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Abstract
By use of coupled-mode theory we analyze a channel add–drop filter based on two dispersive
waveguides symmetrically coupled with two resonant optical cavities. We show new solutions
for the channel-drop filter processes compared to the solutions found by Manolatou et al (1999
IEEE J. Quantum Electron. 35 1322). For a special choice of the dispersion of the waveguides,
we reveal a frequency region with sufficient total reflection.
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1. Introduction

Micro-cavities or resonators formed by point defects and
waveguides formed by line defects in photonic crystals
(PhCs) have been the subjects of a great deal of research
because of their capability to confine photons within a small
volume, and they are expected to be key building blocks for
miniature photonic functional devices and photonic-integrated
circuits. Among various PhC-based devices, ultra-compact
channel-drop filters (CDFs) based on resonant coupling
between cavity modes of point defects and waveguide modes
of line defects have drawn primary interest.

Formally, the CDFs can be split into two basic
structures: four- and three-port systems, although the
resonant transmission between continua through resonant
micro-cavities is a key mechanism in both structures. A
single standing wave cavity side coupled to a signal or bus
waveguide can only pick up half of the signal power. In
order to couple out all of the signal power a second side
coupled resonator–reflector is required [2]. Two identical
coupled micro-cavities give rise to, at least, two resonances
of different symmetry. Then a degeneracy of these resonances
provides 100% drop efficiency at the resonant frequency [1,
3]. In order to improve passband characteristics of the CDF
a more sophisticated design of micro-resonators [3–5] or
micro-rings [6–10] is explored.

The mass of CDFs based on two resonant micro-cavities
was studied theoretically and practically: four- [1, 5, 9, 11–18]
and three-port systems [15, 18–22]. The four-port system is
typically two parallel waveguides with two optical micro-
resonators in between, where each resonator is presented
by a single monopole eigenmode. Therefore, these two
micro-resonators can be substituted by a single micro-cavity
with higher order eigenmodes [23–27]. A clear channel-drop
operation was successfully demonstrated by employing an
ultrahigh quality factor single micro-resonator and a suitably
designed waveguide bend [28]. Very high efficiency of
channel dropping was demonstrated in the PhC system
of two parallel waveguides and three cavities [17]. Also
we refer to the theoretical study of surface-emitting CDFs
using channel-drop tunneling processes in two-dimensional
photonic crystal slabs [29].

The most striking result of the CMT consideration by
Manolatou et al [1] is that there is no reflection irrespective
of the input signal’s frequency, which is extremely important
for integrated circuits. However, that result becomes only
approximate if referring to real PhC structures. One of the
reasons is the difficulty of satisfying Manolatou et al’s
condition for the ideal reflection of the defects’ discrete
positions, which play the role of resonators.

Moreover, these studies did not demonstrate a practical
design capable of realizing in-plane PC devices with finite
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Figure 1. A symmetric add/drop filter based on two identical
coupled single-mode cavities.

thicknesses because of light leakage outside of the cavity [28].
Also there is another hurdle which was disregard previously
in CMT considerations. In the PhC waveguides, the optical
length k(ω)L depends on the frequency ω. This gives rise to
the fact that the reflection equals zero only at the selected
frequency value. However, we find new solutions for the
dispersive waveguides with two optical resonant cavities
which can serve as the CDF.

2. Four-port system with a pair of identical
single-mode cavities

Let us consider one of the most studied four-port systems
shown in figure 1 consisting of two linear waveguides and two
optical cavities. Following [1], we write the CMT equations
for the amplitudes A1,A2 of two nonlinear optical cavities

(ω − ω0 − 2iγ )A1 + (u− 2iγ eiθ )A2 = −i
√
γ S1+,

(ω − ω0 − 2iγ )A2 + (u− 2iγ eiθ )A1 = −i
√
γ S1+eiθ .

(1)

√
γ is the coupling constant between the cavities and the

waveguides, u is a direct coupling between the cavities, θ
represents the phase shift incurred as the waveguide mode
travels from the first cavity to the second, and ω0 is the
resonant frequency of the cavities. Equations for transmission
amplitudes have the following form:

S3− = S1+eiθ
−
√
γA1eiθ

−
√
γA2

S1− = −
√
γA1 −

√
γA2eiθ

σ3− = −
√
γA1eiθ

−
√
γA2

σ1− = −
√
γA1 −

√
γA2eiθ .

(2)

Since the transmission and reflection amplitudes are given
by the ratios of outgoing amplitudes (2) and the ingoing
amplitude S1+, we put below S1+ = 1. Equations (1) and (2)
constitute the stationary CMT equations based on preservation
of light flows [30] and were applied to consider CDF circuits
in many works [1, 5, 14, 17, 18, 20].

3. Analysis of the channel-drop filtering

We start with the condition that the total reflection equals zero.
Then from equation (2) we have

A1 + A2eiθ
= 0. (3)

Next, we write the solution of equation (1)

A1 = −
i
√
γ

D
[ω − ω0 − 2iγ + (2iγ eiθ

− u)eiθ
],

A2 = −
i
√
γ

D
[(ω − ω0 − 2iγ )eiθ

+ 2iγ eiθ
− u],

(4)

with the determinant

D = (ω − ω0 − 2iγ )2 − (2iγ eiθ
− u)2. (5)

Using equations (3)–(5), we obtain the equation which defines
the phase θ at which we have no reflection:

eiθ
=

u±
√

u2 − (ω − ω0)2 − 4γ 2

ω − ω0 + 2iγ
. (6)

Moreover, we imply that the light has to fully drop into
the lower waveguide |σ2−|

2
= γ |A1eiθ

+A2|
2
= 1. Combining

this condition with equation (3) we obtain

4γ |A1|
2sin2θ = 1. (7)

On the other hand, substituting (3) into equation (1) we have

γ = |A1|
2
[(ω − ω0)

2
− 2u(ω − ω0) cos θ + u2

]. (8)

Finally, combination of equations (7) and (8) gives us the
following equation:

ω − ω0 = u cos θ ± sin θ
√

4γ 2 − u2. (9)

Intersection of the lines, given by equations (6) and (9), gives
us points where the system operates as an ideal CDF. It is
important to notice that equation (9) has a solution only for
u2
≤ 4γ 2.

One can see from equation (6) that there is the solution
u = −2γ, ω = ω0, θ = π/2+ 2πn and u = 2γ, ω = ω0, θ =

3π/2 + 2πn obtained by Manolatou et al [1]. One of these
solutions is marked in figure 2 by a star. Moreover, there
are extra solutions shown by open circles in figure 2 with
the CDF. However, these solutions are singular because the
determinant (5) equals zero. They correspond to the bound
states in continuum (BSC) [31, 32], where the collapse of
the Fano resonance occurs [33]. A value of the channel-drop
transmission depends on the way to approach the BSC
points marked by open circles in figure 2(b). Because of the
analytical behavior of the channel-drop transmission near the
BSC solution, it cannot serve as the CDF.

The question arises as to whether the CDF could be used
for u 6= ±2γ . After combination of equations (6) and (9), we
obtain the following equation:

(ω − ω0)
2
[
(ω − ω0)

2
− u2

] [
(ω − ω0)

2
+ 4γ 2

]
= 0, (10)

which gives us the following roots: ω = ω0 + u, ω = ω0 − u
and ω = ω0. Respectively, the phase θ = 2πn, θ = π + 2πn

2
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Figure 2. (a) The reflection and (b) channel-drop transmission into the lower waveguide for the case u2
= 4γ 2. Solid lines show where the

reflection equals zero. Dashed lines are given by equation (9). The parameters are chosen as γ = 0.25, u = −2γ .

Figure 3. (a) The reflection and (b) channel-drop transmission into the lower waveguide for u2 < 4γ 2, u = −0.4, γ = 0.25. Solid lines
show where the reflection equals zero. Dashed lines are given by equation (9). The parameters are the same as in figure 2.

Figure 4. (a) The reflection and (b) channel-drop transmission for the case of dispersive waveguides with θ = π(1/4+ ω). Solid lines
show the solutions of equation (6) at which the reflection equals zero. Dashed lines show ω0 defined by equation (12). The parameters of the
CMT model are the same as in the previous figures.

and θ = ± arctan u/
√

4γ 2 − u2 + 2πn where n is an integer.
The first two solutions are marked by open circles and the
third solution is marked by stars in figure 3. Similar to the
previous case shown in figure 2, the first solution cannot serve
as the CDF solutions, while the second solution marked by
stars can.

However, to practically realize a sufficiently high drop
efficiency there are hurdles. In fact, in photonic crystal
waveguides, the phase θ = k(ω)L depends on frequency
ω, where L is the distance between the cavities [34].
Following [35], we approximate that dependence as

θ(ω) ≈ θ0 + θ1ω. (11)

It instantly implies that the channel dropping occurs only
at some discrete set of frequencies ωn, as follows from
equation (9). Substituting equation (11) into equation (6),
which defines the condition of total reflection, gives the
following equation:

ω0 = ωn −
u+ 2γ sin θ(ωn)

cos θ(ωn)
. (12)

This discrete set of frequencies is marked by stars and open
circles in figure 4. Again similar to the former cases, only the
solutions marked by stars can serve as the CDF solutions; they
are positioned at ω0 = ω as shown in figure 4(a) by the yellow
dashed–dotted line.

3
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Figure 5. Reflection (red solid), transmission up (dashed–dotted green lines) and the channel-drop transmission (blue dashed line) for the
case of constant phase θ0 = arctan( u√

4γ 2−u2
), θ1 = 0, γ = 0.25. (a) u = −0.4 and (b) u = −0.1.

Figure 6. Reflection (red solid), transmission up (dashed–dotted green lines) and the channel-drop transmission (blue dashed line) for the
phase dependent on frequency θ0 = arctan( u√

4γ 2−u2
), θ1 = 1/2γ, ω0 = 0. (a) u = −0.4 and (b) u = −0.1.

Also we consider selected cases for the reflection and
transmissions presented in figure 5 and 6. First let us consider
θ1 = 0 in equation (11), as considered in [1, 3–5, 11–18,
24]. Figure 5 shows that the reflection and transmission peaks
are narrowed with a decrease of the coupling constant u for
tan θ0 = ±

u√
4γ 2−u2

. Further, let us take the case where the

phase is dependent on the frequency, however, for the special
case θ1 =

dθ
dω |ω=ω0 =

1
2γ calculated from equation (6). This

case is presented in figure 6 for two choices of u. One can see
that this case gives rise to a frequency region with sufficient
optical isolation.

4. Summary

In this paper we analyzed the system of two identical
linear optical cavities each only presented by a single mode
with the eigen-frequency ω0. The cavities are positioned
symmetrically between two parallel directional waveguides.
We implied from the condition that there is (i) no reflection
back from the cavities and (ii) the transmission onto the lower
receiver waveguide equals unit, i.e., the full channel-drop
transmission takes place. Due to that we derived analytical
equations which define a discrete set of values for the
frequency of the incoming wave and the phase θ which
acquires light between the cavities. Besides the well-known
solutions θ = π/2 + πn found by Manolatou et al [1] for
the special case u = −2γ sin θ , we presented new solutions

for u2 < 4γ 2 and θ = ± arctan( u√
4γ 2−u2

). Here u is the

direct coupling between the cavities, and
√
γ is the coupling

constant between the cavities and the waveguides.
Next, we took into account the fact that in the

waveguides, the phase depends on the frequency θ(ω) =

θ0 + θ1ω, θ1 =
1

2γ . There is a discrete set for the frequencies
ω = ω0 at which the system operates as the CDF, where ω0
is the eigen-frequency of the cavities. We considered also
the special case of the waveguide with θ1 =

dθ
dω |ω=ω0 , which

demonstrates the channel-drop filtering at a frequency region
around the eigen-frequency of the cavities. However, that case
also requires defect rods to be specially designed in the PhC
structures, similar to the case of Manolatou et al.
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