
Theoretical and Mathematical Physics, 177(1): 1377–1389 (2013)

QUANTUM AND CLASSICAL CORRELATIONS IN

HIGH-TEMPERATURE DYNAMICS OF TWO COUPLED

LARGE SPINS

V. E. Zobov∗

We study the dynamical correlations between two coupled spins depending on time and the value of the

spin quantum numbers. In the high-temperature approximation, we obtain analytic expressions for the

mutual information and the quantum and classical parts of correlations. We consider both orthogonal

and nonorthogonal measurements in the basis of spin coherent states. We show that at small times, the

quantum part of correlations becomes much less than the classical part as the spin quantum numbers

increase, while the situation is quite different at times equal to half the quantum period.

Keywords: spin dynamics, high-temperature approximation, mutual information, generalized measure-
ment, spin coherent state, quantum correlation

1. Introduction

Up to now, numerous experiments have been performed using the nuclear magnetic resonance (NMR)
method to demonstrate implementations of quantum algorithms on nuclear spins at high temperatures
(see [1]). It is well known that there is no quantum entanglement, but the dynamical correlations arising
in quantum calculations have both quantum and classical parts [2], [3]. Moreover, these high-temperature
quantum correlations can ensure rather fast implementations of some quantum algorithms [1]–[7]. No
explanations for the mechanisms of such an acceleration have yet been obtained although there are numerous
works analyzing the relation between quantum and classical correlations (see, e.g., [7]).

Instead of arbitrary states of quantum systems for which no general solution describing the relation
between the quantum and classical correlation parts has yet been obtained [7], we consider correlations
typical of NMR [8]. Polarization is very small for nuclear spins in a strong static magnetic field at room
temperature T , β = �ω0/kT ≈ 10−5 � 1 (ω0 is the Larmor frequency), and the equilibrium density matrix
used to describe the NMR is hence taken in the form

ρ̂eq =
1 + β ̂Sz

Z
, (1)

where Z is the partition function, ̂Sα =
∑

j
̂Sjα, ̂Sjα is the α-component of the jth spin operator, α = x, y, z,

and the magnetic field is directed along the z axis. To observe the NMR signal, a radio-frequency (RF)
magnetic field pulse is applied to the system, thus rotating the spins through the angle 90◦ about the axis
y of the rotating reference frame (RRF),

ρ̂(0) = ̂Y ρ̂eq
̂Y −1 =

1 + β ̂Sx

Z
.
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This initial density matrix varies in time as

ρ̂(t) = ̂U(t)ρ̂(0)̂U−1(t) =
1 + β ̂U(t)̂Sx

̂U−1(t)
Z

, (2)

where ̂U(t) = e−i bHt/�. In the course of time, polarization of separate spins in the field (the initial ordering
of Zeeman subsystem (1)) becomes the correlation between the spin and its local field created by the
dipole–dipole interactions. At small times, this correlation is described by a term of the form

− iβt

�Z
[ ̂Hd, ̂Sx] = − iβt

Z

∑

i<j

aij [(3̂Siz
̂Sjz − ̂�Si · ̂�Sj), ̂Sx] =

3βt

Z

∑

i�=j

aij
̂Siz

̂Sjy (3)

in expression (2). This correlation has been well studied for NMR because it is responsible for the solid
echo [9] arising when the system is exposed to the action of a second RF pulse of rotation through 90◦

about the RRF x axis. If the second RF pulse rotates the spins by 45◦, then the abovementioned correlation
becomes the ordering of the spin–spin subsystem, which ensures a nonzero value of the average energy of
dipole–dipole interactions [10]. But such correlations (3) have not yet been separated into the quantum
and classical parts.

Here, we obtain such a separation for a model system. We take a system of two large spins S1 and S2

with a dipole–dipole interaction between the projections on the z axis given by the Hamiltonian

̂HSS = �
J

S2

̂S1z
̂S2z. (4)

To study the limit as S1, S2 → ∞, we take the coupling constant divided by the spin value S2 ≥ S1

following [11], [12]. Such a model allows tracing the transition from the case of two spins S2 = S1 = 1/2,
where the dynamical correlations are equally separated into the quantum and classical parts [13], to the
case of two classical magnetic momenta, where only one part remains. The large spin in nuclear systems
is formed, for example, in the case of intermolecular interaction of fast rotating symmetric molecules of
adamantane in a solid matrix. The fast rotation equates the dipole coupling constants between the 16
nuclei of 1H in one molecule and the nucleus of 13C in another molecule [14]. An even greater number of
nuclei with equal coupling constants can be obtained for moving molecules in nanovoids [15].

It seems important to study the spins S > 1/2 not only in the NMR theory but also in the theory of
quantum computers because quantum computations can be performed on qudits (quantum systems with d

levels, d = 2S +1 for spins). The use of qudits promises several advantages (e.g., the same dimension of the
computational basis can be obtained on them for fewer spins 2n ↔ dn) [16]–[18], but such systems have not
yet been studied sufficiently well. There are many publications where measures of quantum correlations
such as the quantum and geometric discords for two qubits (S = 1/2 for two spins) [7], [13], [19] or in
the cases reducible to them [20]–[22] were calculated. These measures were calculated for several states
with two spins S = 1 [23] and symmetric states with large d [24]. Their values were estimated for 2×n

systems [3], [5], [25], [26], and the geometric discord was also estimated for m×n systems [26]–[28].
The dynamics of correlations of two coupled large spins has not yet been investigated. We here consider

it in the high-temperature approximation. We calculate the time-evolution of the density-matrix mutual
information and the mutual information of the classical distribution function over directions, which were
obtained by generalized measurements (POVM1 measurements) [7], [29] with a basis of spin coherent states
(SCS) [22], [30], [31]. We study how the relation between the quantum and classical correlations depends
on the spin value and compare the results obtained by orthogonal and nonorthogonal measurements.

1Positive operator-valued measure.
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2. Mutual information of two spins

We consider a system of two spins S1 and S2 with spin–spin coupling (4). For each spin, we use a basis
of states with a certain value of the projection on the axis z, i.e., |m〉, where m takes 2S+1 values,

− S, −S + 1, . . . , S − 1, S. (5)

For two spins, the basis has the form of the direct product |m1〉 ⊗ |m2〉.
We consider the system in equilibrium in a strong magnetic field exceeding spin–spin coupling (4) with

density matrix (1). The time-evolution of matrix (2) can be written explicitly as

ρ̂(t) = e−i bHSSt/�ρ̂(0)ei bHSSt/� =

=
1
Z

[

1 +
β

2
(̂S1+e−iτ bS2z + ̂S1−eiτ bS2z + ̂S2+e−iτ bS1z + ̂S2−eiτ bS1z)

]

=
1
Z

[1 + βΔρ̂(t)], (6)

where ̂Sj± = ̂Sjx ± îSjy, τ = tJ/S2 is the dimensionless time, Z = d1d2, and dj = 2Sj + 1.
The correlation between spins is measured by the mutual information [7], [29]

I(ρ̂) = SN(ρ̂1) + SN(ρ̂2) − SN(ρ̂), (7)

where SN(ρ̂) = −Tr{ρ̂ log2 ρ̂} is the von Neumann entropy and ρ̂1 = Tr2 ρ̂ and ρ̂2 = Tr1 ρ̂ are the respective
reduced density matrices after the trace of matrix (6) is calculated over the states of the second or the first
spin. We calculate the trace and obtain

ρ̂1 =
1 + β ̂S1xg2(t)

d1
, ρ̂2 =

1 + β ̂S2xg1(t)
d2

, (8)

gj(t) =
1
dj

Sj
∑

m=−Sj

e±iτm =
sin(djτ/2)
dj sin(τ/2)

. (9)

We calculate the von Neumann entropy in the lowest order in β [2], [3], [8],

SN(ρ̂) = −Tr(ρ̂ log2 ρ̂) ≈ log2 Z − β2

2Z log 2
Tr(Δρ̂)2, (10)

and obtain
I(ρ̂) = S1(S1 + 1)b[1 − g2

2(t)] + S2(S2 + 1)b[1 − g2
1(t)], (11)

where b = β2/6 log 2.
Figure 1 illustrates the time dependence of the results obtained for the mutual information of two

spins (11) for different values of the spin quantum number S1 = S2 = S and the classical momenta (see
formula (A.5) in the appendix). The time is taken in dimensionless units τS = tJ . The results are given in
2bS2 units (i.e., the ratios I(ρ̂)/2bS2 are given). In such units, the curves of the classical mutual information
dependence Jc(Pc)/2bS2 given by (A.5) coincide for different S. There are no correlations at t = 0. For
τ = tJ/S � 1, we obtain

I(ρ̂) ≈ 2
3
bS1(S1 + 1)S2(S2 + 1)τ2 =

2
3
bS1(S1 + 1)

(

1 +
1
S2

)

(Jt)2, (12)

Jc(Pc) ≈
2
3
b(S1)2(S2)2τ2 =

2
3
b(S1)2(Jt)2. (13)

1379



Fig. 1. Time evolution of mutual information (solid lines I(ρ̂)/(2bS2), dashed line Jc(Pc)/(2bS2),

and dotted lines JBB(P12)/(2bS2)) for different values of S = S1 = S2 indicated by the numbers on

the curves.

Quantum mutual information (12) exceeds classical mutual information (13) because its squared total
momentum as a result of quantum fluctuations is equal to Sj(Sj + 1) rather than to S2

j .

At large times, the classical mutual information Jc(Pc) given by (A.5) tends to its limit value. The
quantum mutual information I(ρ̂) given by (11) behaves differently: it first enters a plateau and then
decreases to zero at τ = 2π. The periodic time variation with the period T = 2πS/J arises because the
energy levels are discrete (such a behavior of simple quantum systems is well known; see, e.g., [11]–[13], [21]).
For t = T , the difference between the phase increment of different energy levels (6) is an integer multiple of
2π. Hence, g2

j (T ) = 1 (see (9)) and I(ρ̂) = 0. In the case of classical magnetic momenta, their projections
on the magnetic field and their energies vary continuously. Hence, gcj(t) → 0 as t → ∞ (see (A.4)), and the
curve Jc(Pc) given by (A.5) enters a plateau. For S = 3/2, the mutual information periodicity can be seen
in Fig. 1 (I(ρ̂) = 0 for tJ = 3π). For S = 9/2, the mutual information disappears beyond the displayed
region for tJ = 9π. As S → ∞, the period becomes infinite, and the functions I(ρ̂)/2bS2 given by (11) and
Jc(Pc)/2bS2 given by (A.5) coincide at finite times.

3. Orthogonal measurements

Mutual information (7) is used to measure the total correlations, which are sums of the classical and
quantum correlations. The classical correlations can be calculated by the measurement described in [7]. To
perform a von Neumann measurement, we must project the state ρ̂(t) on a complete basis of orthogonal
wave functions |Ψm〉 using a complete system of projection operators,

̂Πm = |Ψm〉〈Ψm|,
∑

m

̂Πm = 1. (14)

In the case of a system with S1 = 1/2, the complete set of mutually orthogonal projection operators consists
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of two projection operators of general form,

̂Π1± =
1
2
[1 ± (nxσ̂1x + nyσ̂1y + nzσ̂1z)], (15)

where nα are the direction cosines, σ̂α is the Pauli matrix, and α = x, y, z. In the case of generalized
POVM measurements, which we consider in the next section, the functions |Ψm〉 in operators (14) can be
nonorthogonal, and these operators are then already not projection operators strictly speaking [29].

Density matrix (6) after projection for the first spin becomes

̂Π1(ρ̂) =
1
Z

[1 + β̂Π1(Δρ̂(t))], (16)

where
̂Π1(Δρ̂(t)) =

∑

m

(̂Π1m ⊗ ̂E2)Δρ̂(t)(̂Π1m ⊗ ̂E2)

and ̂E2 is the unit matrix. In the lowest order with respect to the inverse temperature, mutual informa-
tion (7) becomes

I(̂Π1(ρ̂)) = SN(̂Π1(ρ̂1)) + SN(̂Π1(ρ̂2)) − SN(̂Π1(ρ̂)) =

=
β2

2 log 2

{

1
Z

Tr(̂Π1(Δρ̂))2 − 1
d1

Tr1(̂Π1(Δρ̂1))2 −
1
d2

Tr2(Δρ̂2)2
}

. (17)

The value of this measure of the classical correlation depends on the choice of basis (14). It was proposed [7]
to consider all bases and to take the maximum value of correlation (17) as the universal measure. Such a
program can be implemented only in several simple cases, for example, in the case of a two-level system,
which we consider below.

If we subtract classical part (17) from all correlations (7), then we obtain the quantum part of the
correlations

Q = I(ρ̂)− I(̂Π1(ρ̂))=
β2

2 log 2

{

1
Z

Tr(Δρ̂)2 − 1
Z

Tr(̂Π1(Δρ̂))2 − 1
d1

Tr1(Δρ̂1)2 +
1
d1

Tr1(̂Π1(Δρ̂1))2
}

. (18)

We minimize this quantity over the measurement bases and obtain the entropy measure of quantum cor-
relations, i.e., the quantum discord [7]. Measure (18) without optimization was called a measurement-

dependent discord [7].
To simplify the calculations, it was proposed to replace the above entropy measure with a geomet-

ric measure of quantum correlations, i.e., the geometric discord [7], for which in the high-temperature
approximation we obtain

DG = min
Π1

Tr(ρ̂ − ̂Π1(ρ̂))2 =
β2

Z2
min
Π1

{Tr(Δρ̂)2 − Tr(̂Π1(Δρ̂))2}. (19)

This relation is based on the property Tr(̂Π(Δρ̂))2 = Tr(̂Π(Δρ̂)Δρ̂). Although this measure has certain
drawbacks noted in [28], [32], [33], it is currently often used to estimate quantum correlations [3], [19]–[28].
It was proposed in [28] to improve this measure by changing it to

˜DG =
DG

Tr(ρ̂)2
. (20)
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In the high-temperature approximation, this transformation is related to multiplying (19) by Z.
We calculate these measures for two-spin system (4) in state (6) for S1 = 1/2 and S2 ≥ 1/2. We apply

projection operators (15), perform several calculations, and obtain

Tr(̂Π1(Δρ̂))2

Z
=

S2(S2 + 1)
3

(

cos2
τ

2
+ n2

z sin2 τ

2

)

+
n2

x

8
(1 + g2(2t)) +

n2
y

8
(1 − g2(2t)), (21)

I(̂Π1(ρ̂))
3b

=
S2(S2 + 1)

3
n2

z sin2 τ

2
+

n2
x

8
(1 + g2(2t)) +

n2
y

8
(1 − g2(2t)) − n2

x

4
g2
2(t). (22)

The maximum value of quantity (22) is attained for the direction cosines nx = ny = 0, nz = 1 at any times.
This implies the respective formulas for the classical correlations and the quantum discords

CN = max
bΠ1

I(̂Π1(ρ̂)) = S2(S2 + 1)b sin2 τ

2
, DN = I(ρ̂) − CN =

3
4
b[1 − g2

2(t)]. (23)

Quantity (21) attains its maximum for nx = 1 at small times τ < τc and for nz = 1 at large times
τ > τc. Here, τc is the solution of the equation

S2(S2 + 1)
3

sin2 τ

2
=

1 + g2(2t)
8

.

We obtain τc = π/2 for d2 = 2, τc = 0.574 for d2 = 3, and the estimate τc ≈
√

3/
√

2S2(S2 + 1) ≈
√

6/d2

for d2 � 1. Finally, the geometric discord has the form

DG =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

β2

Z

[

S2(S2 + 1)
3

sin2 τ

2
+

1 − g2(2t)
8

]

, τ < τc,

β2

4Z
, τ > τc.

(24)

The time behavior of the two measures is similar. The correlations increase and enter a plateau. The
differences are in their approach to the plateau and in the plateau height. This height is independent of d2 in
the case of the entropy measure, while it decreases as 1/d2 from ρ̂2 in definition (19) compared with ρ̂ log2 ρ̂

in definition (18) in the case of the geometric measure because of the additional factor 1/Z. Such differences
were noted in [3], [28] for the qubit (d1 = 2) related to a multiqubit system (d2 = 2n) by the scheme of
deterministic quantum calculation with one qubit (DQC1). They can be removed by transformation (20).

In the case of a two-spin system with arbitrary spins, we project state (6) on eigenstates (5) of the
operator S1z with the projection operators

̂ΠS1m = |m〉〈m|. (25)

For the classical correlations and the measurement-depend discord, we then obtain the respective expressions

C
(S1)
N = I(̂ΠS1(ρ̂)) = S2(S2 + 1)b[1 − g2

1(t)], Q
(S1)
N = S1(S1 + 1)b[1 − g2

2(t)]. (26)

4. Nonorthogonal measurements

According to result (26) obtained in the preceding section, we have C
(S1)
N = Q

(S1)
N at small times (this

relation holds at all times for S1 = S2). Therefore, for an orthogonal measurement with a chosen basis, we
show that the quantum correlations can be preserved for large spins S2 → ∞. The fact that the quantum
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properties are preserved in this limit, which manifests itself in a violation of the Bell inequality, was noted
for a singlet state of two spins in [34], [35]. For systems in other states, the transition from quantum spin
to the classical momentum as S → ∞ is expected [11], [31], [36]. We specify to which case our state (6)
belongs. For this, we change the measurement basis.

It is assumed that the SCS (Bloch states) are closest to the state of classical momenta [30]:

|θ, ϕ〉 = R(θ, ϕ)|S〉 =
S

∑

m=−S

(

2S

S + m

)1/2
(

cos
θ

2

)S+m(

eiϕ sin
θ

2

)S−m

|m〉, (27)

where θ and ϕ are the polar and azimuthal angles on the unit sphere (Bloch sphere). These states are
obtained from the ground state |S〉 by the rotation operator R(θ, ϕ) and are a superposition of states (5)
with different projections m. In state (27), the average spin projections

〈θ, ϕ|̂Sz |θ, ϕ〉 = S cos θ, 〈θ, ϕ|̂Sx|θ, ϕ〉 = S sin θ cosϕ,

〈θ, ϕ|̂Sy |θ, ϕ〉 = S sin θ sinϕ

(28)

are the same as in the case of classical momentum (A.1) considered in the appendix. The completeness
condition

2S + 1
4π

∫

|θ, ϕ〉〈θ, ϕ| sin θ dθ dϕ = 1

is satisfied for the SCS basis, but this basis is not orthogonal:

|〈θ, ϕ|θ′, ϕ′〉|2 = cos4S Θ
2

, cosΘ = cos θ cos θ′ + sin θ sin θ′ cos(ϕ − ϕ′).

We take the SCS system as the measurement basis in (14), perform the POVM measurement, which
reduces to multiplying by the SCS and calculating the trace, and obtain the classical density function for
the probability distribution of the angle values

(4π)2P12(θ1, ϕ1, θ2, ϕ2; t) = d1d2 Tr{|θ1, ϕ1〉〈θ1, ϕ1| ⊗ |θ2, ϕ2〉〈θ2, ϕ2|ρ̂(t)} =

= d1d2〈θ1, ϕ1, θ2, ϕ2|ρ̂(t)|θ1, ϕ1, θ2, ϕ2〉. (29)

We use the SCS properties

〈θj , ϕj |̂Sj±|θj , ϕj〉 = Sj± = Sj sin θje
±iϕj ,

〈θj , ϕj |e±iτ bSjz |θj , ϕj〉 =
(

cos
τ

2
∓ i cos θj sin

τ

2

)2Sj

≡ ξj∓(t)

to obtain function (29):

P12(θ1, ϕ1, θ2, ϕ2; t) =
1

(4π)2

{

1 +
β

2
[S1+ξ2+(t) + S1−ξ2−(t) + S2+ξ1+(t) + S2−ξ1−(t)]

}

. (30)

The further calculations repeat the calculations for the classical momenta in the appendix. Integrating over
the angles, we obtain the reduced distributions

P1(θ1, ϕ1; t) =
1
4π

{1 + βS1xg2(t)}, P2(θ2, ϕ2; t) =
1
4π

{1 + βS2xg1(t)}
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and mutual information (A.3) in the high-temperature approximation

JBB(P12) = (S1)2b[f2(t) − g2
2(t)] + (S2)2b[f1(t) − g2

1(t)], (31)

where

fj(t) =
1
2

∫ +1

−1

ξj+(t)ξj−(t) d cos θj =
2Sj
∑

n=0

(

2Sj

n

)

(

cos
τ

2

)4Sj−2n(

sin
τ

2

)2n 1
2n + 1

=

=
2Sj
∑

n=0

(

2Sj

n

)

(2n)!!
(2n + 1)!!

(−1)n

(

sin
τ

2

)2n

. (32)

The time-evolution of the mutual information JBB(P12) given by (31), which is obtained by POVM
measurements with the SCS basis, is shown in Fig. 1. At small times τ = tJ/S � 1, we obtain
JBB(P12) ≈ Jc(Pc), where Jc(Pc) is determined by formula (13). At large times, the curve of the de-
pendence JBB(P12) walks away downwards. This effect arises because of the packet spreading from states
with different projections Sz to the SCS (with different values of the phase factor eiτSz). Nevertheless, the
packets are gathered together at t = T because time dependence (6) is periodic.

If we now subtract the obtained classical part of correlations (31) from the total correlation I(ρ̂) given
by (11), then the difference is the quantum part of the correlations,

QBB = I(ρ̂) − JBB(P12) =

= (S1)2b[1 − f2(t)] + (S2)2b[1 − f1(t)] + S1b[1 − g2
2(t)] + S2b[1 − g2

1(t)]. (33)

In the case under study, the measurements were performed symmetrically for both spins. Another
measure of classical correlations can be obtained by performing the POVM measurement only for one of
the spins, for example, for the second spin. In this case, instead of (31), we obtain

JB2 = S1(S1 + 1)b[f2(t) − g2
2(t)] + (S2)2b[1 − g2

1(t)], (34)

which implies the quantum part

QB2 = I(ρ̂) − JB2 = S1(S1 + 1)b[1 − f2(t)] + S2b[1 − g2
1(t)]. (35)

We note that a measure called the Gaussian quantum discord was previously introduced in systems
with a continuous spectrum obtainable by the POVM measurement with a basis of field (boson) coherent
states [37], [38].

5. Discussion

The time dependence of the fractions of quantum correlations obtained by different measurement
methods is shown in Fig. 2 as the ratios QBB/I(ρ̂), QB2/I(ρ̂), Q

(S1)
N /I(ρ̂), and DN/I(ρ̂) for different values

of S1 and S2. At small times τ = tJ/S2 � 1, we use formulas (33), (35), and (12) to obtain the results of
POVM measurements with the SCS basis

QBB

I(ρ̂)
≈ S1 + S2 + 1

(S1 + 1)(S2 + 1)
,

QB2

I(ρ̂)
≈ 1

S2 + 1
, (36)
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Fig. 2. Time evolution of the quantum part of the correlations for different spin pairs indicated by

the numbers on the curves: (1) S1 = S2 = 3/2, (2) S1 = S2 = 9/2, (3)S1 = 1/2 and S2 = 9/2, and

(4) S1 = 9/2 and S2 = 1/2. The results of orthogonal measurements for the first spin, DN/I(ρ̂) and

Q
(S1)
N /I(ρ̂), are shown by solid lines. The results of nonorthogonal measurements for measurements

for both spins, QBB/I(ρ̂), are shown by dotted lines and for measurements for the second spin only,

QB2/I(ρ̂), are shown by dashed lines.

which is consistent with the data illustrated in Fig. 2. It follows from results (23) and (26) obtained after
projection on orthogonal basis (25) that the classical and quantum contributions coincide at small times:
C

(S1)
N = Q

(S1)
N = I(ρ̂)/2. For S1 = S2, this relation remains the same at all times. The coincidence of the

contributions was previously proved in the special case S1 = S2 = 1/2 in [13].
To reveal the causes of the differences between the two measuring methods, we consider density ma-

trix (6) at small times,

ρ̂(t) ∼ 1
Z

[

1 + β(̂S1x + ̂S2x) +
βtJ

S2
(̂S1y

̂S2z + ̂S2y
̂S1z)

]

. (37)

After orthogonal measurement (16) with projection operators (25), the contribution of the term ̂S1y
̂S2z is

zero, and the classical part of the correlations remaining after the measurement is hence equal to half the
total correlations for any spin value. After the POVM measurement of state (37) for the second (large)
spin, both terms contribute to the classical part of correlations (34) (or to (31) after POVM measurements
of state (37) for both spins). Only the quantum fluctuations are lost in calculations of the average squared
operator of the spin component, i.e., we have S2

j /3 instead of Sj(Sj + 1)/3. As Sj → ∞, these differences,
which arise because of fluctuations, disappear. We can thus see that the fraction of classical correlations
increases as the spin increases and the fraction of quantum correlations respectively decreases and tends to
zero in the limit as Sj → ∞.

The conclusion that the maximum contribution of the classical correlations can be obtained by POVM
measurements is not new and is consistent with the general theory [7]. But in the case S1 = S2 = 1/2, which
is considered more frequently than the others, the passage from von Neumann orthogonal measurements to
POVM measurements gives a refinement that is insignificant in value [7]. The difference between the results
for the classical mutual information obtained by the two measurement methods is greater in the system of
a qubit and a qutrit [39]. We obtained a similar result for the system of two large spins in the state with
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density matrix (37). At least for this state, the estimation methods based on orthogonal measurements can
distort the actual relation between the quantum and classical correlations.

We now analyze the evolution of quantum correlations at large times. At t = T , the correlations
disappear in the quantum system because I(ρ̂) = 0. For t ≈ T/2, the correlation is maximum, as can
be seen in the graphs of mutual information in Fig. 1. Moreover, the fractions of quantum and classical
correlations depend on the measurement method (see Fig. 2). If S1 �= S2, then results (23) and (26) obtained
after projection on the orthogonal basis (25) give a periodic time dependence of the fractions of classical
and quantum correlations. These fractions are equal to each other at small times but attain different values
for sin2(τ/2) = 1:

C
(S1)
N

I(ρ̂)
≈ S2(S2 + 1)

S1(S1 + 1) + S2(S2 + 1)
,

Q
(S1)
N

I(ρ̂)
≈ S1(S1 + 1)

S1(S1 + 1) + S2(S2 + 1)
. (38)

Such dependences are shown in Fig. 2 for S1 = 1/2, S2 = 9/2 and S1 = 9/2, S2 = 1/2. According
to (11), (23), and (26), the ratio Q

(S1)
N /I(ρ̂) either decreases (for S1 < S2) or increases (for S1 > S2) with

time (in the latter case, we replace S2 with S1 as the parameters J and τ are scaled). On the other hand,
after POVM measurements, relations (31) and (34) with sin2(τ/2) = 1 (only one term fj(t) = 1/(4Sj + 1)
remains in series (32)) imply

JB2

I(ρ̂)
≈ S1(S1 + 1)/(4S2 + 1) + S2

2

S1(S1 + 1) + S2(S2 + 1)
,

JBB

I(ρ̂)
≈ S2

1/(4S2 + 1) + S2
2/(4S1 + 1)

S1(S1 + 1) + S2(S2 + 1)
. (39)

From (33) and (35), we further derive the estimates for S1 = S2 = S � 1:

QBB

I(ρ̂)
≈ 1 − 1

4S
and

QB2

I(ρ̂)
≈ 1

2

(

1 +
3

4S

)

. (40)

Based on Fig. 2 and the above formulas, we conclude that for t ∼ T/2, the orthogonal measurement
gives a value of the fraction of quantum correlations less than that obtained by the POVM measurement
with the SCS basis, i.e., the obtained relation between the results is opposite to that in the case of small
times. To explain this effect, we write the density matrix for t = T/2 (τ = π):

ρ̂

(

T

2

)

=
1
Z

{

1 +
β

2
[̂S1+e−iπbS2z + ̂S1−eiπbS2z + ̂S2+e−iπbS1z + ̂S2−eiπbS1z ]

}

. (41)

If the value of spin projections varies by one, then the function eiπSjz changes its sign. The corresponding
terms in (41) are β[̂S1x(−1)m2 + ̂S2x(−1)m1 ] for integer-valued spins and β[̂S1y(−1)m2−1/2+ ̂S2y(−1)m1−1/2]
for half-integer spins. In the case of orthogonal measurements with projection operators (25) for one of the
spins (the first), the contribution is given by one term. In contrast to the case of small times, the value of
the contribution of this term is variable in this case. For example, for S1 < S2, we only have the “small
field of the small spin rotates the large spin” contribution, while the “large spin rotates the small spin”
contribution is lost. We obtain expressions (38) for the fractions of classical and quantum correlations. The
result of projection (29) of state (41) on the SCS in the POVM measurement is more complicated: SCS (27)
is formed by the sum of states (5) with different spin projections on the z axis, which in (29) and (30) give
a sign-alternating series with the sums

ξj∓

(

T

2

)

= [cos θj ]2Sj .
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As a result, after POVM measurements, we obtain results (39) that are less in value than result (38)
obtained by orthogonal measurements.

We performed POVM measurements with the SCS basis for both one and two spins. The fraction
of quantum correlations is less in the first case. On the other hand, in the orthogonal measurements of
state (37) for one or two spins, we obtain the same values of the classical and hence of the quantum
correlations. Indeed, if after the orthogonal measurement for the first spin, we perform the orthogonal
projection of the second spin on the eigenstates of the operator ̂S2y, then there are no additional losses of
the correlations. Such an observation about the coincidence of the results of measurements for one or two
qubits was made in [39]. How to measure is the question, and no final answer to this question has yet been
obtained [7], [39], [40]. For instance, Luo [40] believes that the fraction of the semiclassical correlation that
includes a part of the quantum correlations is obtained when one spin is measured.

6. Conclusion

Correlations (3) in our model, observed by the NMR method, have form (37) at small times. For two
spins S1 = S2 = 1/2, these correlations are equally divided into the quantum and classical parts, according
to the results of orthogonal measurements. As the spin increases, the fraction of classical correlations
increases, and the fraction of quantum correlations correspondingly decreases and tends to zero in the limit
as S → ∞. To obtain such a result, we passed from orthogonal measurements to POVM measurements
with the SCS basis. As time increases, the linear time dependence changed into a dependence in the form
of the sum of exponentials with different periods. After the time period T = 2πS/J equal to the greatest
common divisor of these periods for S1 = S2 = S, the correlations again become zero. At times close to half
the period, we observe the greatest degree of correlation between the two spins, which is characterized by
the maximum of mutual information. In this region, the relative fraction of quantum correlations increases
compared with the region of small times. Because the phase factors of neighboring states with projections
that differ by one have different values at such times, the POVM measurement with the SCS basis becomes
too rough as a measuring tool. The point is that in the SCS, the spread of projections m is of the order of√

S � 1 [31]. The orthogonal measurements in the case of projection on separate states with certain values
of m permit obtaining a greater amount of classical correlations. Nevertheless, the quantum correlations
form a noticeable part equal to half all the correlations for S1 = S2. For S1 < S2, their fraction decreases
by a factor of (S1/S2)2 if the measurements are performed for the first spin.

Appendix: Mutual information of two classical momenta

We consider a system of two classical magnetic momenta. We describe their states by polar and
azimuthal angles θ and ϕ on the unit sphere (Bloch sphere) in terms of which the projections of the
classical momentum �S on the coordinate axes can be expressed as

Sz = S cos θ, Sy = S sin θ sin ϕ, Sx = S sin θ cosϕ. (A.1)

Instead of the density matrix ρ̂(t) given by (6), the states of the ensemble are now described by the
density function of the probability distribution of the angle values on the Bloch sphere:

Pc(θ1, ϕ1, θ2, ϕ2; t) =
1

(4π)2

{

1 +
β

2
[S1+e−iτS2z + S1−eiτS2z + S2+e−iτS1z + S2−eiτS1z ]

}

, (A.2)

where
Sjz = Sj cos θj , Sj± = Sj sin θje

±iϕj .
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The classical mutual information is

Jc(Pc) = SSh(Pc1) + SSh(Pc2) − SSh(Pc), (A.3)

where

SSh(Pc) = −
∫∫

Pc(θ1, ϕ1, θ2, ϕ2; t) log2 Pc(θ1, ϕ1, θ2, ϕ2; t) sin θ2 dθ2 dϕ2 sin θ1 dθ1 dϕ1

is the Shannon entropy. Instead of taking the trace, we must calculate the integral over the Bloch sphere.
The reduced distribution density for the first momentum (the calculations for the second momentum are
similar) is given by

Pc1(θ1, ϕ1; t) =
∫

Pc(θ1, ϕ1, θ2, ϕ2; t) sin θ2 dθ2 dϕ2 =
1
4π

{1 + βS1xgc2(t)},

gcj(t) =
1
2

∫ +1

−1

e±iτSj cos θj d cos θj =
sin τSj

τSj
.

(A.4)

We obtain the expression for classical mutual information (A.3) in the high-temperature approximation:

Jc(Pc) = (S1)2b[1 − g2
c2(t)] + (S2)2b[1 − g2

c1(t)]. (A.5)
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