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Magnetic properties of multilayers, consisting of nanogranular (Co40Fe40B20)50(SiO2)50 layers as thin

as magnetic granule diameter alternating the a-Si:H or SiO2 layers and the single layer film

(Co40Fe40B20)50(SiO2)50 with the thickness much larger than the magnetic granule diameter are

reported and compared. The thick single layer film is ferromagnetic but the multilayer film with

the ultrathin granular layers and SiO2 spacer is superparamagnetic. This is interpreted as the result

of increasing percolation threshold in the 2D granular media above 50% concentration of magnetic

granules in the multilayer with the nonmagnetic and dielectric SiO2 spacer. The multilayer with the

a-Si:H spacer is superparamagnetic at 300 K but it becomes ferromagnetic, when temperature is

below 250 K. It is assumed to be resulted from the exchange interaction of magnetic granules through

the semiconductor a-Si:H layers. The value of exchange interaction through the semiconductor

spacer is estimated. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794361]

I. INTRODUCTION

A granular magnetic film is a composite of magnetic

granules dispersed in a nonmagnetic matrix. The granular

films with Fe, Co, and their alloy nanoparticles are of interest

because of high value of magnetization1,2,4 and high hysteresis

properties.1–6 Granular magnetic films with the soft magnetic

granules and insulating matrix are promising magnetic nano-

structures for high-frequency applications.7,8 Properties of

granular media strongly depend on the volume fraction of

magnetic granules and are explained on the basis of percola-

tion theory.9 If the volume fraction x of magnetic granules is

less than percolation threshold xp, then the magnetic granules

become isolated from each other. If the magnetic anisotropy

energy is greater than energy of thermal fluctuations, then

high values of coercivity are achieved.1–6,10–12 In the opposite

case with magnetic anisotropy energy is less than energy of

thermal fluctuations, the granular media below percolation

threshold turns to be superparamagnetic. The disappearance

of remanence, coercivity, or magnetic susceptibility with the

decrease of magnetic granules volume fraction indicates that

the percolation threshold is attained.13–16 If the film is thicker

than the magnetic grain size, then it behaves as 3D granular

media and here the percolation point being in the range of

0.3–0.6.1,2,4,5,11,12 In the films with the thickness about mag-

netic grain size, an increase in percolation point up to 0.6–0.8

is observed.5,11,17 The interesting possibility in tailoring prop-

erties of the magnetic granular films arises when using semi-

conductors in matrix material. The magnetic metallic granules

embedded in a conducting matrix can experience the

exchange interaction via common electronic system of a com-

posite even if the concentration of granules is lower than the

percolation threshold.13

In this report, magnetic properties of multilayer film, con-

sisting of granular (Co40Fe40B20)50(SiO2)50 layers alternating

the semiconductor layer a-Si:H and multilayer film with mag-

netic granular (Co40Fe40B20)50(SiO2)50 layers and dielectric

SiO2 layers and the single layer film (Co40Fe40B20)50(SiO2)50,

are studied to investigate the role of electric properties of

matrix on the behavior of these granular magnetic films.

II. EXPERIMENT

The single layer films of (Co40Fe40B20)50(SiO2)50

and multilayers [(Co40Fe40B20)50(SiO2)50/a-Si:H]60 and

[(Co40Fe40B20B)50(SiO2)50/SiO2]60 were fabricated by the

ion-beam sputtering.14,20 The details on the films fabrica-

tion, the particle size distribution and the microstructure of

the composite films as well as the volume fracture depend-

ences of electric and magnetic properties of (Co40Fe40B20)X

(SiO2)100�X/SiO2 films were reported elsewhere.14,19,20

Magnetic metallic granules Co40Fe40B20 with the size about

5 nm are amorphous.14 The magnetic percolation threshold

in Co40Fe40B20-SiO2 with the thickness much greater than

granule size was found to be approximately 0.3 by magne-

tometric19 and ferromagnetic resonance (FMR)18 experi-

ments. Below the magnetic percolation threshold, the films

are superparamagnetic14 and above it they are ferromag-

netic.19 In this work, the concentration of magnetic in a

granular layer x is 0.5. The thickness of single layer film

(Co40Fe40B20)50(SiO2)50 is 300 nm. The magnetic layer

thickness in multilayers is 5 nm and the number of layers

equals to 60. The thickness of nonmagnetic spacers in
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multilayers is 3 nm for [(Co40Fe40B20)50(SiO2)50/SiO2]60

and 3.5 nm for [(Co40Fe40B20)50(SiO2)50/a-Si:H]60. The

layer thickness and the quality of layers structure in the

multilayer films have been studied21 and have been found to

be well pronounced.

The field and temperature dependences of magnetization

were measured in the applied field in the film plane up

to 10 kOe and at 77–300 K using a vibrating sample

magnetometer.

III. RESULTS AND DISCUSSION

There is no anisotropy if the applied field is in the film

plane in all the samples. But the magnetization curves of the

three investigated samples are quite different (Figs. 1–3).

The thick single layer film (Co40Fe40B20)50(SiO2)50,

being marked below as 3D-SL reveals rectangular hysteresis

loops typical for ferromagnetic state (Fig. 1) with Hc¼ 41 Oe

at 77 K and 14 Oe at 300 K. The multilayer film with a-Si:H

spacer to be marked below as 2D-ML-S at 77 also reveals

the hysteresis loop with Hc¼ 4 Oe and rather high squareness

(Fig. 2) but at 300 K the magnetization abruptly falls and

magnetic hysteresis disappears. The multilayer film with

SiO2 spacer to be marked below as 2D-ML-D reveals anhys-

teretic magnetization curves (Fig. 3) typical for superpara-

magnetic. The differences in magnetic properties of the

investigated films are clear in temperature magnetization

dependences in Fig. 4. There is a sharp decrease of magnet-

ization with the temperature increasing in 2D-ML-D film at

the 20 Oe as it should be in superparamagnetic material.

There is also a strong decrease of magnetization on M(T) of

2D-ML-S film but the curvature sign change is observed on

M(T) near 250 K. There is small decrease of magnetization

vs temperature about 12% at 1 kOe (Fig. 4) in the 3D-SL

film. The same difference in maximal magnetizations on the

major hysteresis loop between 77 and 300 K is observed at

20 Oe and above for the 3D-SL film (Fig. 1). The magnetiza-

tion curves for 2D-ML-D film at 77 and 300 K and for

2D-ML-S film at 300 K were fitted by the expression (Fig. 3)

MðHÞ ¼ Mw

ð
L

MsVH

kBT

� �
f ðDÞdD; (1)

where L(x)¼ cotanh(x)�1/x is the Langevin function, Mw is

the magnetization saturation of the sample as a whole, Ms is

the magnetization of magnetic nanoparticles, V is the volume

of a superparamagnetic particle, and f(D) is the log-normal

size distribution of grains. Assuming V¼ pD3/6 for spherical

particle and using the best fitting parameters and magnetiza-

tion value for amorphous alloy Co40Fe40B20 Ms¼ 1000 Gs,22

we estimate the mean size of magnetic grain: D¼ (4 6 1) nm

from fitting M(H) of 2D-ML-D film both at 77 and 300 K

and D¼ (5 6 1) nm from fitting M(H) of 2D-ML-S film at

300 K. The good quality of fitting by Langevin function and

matching the sizes of fitting results at different temperatures

(which means that the scaling laws hold) indicate that the

films 2D-ML-D at 77 K and 300 K and 2D-ML-S at 300 K

are superparamagnetic.

Superparamagnetic state of 2D-ML-D film is assumed

to be a result of an increase of percolation threshold in iso-

lated 2D granular layers above magnetic nanoparticles frac-

tion 0.5 in the film. Such an effect is predicted by

percolation theory9 and has been observed in magnetic gran-

ular films.5,11,17 But there is no isolation of magnetic gran-

ules in 2D-ML-S film with a-Si:H spacers at 77 K but they

are isolated at 300 K. This means that there is an exchange

interaction between the granules through a semiconductor

layer of a-Si:H.

Temperature dependence of magnetization in 3D-SL

film is well fitted by Bloch T3/2 law (Fig. 4)

FIG. 1. Hysteresis loops of 3D-SL film.

FIG. 2. Magnetization curves of 2D-ML-S film.

FIG. 3. Magnetization curves of the 2D-ML-D film. Inset—magnetization

curve of the 2D-ML-S film at 300 K. Solid line—the fitting by (1).
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MðTÞ ¼ M0 1� 2:612
M0

glB

� �1=2

� kBT

8pA

� �3=2
 !

; (2)

where A¼ (0.45 6 0.05) 10�6 erg/cm and M0¼ (584 6 2)

emu/cm3. Information on exchange interaction and the grain

size in the systems of exchange coupled grains can be

obtained from investigation of approach magnetization to

saturation law.23–25 The good fitting of M(H) near the satura-

tion was obtained for 3D-SL and 2D-ML-S films at 77 K

using expressions (Fig. 5)

MðHÞ ¼Ms �
�

1� 1=15 �H2
a �H�1=2 � ðH3=2þH

3=2
R Þ

�1
�
; (3)

where Ha¼ 2K/Ms is local magnetic anisotropy field

and HR¼ 2A/MsRc
2 is exchange field which is the measure

of ferromagnetic correlation dependent on the parameters

of effective exchange A, magnetization and the grain size

Rc. The fitting parameters are Ms¼ (597 6 2) emu/cm3,

Ha¼ (2.4 6 0.2) kOe, HR¼ (4.0 6 0.2) kOe for 3D-SL film

and Ms¼ (368 6 2) emu/cm3, Ha¼ (7.4 6 0.2) kOe, HR

¼ (5.9 6 0.2) kOe for 2D-ML-S film. Using definition of

exchange field HR¼ 2A/MsRc
2 and obtained values of Ms, HR,

and A, we estimate the Rc¼ (4.5 6 0.3) nm for 3D-SL film

that is in good agreement with the microscopic data.14

Since ferromagnetic correlations in 2D-ML-S film are

spread through the a-Si:H layer, the exchange field here pro-

vides information on effective exchange Aeff through this layer

and magnetic nanoparticles. In ferromagnetic composites,

effective exchange interaction is averaged as Aeff
�1(Dþ d)

¼Ag
�1DþAs

�1d,26,27 where Ag and As are exchange in the

grain and through the spacer, D and d are the grain size and

spacer thickness. Taking D¼ 5 nm and d¼ 3.5 nm and assum-

ing As� Ag, we get As� 0.4 Aeff. Whereas, in 2D-ML-S film

Aeff¼HRMsd
2/2 we get As� 0.15 � 10�6 erg/cm. This value

is three times smaller than exchange inside grains obtained

from Bloch T3/2 law. There is approximately the same propor-

tion for the temperature of magnetic order destruction (250 K)

in Fig. 4 and Curie temperature of the amorphous alloy

Fe80B20 (650 K).28

IV. CONCLUSIONS

Magnetic properties of the single layer granular mag-

netic film (Co40Fe40B20)50(SiO2)50 are compared with the

properties of the multilayer films, consisting of granular

magnetic layers of the same composition and alternating the

semiconductor layers a-Si:H and dielectric SiO2 layers. The

exchange interaction of magnetic granules through the semi-

conductor a-Si:H layers is observed and the value of this

exchange is estimated.
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ting by (2).
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(2) for 2D-ML-S film. Solid lines—fitting by (3).
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