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Generation of arbitrary symmetric entangled states with conditional linear optical coupling
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An approach to generating the entangled photonic states |W;,¥,) £ |W,, W) from two arbitrary states |¥;) and
|W,) is proposed. The protocol is implemented by the conditionally induced beam-splitter coupling, which leads
to the selective swapping between two photonic modes. Such coupling occurs in a quantum system prepared in
the superposition of two ground states with only one of them being involved in the swapping. All the entangled
states in the category, such as entangled pairs of coherent states or Fock states (NOON states), can be efficiently

produced in the same way by this method.
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I. INTRODUCTION

Bipartite symmetric entangled states refer to a generic
type in the form |W;,¥;) £ |V, ¥;) up to a normalization
factor. Such entangled states include the symmetric entangled
coherent states (SECSs) |o,8) £ |8,a) [1] and the NOON
states |NV,0) £ |0, N) [2,3], both of which have found important
applications in quantum metrology (see, e.g., [4,5]). A SECS
of light fields can be transformed to a photonic Schrodinger
cat state |y) x| —y) [6] simply by a beam-splitter (BS)
operation. Cat states of matter wave and even light field have
been experimentally demonstrated [7-9], but a photonic one
with a sufficiently large size |y | is still beyond reach.

Since the seminal work of Yurke and Stoler [10], the
application of Kerr nonlinearity has been suggested as a direct
way to entangle light fields or construct photonic cat states [1].
Realizing strong coupling between photons via the suitable
nonlinear media, however, is a rather difficult task. This barrier
stimulates parallel research on creating the approximate states
by squeezing (see, e.g., [11,12] and references cited in [6])
and exploring the proper use of weak Kerr nonlinearity (see,
e.g., [13-15]).

A less noticed problem with Kerr nonlinearity and squeez-
ing is the availability of their single-mode versions, which are
the basis for all relevant schemes thus far. A realistic photonic
pulse carries multiple modes represented by the field operator
& @=> age'™ (in one-dimensional space for illustration).
For instance, under the action of a multimode self-Kerr
Hamiltonian [ dz[£7(2)€(z)]? of the unit coupling constant or
its equivalent form ;5 43 &z]_ wo+k3Gk 1&22&;(3 in the wave-
vector space, the output states can be significantly different
from the proper ones that should have evolved under the sum of
single-mode actions Y k(éZ&k)z, even if the inputs are exactly
single-mode ones. This effect of mode entanglement or mode
mixing has been studied in detail in [16,17]. A consequence
of the effect is a vanishing or a very limited clean cross
phase (similar to that obtained from the single-mode cross
Kerr model) under highly demanding conditions [18,19]. In
contrast, a multimode squeezing action Zk(&Z&ik + ard_y)
of one field alsol deviates from its single-mode version. In
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contrast, the multimode BS Hamiltonian Hgg for two fields
E1(z) and &,(z) takes the form fdz{é'fé’z(z) +515;(Z)} =

> k(th, WAk + a, k&; «)> a sum of the individual mode actions.
This BS coupling enables a multimode photonic state to
be transformed ideally like a single-mode one because the
decomposable evolution operator exp{—it Hgg} with respect
to the wave-vector modes k acts independently on each mode.

In this paper we provide a method for generating arbitrary
symmetric entangled states out of light fields based only on
such clean BS coupling. Unlike a common linear optical setup,
the BS coupling we need acts conditionally on the part of a
superposition of quantum states at the same spatial location.
Below we will show how to produce a symmetric entangled
state with a conditional BS coupling and give an example of the
realization of the given type of interaction in a proper quantum
system.

II. PROTOCOL TO ENTANGLE ARBITRARY
INPUT STATES

From now on, we use the term mode to mean a single-
wave-vector or a single-frequency mode since we will consider
BS-type coupling only. The two arbitrary states |\W;) and [\V;)
we will entangle are treated as the single-frequency ones.

To entangle the two states we also need an ancilla quantum
system with two stable states |m) and |g). This system can be
an atom, as well as an ion, a quantum dot, or a superconducting
qubit. The ancilla system is initially in the state |m), setting the
initial state for the total system as |®g) = |W,V,)|m). Then
we perform a o* rotation between the |m) and |g) and transfer
the system to the superposition

|D1) = |1, Wa)(Im) — i|g))/V2. (M

Such a o rotation can be realized by applying a resonant 7 /2
pulse to the transition |m) — |g). The above superposition of
|m) and |g) works as a logic control on the swapping between
two input photonic modes: The swapping between the photon
modes is activated in the |g) subspace and does not happen in
the |m) subspace. Such conditional swapping can be realized
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by the BS transformation
am\ cos xot —ie'?sin xot\ ( @1(0)
a) ] — \ —ie " sin ot cos ot a,(0)
(2

for the time ¢, = /2 )0, where 4; is the annihilation operator
for the ith mode and yj is the effective BS coupling constant.
The BS transformation can be implemented via the dispersive
parametric three-wave-mixing (TWM) [20,21] or four-wave-
mixing (FWM) [22,23] process. The use of the dispersive
type of interaction allows us to avoid the decoherence of the
generated state due to incoherent scattering as during the BS
interaction the ancilla system is always preserved in its ground
state and only the photon states are changed. The conditional
swapping results in the state

D) = (101, W) m) — i|W5,W1)[g))/ V2. 3)

Then we perform again a o* rotation between |m) and
|g) to have them transformed as |m(g)) — |m(g)) — i|g(m)),
leading to the state

|®3) = 5[(1W1,W2) — [Wo, W) |m) — i (| W, W)
+ W2, W1))lg). (4)

Finally, by measuring |m) and |g) (see the method in the
following example), we make the photonic sector of the
total state collapse to the target symmetric entangled states
W, W,) £ |W,,W)). For clarity, the complete procedure is
summarized in Fig. 1.

A candidate for the ancilla system should satisfy two
requirements. First, the quantum system should have two
long-lived and well-separated states between which a o*
rotation can be performed. The second requirement is specified
by the swapping: The system should have an appropriate
energy-level structure for the formation of the TWM or FWM
interaction loop where two of the transitions have to be
strongly coupled to the input fields. These conditions can be
satisfied by certain trapped natural atoms or ions, single-color
centers, quantum dots, or superconducting qubits based on the
Josephson junctions, which have multilevel structures and can
also be strongly coupled to the suitable field modes.

Different from the idea of inducing the conditional interac-
tion of a matter wave (ion or atom) state superposition with one
optical mode [24] for creating the cat states [7-9,25], our setup
allows us to realize a conditional coupling directly between
two photonic modes for their swapping. This is necessary to
construct a SECS |«,8) &+ |B,«) with @ > S (to make a cat
state of large size) or a NOON state. Our method aims to
generate all such states in a unified way.

III. EXAMPLE OF REALIZATION

Here we provide an example to implement the protocol
with the single ion of calcium Ca* trapped in ion trap and
embedded in an optical resonator as the ancilla system. The
energy-level structure of the calcium ion Ca™ is illustrated in
Fig. 2(a). Trapped ions are well-studied systems for quantum
information processing [26]. The construction of multipartite
entangled states of trapped ions themselves has been proposed
in [27]. Our proposed setup for entangling cavity fields via a
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FIG. 1. (Color online) Conversion of the separable state into the
two-mode symmetrical entangled state: (a) initial state of the system,
(b) preparation of the ancilla system in the superposition state due
to o* rotation, (c) creation of the superposition of the two events
(with the field’s state swapped and not swapped), (d) deentanglement
from the ancilla system degree of freedom due to ¢* rotation, and

(e) projective measurement in the ancilla system subspace collapse
of the photon wave function into one of the two entangled states.

(|91, W) + |¥s, ¥,y

(191, ¥2) —

trapped ion is similar to that of the recent experiments reported
in [28,29]. The two ground states |m) and |g) of the ancilla ion
we use are 481 2(F = 4,m; = 0) and 3D5,,(F = 6,m; = 0),
respectively. These particular levels are chosen as the ground
states for two reasons. First, both of the states are long lived
(up to the order of 1 s). Second, due to the selection rule
and large energy difference between them, one of the ground
states is excluded from our parametric FWM loop to swap two
photonic modes so that the conditional BS coupling can be
realized.

The photonic modes we will swap are prepared as the
steady-state fields of the cavity. The process building up the
steady cavity field can be described by the Hamiltonian (& = 1)

2
H, = Z{iEj(&;e—iAo,t — ajetdor

j=1

+ivie@én - a;El o)) (5)

in the interaction picture with respect to the cavity Hamiltonian
> W Ez; a;. The first term in Eq. (5) describes the continuous-
wave drives of the frequency wy; and with the intensity E; and
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FIG. 2. (Color online) (a) Ca*t energy level scheme. (b) Level
scheme for realizing the conditional BS coupling between two
photonic modes @, and @, (blue arrows). The red arrows represent
the classical coupling fields. The white and black circles on levels |g)
and |m) indicate that they are in a superposition and only one of them
is involved into the parametric loop. The energy levels of this general
scheme correspond to those of Ca' for our example as follows:
|m) — 4810(F =4,m; =0), |g) = 3Ds;(F = 6,m; =0), |a) —
4P3/2(F = S,m] = 1), |b> —> 4P3/2(F = S,m] = —1), and |C) —
3D3/2(F = S,I’l’lj = 0)

397nm

the detuning Ay; = w.; — wop; from the cavity frequency w,;.
The second term about the coupling between the cavity modes
and the cavity noise operator & gives rise to the damping
of the cavity at the rate « [30,31]. The steady cavity fields
in the coherent state with [(@;)| = E;/(0.5« +iA;) will be
created by driving the cavity for a while. The cavity fields in
the Fock state can be established by the technique in [32]. The
two prepared intracavity modes in the state |\ ),+ and |W),-
of the different polarization will be coupled to the transition
3Ds;(F = 6) < P3)»(F =5) at 854 nm of the trapped ion.
In the case where the intracavity modes are in the coherent
states the SECSs will be generated and for the Fock and
vacuum inputs the NOON states will be obtained as a result
of the conditional swapping. As follows from the interaction
configuration presented in Fig. 2(b), only the ground state
|g) [3Ds,(F = 6,m; = 0)] becomes coupled to the optical
modes, but there is no coupling to the optical modes for the
state |m) [4S12(F = 4,m; = 0)]. In order to perform a o*
rotation between |m) and |g) and bring the ion into the super-
position state in Eq. (1), a resonant 7 /2 laser pulse at 729 nm
with 7 polarization is applied to the quadrupole transition
4812 <> 3Ds,. During the swapping stage there are also two
classical pumping pulses with the orthogonal circular polar-
izations applied to the transitions 3D3,(F = 5,m; =0) <
4P3)(F =5,m; = £1) at 849 nm, while the cavity modes
ot and o~ are coupled to the transitions 3 Ds p(F=6m; =
0) <> 4P3/5(F = 5,m; = %1) in the parametric FWM loop.
To realize the parametric BS coupling, all real transitions in
the loop should be suppressed and ideally the ion should stay
in its ground state during the swapping process. Therefore, all
fields should be highly detuned from the resonance and satisfy
certain conditions (see the discussion below). By controlling
the duration of the classical pulses we can control the precise
parametric interaction time to obtain the state in (3). After
another 7 /2 laser pulse at 729 nm with & polarization there
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will be the state in (4). The detection of the ground states for
the final projection onto the target states is implemented by
exciting the transition 4S;, — 4P, at 397 nm; a similar
technique can be found in [33,34]. The presence of the
fluorescence collapses the ion wave function onto |m) and
the absence of the fluorescence indicates the state |g).

IV. MECHANISM FOR INDUCED BEAM-SPLITTER
COUPLING

The dispersive FWM process to realize the conditional
swapping in our protocol can be implemented in any system
with the level scheme in Fig. 2(b). The Hamiltonian for the
process shown in Fig. 2(b) takes the form (& = 1)

H=—A0,, — Ayopp — 60, + gl&;rag“
+82a;0'gb + Qlaca + Q2€iAFtoc'b + Hec. (6)

in a rotated frame. Here o;; = [i)(j| is the atomic spin flip
operator, g1(2) is the coupling constant, A2y = @a12) — Qga)
is the one-photon detuning, § = w,; — w| — w.g is the two-
photon detuning, and Ap = w,] — W — W42 + W, is the four-
photon detuning, with ;) the frequency of the classical
pumping pulse with the Rabi frequency Qi) and w412
the frequency of the input pulse. The modes d; are the
steady-state intracavity modes for the example described in
the preceding section. Given the possibility of preparing the
many-body superposition (|my, ...,m,) —i|gy, ... ,gn))/«/i
of an ensemble of atoms with a similar level scheme to
Fig. 2(b), the dispersive FWM process can also be performed
in the ensemble. Then &; are just the representative modes of
the narrow band input pulses.

The Hamiltonian (6) presents only the coherent part of the
interaction process without dissipations. In Sec. VI we will
give a detailed discussion of the decoherence effects arising
due to the decay of the energy levels of the ancilla system and
the loss of the cavity.

The effective BS Hamiltonian for similar dispersive FWM
schemes can be derived by the time-independent perturbation
method [23]. Here we apply the more general method of
adiabatic elimination [35] to show the realization of the
effective BS coupling. It is important to mention that the one-
and two-photon detunings should be high enough to prevent
any real transition of the system from its ground state. It is
therefore possible to see the effective dynamics of the photonic
modes while the system stays in the ground state |g).

For the process in Fig. 2(b) the Schrodinger equation for
each energy-level component of the state |\W(¢)) reads

i%(glllf(t» = gi1a] (@l () + g2} (b|W (1)), (7a)
ij—t<b|‘ll(t)) = —Ay(b|W(1)) + Qae A (c|W(t))

+8202(g|V (1)), (7b)
i:—t(alllf(t» = —A{a|¥(@)) + Qi {c|¥(®))

+ g1a1 (g (1), (7c)
i%(cl“f(t)) = —8(c|W (D)) + Qi {a|¥())

+ Qe A (bW (D). (7d)
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First, assuming that initially the system is prepared in its
ground state |g), i.e., (b|W (1)) = (a|¥ (1)) = (c|¥ (1)) = 0,
we eliminate the transitions from the state |g) to |a) and
|b). Under this assumption we integrate Eqs. (7a)—(7c) and
then substitute the formal solution of (g|W¥ (7)) into those of
(b|W(¢)) and {(a|W(t)) to obtain the relations

Q —iApt
(b W(1)) = 26A—2<c|w>> + g2—2<g|\v<r)> (8a)
Q g1d;
(@W ) = W) + T W), (8b)

where we are concerned with the regime of |g;/n;/A;i| K
1 and keep only the first order of this small term and n; is the
average photon number of the ith input mode.

Next, in order to obtain the decoupled dynamics of the
effective two-level system of |g) and |c), we substitute
Egs. (8a) and (8b) into Eqgs. (7a) and (7d) and obtain

d ; , ,
—e " (g|W(1)) = —ie" ™ 1) (c|¥(1)), (9a)

dt

d lOl . it

¢ He|W () = —ie™ B()(g| (1)), (9b)
where we have introduced the functions o, =

54+ QYA+ QR Ny, g = gRalan/ A+ ghajar/ A,
and B = nglal/Al + Qog282¢'27' /A, In the dynamics of
this effective two-level system the parameter 8 plays the role
of the effective coupling constant and the parameter

Actt = g — e 8 — QT /A; — Q3/As (10)

corresponds to the effective detuning. We have considered
the regime satisfying |gi2n,-/Ai| L 16— Q%/Al — Q%/A2| in
(10). The dynamics of the states |g) and |c) will be decoupled
further. Integrating Eq. (9b) we get the relation

1 [nglfll . Q824> oAt
AW Ay A

where we keep only the first order of the parameter
|gi /i 2 /(A Actr)| K 1

Finally, substituting Eq. (11) into (9a), we obtain the
decoupled evolution of the state |g),

{clW() =

}(gl\lf(t» (1)

d
i8IV (@) = Heir (W (1)), 12)

where
Her(t) = malay + mala, + xo(@lae’® +He)  (13)

is the effective Hamiltonian for the photonic modes, with n; =

g’ g _ Q0818
At afag ad Xo = T A

The condltlons lgi/mi/Ail <1 and g /niS2/
(A;Aer)| < 1 leading to the above effective dynamics
prevent the one- and two-photon transitions out of a ground
level and can be realized by adjusting the system parameters.
For our example using Ca® with g ~ 10 MHz, it is
possible to set the Rabi frequencies €210y ~ 1 GHz, the
one-photon detunings Ajp) ~ 1 GHz, and the two-photon
detuning § ~ 1 GHz, given the average photon numbers up
to n; = 100. The symbol “~” means the order of the values
here. The sizes ,/n; of the states to be entangled can be made
larger simply by increasing the detunings.
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V. PERFORMANCE OF SWAPPING OPERATION

The unitary evolution operator of the time-dependent
effective Hamiltonian H.g in (13) can be decomposed as

Texp{—i/ dTHeff('C)}
0

= exp{—im&f

t
x T exp {—ix()/ e’ia”drflldg + H.C.} , (14
0

art — inpalant)

where T stands for a time-ordered operation and 6 = Af +
n1 — n2. The general form of such decomposition is given
in [31]. The first of the decomposed operators in Eq. (14)
is a phase-shift operation and the second is a BS operation.
For example, by tuning the system parameters so that the
condltlons 6r =0 and Aey = —2A; (assuming g; = g» and
ii = 22 = 1) are satisfied, their combined action implements
an 1deaf swapping d; <> d, after the time f; accumulating
| xots| = 0.57. Given the data following Eq. (13), a pair of
input states could be entangled within a few microseconds.

In a general situation the swapping time ¢, is determined by
the relation 2 sin(0.58¢¢,)/5r = 0.5, implying a quickly
stabilized swapping time with increasing ratio xo/8r [see
Fig. 3(a)]. Meanwhile, the output state will be |«,8) &
|Bei? ,ae'??), where ¢; = n;t; — 0.5 + 0.58¢ty, if the inputs
are two coherent states |«) and |B). The fidelity of the output
state is determined by the two ratios | xo/8r| and |n; / xo| (given
N1 = n2). As shown in Fig. 3(b), a high-quality output state
will be realized with the proper ratios that can be achieved by
adjusting the system parameters.

The frequency-dependent parameters in the effective
Hamiltonian (13) might also decrease the BS fidelity when
one considers the multifrequency pulses. In fact, such a
difference is negligible in the narrow-band input pulses and
can be avoided by using the interaction scheme for the
BS transformation [21] where the effective Hamiltonian is
insensitive to the frequencies of the input modes.

VI. DECOHERENCE EFFECTS

For the ancilla system applied in the parametric loop,
the decoherence effect is from two sources. One is due
to the broadening of the transitions, so the fields detuning
ts (us) (a) F Imi/x0l=0.9 (b)
50 | ’

7/ xol=1

L¥6|=0.05 MHz
20l 08
\ [x0|=0.08 MHz
' 71/ xol=1.04
10| L Xol=02 MHz 06 |
24 6 xolse 10 20 xo/6¢

FIG. 3. (Color online) (a) Relation between the swapping time
and the ratio xo/dr. (b) Fidelity of the generated states with the target
output |a)|B) £ |B)|e) with o = 6+/2 and B = +/2, which can be
converted to the cat states |y) £ | — y) of y = 5. A unit fidelity can
be reached in the regime |7;/ xo| < 1 at a not so large ratio xo/8.
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A; and Ay should be much larger than the bandwidth
of the corresponding transitions I'y; (i =a, b, and c), i.e.,
[Ai] > Tga b and [Aegr| 3> I'ge. The other more significant
one comes from the possible population of the energy levels
other than the ground state |g) during the swapping process.
The radiative decay in the system occurs only after the
excitation of the system from the ground state. As we apply
a dispersive interaction, the probability of the one-photon
excitationscalesas P, , = g% znlyzAfg [see Egs. (8a) and (8b)]
and the probability of the two’-photon excitation scales as P, =
1Q181/11/ A1 Actr + Q2824/n2€' 27" | Ay Aege]* [see Eq. (11)].
Therefore, the effective decays in the system should be
described by the product of the decay rate of the particular state
and the probability of the electron excitation at this level. In or-
der to have a negligible contribution from the decay processes,
the swapping time should be much shorter than the effective
radiative lifetime t; < 1/y; P;. For example, if one takes the
swapping time for the matched four-photon detuning giving
8 = 0, there should be the condition y, , < %lwﬂgz—'w

Aeft D1 812
for neglecting the decay of the intermediate states |a) (|b)) and

the condition y, < 2| /nym + v/nae!®r'm="72| Ay|, where
m= %, for neglecting the decay of the state |c). For the
example using Ca™ with y,;, ~ 10 MHz and y, ~ 10 Hz, the
above conditions can be easily established. These conditions
guarantee the outputs of the swapping process to be pure states.

Another type of decoherence arises from the loss of steady
cavity fields in any cavity-based implementation. It modifies
the unitary evolution in (14) to a nonunitary one governed by
the master equation

) } . | N
p = —ilHer,p] + Zlc(aipaf — E(pafai + afaip)),
i

where H.g is given in (13). Given the input as a product of two
coherent states |a)|8), for example, the solution to the master
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equation for a short evolution time and under the condition of
reaching the unit fidelity in Fig. 3(b) can be found by following
a procedure similar to that in [15] as

1
p(t) — N (|Ote_'“/2,,36_m/2)(ae_Kt/z,,Be_m/2|

a.p
+ |ﬁe—Kf/2’ae—Kl/2><13€—KT/2’ae—Kl/2|
+C|aefl(t/2’ﬁefl(t/2><ﬂefKt/2’aefKI/2|
+C|ﬂgfl(t/2’aefl(t/2><aefl(t/2’ﬂefl([/2|)’ (15)

where /Ny p is the normalization factor for the SECS
|)|B) + |B)le) and C = exp{—2|a — BI*(1 —e~*")}. Such
decoherence could be negligible in a cavity of high finesse.
Using a cavity with a damping time 0.13 s as in [9], for
example, the fidelity (with a pure SECS) of the generated
state for the example in Fig. 3(b) can be preserved over 0.98
up to the conditional swapping time 0.1 ms.

VII. CONCLUSION

With an example we have illustrated how to entangle
two arbitrary states |W;) and |W;) to the symmetric form
|W,¥,) £ |, W) with an induced conditional BS-type
coupling that avoids the physical limitation on nonlinear
couplings. In contrast to previous schemes, the entanglement
strategy is independent of the specific input states, e.g., SECSs
and NOON states can be generated in the same way. The FWM
process to realize the effective BS coupling is within the current
experimental technology. This approach can help achieve the
goals of entangling light fields with flexibility and creating cat
states of large size.
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