on the microscopic level in the presence of long-range antiferromagnetic
ordering. The problem of interpreting the anomalous behavior of the effective mass in the vicinity of the
quantum phase transition can be an associated aim of such a study.

We stress that the formation of the SC–AFM coexistence phase can develop according to two scenarios.
In the first scenario, two different groups of electrons are responsible for realizing the SC and AFM: the SC
is established in the subsystem of itinerant fermions, while the long-range antiferromagnetic order is realized
because localized electrons are present. This scenario is realized in ternary rare-earth [21] compounds and
in uranium HF compounds.

The second scenario of coexistence-phase formation is manifested in cerium intermetallides. The same
4f electrons are responsible for the formation of both types of ordering in them (e.g., in CeRhIn5). In this
case, the effects of mutual SC and AFM influences play a more significant role and are the subject of many
theoretical studies. In [22], the SC–AFM coexistence phase was studied based on the mean-field slave-
boson approximation in the framework of the periodic Anderson model (PAM), which was supplemented
with terms (which are quadratic in the Fermi operators) describing the Cooper instability and the instability
of the antiferromagnetic state. We mention that if such an approach was used, then the question of the form
of the electron–electron interaction in HF systems leading to the mixed state in which superconducting and
antiferromagnetic properties are realized remained open. In [22], the region of the SC–AFM coexistence was
obtained by increasing the hybridization parameter and the bandwidth of electrons. The increase in these
parameters was related to an increase in an external hydrostatic pressure. In [23], SC and AFM in systems
with HFs were considered more simply. The ensemble of itinerant electrons interacting with one another
via the one-site Coulomb repulsion and the effective interaction leading to attraction was studied there.
Additional constraints on the model were introduced to obtain the heavy effective electron mass. It was
assumed that the Fermi level is in a neighborhood of the saddle point (the point X of the two-dimensional
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Brillouin zone), and the presence of the logarithmic Van Hove singularity near the chemical potential was
additionally assumed.

Here, based on a consistent application of the method of two-time temperature functions to the extended
Anderson model, we analyze conditions in the atomic representation under which SC and AFM can coexist
in strongly correlated systems with HFs. In the framework of such an approach, it is unnecessary to pass to
slave bosons and to introduce an approximate description to take the constraint into account. In this case,
we managed to obtain a closed self-consistent system of equations describing all required phases, including
the coexistence phase, and the anomalous behavior of the effective mass of Fermi quasiparticles in the
neighborhood of the quantum phase transition.

2. Hamiltonian of the electronic structure of HF intermetallides

The properties of rare-earth intermetallides with HFs are usually described using the PAM [24]–[26].
In the case of the regime of strong electron correlations, where the parameter U of the Coulomb repulsion of
two electrons with the opposite spin-momentum projections localized at the same site significantly exceeds
all other characteristic energies, the localized state is characterized by a single electron occupation. The
atomic representation, which takes this feature explicitly into account, is the natural description in this
case [27]. Here, taking processes that reflect virtual transitions of localized states to the two-electron sector
of the Hilbert space into account leads to an effective Hamiltonian containing several additional terms [28],
for example, terms (which are important in our further study) describing the exchange interaction in a
subsystem of localized electrons. The importance of including this interaction is primarily because it can
induce both the antiferromagnetic ordering and the Cooper instability. For example, it was shown in [29]
that the exchange interaction in the ensemble of itinerant electrons can lead to realizing the mixed phase.

In the Wannier representation, the effective PAM Hamiltonian can be written in the form

̂Heff =
∑

m,σ

(ε0 − μ)c†mσcmσ +
∑

m,l,σ

tmlc
†
mσclσ +

∑

m,σ

(E0 − μ)Xσσ
m +

+
∑

m,l,σ

{(Vmlc
†
mσX0σ

l ) + (H.c.)} +
1
2

∑

m �=l

Jml

(

�Sm
�Sl −

1
4

̂Nm
̂Nl

)

,

where cmσ and c†mσ are the annihilation and creation Fermi operators of an itinerant electron for the Wannier
cell with the number m and the projection of the spin momentum σ; Xrt

m is the Hubbard operator related
to the cell m, which is constructed using the atomic states |m; r〉 and |m; t〉 as usual, Xrt

m = |m; r〉〈t; m|;
and �Sm is the quasispin vector operator of the localized subsystem, whose components are related to the
operators of the atomic representation by the formulas

Sx
m =

X↑↓
m + X↓↑

m

2
, Sy

m = −i
X↑↓

m − X↓↑
m

2
, Sz

m =
X↑↑

m − X↓↓
m

2
.

The number operator of electrons localized at the site m is defined by ̂Nm =
∑

σ Xσσ
m . The model parameters

are as follows: ε0 is the one-site energy of an itinerant electron, μ is the chemical potential, tml is the matrix
element of itinerant-electron hopping from the site l to the site m, E0 is the position of the energy level of
localized electrons, Vml is the matrix element that describes the hybridization of the localized and itinerant
states related to the same Wannier cell (m = l) or to different cells (m �= l), and Jml is the exchange
interaction integral.

Assuming that the antiferromagnetic ordering can occur, we pass to the two-sublattice description.
For this, as usual, we single out two types of lattice sites. In what follows, we assign sites labeled with
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the subscripts f, f ′, f ′′, . . . to the first type (the sublattice F ); for them, we have 〈Sz
f 〉 > 0 in the presence

of long-range antiferromagnetic ordering. Sites of the second type (the sublattice G) are labeled with the
subscripts g, g′, g′′, . . . ; we have 〈Sz

g 〉 < 0 for these lattice sites.
In the two-sublattice representation, it is convenient to write the Hamiltonian as

̂Heff = ̂H0 + ̂Hmix + ̂Hexch,

where ̂H0 describes the system of noninteracting localized and itinerant electrons. Using ̂Hmix, we take
hybridization processes between the localized and itinerant electrons within one sublattice and from different
sublattices into account. The term ̂Hexch is responsible for the superexchange interaction in the localized
subsystem. The concrete forms of these operators are

̂H0 =
∑

f,σ

(ε0 − μ)a†
fσafσ +

∑

g,σ

(ε0 − μ)b†gσbgσ +
∑

f,σ

(E0 − μ)Xσσ
f +

+
∑

g,σ

(E0 − μ)Y σσ
g +

∑

f,f ′,σ

tff ′a†
fσaf ′σ +

∑

g,g′,σ

tgg′b†gσbg′σ +

+
∑

f,g,σ

(tfga
†
fσbgσ + tgfb†gσafσ),

̂Hmix =
∑

f,f ′,σ

{(Vff ′a†
fσX0σ

f ′ ) + (H.c.)} +
∑

g,g′,σ

{(Vgg′b†gσY 0σ
g′ ) + (H.c.)} +

+
∑

f,g,σ

{(Wfga
†
fσY 0σ

g + Wgf b†gσX0σ
f ) + (H.c.)},

̂Hexch =
1
2

∑

〈fg〉,σ
Jfg(Xσσ̄

f Y σ̄σ
g − Xσσ

f Y σ̄σ̄
g ).

For the operator ̂Hexch, we assume that the exchange interaction in the subsystem of localized states
is only realized between nearest neighbors. This is reflected in the expression for ̂Hexch by enclosing
the site subscripts f and g on the summation sign in angle brackets. In the two-sublattice description,
the parameter Wfg denotes the integral of hybridization of itinerant and quasilocalized states related to
different sublattices. The previous notation Vff ′ and Vgg′ for the intensity of hybridization processes inside
one sublattice is retained.

3. Description of the SC–AFM coexistence phase using basis
operators

To obtain a closed system of self-consistent equations describing the superconducting phase, the anti-
ferromagnetic phase, and the SC–AFM coexistence phase, we use the method of the equations of motion for
two-time retarded Green’s functions [30], [31]. We close the chain of equations of motion using the method
of irreducible Green’s functions [32], [33] and the Zwanzig–Mori projection technique [34], [35]. For this,
we introduce the basis set of operators

{X0σ
f , Y 0σ

g , afσ, bgσ, X σ̄0
f , Y σ̄0

g , a†
fσ̄, b†gσ̄} (1)
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and write the exact equations of motion for the first half of this set (the equations of motion for the second
half are obtained from the following equations via Hermitian conjugation and the replacement σ → σ̄ = −σ):

i
dX0σ

f

dt
= (E0 − μ)X0σ

f +
∑

f ′

V ∗
f ′f

[

(X00
f + Xσσ

f )af ′σ + X σ̄σ
f af ′σ̄

]

+

+
∑

g

W ∗
gf [(X00

f + Xσσ
f )bgσ + X σ̄σ

f bgσ̄] +
1
2

∑

g

Jfg(X0σ̄
f Y σ̄σ

g − X0σ
f Y σ̄σ̄

g ),

i
dY 0σ

g

dt
= (E0 − μ)Y 0σ

g +
∑

g′

V ∗
g′g[(Y

00
g + Y σσ

g )bg′σ + Y σ̄σ
g bg′σ̄] +

+
∑

f

W ∗
fg[(Y

00
g + Y σσ

g )afσ + Y σ̄σ
g afσ̄] +

1
2

∑

f

Jfg(X σ̄σ
f Y 0σ̄

g − X σ̄σ̄
f Y 0σ

g ),

i
dafσ

dt
= (ε0 − μ)afσ +

∑

f ′

(tff ′af ′σ + Vff ′X0σ
f ′ ) +

∑

g

(tfgbgσ + WfgY
0σ
g ),

i
dbgσ

dt
= (ε0 − μ)bgσ +

∑

g′

(tgg′bg′σ + Vgg′Y 0σ
g′ ) +

∑

f

(tgfafσ + WgfX0σ
f ),

where the asterisk denotes complex conjugation.

Projecting the right-hand sides of these equations on basis (1) and passing to the quasimomentum
representation allow obtaining a closed system of eight equations for the normal and anomalous Green’s
functions. This system in the matrix form is written as

(

̂Mpσ(ω) ̂Gpσ

− ̂G∗
−pσ̄ −̂M∗

−pσ̄(−ω)

)

〈〈 �A |B†〉〉ω = 〈{ �A, B†}+〉. (2)

The operator �A contained in the vector Green’s function is defined in terms of the Fourier transforms of
basis operators (1):

�A = (Xpσ, Ypσ, apσ, bpσ, X†
−pσ̄, Y †

−pσ̄, a†
−pσ̄, b†−pσ̄). (3)

The operator B is chosen arbitrarily from set (3). As it usually is in the method of the two-time Green’s
function, if only quasi-Fermi excitations are taken into account, then the constant terms in each equation
are determined by the thermodynamic average 〈 · 〉 of the anticommutator { · , · }+ of the component of the
vector �A and the operator B. In Eqs. (2), we assume that 〈AB†〉∗ = 〈BA†〉.

In what follows, the averages of the anticommutators of the Hubbard operators in the quasimomentum
representation play a significant role:

〈{Xpσ, X†
pσ}+〉 = 〈{Ypσ̄, Y †

pσ̄}+〉 = ασ, ασ = 1 − nL

2
+ ησR,

where R = 〈Sz
f 〉 is the magnetization of the sublattice F and 〈Nf 〉 = 〈Ng〉 = nL is the average number of

electrons at the localized level. The σ-dependent function ησ is defined as usual: ησ = ±1 if respectively
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σ = ±1/2. The fourth-order matrices introduced in (2) are given by

̂Mpσ(ω) =

⎛

⎜

⎜

⎜

⎜

⎝

ω − Eσ Lp/ασ̄ −ασV ∗
p −ασW ∗

p

Lp/ασ ω − Eσ̄ −ασ̄W ∗
p −ασ̄V ∗

p

−Vp −Wp ω − ξp −Γp

−Wp −Vp −Γp ω − ξp

⎞

⎟

⎟

⎟

⎟

⎠

,

̂Gpσ = −

⎛

⎜

⎜

⎜

⎜

⎝

ησΦ/ασ̄ ησΔp/ασ 0 0

ησΔ−p/ασ̄ ησΦ/ασ 0 0

0 0 0 0

0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

.

In these formulas, the renormalized expression for the energy of the localized level,

Eσ = E0 − μ − J(nL + 2ησR) − Λσ + Cσ, (4)

describes the mean-field effect of the exchange interaction leading to both the level displacement (the
contribution proportional to −JnL) and the removal of the degeneracy of this level with respect to the
spin-momentum projection (the contribution proportional to −2ησJR). The third term,

Λσ =
1

ασ
· 1
N

∑

k

{V ∗
k 〈X†

kσ̄akσ̄〉 + W ∗
k 〈X

†
kσ̄bkσ̄〉},

appears because of the combined effects of the kinematic and hybridization interactions. The kinematic
interaction is a consequence of the non-Fermi character of the permutation relations for the Hubbard
operators [36], [37] describing the subsystem of f electrons. The last term in renormalized expression (4)
for the energy,

Cσ =
1

ασ
· 1
2N

∑

k

JkCkσ , (5)

is related to the inclusion of static magnetic fluctuations and fluctuations of the value of the f level occu-
pation. These fluctuations via the exchange coupling mechanism lead to the displacement of the localized
level dependent on the spin-momentum projection. The quantity Ckσ in (5) is the Fourier transform of the
spatial correlator

Cσ
fg = 〈Xσσ̄

f Y σ̄σ
g 〉 +

1
4
〈 ̂Nf

̂Ng〉 + 〈Sz
fSz

g 〉 −
(

1
4
n2

L − R2

)

(6)

and is given by the equality

Cσ
fg =

1
N

∑

k

eik(f−g)Ckσ .

In formula (6), we take into account that 〈X↑↑
f Y ↑↑

g 〉 = 〈X↓↓
f Y ↓↓

g 〉.
The joint effect of the kinematic and exchange interactions in the subsystem of localized fermions leads

to the appearance of the effective coupling between the localized states from different sublattices (there
were no corresponding terms in the initial Hamiltonian). The intensity of such a mixing is determined by
the function Lp, which is expressed in terms of the kinetic correlators:

Lp =
1

2N

∑

k

Jp−k〈Y †
k↑Xk↑〉.
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As is known, the appearance of the superconducting state is described mathematically by introducing
anomalous averages of the Fermi and quasi-Fermi operators. The presence of the hybridization, exchange,
and kinematic interactions in the extended Anderson model leads to the possibility of realizing two types
of anomalous averages. Accordingly, two superconducting order parameters (SOPs) appear in the theory.
The first SOP,

Φ =
1
N

∑

k,σ

ησ(V ∗
k 〈akσX−kσ̄〉 + W ∗

k 〈bkσX−kσ̄〉),

is related to the anomalous pairings of the itinerant and localized electrons, which are induced by the joint
effect of the hybridization and kinematic interactions. The second SOP is a result of the Cooper pairing
of quasilocalized fermions from different sublattices and is due to the dynamical part of the exchange
interaction:

Δp =
1

2N

∑

k

Jp−k(〈Xk↑Y−k↓〉 + 〈Y−k↑Xk↓〉). (7)

The quantity ξp = ε0 + tp − μ corresponds to the part of the kinetic energy of the itinerant electrons
(measured from the chemical potential μ) that is related to intrasublattice hopping. The functions tp, Γp,
Vp, and Wp are defined in terms of the Fourier transforms of the intrasublattice and intersublattice hopping
and hybridization parameters:

tff ′ =
1
N

∑

k

eik(f−f ′)tk, tfg =
1
N

∑

k

eik(f−g)Γk,

Vff ′ =
1
N

∑

k

eik(f−f ′)Vk, Wfg =
1
N

∑

k

eik(f−g)Wk.

When projecting the equations of motion on basis operator set (1), we take the obvious relation between
the anomalous averages 〈X0σ

f af ′σ̄〉 and 〈X0σ
f bgσ̄〉 and the anomalous averages 〈Y 0σ

g bg′σ̄〉 and 〈Y 0σ
g afσ̄〉 into

account. The corresponding formulas are obtained based on simple symmetry considerations. Applying the
translation operation translating the sites of the sublattice F to those of the sublattice G and the inversion
of the quantization axis z, we find that 〈Y 0σ

g bg′σ̄〉 = −〈X0σ̄
f af ′σ〉 and 〈Y 0σ

g afσ̄〉 = −〈X0σ̄
f bgσ〉. In this case,

the transformation law for the spinor quantities under the rotation about the axis x,

clσ → clσ(θ) = eiθsx
l clσe−iθsx

l = clσ cos
θ

2
− iclσ̄ sin

θ

2
,

X0σ
l → X0σ

l (θ) = eiθSx
l X0σ

l e−iθSx
l = X0σ

l cos
θ

2
− iX0σ̄

l sin
θ

2
,

is used.

4. Irreducible Green’s functions and self-consistent equations

The type of SOP symmetry is important in the study of the SC–AFM coexistence. This question is
currently open for systems with HFs. The Fourier transforms of the exchange integrals Jp±k in definition (7)
can lead to a dependence of the SOP Δp on the quasimomentum corresponding to various types of SOP
symmetry. For the magnetic Brillouin zone transformed by rotating through the angle π/4 about the
initial Brillouin zone, the dependence of the SOP corresponding to the s-type symmetry becomes Δs

p =
2Δs

0 cos(pxb/2) cos(pyb/2). The decrease in the Brillouin zone is related to the transition to a new unit
cell with the parameter b =

√
2a of the lattice with two antiferromagnetic sublattices. In the transformed

coordinate system, the dependence of the SOP for the d-type symmetry is Δd
p = 2Δd

0 sin(pxb/2) sin(pyb/2).
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We note that for the compound CeRhIn5, the d-type SOP symmetry is assumed more preferable [38].
Therefore, in what follows, we restrict ourself to studying the SC–AFM joint effect with this type of order
parameter symmetry.

Choosing this type of SOP symmetry leads to simplification of the self-consistent equations because
the anomalous order parameter Φ only contributes to the s-type symmetry. Therefore, we assume that
Φ = 0 below.

When writing solutions of Eqs. (2) for the Green’s function in the SC–AFM coexistence phase, we use
the notation

d3σ(p, ω) = (ω + Eσ)
(

(ω + ξp)2 − Γ2
p

)

− ασ(ω + ξp)(V 2
p + W 2

p ) + 2ασΓpVpWp, (8)

f3(p, ω) =
Lp

ασασ̄

(

(ω + ξp)2 − Γ2
p

)

+ 2(ω + ξp)VpWp − Γp(V 2
p + W 2

p ), (9)

d4(p, ω) = (ω + Eσ̄)d3σ(p, ω) + (ω + Eσ) d3σ̄(p, ω) + ασασ̄(V 2
p − W 2

p )2 −

−
(

(ω + Eσ)(ω + Eσ̄) −
L2

p

ασασ̄

)

(

(ω + ξp)2 − Γ2
p

)

− 2Lpf3(p, ω). (10)

The equation d4(p,−ω) = 0 determines the system energy spectrum in the case of the normal antiferro-
magnetic phase where the anomalous averages are not taken into account.

The expressions for normal Green’s functions are written as

〈〈Xpσ|X†
pσ〉〉ω = −ασSpσ(ω)

D8(p, ω)
, 〈〈apσ|a†

pσ〉〉ω =
Cpσ(ω)
D8(p, ω)

, (11)

where

Spσ(ω) = d3σ̄(p,−ω)d4(p, ω) +
(

Δp

ασ̄

)2
(

(ω − ξp)2 − Γ2
p

)

d3σ(p, ω),

Cpσ(ω) =
(

(ω − Eσ)(ω − Eσ̄) −
L2

p

ασασ̄

)

(ω − ξp)d4(p, ω) −

−
(

ασ̄V 2
p (ω − Eσ) + ασW 2

p (ω − Eσ̄) − 2LpVpWp

)

d4(p, ω) −

−
(

Δp

ασ̄

)2
(

(ω − Eσ)(ω − ξp) − ασW 2
p

)

d3σ(p, ω) −

−
(

Δp

ασ

)2
(

(ω − Eσ̄)(ω − ξp) − ασ̄V 2
p

)

d3σ̄(p, ω) −

− 2Δ2
p

(

VpWp − Lp

ασασ̄
(ω − ξp)

)

f3(p, ω) +
Δ4

p(ω − ξp)
(ασασ̄)2

(

(ω + ξp)2 − Γ2
p

)

.

In view of the equivalence between the antiferromagnetic sublattices, we have the equalities of the Green’s
functions 〈〈Xpσ|X†

pσ〉〉ω = 〈〈Ypσ̄ |Y
†
pσ̄〉〉ω and 〈〈apσ|a†

pσ〉〉ω = 〈〈bpσ̄|b
†
pσ̄〉〉ω .

When writing the anomalous Green’s functions, we introduce the additional notation

Qpσ(ω) =
1

ασ̄
d3σ(p, ω)d3σ(p,−ω) + ασ̄f3(p, ω)f3(p,−ω),

Rpσ(ω) =
1

α2
σασ̄

(

(ω + ξp)2 − Γ2
p

)(

(ω − ξp)2 − Γ2
p

)

.
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The anomalous Green’s function is then written as

〈〈Y−pσ̄ |Xpσ〉〉ω = −ησ̄ασ

ΔpQpσ̄(ω) + Δ3
pRpσ̄(ω)

D8(p, ω)
. (12)

We note that the numerator of expression (12) contains only even powers of ω.
The dispersion equation in the SC–AFM coexistence phase is determined by the condition for the

presence of poles of the Green’s function and has the form

0 = D8(p, ω) = d4(p, ω)d4(p,−ω) +
(

Δp

ασ̄

)2

d3σ(p, ω)d3σ(p,−ω) +

+
(

Δp

ασ

)2

d3σ̄(p, ω)d3σ̄(p,−ω) + 2Δ2
pf3(p, ω)f3(p,−ω) +

+
(

Δ2
p

ασασ̄

)2
(

(ω − ξp)2 − Γ2
p

)(

(ω + ξp)2 − Γ2
p

)

. (13)

The averages 〈Xσσ
f 〉 in the definitions of the concentration nL of localized quasiparticles and the mag-

netization R can be related to Green’s functions (11) using the spectral theorem (for different projection
directions of the spin momentum σ). Therefore, such averages are determined by the self-consistent equa-
tions

〈Xσσ
f 〉 =

1
N

∑

k,j

ασ
Skσ(−Ejk)f(−Ejk/T )− Skσ(Ejk)f(Ejk/T )

2Ejk

∏

i�=j(E
2
jk − E2

ik)
,

where f(x) = 1/(ex + 1) is the Fermi–Dirac distribution function and the subscripts j and i range from 1
to 4, which corresponds to four positive-definite branches of the energy spectrum Ejk found from dispersion
equation (13). Hence, the quantities nL and R are defined as

nL = 〈X↑↑
f 〉 + 〈X↓↓

f 〉, R =
〈X↑↑

f 〉 − 〈X↓↓
f 〉

2
.

The concentration of itinerant quasiparticles is given by the formula

nc =
1
N

∑

k,σ

〈a†
kσakσ〉, (14)

where the average is expressed via the definition of the Green’s function in (11):

〈a†
pσapσ〉 =

∑

j

Cpσ(Ejp)f(Ejp/T )− Cpσ(−Ejp)f(−Ejp/T )
2Ejp

∏

i�=j(E
2
jp − E2

ip)
.

Writing the expression for the total number of electrons in the system

Ne =
∑

f,σ

(

〈Xσσ
f 〉 + 〈a†

fσafσ〉
)

+
∑

g,σ

(

〈Y σσ
g 〉 + 〈b†gσbgσ〉

)

,

we find that the self-consistent equation for the chemical potential can be expressed in terms of the site
concentration of localized and itinerant electrons: ne = Ne/2N = nL + nc.
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a b

c d

Fig. 1. Quasiparticle spectrum in the PAM found (a), (b) from the equation d4(p,−ω) = 0 (see (10))

and (c), (d) from Eq. (13) for J = 0.2, V0 = 0.6, and E0 = −1.5: the graphs show the spectra (a), (c) for

the normal paramagnetic phase (Δd
0 = 0 and R = 0) in the case where ne = 1.4, μ = −1.554, and

nL = 0.907 and (b), (d) for the normal antiferromagnetic phase (Δd
0 = 0 and R = 0.364) in the case

where ne = 1.2, μ = −1.706, and nL = 0.746.

We substitute Δp = 2Δd
0 sin(pxb/2) sin(pyb/2) in the integral self-consistent equation obtained from

definition (7). Using the spectral theorem for anomalous Green’s function (12), we obtain an algebraic
equation for the amplitude Δd

0 of anomalous pairing:

1 = 2J
1
N

∑

k

[

sin
(

kxb

2

)

sin
(

kyb

2

)]2
∑

j

−Qk(Ejk) tanh(Ejk/2T )
2Ejk

∏

i�=j(E
2
jk − E2

ik)
+

+ 8J(Δd
0)

2 1
N

∑

k

[

sin
(

kxb

2

)

sin
(

kyb

2

)]4
∑

j

−Rk(Ejk) tanh(Ejk/2T )
2Ejk

∏

i�=j(E
2
jk − E2

ik)
,

where
Qp(ω) =

∑

σ

ασQpσ̄(ω), Rp(ω) =
∑

σ

ασRpσ̄(ω).

5. Quasiparticle bands in the SC–AFM coexistence phase

The determinant d4(p, ω) is independent of the direction of the projection of the electron spin mo-
mentum σ. This is evidence that the spectra of Fermi excitations in the antiferromagnetic phase for
quasiparticles with the spin-momentum directions σ = ↑ and σ = ↓ are equivalent. It is easy to see that
the determinant D8(p, ω) is also independent of the direction of the spin-momentum projection.
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If we set Δp = 0 in complete dispersion equation (13), then the dispersion equation corresponds to the
case of the normal phase (the equation d4(p,−ω) = 0). In the superconducting phase, the dispersion equa-
tion has four additional solutions. Their appearance is shown in Fig. 1 with the spectrum of quasiparticle
bands in the PAM along the main direction of the Brillouin zone for the concentrations ne = 1.4 (Figs. 1a
and 1c) and ne = 1.2 (Figs. 1b and 1d). The model energy parameters J = 0.2, V0 = 0.6, and E0 = −1.5
are normalized to |t1|. The parameters Λσ, Cσ, and Lp are assumed to be zero. We choose such model
parameters, for which the system is in the normal phase, to simplify the comparison.

The solutions of the equation d4(p,−ω) = 0 for ne = 1.4 in the case of different projection directions
of the quasiparticle spin momentum are shown in Fig. 1a. For such a concentration, the self-consistent
calculation only leads to the trivial solution for the magnetization R = 0 and to the values nL = 0.907
and μ = −1.554. The dot-dashed line in Fig. 1 shows the level of the chemical potential μ. The change in
the concentration can induce the transition to the antiferromagnetic phase. For example, the long-range
antiferromagnetic order with the parameters R = 0.364, nL = 0.746, and μ = −1.706 is realized in the
system for the concentration ne = 1.2 (see Fig. 1b). The lower two arrows in the right and left parts
of Fig. 1b indicate that the quasiparticle bands move apart; this is caused by the exchange field of spin
momenta of localized electrons. The separation of branches corresponding to the states of band electrons
(the upper pair of arrows) is due to hybridization processes with antiferromagnetically ordered localized
electrons. The form of quasiparticle bands shown in Fig. 1a and Fig. 1b is typical of the two-sublattice
PAM (see, e.g., [39]).

The solutions of Eq. (13) for the same parameters as in Figs. 1a and 1b are respectively shown in
Figs. 1c and 1d. The appearance of additional branches is related to the fact that the anomalous Green’s
functions are constructed with operators with different directions of the quasiparticle spin momentum. In
this case, the total energy spectrum in the SC–AFM coexistence problem contains four energy branches of
the HF antiferromagnet for quasiparticles with σ = ↑ and four branches in the case σ = ↓ taken with the
opposite sign.

In the general case, the analytic form of solutions of dispersion equation (13) is rather awkward and
is not presented here. In practice, it is important to have at least approximate, but analytic, expressions
for the quasiparticle spectrum in a neighborhood of the energy E0 of localized states. The dispersion
dependence of the HF band is determined in terms of precisely them.

The determination of the approximate solution is related to the replacement ω − ξp → EJ − μ − ξp in
Eq. (13). Here, we use the notation EJ = E0 − JnL. The described approximation is applicable for a small
splitting of the HF band in the antiferromagnetic phase when 4JR 
 W [40], where W is the bandwidth
of itinerant electrons. For simplicity, we restrict ourself to considering only intrasublattice hybridization
(Wp = 0) and also to the nearest-neighbor approximation with respect to the electron hopping. In what
follows, the energy is measured from the level ε0, i.e., it is assumed that ε0 = 0. In this case,

[EHF
p ]2 =

(

(1 − αγp)EJ

)2 + (α2 − R2)Γ2
pγ

2
p + (γpEJ + 2J)2R2 +

+
α2 + R2

(α2 − R2)2
Δ2

p + 2 sgn(γp)ν2
p , γp =

V 2
p

Γ2
p − E2

J

. (15)

The superscript HF indicates that (15) only describes the spectrum of the HF band. The function sgn( · )
is determined standardly: sgn(γp) = ±1 if γp ≷ 0. We also introduce the notation

ν4
p =

(

(α2 − R2)
(

(1 − αγp)EJ

)2
+

Δ2
pR

2

α2 − R2

)

Γ2
pγ

2
p +

+
(

(

(1 − αγp)EJ

)

(γpEJ + 2J) +
αΔ2

p

(α2 − R2)2

)2

R2.
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a b

c d

Fig. 2. Spectrum of the HF band EHF
p in the PAM: (a) the normal paramagnetic phase ne = 1.4

and (b) the normal antiferromagnetic phase ne = 1.2. The parameters in the upper graphs are the

same as in the respective Figs. 1a and 1b. (c) The SC–AFM coexistence phase ne = 1.35, R = 0.411,

Δd
0 = 0.00514, nL = 0.871, and μ = −1.595 and (d) the spectrum of elementary excitations in the

coexistence phase.

The region including the HF band in Figs. 1a and 1b is given in Figs. 2a and 2b on an expanded scale.
Exact solutions of Eq. (13) are shown by solid lines in the left half of each of the graphs in Fig. 2. In the
right half, the dashed line marked by EHF

p corresponds to the solution calculated using formula (15). The
analytic expression for the spectrum of quasiparticle bands denoted by 1 and 2 can be obtained from (15)
if the sign of the term 2 sgn(γp)ν2

p is reversed. It can be seen that the approximate analytic solution agrees
well with the exact one calculated numerically. The dashed line marked by the  does not correspond to a
real band and is shown for clarity.

The spectrum of quasiparticle bands for the concentration ne = 1.35 corresponding to the SC–AFM
coexistence phase is shown in Fig. 2c. The parameters of such a phase are R = 0.411, Δd

0 = 0.00514,
nL = 0.871, and μ = −1.595. The formation of the superconducting gap in the spectrum of elementary
excitations for such parameters is shown in Fig. 2d. Here, the energy EHF

p is measured from the Fermi
energy, and pF is the Fermi momentum for the zero SOP. The value ΔpF

, shown by the dotted line in the
graph, determines the amplitude of anomalous pairings at the Fermi surface. It can be seen that the actual
size of the superconducting gap in the spectrum significantly exceeds ΔpF

because the HF spectrum has a
more complicated form than the energy spectrum in the Bardeen–Cooper–Schrieffer theory. Therefore, the
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SOP not only is determined by the amplitude Δp of superconducting pairings but also depends on other
model parameters. To find the SOP that corresponds to the size of the superconducting gap more precisely
than ΔpF

, we give the approximate expression for the HF energy spectrum:

EHF
p ≈

√

(EAFM
p )2 + ζpΔ2

p,

where

ζp =
α2 + R2

(α2 − R2)2
− R2

(α2 − R2)|(1 − αγp)EJ − μ|λp
×

×
(

Γ2
pγ

2
p +

2α

α2 − R2

(

(1 − αγp)EJ − μ
)

(γpEJ + 2J)
)

,

EAFM
p = |(1 − αγp)EJ − μ| − λp, λp =

√

(α2 − R2)Γ2
pγ

2
p + (γpEJ + 2J)2R2.

It is easy to show that the true SOP has the form Ψp =
√

ζpΔp. But the transition from the superconducting
to the normal phase is determined by the condition Δp = 0 as before. In this case, the quantity Δp can be
determined as the SOP, but it does not correspond to the actual size of the gap in the spectrum.

As mentioned above, approximate expression (15) corresponds to the spectrum of the band of HFs
whose effective mass exceeds that of Bloch electrons in the lattice. It is essential that realizing the long-range
antiferromagnetic order and SC requires the chemical potential to be in the weak-dispersion band of the
HFs. Therefore, the antiferromagnetic and superconducting characteristics of the system are determined
by precisely HFs. To estimate the effective mass of new quasiparticles, we expand spectrum (15) in a
neighborhood of the point (px, py) = (0, 0). The mass of HFs whose energy bands EHF

p are shown in
Figs. 2a– 2c near the band bottom is given by

mHF

m0
=

Γ2
0 − E2

J

|Γ0|γ0

(

2α|EJ | −
(α2 − R2)Γ2

0γ0 + (α2 + R2)E2
Jγ0 − J0R

2|EJ |
λ0

)−1

, (16)

where m0 = �
2/|t1|b2 is the mass of the Bloch electron in the square lattice. The quantities Γ0 and γ0 are

obtained from the known Γp and γp for px = 0 and py = 0. Such a procedure (but in the framework of the
slave-boson representation) was used in [40] to estimate the HF mass for antiferromagnetic intermetallides
in the case where the canting of the antiferromagnetic sublattices was taken into account.

6. Coexistence of SC and AFM in HF systems

The change in the type of ground PAM state (at zero temperature) as a function of the total con-
centration ne of carriers in the system is shown in Fig. 3 for the fixed parameters J = 0.2, V0 = 0.6, and
E0 = −1.5. The solid line shows the sublattice magnetization R (left scale), and the dot-dashed line shows
the amplitude Δd

0 of the anomalous pairings corresponding to the d-type symmetry (right scale). The
results of calculating Δd

0 at zero magnetization are given for comparison and are shown by the dotted line.
The states whose energy structure is shown in Figs. 2a, 2b, and 2c are marked by the respective numbers
1, 2, and 3 in the graph. It can be seen that the position of the chemical potential with respect to the HF
band is important for the concentration dependence of the magnetization and the SOP amplitude.

The process can be described qualitatively as follows. As the number of electrons increases because the
localized level becomes occupied, the long-range antiferromagnetic order is induced in the system. But a
subsequent increase in the concentration leads to a sharp AFM suppression. This is related to the fact that
the level becomes almost filled, and new added electrons form an itinerant subsystem. The enhancement
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Fig. 3. Dependence of the sublattice magnetization R and the SOP amplitude Δd
0 on the total

concentration ne of carriers in the system: the model parameters are J = 0.2, V0 = 0.6, and E0 = −1.5.

of hybridization processes in such a case is responsible for the AFM destruction. As shown in Fig. 3, near
the transition from the antiferromagnetic to the paramagnetic phase, Cooper instability is realized in the
system. This leads to the appearance of the SC–AFM coexistence phase. The shaded region in Fig. 3
determines the concentrations in the case where Cooper instability and long-range antiferromagnetic order
coexist.

We note that the phases are limited not by temperatures but by concentrations in our consideration.
The presence of the long-range antiferromagnetic order in the subsystem of localized Hubbard fermions can
induce superconducting pairings. This follows because the increase or decrease in the magnetization leads to
a similar behavior of the amplitude Δd

0. In addition, Cooper instability becomes typical for concentrations
in the case where it is not manifested if the existence of the antiferromagnetic ordering in the system is not
taken into account. On the other hand, the intensity of anomalous pairings decreases significantly in the
presence of AFM.

The increase in the energy E0 of localized states at the fixed concentration ne = 1.2 and the same
parameters J and V0 as in Fig. 3 also leads to the destruction of the antiferromagnetic ordering (see Fig. 4a).
In this case, this is because the occupation of localized states decreases as the localized level moves upward
in the energy band. The superconducting ordering and the antiferromagnetic ordering compete at the
chosen PAM parameters. This is reflected in Fig. 4a by the SOP maximum being attained at the point
where the magnetization drops to zero.

Although the SC–AFM coexistence phase is realized, the SOP amplitude is significantly lower in the
competition with the long-range antiferromagnetic order. The described dependence of the order parameters
on the energy E0 is related to experimental studies of HF systems. For example, the abovementioned com-
pound CeRhIn5 at atmospheric pressure is an antiferromagnet with the Néel temperature TN = 3.8K [41].
Under pressure, the Néel temperature of the sample first decreases weakly and then the long-range anti-
ferromagnetic order is destroyed completely under the critical pressure Pc = 1.75GPa [15]. This probably
occurs through a first-order phase transition, which is a quantum phase transition at zero temperature.
The SC–AFM coexistence phase is realized in a range of pressures that are less than the critical pressure
Pc [16]. The pure superconducting phase was experimentally discovered under pressures that are greater
than critical.

The picture shown in Fig. 4a qualitatively corresponds to the described studies. In this case, the energy
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a

b

Fig. 4. (a) Dependence of the sublattice magnetization R and the SOP amplitude Δd
0 on the energy

E0 of localized states. (b) The dependence of the effective mass of heavy quasiparticles normalized to

the mass of the Bloch electron on the energy E0.

E0 of localized electrons plays the role of the main parameter, which varies under the external hydrostatic
pressure. The mechanism for increasing the energy E0 with increasing pressure is rather simple. It is well
known that cerium is contained in the compound CeRhIn5 as the Ce3+ ion. Therefore, the region around the
ion has a large total positive charge. In view of the electrical neutrality condition, the nearest environment
has an effectively negative charge. Under pressure, the Ce ion approaches the nearest environment, which
causes an increase in the energy of the 4f electron located at this ion because of the Coulomb interaction.
We also note that the increase in pressure can generally lead to changes in the amplitude tml of electron
hopping between sites and in the hybridization parameter Vml [22]. In our consideration, we assumed that
the changes in these parameters with pressure make a smaller contribution to the formation of a certain
type of ground state.

The effective mass of localized quasiparticles is an important characteristic of HF systems. The ratio of
the effective mass of localized quasiparticles in the PAM to the mass of itinerant electrons in the parabolic-
band approximation can be estimated using formula (16). The dependence of this quantity on the energy
of the localized level is shown in Fig. 4b. Mass (16) becomes negative as the antiferromagnetic order is
destroyed. In such a case, it was assumed that a transition to hole-type heavy quasiparticles occurs [40].
At each graph point, the values of the order parameter were recalculated in accordance with the diagram
of the ground state shown in Fig. 4. It can be seen that as the antiferromagnetic order is destroyed, the
effective mass increases with increasing E0. In this case, the effective mass exhibits behavior resembling the
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divergence at a critical point (E0 ≈ −1), above which the sublattice magnetization is zero. The effective
mass decreases sharply in the passage through the critical point to the paramagnetic region, and its absolute
value decreases afterwards.

An increase in the electron mass under external pressure was demonstrated based on a series of experi-
ments made with the compound CeRhIn5 [42], [43]. It was fixed at atmospheric pressure that the cyclotron
mass of electrons exceeds the mass of the free electron by a factor of 5.5 [42]. This ratio could reach the value
mc/m0 = 100 at the critical pressure. We note that the effective and cyclotron masses are equivalent in the
parabolic-band approximation. The values of the effective mass in Fig. 4b, even if they exceed the values
of the cyclotron mass, properly reflect the experimental pressure dependence of the mass qualitatively. We
note that the increase in the effective mass of fermions in the described systems is related to the transition
from the antiferromagnetic to the paramagnetic phase and to the decrease in the HF bandwidth.

7. Conclusions

Our study shows that the presence of the exchange coupling in the subsystem of localized fermions and
the hybridization interaction between the localized and itinerant electrons suffices to realize the antiferro-
magnetic phase, the superconducting phase, and the SC–AFM coexistence phase. The position of the initial
energy level of localized electrons with respect to the conduction-band bottom plays the role of the control
parameter determining the phase transition to the ordered state for a given total electron concentration.
The assumption that this parameter varies with increasing external pressure underlies the interpretation of
the experimentally observed modification of the ground state structure of the HF compound CeRhIn5 as a
result of the quantum phase transition.

The diagram of system states contains the value of the control parameter in a vicinity of which the
SC–AFM coexistence phase is realized. The approach of the control parameter to the critical value from the
low-temperature range is accompanied by a rapid destruction of the long-range antiferromagnetic ordering
with a simultaneous increase in the SOP. The presence of the long-range antiferromagnetic ordering is
manifested in both the strong suppression of the amplitude of the anomalous Cooper averages and the
modification of the Fermi energy spectrum. As a result, the superconducting gap is determined not only by
the amplitude of the anomalous averages but also by the magnetization of the antiferromagnetic sublattice.
This means that the superconducting gap in the SC–AFM coexistence phase is renormalized in two ways:
the first way is related to the long-range magnetic order, and the second is related to a rearrangement of
the Fermi excitation spectrum.
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