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Abstract

We study the interband Landau-Zener tunneling of a quantum particle in the Hall configuration,

i.e., in the presence of normal to the lattice plane gauge field (for example, magnetic field for a

charged particle) and in-plane potential field (electric field for a charged particle). The interband

tunneling is induced by the potential field and for vanishing gauge field is described by the common

Landau-Zener theory. We generalize this theory for non-zero gauge field. The depletion rates of

low-energy bands are calculated by using semi-analytical method of the truncated Floquet matrix.
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I. INTRODUCTION

In recent years we have seen a recovering of interest to the Landau-Zener tunneling

(LZ-tunneling) in periodic structures. Although this phenomenon was originally discussed

with respect to Bloch oscillations (BO) of crystal electrons in a strong electric field [1–4],

nowadays the most successful experimental systems are semiconductor superlattices [5–7],

one-demensional arrays of optical waveguides [8–11], and cold atoms in quasi 1D optical lat-

tices [12–27]. These systems allow access to many different aspects of LZ-tunneling including

the resonant tunneling [6, 13, 16, 20, 23, 26], LZ-tunneling in binary (double-periodic) lat-

tices [11, 21, 22, 25], time-resolved LZ-tunneling [15, 24], modification of LZ-tunneling by

nonlinearity caused by atom-atom interactions [18–20, 22, 23, 26], etc.

The above cited papers refer to effectively one-dimensional systems. Another direction

of research is BO and LZ-tunneling in two-dimensional periodic structures [28–34]. In com-

parison with 1D lattices LZ-tunelling in 2D latices depends not only on the field magnitude

but also on the lattice geometry (square, hexagonal, etc.), direction of the field vector with

respect to the lattice primary axes, and particular properties (for example, separability)

of the periodic potential. In the present work we address LZ-tunneling in 2D lattices in

the presence of normal to the lattice plane magnetic field (electron systems) or artificial

gauge field (cold atoms and twisted waveguide arrays), which mimic the magnetic field for

charge neutral particles [33, 35–37]. Using the solid state terminology we shall refer to

these systems as quantum particle in the Hall configuration. In what follows we define the

notion of LZ-tunneling for the quantum particle in the Hall configuration and obtain an

estimate on its rate. This estimate is highly demanded to formulate the validity condition

of the tight-binding approximation, that is widely used in physical literature to analyze the

cyclotron-Bloch dynamics of the quantum particle in the Hall configuration [38–44].

II. THE SYSTEM

Let us consider a square lattice, where the electric field is aligned with the y axis. Then,

using the Landau gauge for a magnetic field the dimensionless Hamiltonian of the quantum

particle in the Hall configuration reads,

Ĥ =
1

2

[
p̂2x + (p̂y − Bx)2

]
+ V (x, y) + Fy , (1)
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FIG. 1: (color online). Survival probability as the function of time for F = 0.05 and B = 0 (dashed

line) and B = 1/16π ≈ 0.02 (solid line). The lattice parameters are vx = 0.5 (Jx = 0.0431) and

vy = 0.25 (Jy = 0.0741). The time is measured in units of the Bloch period TB = 1/F .

where B and F are the magnitudes of magnetic and electric fields, respectively. For vanish-

ing electric and magnetic fields the spectrum of the Hamiltonian (1) consists of the ground

Bloch band separated from the rest of the spectrum by a finite energy gap. We assume

that the initial state of the particle belongs to this ground band. A finite F induces Bloch

oscillations in the band and simultaneously causes LZ-tunneling across the energy gap. In

what follows we shall consider the separable periodic potential,

V (x, y) = vx cos x+ vy cos y

(the lattice period is set to 2π). In this case the rate of tunneling can be readily calculated

because the 2D Hamiltonian factorizes into two 1D Hamiltonians if B = 0:

Ĥx =
p̂2x
2

+ vx cosx , (2)

Ĥy =
p̂2y
2

+ vy cos y + Fy . (3)

Thus we can use the known results for 1D lattices – population of the ground Bloch band de-

creases exponentially in time with the rate Γ given by the inverse lifetime (resonance width)
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of the ground Wannier-Stark states [16]. Ignoring the phenomenon of resonant tunneling

the F dependence of the rate Γ is given by the celebrated Landau-Zener equation,

Γ̄(F ) ∼ F exp

(
b

F

)
, (4)

where b is proportional to the square of the energy gap ∆y of the Hamiltonian (3). For

the purpose of future comparison the dashed line in Fig. 1 shows population of the ground

Bloch band as the function of time for vx = 0.5, vy = 0.25, and F = 0.05. The initial

wave-function corresponds to the ground state of the Hamiltonian (1) for vanishing electric

and magnetic fields, i.e., to the Bloch wave with zero quasimomentum. The steps in P (t)

occur when the quasimomentum κy, which evolves according to the linear law κy = Ft,

crosses the boundary of the Brillouin zone.

III. MAGNETIC BANDS

Before proceeding to LZ-tunneling for B 6= 0 we need to discuss the notion of ground

magnetic bands. By those we mean magnetic bands that are originated from the ground

Bloch band. One easily finds them by using the tight-binding approximation to the original

Hamiltonian,

Ĥtb = E0

∑

l,m

|l, m〉〈l, m|−
Jx
2

∑

l,m

(|l + 1, m〉〈l, m|+ h.c.)−
Jy
2

∑

l,m

(
|l, m+ 1〉〈l, m|ei2παl + h.c.

)
,

(5)

where |l, m〉 denote the Wannier functions associated with the ground Bloch band, E0 is the

on-site energy, Jx,y are the hopping matrix elements, and α = 2πB is the Peierls phase. If

α = 0 the spectrum of (5) is given by

E(κx, κy) = E0 − Jx cosκx − Jy cosκy

and the eigenfunctions are Bloch waves, |ψ〉 ∼
∑

l,m exp[i(κxl + κym)|l, m〉. If α 6= 0 so-

lutions of the stationary Schrödinger equation with the Hamiltonian (5) have the form

|ψ〉 ∼
∑

l,m exp(iκym)bl|l, m〉, where the coefficients bl satisfy the Aubry-André equation,

−
Jx
2
(bl+1 + bl−1)− Jy cos(2παl + κy)bl = Ebl , (6)

which for Jx = Jy coincides with the Harper equation. If α is a rational number we can apply

the Bloch theorem and, hence, eigenfunctions of (6) are labeled by the quasimomentum κx
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FIG. 2: (color online). Ground Bloch band for (Jx, Jy) = (0.0431, 0.0741), top, and magnetic bands

originated from this band if α = 1/8, bottom.

defined in the reduced Brillouin zone. Thus for rational α = r/q the ground Bloch band splits

into q magnetic bands. As an example the lower panel in Fig. 2 shows the ground magnetic

bands for α = 1/8 and (Jx, Jy) = (0.0431, 0.0741), which corresponds to (vx, vy) = (0.5, 0.25)

in the continuous Hamiltonian. Notice that in Fig. 2 we use the extended Brillouin zone

picture. We also mention that in the considered case Jy > Jx the magnetic bands are flat

in the κx direction.
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For deep lattices the above tight-binding approach provides a reasonable approximation

to the ground magnetic bands. However, to address LZ-tunneling we need to find not only

ground bands but also the spectrum above the energy gap. In the rest of this section we

discuss a different method of calculating the ground magnetic bands which accomplishes

this task.

Let us assume that vx is large enough to justifies the tight-binding approximation in the

x direction. Then we can use the ansatz

Ψ(x, y) =
∞∑

l=−∞

ψ(l)(y)φl(x) , (7)

where φl(x) are the 1D Wannier functions associated with the ground Bloch band of the

Hamiltonian (2). Substituting (7) into the stationary Schrödinger equation with the Hamil-

tonian (1), where we temporally set F = 0, we have

E0ψ
(l)(y)−

Jx
2

[
ψ(l+1)(y) + ψ(l−1)(y)

]
+ Ĥ(l)

y ψ(l)(y) = Eψ(l)(y) , (8)

where

Ĥ(l)
y =

1

2
(p̂y − αl)2 + vy cos y . (9)

The eigenfunctions of the Hamiltonians (9) are Bloch waves with shifted dispersion relation.

Namely, if E(κ) is the Bloch spectrum of the Hamiltonian Ĥ(0)
y , then for l 6= 0 we have

E(l)(κ) = E(0)(κ+ αl) , (10)

see Fig. 3(a). Next, using the Fourier expansion for the Bloch wave,

ψ(l)(y) = exp(iκy)
∞∑

n=−∞

c(l)n (κ) exp(iny) , (11)

the system of partial differential equations (8) reduces to the system of algebraic equations

for the coefficients c(l)n :

−
Jx
2

[
c(l+1)
n + c(l−1)

n

]
+

1

2
(n+ κ+ αl)2c(l)n +

vy
2

[
c
(l)
n+1 + c

(l)
n−1

]
= Ec(l)n . (12)

In general case of arbitrary α the index l in (8-12) runs from minus to plus infinity. However,

if α = r/q is a rational number we can restrict l to one magnetic period, 1 ≤ l ≤ q. In this

case Eq. (12) should be accomplished by the periodic boundary conditions

c(q+1)
n = c

(1)
n−r . (13)
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FIG. 3: Magnetic bands for α = 1/8 and (Jx, vy) = (0.0, 0.25), left panel, and (Jx, vy) =

(0.0431, 0.25), right panel.

The system of algebraic equations (12) together with the boundary condition (13) provide

an alternative method for calculating the ground magnetic bands.

The right panel in Fig. 3 shows the solution of Eqs. (12,13) for α = 1/8, vy = 0.25, and

Jx = 0.0431, which corresponds to vx = 0.5. Magnetic bands are plotted as functions of

the quasimomentum κ ≡ κy for a single value of the quasimomentum κx = 0 [45]. This

figure should be compared with Fig. 2(b) showing the magnetic bands in the tight-binding

approximation. We note that in Fig. 3 we intentionally restricted the upper limit of the

energy axis to a relatively low value because for higher energies the second Bloch band

of the Hamiltonian Ĥx contributes the spectrum. However, for our aim of studying LZ-

tunneling it is sufficient to have a fragment of the actual energy spectrum just above the

energy gap.

IV. LZ-TUNNELING

The structure of the eigenvalue equation (8) provides insight into physics of LZ-tunneling

in the presence of a magnetic field. To address this phenomenon the 1D Hamiltonians (9)
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should be accomplished by the term Fy and we should solve the non-stationary Schrödinger

equation instead of the stationary one. Thus the original 2D problem reduces to q coupled

1D Landau-Zenner problems. Below we analyze the effect of this coupling on the tunneling

dynamics by using two different approaches.

In our first approach we numerically solve the time-dependent Schrödinger equation and

project the solution on the subspace of ground magnetic bands. In more detail, we solve the

following differential equations for the coefficients c(l)n ,

iċ(l)n = −
Jx
2

(
c(l+1)
n + c(l−1)

n

)
+

1

2
(n+ κ′ + αl)2c(l)n +

vy
2

(
c
(l)
n+1 + c

(l)
n−1

)
, (14)

where the quasimomentum κ′ linearly depends on time as κ′ = κ+Ft. [This equation follows

from (11) where one substitutes κ′ instead of κ.] The initial wave-fuction corresponds to one

of multi-degenerate ground states of the system for F = 0. Thus initially only the lowest

magnetic band is populated. Depending on the electric field magnitude F , we observed

three different regimes of the tunneling dynamics. For very small F population of the lowest

magnetic band stays close to unity during the whole simulation time. If F exceeds some

critical value Fcr, all q ground magnetic bands become involved into dynamics yet their

populations sum up to unity with high accuracy [46]. Finally, for even larger F we observe a

decrease in the total population of ground magnetic bands, see Fig. 1. Comparing P (t) for

α = 1/8 (solid line) and α = 0 (dashed line) it is seen that finite magnetic field decreases the

rate of LZ-tunneling and smoothes oscillations of P (t), although the overall decay remains

exponential [see inset in Fig. 1].

In the above simulations the initial wave function belongs to the lowest magnetic band. In

fact, the rate of tunneling across the energy gap strongly depends on which magnetic band is

initially populated. To find decay rates Γj of the individual magnetic bands we employ the

truncated Floquet matrix method of Ref. [28], adopted to the currently considered problem.

Namely, using the ansatz (11) and the Schrödinger equation (14) we calculate the (formally

infinite) matrix of the evolution operator over one Bloch period TB = 1/F and truncate it to

a finite size. Notice that when calculating the Floquet matrix we explicitly use the periodic

boundary conditions (13). Thus the matrix is truncated only with respect to the index n,

n ≤ N . (The method rapidly converges if N is increased, in our calculations we use N = 7.)

The eigenvalues λj of the truncated Floquet matrix are known to be the complex poles of

the scattering matrix. Then the individual decay rates Γj of ground magnetic bands are
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FIG. 4: Decay rate Γ of the ground Bloch band (B = 0), left panel, and decay rates Γj of the

ground magnetic bands for α = 1/8 (B = α/2π), right panel, as functions of the inverse electric

field magnitude.

found from the equation |λj|
2 = exp(−ΓjTB), where λj are the first q eigenvalues which are

closest to the unit circle.

The decay rates Γj for α = r/q = 1/8 are shown in Fig. 4(b) as functions of the inverse

electric field magnitude. The right panel of this figure should be compared with the left

panel, which shows the decay rate of the ground Bloch band for B = 0. As mentioned in

Sec. II, for B = 0 the functional dependence of the decay rate is approximately given by

the Landau-Zener formula (4), where deviations are due to phenomenon of the resonant

tunneling [16]. It is seen in Fig. 4 that the resonant tunneling also takes place if B 6= 0.

Thus we can decompose Γj into two terms,

Γj(F ) = Γ̄j(F ) + ΓR
j (F ) (15)

where Γ̄j(F ) ∼ F exp(−bj/F ) and ΓR
j (F ) is the oscillating part. Analyzing the values of the

coefficients bj we conclude that LZ-tunneling is suppressed for lower magnetic bands, j ≪ q,

but enhanced for higher bands, j ∼ q. Notice that this effect is well pronounced only for

weak electric fields, while in the strong field regime the decay rates Γj are essentially the
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same and approximately coincide with that for B = 0.

To conclude this section we briefly discuss the case of irrational α. Since in the wave-

function simulations we do not use any boundary conditions, we can directly compare the

survival probability P (t) for rational and irrational α. However, this approach gives reliable

results only for strong electric fields, where P (t) essentially differs from unity, so that we

can ignore an error introduced by the integrator. On the contrary, using the Floquet matrix

method we can reliably treat weak electric fields but, since the method explicitly uses the

boundary conditions (13), an irrational α has to be approximated by a sequence of rational

numbers, which makes calculations very time consuming. We did our best employing both

methods but found no qualitative difference with the case of rational α. This is consistent

with results of Ref. [42, 43] where the rationality of α is shown to affect neither dynamics

nor spectral properties of the system in the tight-binding approximation.

V. CONCLUSIONS

We analyzed the problem of the Landau-Zener tunneling for quantum particle in a two-

dimensional periodic potential, subject to (real or synthetic) in-plane electric and normal

to the plane magnetic fields. It was found that strong electric field induces transitions

to higher energy states in the presence of magnetic field as well. Moreover, the estimate

(4) for the rate of LZ-tunneling, which was obtained for zero magnetic field, can be also

used in the case of a finite magnetic field. This result is of fundamental importance for

understanding the cyclotron-Bloch dynamics of a quantum particle. In particular, it was

shown in [43, 44] devoted to dynamical and spectral properties of the system (1) in the tight-

binding approximation that the particle eigenstates are localized for almost all directions of

the electric field, where the localization length tends to one lattice site if F tends to infinity.

The present analysis, however, shows that the tight-binding approximation is valid up to

some finite F while LZ-tunneling across the energy gap can be neglected. Thus the wave-

function localization in the limit of large F can be questioned. We reserve this problem for

future studies.

The author acknowledges support of Russian Academy of Sciences through the SB RAS

project Dynamics of atomic Bose-Einstein condensates in optical lattices and the RFBR
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