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Abstract
We show that two nonlinear resonant cavities aligned between two parallel waveguides can
support self-induced bound states in the continuum (BSCs). These BSCs are symmetrical
relative to an inversion of the waveguides and to inversion of the transport axis. Due to this
BSCs can drop an incident wave from one waveguide to another with very high efficiency. We
show also that the frequency of the efficient channel dropping can be tuned by injecting power.
All these results are in good agreement with numerical solutions of the Maxwell equations in a
two-dimensional photonic crystal of GaAs rods holding two parallel waveguides and two
defects made of a Kerr medium.

(Some figures may appear in colour only in the online journal)

1. Introduction

In 1929, Von Neumann and Wigner suggested [1] that certain
potentials could support spatially localized states within the
continuum spectrum, i.e., bound states with energies in the
continuum of positive energy states. Their analysis, examined
by Stillinger and Herrick [2], for a long time was regarded as a
mathematical curiosity because of certain spatially oscillating
central symmetric potentials. Later, in 1973 Herrik [4] and
Stillinger [3] predicted bound states in the continuum (BSCs)
in semiconductor heterostructure superlattices which were
observed by Capasso et al as a very narrow absorption
peak [5]. Examples of BSCs can be more easily found if one
goes beyond the one-dimensional Schrödinger equation. In [6]
four mechanisms for BSCs were discussed in 2D systems,
among which the mechanisms of destructive interference and
symmetry were applied and verified in photonics [7–11].
Whatever the mechanism might be, BSCs occur for a special
choice of the parameters of the system to give rise to a singular
point for transmission [10, 12] which can be interpreted as
collapse of the Fano resonance [13]. Nonlinear systems open
new page in the BSCs phenomenon. In the framework of
a two-level nonlinear Fano–Anderson model it was shown
that BSCs might arise in a self-consistent way [14] without

the necessity to tune physical parameters as in the linear
case. This phenomenon is generic and it was recently applied
to photonic crystals with defects made of a Kerr medium
[15, 16] and nonlinear crystals [17].

The aim of this paper is to demonstrate that such
self-induced BSCs have a practical use providing a
channel dropping between two linear waveguides. A number
of channel drop devices based on two linear resonant
microcavities aligned between two linear waveguides [18–32]
have been studied theoretically and experimentally. The
cavities, each represented by a single monopole eigen
mode, support two resonances of different symmetry. Then
a degeneracy of these resonances provides 100% drop
efficiency at the resonant frequency [18, 33, 34]. However, the
presence of continua of the waveguides lifts this degeneracy.
To enforce exact degeneracy of the cavity resonances
channel dropping devices (CDDs) involve special designs
with inclusions of different materials [19, 25, 30, 35, 36].
Scheuer et al [37] proposed an alternative way using two
coupled microring resonators with Kerr nonlinearity. The
authors presented an all-optical approach for tuning coupled
microring resonators with Kerr nonlinearity, using a strong
control beam launched into the photonic structure in parallel
with the signal beam. In this paper we show that for the case
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Figure 1. A general four-port system of two coupled identical
monopole mode nonlinear cavities between two waveguides. γ 1/2 is
the coupling constant between waveguides and cavities coupled via
the parameter u.

of two nonlinear cavities the degeneracy of resonant modes is
recovered by tuning the light power injected into a bus port to
obtain 100% dropping into the receiver port.

2. Basic equations for wave transmission

Let us consider the four-port system shown in figure 1 which
consists of two linear waveguides and two nonlinear optical
cavities. Following [18] we write the CMT equations with
account of the nonlinearity of the two optical cavities,

[ω − ω0 − λI1 + 2iγ ]A1 + [u+ 2iγ eiθ
]A2 = i

√
γ S1+,

[ω − ω0 − λI2 + 2iγ ]A2 + [u+ 2iγ eiθ
]A1 = i

√
γ S1+eiθ ,

(1)

where Ij = |Aj|
2 are the intensities of the nonlinear cavity

oscillations with index j = 1, 2 enumerating the cavities, u
is a direct coupling between the cavities and ω0 + λIj are
the monopole resonant frequencies of the nonlinear cavities.
S1+ is the amplitude of light injected into the bus waveguide,
as shown in figure 1. We complement these equations with
equations for the transmission amplitudes,

S3− = S1+eiθ
−
√
γA1eiθ

−
√
γA2

S1− = −
√
γA1 −

√
γA2eiθ

σ3− = −
√
γA1eiθ

−
√
γA2

σ1− = −
√
γA1 −

√
γA2eiθ .

(2)

The CMT equation (1) might be considered as an analogy
of the Lippmann–Schwinger equation [35, 15]

(ω − Heff)

(
A1

A2

)
= i
√
γ S1+

(
1

eiθ

)
(3)

where

Heff =

(
ω0 + λI1 − 2iγ −u− 2iγ eiθ

−u− 2iγ eiθ ω0 + λI2 − 2iγ

)
(4)

is the non-Hermitian effective Hamiltonian. Its complex eigen
values for the linear case equal

z1,2 = ω0 − 2iγ ± (u+ 2iγ eiθ ). (5)

The real parts of the eigen values give the resonance
positions while the imaginary parts define the resonance
widths [40–42]. As was shown in [18], the system operates as
a perfect channel drop filter if the resonances are degenerate,
z1 = z2, or

u = 2γ sin θ, cos θ = 0. (6)

3. Nonlinear cavities

First, we consider the behavior of the nonlinear CDD in
the regime in which a linear CDD would provide a perfect
channel dropping, i.e., the parameters satisfy equation (6).
Numerically we find two types of solutions. There is the
stable solution inherited from the linear case which gives
zero reflection, as shown by the dashed line in figure 2(a).
The corresponding channel dropping behavior is shown in
figures 2(b) and (c). One can see from figure 2(d) that both
cavities are excited equally, however with the phase difference
π/2 in full correspondence with [18, 33, 35, 34]. The second
type of solution in which the cavities oscillate differently
in both the intensities and phases is shown by solid lines
in figure 2(d). The existence of at least two types of stable
solutions constitutes a difference between the results of [38]
where the waveguides are nonlinear and the present system.

In real PhC waveguides the phase θ = k(ω)L is very
sensitive to the frequency ω, where L is the distance between
cavities. Following [15] we approximate the dispersion curve
of the PhC waveguide as

θ ≈ π(20 +21ω) (7)

in the vicinity of resonant frequencies without loss of
generality. Again, similarly to the previous dispersionless case
there are at least two types of solutions in the vicinity of
the phase θ = πm which are drastically different. The first
solution which inherits the linear case is shown in figure 3
by dashed lines. However, in some frequency domains a new
class of solutions shown in figure 3 by solid lines appears
which originates from the bound states in the continuum
(BSCs). This class was first demonstrated in a Fabry–Perot
interferometer with two nonlinear cavities [15]. In what
follows we refer to this class of solutions as the BSC solution
for brevity while the solution which inherits the linear case
will be defined as the ordinary solution.

In the linear case the BSC introduced first by
Von Neumann and Wigner [1] is a localized solution
in a specially selected unbounded potential. For a long
time the BSC was considered as a mathematical curiosity;
however, recently BSCs have been observed in PhC systems
[7, 8, 10, 11]. For the description of light with use of
the CMT equations, which constitute a version of the
Lippmann–Schwinger equation [7, 35], BSCs occur when the
matrix of the CMT equation (1) is singular, i.e., det[ω −
Heff] = 0 [43]. In what follows we take for simplicity that the

2
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Figure 2. Frequency behavior of (a) the bus reflection, (b) the forward transmission in the bus waveguide, (c) the forward transmission in
the receiver waveguide, and (d) the phase difference between the defect amplitudes for the case of non-dispersive waveguides. The model
parameters obey the channel drop condition for the linear case (6), θ = π/2; the other parameters are γ = 0.0625, λ = 0.2, S1+ = 2,
ω0 = 0, u = 2γ . Dashed lines mark the solution which reduces to the linear case for S1+→ 0. Open circles mark a stability of the solutions.

Figure 3. (a) Intensities of mode oscillations at the cavities where the first/second cavity intensity is shown by dashed/dash-dotted lines for
the first solution which is inherited from the linear case. The inset shows the second solution where the cavity’s intensities are shown by
solid lines (red and blue respectively). (b) Transmission to the bus waveguide where the dashed blue line shows a fragment of the bus
transmission inherited from the linear case and the solid red line shows the solution related to the BSCs with m = 1, 2. (c) The same for the
transmission to the receiver waveguide. (d) Bus reflection. The phase difference between cavities follows the rule θ = π(3/4+ ω). The
parameters are chosen as λ = 0.2, γ = 0.25, ω0 = 0, u = 0, S1+ = 0.01.

3
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cavities are far from each other (u = 0). Then it is easy to find
from equation (1) that BSCs occur for ω = ωBSC

m = ω0 and
cos θ = ±1, where20+21ω

BSC
m = m and the m are integers.

Thus, a BSC arises if the eigen frequency ω0 is tuned to one
of the ωBSC

m values. Then at ω = ωBSC
m one of the resonance

widths defined by the imaginary parts of the complex eigen
values of the effective Hamiltonian Heff [40] turns to zero.
The BSC is the solution of the homogeneous part of the
Lippmann–Schwinger equation (1), (ω − Heff)|BSC〉 = 0,
which equals

|BSC〉 =

(
A1

A2

)
=

(
1

−eiθm

)
(8)

where θm = πm. The BSCs are standing waves between
two off-channel defects which become perfect mirrors at the
frequencies ω = ω0. For these frequencies the total solution
of the CMT equation can be present as a superposition [43]

|ψ〉 = α|BSC〉 +
S1+

4
√
γ

(
1

eiθm

)
. (9)

Here, the first contribution is the localized BSC, and the
second term is the particular solution of equation (1) which
is the extended state. The second particular contribution gives
rise to scattering of the input wave into all four ports of the
system while the first particular solution is decoupled from
them. Because of this the coefficient of superposition α is
arbitrary and can be defined for specific physical processes of
excitement of the BSC. Thereby the BSCs are not interesting
for the CDD in the linear case [32].

For the nonlinear case there are a few remarkable features
which make the BSCs important for channel dropping.
The first feature is that a singularity of the CMT matrix,
i.e., a BSC, occurs in a self-induced way at the quantized
intensities [15]

|A1|
2
= |A2|

2
= IBSC

m =
ωBSC

m − ω0

λ
(10)

and discrete set of frequencies

ωBSC
m =

m−20

21
(11)

without the need to tune the eigen frequency ω0. Recently
it was established that nonlinearity might give rise to BSCs
self-consistently in a generic way [14, 17]. Figure 3 shows
the results of numerical solution of the CMT equations (1).
The ordinary solution presents usual Bragg type excitement
of the cavities and is shown by dashed (|A1|

2) and dash-dotted
(|A2|

2) lines. The BSC solution is located around the BSC
frequency (11) ωBSC

1 = 0.25, θ = π and IBSC
1 = 1.25, which

has the shape of double loops for sufficiently small injecting
amplitude S1+. There are similar solutions around other BSC
points (11) which are not shown in figure 3(a). Consequent
substitution of the solutions into equation (2) gives the
frequency behavior of the transmission and reflection shown
in figures 3(b)–(d) in which the effects of BSCs with m = 1
and 2 are reflected in the form of loops.

Figure 4. The frequency behavior of the complex eigen values of
the effective Hamiltonian (4) for the same parameters as listed in the
caption to figure 3. The inset shows a magnification of the
frequency behavior |z− ω| near the BSC point ω = 0.25.

Second, nonlinearity gives rise to an important effect
of excitation of a BSC by the propagating wave, i.e., an
interaction between the BSC and the propagating wave. This
interaction can be expressed by the imaginary parts of the
complex eigen values of the effective Hamiltonian −2Im(z)
which would define the resonance width in the linear case
[39, 40]. We have the equality det[ω − Heff] = (z1(ω) −

ω)(z2(ω)−ω), where z1,2 are the complex eigen values of the
effective Hamiltonian. The frequency behavior of |z1,2(ω)−ω|

is presented in figure 4 with substitution of those intensities
Ij = |Aj|

2, j = 1, 2 into equation (4) which correspond to the
ordinary solution (dashed lines) and the BSC solution (solid
lines) of the CMT equation (1). The latter has the shape of two
loops which originate from the BSC frequency ωBSC

1 , as the
inset to figure 4 shows. For the injected power tending to zero
(S1+ → 0) the value |z(ω) − ω| =

√
(Re(z)− ω)2 + Im(z)2

shrinks to zero for the BSC solution. Therefore, indeed, for
the nonlinear case we have det[ω − Heff] = 0 which defines
the BSC. However, as soon as S1+ 6= 0 the value Im(z) differs
from zero, i.e., the BSC begins to couple with the continuum
of the waveguides in the nonlinear system.

In the vicinity of the BSC frequency ω = ωBSC
1 we

can evaluate the coupling of the BSC with the injected
wave. Following [18] we introduce the symmetric and
anti-symmetric oscillations As,a =

A1±A2√
2

and rewrite the
CMT equations (1) as follows for θ = π + δ when δ is small:

[ω − ωs + i0s]As − λRe(AsA
∗
a)Aa =

√
0s/2S1+

[ω − ωa + i0a]Aa − λRe(AsA
∗
a)As = i

√
0a/2S1+

(12)

where

ωs,a = ω0 ∓ 2γ δ +
λ

2
|As|

2
+
λ

2
|Aa|

2,

0s = γ δ
2, 0a = 4γ.

(13)

4
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Figure 5. Excitations of symmetric and anti-symmetric modes
As,a =

A1±A2√
2

shown by dash and solid lines respectively. The
parameters of the system are the same as in figure 3
θ = π(3/4+ ω), λ = 0.2, γ = 0.25, u = 0, S1+ = 0.01.

For the ordinary solution the symmetric excitation
has an extremely small resonance width while the anti-
symmetric excitation is rather broad in frequency as figure 5
demonstrates. For the BSC solution we have at the BSC
frequency ωBSC

1

Aa ≈
S1+
√

20a
, As ≈ i

√
2(ωBSC

1 − ω0)

λ
. (14)

Respectively the solution of equation (12) can be presented as

|ψ〉 =
1
√

2

{
As

(
1

1

)
+ Aa

(
1

−1

)}
. (15)

Comparison of this equation with equation (9) shows
that the solution is a superposition of the BSC and an
anti-symmetric solution whose amplitude Aa is determined
by the injected power as given by equation (14). Therefore
the only difference from the linear case is that the amplitude
of the BSC As is fixed and does not depend on the injected
power. From equation (14) one can see also that for the limit
to the linear case λ→ 0 the BSC frequency approaches the
frequency ω0. For the nonlinear case λ 6= 0 the BSC solution
exists in a frequency domain proportional to the injecting
amplitude [15]. We can rewrite equation (2) for the receiver
transmission amplitude σ3− in terms of the amplitudes As,a as
follows:

σ3− =

√
γ

2
(2Aa + iδAs).

Substitution of equation (14) into this equation outlines that
the BSC affects the transmission as shown in figures 3(b)–(d).
However, what is more important is that this effect plays a key
role for channel dropping as we consider next.

Figures 3(b)–(d) show perfect channel dropping not
exactly at the BSC frequency ωBSC

1 but in a close vicinity

of it. Numerics shows that the most effective channel
dropping occurs at those frequencies at which the intensities
of the mode oscillations coincide, i.e., at the frequency of
degeneracy of the nonlinear cavities. For the selected injecting
amplitude S1+ = 0.01 and for the first BSC these frequencies
are ωL,R = 0.2471, 0.2528. Let us consider the efficiency of
the channel dropping for these frequencies. Substituting the
relations for the mode amplitudes Aj =

√
I1 exp(iφj) into the

CMT equations (1) we obtain I1(ω0 + λI1 − ωd)
2
= γ |S1+|

2.
For small injecting power |S1+|

2 we approximate I1 ≈ IBSC
m

where the IBSC
m are given by the quantized set at the BSC

points (10) and obtain that IBSC
m (ω0+λIBSC

m −ωd)
2
≈ γ |S1+|

2.
Then from equation (1) we obtain an equation which relates
the phase θ and the phase difference between the mode
amplitudes φ = φ2 − φ1,

exp(−iφ) = exp(−iθ)+
4γ sin θ

ωd − ω0 − λI1
. (16)

The solution is φ = π − θ where

tan θ =
ω0 + λI1 − ωd

2γ
. (17)

As a result, using equations (17) and (2) we obtain finally the
forward transmission into the receiver waveguide

Tdw =
|σ3−|

2

|S1+|
2 ≈

1

1+ |S1+|
2

4γ IBSC
m

. (18)

Respectively, for the transmission into the bus waveguide we
obtain from equation (2)

Tup =
|S3−|

2

|S1+|
2 ≈

1

1+ 4γ IBSC
m

|S1+|
2

. (19)

These simple formulas show that the efficiency of a CDD
based on two nonlinear optical cavities is determined by

the ratio |S1+|
2

4γ IBSC
m

. The larger m is, the larger IBSC
m is, and

respectively the efficiency. In particular, for the parameters
of the CDD listed in the figure caption we obtain that the
efficiency is about 99.8%.

The ordinary solution can also give the efficiency of
channel dropping for the eigen frequency of the cavities ω0
close to the BSC frequency ω1 for u = 0, as shown in figure 3
by dashed lines. However the BSC solution provides more
efficiency in the channel dropping than the ordinary solution.

Let us now fix the frequency near the BSC frequency
ωBSC

1 = 0.25, u = 0 but vary the injecting amplitude. As
seen from figure 6(a) the channel dropping has an efficiency
of around 25% for the ordinary solution, which limits to
the linear case for S1+ → 0. However with growth of the
injecting power a narrow peak of extremely high efficiency
arises which is the stable BSC solution as shown in figure 6(a).
The efficiency falls if the frequency deviates from the BSC
point. For large input power the ordinary solution and the BSC
solution coalesce to break the CDD regime. These numerical
results manifest the most important advantage of nonlinear
microcavities, which is the possibility to realize channel
dropping by only injecting power without tuning the material

5
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Figure 6. The efficiency of channel dropping as a function of the amplitude of the input light S1+ for different values of the frequency
ω = 0.2625 (red solid line), ω = 0.275 (green dashed line), and ω = 0.3 (blue dash-dotted line) for zero coupling between the cavities
u = 0 (a) and for different values of the coupling strength (red solid line), u = 0.125 (green dashed line), and u = 0.25 (blue dash-dotted
line) for fixed frequency ω = 0.3. (b) The other parameters of the system are the following: γ = 0.25, λ = 0.2, θ(ω) = π(3/4+ ω). Open
circles mark the stable domains of the solutions.

Figure 7. The real part of the scattering wavefunction (electric field) in the PhC, which holds two parallel waveguides and two nonlinear
cavities whose monopole eigen frequency ω0 = 0.3447. The defect nonlinear rods are marked by green open circles. The input power
Pin = 25 mW/a. The light blue lines are optical streamlines which show basic paths for EM power to flow. (a) ω = 0.345 32 and (b)
ω = 0.345 267. These frequencies are marked in figure 8(a) by a star and a cross, respectively.

Figure 8. Receiver transmission (a) and reflection (b) as dependent on the frequency of light for Pin = 25 mW/a in the PhC configuration
shown in figure 7.

parameters of the cavities. The next question is the effect of
the coupling strength u on the CDD efficiency. As equation (1)
shows, the determinant of the matrix of the CMT equations
does not equal zero for u 6= 0, i.e., BSCs are excluded.
Therefore one can expect that the CDF efficiency falls also
with increase of the coupling strength, as figure 6(b) indeed
shows. Numerical calculations show that this conclusion does
not depend on the choice of frequency.

4. Solutions in photonic crystal with nonlinear
defects

Similarly to [7, 16] we consider a square lattice (lattice
constant a) of high-index cylindrical dielectric rods with

radius 0.18a and dielectric constant ε = 11.56 (GaAs at the
wavelength 1.5 µm) in air. In figure 7 these rods are shown
by open bold circles. The background bulk PhC exhibits a
TM-polarization (the electric field is parallel to the axis of the
cylinder) band gap at 0.302 < ω < 0.444 in units of 2πc/a,
where c is the speed of light in vacuum [44]. Removing a
row of rods creates the single mode PhC waveguide with
an effective width of the order of a few a, as shown in
figure 7. We evaluated the dispersion of (7) in this specific
PhC waveguide as follows:

θ = k(ω)L ≈ π [3+ 41.68(ω − ωBSC
3 )], (20)

6
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Figure 9. The real parts of the solutions of the Maxwell equations (electric field directed along the rods). (a) The pure BSC at
ω = ωBSC

3 = 0.344 34 (BSC eigen frequency). (b) The second BSC solution at the BSC frequency marked in figure 8(a) by an open circle.
(c) The BSC solution at ω = 0.344 17 marked in figure 8(b) by closed circles.

ωBSC
3 = 0.344 34. Localized states are introduced inside the

photonic crystal by creating point defects. These point defects
can be formed by either changing the radius of a rod compared
to the surrounding rods or changing the material of the defect
rod. We take the radius of the defect rods to be the same as
the other rods but with a linear refractive index n0 =

√
3.62.

Moreover, we consider that the defect rods are made from
a Kerr medium with nonlinear refractive index n2 = 2 ×
10−13 cm2 W−1. Respectively, the nonlinear constant in the
CMT equations (1) can be evaluated as follows [16, 45]:

λ = −
c2n2

2

a2

∫
σ

E2
1(x, y) dx dy ≈ −0.000 151 (21)

where E1(x, y) is the monopole eigen mode of the defect
cavity, the shape of which could be foreseen for the resonant
excitation of the microcavities shown in figure 7(a). σ is
the cross-section of the nonlinear defects shown by green
open circles in figure 7. We also evaluated other parameters
of the PhC system for the eigen frequency ω0 = 0.3447.
The resonant width γ = 0.000 19 was obtained directly
from the resonant transmission through the PhC waveguide
with a side positioned single microcavity calculated by
numerical solution of the Maxwell equations for the TM mode
propagation. In the linear case in order to satisfy the channel
dropping condition (6) it is necessary to tune the dielectric
constant of four rods surrounding the defect rods [35], which
is a rather delicate procedure. In the case of nonlinear defects,
as was shown in section 3, the efficiency can be tuned by the
intensity of the injecting light in the region of stability of the
BSC solution where θ ≈ πm.

Here, we show that these results are preserved in 2D
PhC too. The method for solving the Maxwell equations is
described in the appendix of [45].

The transmission and reflection as dependent on
frequency are shown in figure 8. Very similarly to the CMT
results we reveal two solutions of the nonlinear Maxwell
equations. The ordinary solution shown by dashed lines
inherits the linear case and demonstrates forward channel
dropping with almost perfect efficiency. However, this occurs
in an extremely narrow frequency domain which makes
the solution difficult for potential applications. In figure 7
we present the ordinary solution of the nonlinear Maxwell
equations in the form of the real part of the electric field
for TM polarization for two frequencies. Details of the
calculation of the scattering wavefunction are given in the
appendix of [45]. At the first frequency ω ≈ 0.345 32,
which is marked by a star in figure 8(a), the bus and
receiver transmission and reflection approximately equal 0.25.
Respectively, figure 7(a) shows that this occurs because of
weak excitation of the anti-symmetric cavity’s mode. This
observation agrees with the CMT consideration presented in
figure 5(b) by the solid line. Figure 7(b) demonstrates that
resonant excitation of the symmetric cavity’s mode gives
rise to perfect channel dropping. The streamlines [46] in
figure 7(b) clearly demonstrate this result.

In figure 9 we present three patterns for the BSC solution
of the nonlinear Maxwell equations. The first pattern shows
the self-induced pure BSC which takes place when there is
no light injected into the system and ω = ωBSC

3 = 0.344 34.
This frequency is marked by an open circle in figure 8(a).
Differently from the linear case the BSC has a definite discrete
intensity with correspondence to equation (10). Because of the
small nonlinearity constant (21) one can see that the amplitude
of the BSC is rather high compared to the injecting amplitude.
Moreover, the pure BSC is a symmetric state which is fully
decoupled from the four continua of the four ports of the
system.
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Figure 10. Reflection and transmission versus input power Pin normalized by the power P0 = 25 mW/a for ω = 0.344 164 in the 2D PhC
CDD structure shown in the figure. Open circles mark the BSC solution while stars mark the ordinary solution.

Figure 9(b) demonstrates the transport solution at the
same BSC frequency. In full accordance with equation (15)
we see that the BSC dominates in the transmission because of
its large intensity. Nevertheless there is a contribution of the
anti-symmetric mode Aa to give rise to volatile flows of light
between the defects, as seen from figure 9(b). However, the
efficiency of channel dropping at this BSC frequency is about
25% only as marked by the open circle in figure 8(a).

The third pattern, figure 9(c), shows the BSC solution at
the frequency ω = 0.344 17 marked by the closed circle in
figure 8(a). The coupling of the BSC with the transmitting
wave is maximal, as the CMT consideration demonstrates in
figure 4. In full agreement with the model CMT consideration
we see channel dropping with very high efficiency, as the
streamlines demonstrate in figure 9(c). Note that the BSC
solution at the second frequency ω = 0.344 54, also marked
by a closed circle in figure 8(a), has no visible difference
compared to the pattern in figure 9(c).

There are no other BSCs with the eigen frequencies ωBSC
m

because of the finite propagation band of the waveguide for
this specified 2D PhC. Finally, we demonstrate that the CDD
regime can be achieved by growth of the input power, as
demonstrated in figure 10, which was predicted by the CMT
consideration (see figure 6). This result presents the important
property of the nonlinear cavities as the most promising for
CDDs.

5. Summary

In this study we have demonstrated channel dropping between
two linear waveguides by use of optical microcavities made
from a Kerr medium. The main difference between the

mainstream research in this field and the present study is that
we exploit the special solution of the nonlinear equations in
the form of the bound state in the continuum (BSC). The BSC
occurs in the special case when the phase difference between
the cavities approaches integers of π . For the considered
system the BSC is a standing wave between two off-channel
microcavities when the transmission through each defect
equals zero (perfect reflection) and the distance between the
defects obeys the Fabry–Pérot interferometer quantization
condition. For the linear case the BSC occurs in a single point
in the space of parameters, and, more importantly, the BSC
is not coupled with the injecting light, and thereby cannot
be exploited for channel dropping. For the case of nonlinear
off-channel microcavities there are a few features which make
the BSCs interesting for channel dropping. First of all, the
BSCs occur in a self-consistent way [15]. Second, due to the
nonlinearity the BSCs couple with the injecting light in the
closest vicinity to the BSC frequencies given by equation (11).
As a result new sophisticated solutions appear which provide
extremely large efficiency of the CDD. The position of perfect
channel dropping is governed by the injecting power. More
importantly, these solutions are stable.

According to equations (18) and (19) the CDD efficiency
in the nonlinear case cannot be 100%, differently from the
linear case. However, as figures 6(a) and 10 demonstrate, the
efficiency can be extremely high for small injecting power.
There is also another feature of the nonlinear case which is
the possibility to widen the frequency domain of existence of
the BSC solution [15] by the input power. This is important
for channel dropping filtering. The third difference between
the linear and nonlinear cases is the multiplicity of BSCs that
equation (11) shows, and therefore the multiplicity of CDD
domains.
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The results obtained in the framework of coupled
mode theory are in qualitative agreement with direct
calculation of the nonlinear Maxwell equations in 2D PhC
with two rods made from a Kerr medium between two
straightforward waveguides. An extremely high efficiency
of channel dropping can be reached. This is a matter of
the interplay between the input power, to what extent the
frequency of the light is close to the BSC frequency and the
coupling constant between the nonlinear optical cavities and
the waveguides. Moreover, the mechanism of a CDD based
on the nonlinear resonance at the BSC point can be used
for all-optical switching of outputs between the bus and the
receiver waveguides by applying small pulses to the system.
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