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We developed semiclassical method and show that any smooth potential in graphene describing
elongated a quantum dot or wire may behave as a barrier or as a trapping well or as a double barrier
potential, Fabry–Perot structure, for 1D Schrödinger equation. The energy spectrum of quantum wires has
been found and compared with numerical simulations. We found that there are two types of localized
states, stable and metastable, having finite life time. These life times are calculated, as is the form of
the localized wave functions which are exponentially decaying away from the wire in the perpendicular
direction.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Graphene is the thinnest of existing materials, one atom thick,
and consequently very sensitive to its environment. Properties of
graphene change drastically depending on the adjacent material,
or substrate, and where and how it is deposited [1]. Charged im-
purities in a SiO2 substrate can induce an electrostatic potential
which may confine electron and hole puddles as observed in [2,3].
The existence of such puddles has a strong influence on electron
mobility and conductivity. Here we consider electronic properties
of one such puddle having the form of a channel which may be
created by an application of a gate voltage to graphene via a metal-
lic strip electrode. It may also be naturally created in epitaxial
graphene on SiC due to a terrace step on the SiC layer [4,5]. The
positive electrostatic potential due to the atomic terrace on the
substrate may form a potential barrier for electrons or a poten-
tial well for holes. Such a simple device has many applications,
in particular for graphene electronics, and represents a basic ele-
ment for the fabrication of quantum devices such as a graphene
transistor [6].

Since electron and hole quasi-particles may penetrate through
any high and wide potential barrier in graphene (Klein tunnel-
ing), the existence of bound states is not obvious. This is in con-
trast with other systems which are described by the conventional
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Schrödinger equation; for example, a quantum dot confined within
a two-dimensional electron gas or a quantum well formed by
a GaAs droplet on an AlGaAs substrate. It was first demonstrated
in [7] that in graphene a single parabolic barrier is similar to the
double barrier potential well in GaAs/AlGaAs [8] and that quasi-
bound states exist in this case. The left and right slopes of the
parabolic potential barrier act like tunneling barriers. In this Letter
we have considered a generic smooth potential and shown clearly
for the first time that the lifetime of the quasi-bound states decays
exponentially with the thickness of the tunneling barriers. Of par-
ticular significance is our discovery of localized bound states and
the criterion which determines when the bound states are trans-
formed into the quasi-bound ones.

It is important to note that there is a major difference between
rectangular and smooth potential barriers. The presence of sta-
ble bound states for a rectangular barrier was first demonstrated
in [9]. However, in this case the double barrier structure does not
arise and therefore the bound states are always associated with
trapping in a potential well. Here we show that similar states can
exist in a more generic situation when there is a single 1D smooth
potential barrier formed in a graphene monolayer by some exter-
nal electrostatic potential.

Quasi-particles in graphene [10] and topological insulators [11]
are described by the Dirac equation HΨ = EΨ , with [10, Eq. (19)]:

H = v F (σ · p) + U (x), (1)

where the solution Ψ = (u, v)T is the spinor wave function, σ =
(σ1, σ2)

T, where σ1 and σ2 are Pauli matrices, and p = −ih̄∇
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Fig. 1. A typical potential in graphene. The three energy zones, noted in blue (I),
red (II) and green (III) are associated with different qualitative behavior. In the blue
high energy zone (I) it behaves as a barrier, in the red zone (II) it displays the char-
acteristics of a double barrier structure, while in the green low energy zone (III)
it behaves as a potential well localizing both electrons and holes. Quasi-bound
(metastable) states are confined by two tunneling strips (−x2,−x1) and (x1, x2) and
are found in the red zone, whereas the bound states are located between −x1 and
x1 and are found in the green zone. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this Letter.)

is the two-dimensional momentum operator. The two compo-
nents u and v correspond to the A and B honeycomb sublattices
of graphene, respectively, v F is the Fermi velocity, U is an external
potential. Below we consider a class of one-dimensional smooth
potentials U = U (x) which have a maximum, U (0) = U0, and van-
ish at infinity (see Fig. 1). We introduce dimensionless rescaled
variables: x/D → x, D being a characteristic length scale for the
external potential, E/U0 → E , v F p y/U0 → p y , where p y is the or-
thogonal component of momentum which we assume to be posi-
tive, and U (x/D)/U0 → U (x). The WKB solution will be valid when
the dimensionless parameter h = h̄v F /U0 D is such that h � 1.
Typical values of U0 and D are in the ranges 10–100 meV and
100–500 nm. For example, for U0 = 100 meV, D = 66 nm, we have
h = 0.1. Dimensionless variables are used throughout this Letter.

2. Properties of arbitrary smooth potential

It is remarkable that any smooth potential of this kind may be-
have as a potential well, as a barrier, or as a double well structure;
the type of behavior depending on the energy and the direction
of the incident wave. Let p y � 0. There are three energy zones: (I)
the “blue” zone, when U0 − p y < E < U0 + p y , (II) the “red” zone,
when p y < E < U0 − p y and (III) the lowest energy, “green” zone,
when |E| < p y (see Fig. 1). The energy value E = p y is the cut-off
energy. For |E| < p y there are no propagating waves outside the
potential. For the sake of simplicity we assume that the smooth
potential has a symmetric shape.

If the energy of incident quasi-particles belongs to the red zone
there are four turning points ±a, ±b (zone (II) in Fig. 1 where
x1 = a and x2 = b), given by the solutions of the equation

px =
√(

U (x) − E
)2 − p2

y = 0, (2)

since we deal with the Hamiltonian H = U ±
√

p2
x + p2

y .

Here the smooth potential acts much like the double barrier
structure for 1D Schrödinger equation presented in Fig. 2. There
may be five different domains of the different particle’s behavior:
(1) x < −b, (2) −b < x < −a, (3) −a < x < a, (4) a < x < b and
(5) b < x. Within the classically forbidden domains (−b < x < −a
and a < x < b) the solution is a combination of exponentially de-
caying and growing contributions and these provide coupling be-
tween three classically allowed domains associated with oscillatory
solutions. Matching solutions found independently for these five
domains results in WKB equations for the transfer matrix that,
Fig. 2. Schematic shape of a double barrier potential for the 1D Schrödinger equa-
tion, equivalent to a double-well Fabry–Perot resonator, which behaves like the
smooth potential in graphene presented in Fig. 1 when the energy of quasi-particles
belongs to either the red or green zones, i.e. −p y < E < U0 − p y . Quasi-bound states
shown by dashed lines are confined by two tunneling (blue) strips (−x2,−x1) and
(x1, x2). The width of these energy levels is shown by green strips. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web version of this Letter.)

in turn, gives the transmission and reflection coefficients of the
electron scattering over this barrier in graphene.

In the green energy zone, |E| < p y (band (III) in Fig. 1) the
effective double barrier structure disappears and only one poten-
tial well arises. There is no wave propagation outside this well,
however there are oscillatory solutions within. They are associated
with stable bound states as in a rectangular barrier [9]. For other
shapes of the barriers different approaches have been developed
[12–14].

Now, consider the spectral problem for the smooth barrier
within the red energy zone: p y < E < U0 − p y where all four turn-
ing points are present. Here we observe incident, reflected and
transmitted electronic states at x < −a and x > a, whereas un-
der the barrier −a < x < a we have a hole state. On the basis of
the semiclassical asymptotic analysis developed in [13] it has been
pointed out that for p y > 0 total transmission takes place only for
a symmetric barrier.

When h−1/2(b −a) � 1 all four turning points are separate then
there is a tunneling barrier on each side of the potential. This
phenomenon is similar to a 1D Fabry–Perot resonator which is
well described by a 1D Schrödinger equation with the double-well
potential shown in Fig. 2 and has both localized and metastable
states. The latter have a complex energy spectrum with Re(En) > 0,
Im(En) < 0 (shown by dashed lines in Fig. 2). The states localized
inside the potential well have a real spectrum with En < 0 (solid
lines in Fig. 2). If p y → 0 (normal incidence) the turning points, a
and b, coalesce, and all localized states disappear. Note that in the
case of normal incidence one observes total transmission (Klein
tunneling).

3. WKB asymptotic solution for Dirac system in classically
allowed domain

The WKB oscillatory asymptotic solution to the Dirac system
in the classically allowed domains is to be sought in the form of
asymptotic series (see [15,16]) with real S(x)

ψ =
(

u
v

)
= e

i
h S(x)

+∞∑
j=0

(−ih) j
(

u j
v j

)
= e

i
h S(x)

+∞∑
j=0

(−ih) jψ j(x).

(3)

Substituting this series into the Dirac system, and equating to
zero corresponding coefficients of successive degrees of the small
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parameter h, we obtain a recurrent system of equations which de-
termines the unknown S(x) (classical action) and ψ j(x), namely,

(H − E I)ψ0 = 0, (H − E I)ψ j = −Rψ j−1, j > 0, (4)

H =
(

U (x) px − ip y

px + ip y U (x)

)
, R̂ =

(
0 ∂x

∂x 0

)
, (5)

where I is the identity matrix and S ′ = px . The Dirac Hamiltonian
H has two eigenvalues

h1,2 = U (x) ±
√

p2
x + p2

y ≡ U (x) ± p

and

e1,2 = 1√
2

(
1

± px+ip y
p

)
with

px = ±
√(

E − U (x)
)2 − p2

y .

From now on we will omit the dependence on x of U , S , and
quantities derived from them. It turns out to be convenient to use
different e1,2 instead with

e1,2 = 1√
2

(
1

±eiθ

)
, eiθ = px + ip y

E − U
.

In this way we will be able to solve problems of electron and hole
incidence on the barrier simultaneously. Note that, irrespective of
whether E > U or E < U ,

He1 = Ee1, He2 = (2U − E)e2. (6)

The classical action S(x) is given by

S =
∫

px dx = ±
∫ √

(E − U )2 − p2
y dx, (7)

the sign indicating the direction of the wave, with + correspond-
ing to a wave traveling to the right.

For electrons and holes one can seek a solution to the Dirac
system zero-order problem in the form

ψ0 = σ (0)(x)e1 (8)

with unknown amplitude σ (0) . The solvability of the problem
(H − E I)ψ1 = −R̂ψ0 requires that the orthogonality condition
〈e1, R̂(σ (0)e1)〉 = 0 must hold, written as a scalar product implied
with complex conjugation, and from this one obtains the transport
equation for σ (0):

dσ (0)

dx

(
eiθ + e−iθ ) + σ (0) deiθ

dx
= 0. (9)

It has a solution

σ (0) = c0√
2 cos θ

e−iθ/2

with c0 = const, where a branch of the analytic function
√

z is
taken that satisfies the condition Im(

√
z) � 0, z ∈ C. Below we as-

sume that px > 0, corresponding to a wave traveling in the positive
x-direction. Thus, to the leading order we have

ψ =
(

u
v

)
= e± i

h S p(x,xi)√
J±

p

c0e±
1

(
1 + O (h)

)
, (10)

S p(x, xi) =
x∫

xi

px dt, J±
p = 1 + e2iθ±

, e±
1 = 1√

2

(
1

eiθ±
)

,

eiθ± = ±px + ip y
.

E − U
This asymptotic approximation is not valid near turning points
where S ′ = 0 (see Fig. 1) where eiθ = ±i and cos θ = 0. The WKB
asymptotic solution, derived in this section, is valid for the do-
mains Ωi , i = 1,3,5.

4. Solution in classically disallowed domain

The WKB asymptotic solution to the Dirac system in the classi-
cally disallowed domain is to be sought in the form of asymptotic
series (see [15,16])

ψ =
(

u
v

)
= e− 1

h S(x)
+∞∑
j=0

(−ih) j
(

u j
v j

)
= e− 1

h S(x)
+∞∑
j=0

(−ih) jψ j(x),

(11)

with S(x) real. As in Section 3, we obtain a recurrent system of
equations which determines the unknown S(x) and ψ j(x), namely,

(H − E I)ψ0 = 0, (H − E I)ψ j = −Rψ j−1, j > 0, (12)

H =
(

U i(qx − p y)

i(qx + p y) U

)
, (13)

where S ′ = qx , and the matrix R is as in (5). The Hamiltonian H
is not Hermitian. It has two eigenvalues and not orthogonal eigen-
vectors Hl1,2 = h1,2l1,2, where

h1,2 = U (x) ±
√

p2
y − q2

x , l1,2 =
(

1

±i
√

qx+p y
p y−qx

)
as we have

i
qx + p y

E − U
= ±i

√
qx + p y

p y − qx
,

where qx = ±
√

p2
y − (E − U )2, |qx| < p y . Thus, the function S(x) in

a classically disallowed domain is given by

S =
∫

qx dx = ±
∫ √

p2
y − (E − U )2 dx. (14)

Again, for the sake of simplicity, we shall use different l1,2

l1,2 = 1√
1 + κ2

(
1

±iκ

)
=

(
cosφ

±i sin φ

)
, (15)

where

κ = qx + p y

E − U
, κ = tanφ, −π

2
< φ <

π

2
.

For electrons and holes one can seek a solution to the Dirac system
zero-order problem in the form

ψ0 = σ (0)(x)l1 (16)

with unknown amplitude σ (0) . Solvability of the problem
(H − E I)ψ1 = −R̂ψ0 requires that the orthogonality condition
must hold 〈l∗1, R̂(σ (0)l1)〉 = 0, where

l∗1 = 1√
1 + κ2

(
κ
i

)
=

(
sinφ

i cosφ

)
.

The vector l1 is the eigenvector of H , whereas l∗1 is the eigenvector
of H∗ . From the orthogonality condition one obtains the transport
equation for σ (0)

dσ (0)

− σ (0) tan 2φ
dφ = 0. (17)
dx dx
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It has a solution

σ (0) = c0√− cos 2φ
= c0

√
κ2 + 1

κ2 − 1
, c0 = const. (18)

Below we assume that qx > 0. Thus, to the leading order in
classically disallowed domains we have

ψ = e∓ 1
h Sq(x,xi)√

J±
q

l±1
(
1 + O (h)

)
, (19)

where

Sq(x, xi) =
x∫

xi

qx dt, J±
q = ±((

κ±)2 − 1
)
,

l±1 =
(

1
iκ±

)
,

and

κ± = ±qx + p y

E − U
.

This asymptotic approximation is not valid near turning points
qx = 0. The WKB asymptotic solution, derived in this section,
is valid for the domains Ωi , i = 2,4.

5. WKB asymptotic solution for scattering through the smooth
barrier

Consider a problem of scattering through the smooth barrier
(see Fig. 1). From the point of view of physics of graphene, if E > 0
we observe incident, reflected and transmitted electronic states at
x < a and x > b, whereas under the barrier a < x < b we have
a hole state (n–p–n junction, see Fig. 1).

To formulate the scattering problem for transfer matrix T , here
we present the WKB solutions in the domains 1 and 5

ψ1 = e
i
h S p(x,x1)√

J+
p

a1e+
1 + e− i

h S p(x,x1)√
J−

p

a2e−
1 , (20)

ψ5 = e
i
h S p(x,x4)√

J+
p

d1e+
1 + e− i

h S p(x,x4)√
J−

p

d2e−
1 . (21)

The barrier is represented by the combination of the left and right
slopes. The total transfer matrix T , that is d = T a, is given by

T = T R
(

e
i
h P 0

0 e− i
h P

)
T L, (22)

where

P =
a∫

−a

√(
U (x) − E

)2 − p2
y dx

and T R and T L the transfer matrices of the right and left slopes,
respectively. Their semiclassical asymptotic description is to be
found in [13]. The entries of the matrix T read

T11 = e2 Q
h
[
s2ei(2θ+ P

h ) + e−i P
h
]
, (23)

T22 = e2 Q
h
[
s2e−i(2θ+ P

h ) + ei P
h
]
, (24)

T12 = T21 = −2se2 Q
h cos

(
θ + P

)
, (25)
h

Q =
b∫

a

√
p2

y − (
U (x) − E

)2
dx,

θ = Q

πh

(
1 − log

(
Q

πh

))
− π

4
− arg�

(
1 − i

Q

πh

)
, (26)

where s =
√

1 − e−2Q /h , �(z) is the Gamma function. They sat-
isfy the classical properties of transfer matrix T22 = T ∗

11, T21 = T ∗
12,

det T = 1, and if a1 = 1, a2 = r1, d1 = t1, d2 = 0, then t1 = 1/T22,
r1 = −T21/T22, |t1|2 + |r1|2 = 1. If a1 = 0, a2 = t2, d1 = r2, d2 = 1,
then t2 = t1 = t , r2(p y) = T12/T22, |t2|2 + |r2|2 = 1.

Correspondingly, the unitary scattering matrix that connects(
a2
d1

)
= Ŝ

(
a1
d2

)
may written as follows

Ŝ =
(

r1 t
t r2

)
.

The transmission coefficient t = 1/T22, looks exactly like the for-
mula (131) in [13]

t = eiθ
(

cos

(
P

h
+ θ

)(
2e

2Q
h̄ − 1

) + i sin

(
P

h
+ θ

))−1

. (27)

The reflection coefficients is given by

r1(p y) = 2 sgn(p y) cos ( P
h + θ)e

2Q
h +iθ

√
1 − e−2Q /h

cos ( P
h̄ + θ)(2e

2Q
h − 1) + i sin ( P

h̄ + θ)
. (28)

It is clear that if

P (E) = h

(
π

(
n + 1

2

)
− θ

)
, n = 0,1,2, . . . , (29)

than we have that the total transmission, |t| = 1.

6. Solution for complex resonant (quasi-bound) states localized
within the smooth barrier

Consider a problem of resonant states localized within the
smooth barrier (see Fig. 2). In the first case when the energy of
the electron–hole is greater than the cut-off energy (E � |p y|),
we have 5 domains Ωi , i = 1,2, . . . ,5, and 5 WKB forms of so-
lution to the leading order. Due to the localization of the WKB
solution as x → ±∞ one should determine the correct radiation
conditions in the domains 1 and 5, namely

ψ1 = e− i
h S p(x,x1)√

J−
p

a2e−
1 , ψ5 = e

i
h S p(x,x4)√

J+
p

d1e+
1 . (30)

For complex values of E these exponential functions decay as
x → ±∞. Thus, the other two coefficients should satisfy a1 = 0,
d2 = 0 as the corresponding exponential functions blow up. Since
d2 = T21a1 + T22a2, then

T22(E) = 0, (31)

and as a result we obtain Bohr–Sommerfeld quantization condition
for complex energy eigen-levels (quasi-discrete)

P (E) = h

(
π

(
n + 1

2

)
− θ − i

2
log

(
1 − e

−2Q
h̄

))
,

n = 0,1,2, . . . , N1 (32)
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for |p y | < E < U0. Solutions to this equation are complex reso-
nances En = Re(En) − iΓn , where Γ −1

n is the lifetime of the local-
ized resonance. What is important is that the real part of these
complex positive resonances is decreasing with n, thus showing
off the anti-particle hole-like character of the localized modes. For
these resonances we have Γn > 0. From (32), we obtain the impor-
tant estimate

Γn = hw

2
t
,

w = − log
(
1 − e−2Q /h), 
t = −P ′(En), (33)

where P ′(E) is the derivative of the function P (E).
For the second set of real resonances, when the energy of

the electron–hole is smaller than the cut-off energy (E < |p y|),
we have 2 turning points −a and a. Between them we have got
oscillatory WKB solutions

ψ1 = e
i
h S p(x,x2)√

J+
p

d̄1e+
1 + e− i

h S p(x,x2)√
J−

p

d̄2e−
1 , (34)

or

ψ1 = e
i
h S p(x,x3)√

J+
p

ā1e+
1 + e− i

h S p(x,x3)√
J−

p

ā2e−
1 , (35)

and outside decaying

ψ1 = e
1
h Sq(x,x2)√

J−
q

c̄2l−1 , x < x2,

ψ3 = e− 1
h Sq(x,x3)√

J+
q

c̄1l+1 , x > x3. (36)

By gluing these WKB solutions through the two boundary layers
near −a and a, we eliminate ā1,2 and d̄1,2 and obtain the homo-
geneous system of equations

ic̄1 + c̄2ei/hP = 0, ic̄1 − c̄2e−i/hP = 0.

Thus, we derive the Bohr–Sommerfeld quantization condition for
real energy eigen-levels (bound states) inside the cut-off energy
strip for 0 < E < |p y|.

P (E) = hπ

(
n + 1

2

)
, n = N1 + 1, . . . , N2. (37)

7. Comparison between quasi-classical and numerical solutions

For other non-rectangular shapes of the barriers there are dif-
ferent approaches which have been developed in Refs. [12–14].
Here, we have solved the Dirac equation, with the Hamiltonian (1)
for a typical specific potential U (x) = 1/ cosh x, which may de-
scribe a quantum wire or very elongated quantum dot. The Energy
Domain Finite Difference (FD) Method and the truncation tech-
nique with the use of absorbing boundary conditions have been
applied to build a finite size FD lattice model. For each selected p y

we computed the response of the FD lattice model. The ampli-
tude vs energy response was then processed with the harmonic
inversion method (see [17] for details) to obtain the positions and
widths of the resonances.

The results for the energy spectrum and eigenfunctions ob-
tained from analytical semiclassical expressions, see (31), were
compared with the ones computed numerically. Fig. 3 shows
the dispersion of energy levels En(p y) as a function of p y for
complex resonant and real bound states with quantum numbers
Fig. 3. The real part En of first 13 eigenvalues. Semiclassical solutions are shown
by blue lines and numerical results by red circles. The upper and lower bounds for
dispersion branches are shown by thin dotted lines. The faint black line p y = E
is the upper bound for the bound states where Γn = 0. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this Letter.)

Fig. 4. The imaginary part of LogΓn of the first 6 quasi-bound eigenvalues. Semi-
classical solutions are shown by blue lines and numerical results by red circles. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this Letter.)

n = 0,1, . . . ,12 and h = 0.1. For complex resonant states only
the real part is shown. We found that for quantum numbers
n = 0,1, . . . ,8 the imaginary parts, Γn(p y), of complex resonant
bound states also depend on the value of p y as demonstrated
in Fig. 4. The complex quasi-bound states exist within the red
energy zone (II), i.e. p y < E < U0 − p y , whereas the real bound
states exist in the low energy, green zone (III) or in the strip of
the (E, p y) plane determined by E < U0 − p y , −p y < E < p y (see
Figs. 1, 3).

In Fig. 5 we present a color plot for the transmission coef-
ficient, |t|2, through the same barrier with respect to p y and
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Fig. 5. Transmission probability |t|2 colorbar diagram with respect to p y and px =√
E2 − p2

y for U = 1/ cosh x.

Fig. 6. The form of the wave function for the localized solution for p y = 0.5 and
quantum number n = 2. The real part of the first component of the Dirac spinor, u,
is shown by the red solid line; the imaginary part of the second component, v , by
blue dotted line. Corresponding numerical results are shown by circles and squares.
The potential 1

5 U (x) is plotted as a black solid line to pinpoint the localization area.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this Letter.)

px =
√

E2 − p2
y . The most intense red color corresponds to the

resonance transmission when |t| = 1. The number of these reso-
nances is 9 corresponding to the number of complex quasi-bound
states shown in the red zone (II) determined by p y < E < U0 − p y ;
see Figs. 1 and 3. All bound states have infinite lifetime. All states
are confined within the barrier in the x-direction while the mo-
tion in the y-direction is described by plane waves; the energy–
momentum relation is controlled by (31). In all figures we see
a very good agreement between the quasi-classical theory and the
numerical experiments. When p y → 0 the resonance widths go to
infinity and the lifetime vanishes due to the Klein paradox.

As an example we present the shape of the wave function in
Fig. 6, where we plotted the real part of u component and the
imaginary part of v component obtained using WKB approxima-
tions, and also make a comparison with numerical data. For both
methods the results have been calculated for the third energy–
momentum dispersion branch, i.e. n = 2 at the value p y = 0.5 (see
the spectrum given in Fig. 3). Again one observe a good coinci-
dence between semiclassical and numerical results.

In summary, we have applied a semiclassical analysis of
Dirac electron or hole tunneling through a smooth potential in
grapheme. We show that this potential may act as a barrier,
as a trapping well or as the double barrier, Fabry–Perot structure.
For the first time we describe the localized and quasi-bound states
and have determined their spectrum. We have also presented
a new, more detailed description of the quasi-bound states noted
in [7] and, in particular, have derived precise expressions for their
life times. Quasi-bound states undergo a transition into completely
bound states as their life time tends to infinity. The semiclas-
sical equations have been compared with numerical simulations
taken for a specific but typical potential describing quantum dots
or quantum wires in graphene. The comparison shows excellent
agreement. The fact that any potential in graphene can induce both
stable and metastable states may have a significant consequences
on the operation of various graphene-electronic devices.
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