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Wannier-Stark states and Bloch oscillations in the honeycomb lattice
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We study a quantum particle in a tilted honeycomb lattice in the tight-binding approximation. First we discuss
the particle eigenstates, i.e., the stationary Wannier-Stark states. These states are proved to be extended states
for the rational directions of the static field and localized states for the irrational directions. We find energy
bands of the extended states and analyze the localized states. It is shown, in particular, that the localized
honeycomb Wannier-Stark states are chaotic states with irregular dependence of the localization length on the
static field magnitude. Second we discuss Bloch oscillations of the quantum particle. Irregular Bloch oscillations
for irrational directions are observed.
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I. INTRODUCTION

Wannier-Stark states (WS states) are eigenstates of quantum
particle in a tilted lattice, i.e., in the presence of a static
field. Strictly speaking WS-states are resonances and have
complex energies. However, for weak static fields they can be
approximated by the stationary states with real energies (the
single-band and tight-binding approximations). In the past two
decades WS states and related problems of Bloch oscillations
(BO) and interband Landau-Zener tunneling (LZ tunneling)
were readdressed in a number of fascinating laboratory
experiments with cold atoms in (quasi-) one-dimensional (1D)
optical lattices and the light in 1D arrays of optical wave
guides, see Refs. [1–8] to cite a few of dozens of relevant
papers. These experiments stimulated theoretical studies that
resulted in essential progress in the theory of WS states in
one-dimensional systems, see Ref. [9] for a review.

An interesting extension of the theory of 1D WS states
refers to 2D tilted lattices [10–12]. It was argued in Ref. [10]
and confirmed later on in the experiment [7] that WS states
in a 2D lattice are sensitive to the direction of the static field
relative to primary axes of the lattice. Unfortunately, for square
lattices considered in the above-cited papers this effect is seen
only in the strong-field regime, where the metastable nature of
WS states plays major role. In the present work we analyze WS
states and BO for a quantum particle in a honeycomb lattice.
We will show that for this lattice geometry the nonanalytic
angular dependence of WS states is well pronounced already
in the weak-field regime, where the metastable WS states
can be approximated by the stationary states. This feature of
the stationary honeycomb WS states has direct consequences
for Bloch dynamics of the system that becomes qualitatively
different for rational and irrational field directions defined later
on in the text.

It should be mentioned that BO in the honeycomb lattice
were addressed earlier with respect to conductivity of graphene
nanoribbons [13,14]. However, in these works the electric field
was aligned with the ribbon axis and, thus, the alignment
effects were not discussed. The other related problem is a
Bose-Einstein condensate of cold atoms in the square optical
lattice in the presence of an effective spin-orbit coupling. It
is known that the spin-orbit coupling results in the Bloch
dispersion relation similar to that for a quantum particle in

the honeycomb lattice [15,16]. Bloch dynamics of a spin-orbit-
coupled condensate was analyzed in Ref. [15] for the particular
case where static field was aligned with the lattice primary
axis. Because of the above-mentioned similarity between
two systems, results of the present work can be also used
to describe the Bloch dynamic of spin-orbit-coupled Bose-
Einstein condensates for arbitrary directions of an external
field.

This paper consists of two parts devoted to analytical and
numerical analysis of WS states, Sec. II, and BO of a quantum
particle in the honeycomb lattices, Sec. III. The main results
of the work are summarized in Sec. IV.

II. HONEYCOMB WANNIER-STARK STATE

In the standard presentation with two sublattices the tight-
binding Hamiltonian of a quantum particle in the honeycomb
lattice reads

H0 = −J
∑

R

(
3∑

j=1

b
†
R+rj

aR + H.c.

)
, (1)

where J is the hopping matrix element, R denote coordinates
of A sites, and rj are three vectors that point from a A site to
the nearest B sites. If a static field is present, this Hamiltonian
should be complimented with the Stark term,

H = H0 +
∑

R

(F,R)a†
RaR +

∑
R′

(F,R′)b†R′bR′ , (2)

where F is the vector of the static field and R and R′ are
coordinates of the A and B sites, respectively. We are interested
in the eigenstates of the Hamiltonian (2), i.e., in the stationary
honeycomb WS states.

We begin with recalling a general result concerning the
structure of WS states in a two-dimensional lattice of arbitrary
geometry: For the field F parallel to a vector pointing from
one lattice site to any other site WS states are extended states
in the direction orthogonal to F. These field directions can be
labeled by two coprime numbers r and q and for this reason are
termed rational directions. For example, for the square lattice
the rational directions are given by Fy/Fx = r/q or

tan θ = r/q, (3)
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while for the honeycomb lattice these are

tan θ =
√

3
q − r

q + r
. (4)

The spectrum of WS states for a rational direction (r,q)
consists of infinite number of equally spaced energy bands.
A particular feature of the square lattice and other simple
lattices (like, for example, the triangular lattice [17]) is that
these energy bands are flat for almost all rational directions.
Because of this feature there is no qualitative difference
between rational and irrational directions for the square lattice
in the tight-binding approximation. In what follows we show
that the Wannier-Stark energy bands of the honeycomb lattice
have finite widths already in the tight-binding approximation.
This makes a crucial difference between the honeycomb lattice
and the square or triangular lattices, as well as between rational
and irrational directions for the honeycomb lattice.

A. Rational field directions

For rational directions WS states in the honeycomb lattice
are labeled by the ladder number n, the transverse quasimo-
mentum κ , and the sublattice index i. Correspondingly, the
energy spectrum is given by

E(i)
n (κ) = E

(i)
0 + dF̃n + ε(i)(κ), (5)

where

d = 1√
r2 + q2

, F̃ = 3F

2d

1√
r2 − rq + q2

, (6)

and ε(i)(κ) is a periodic function of κ . We calculated the
spectrum (5) by adopting the method of Refs. [19–21]. In
brief, we map the honeycomb lattice into a square lattice
with two sublattices. For this square lattice the static field
is characterized by the vector F̃ and the rational directions
are given by F̃y/F̃x = r/q. Next we introduce another square
lattice of the period d, which includes the previous lattice as
a sublattice, and rotate it to align its x axis with the vector F̃.
Finally we use substitution where the wave function is a plane
wave along the y axis. After this sequence of transformations
we end up with the system of two coupled equations,

−J
(
e−iqκdψB

j−r + eirκdψB
j−q + ei(r−q)κdψB

j−r−q

)
+ (

dF̃ j + EA
0

)
ψA

j = EψA
j ,

−J
(
eiqκdψA

j+r + e−irκdψA
j+q + ei(q−r)κdψA

j+r+q

)
+ (

dF̃ j + EB
0

)
ψB

j = EψB
j , (7)

where EB
0 = (2/3)(r + q)dF̃ if one sets EA

0 = 0.
We solved Eq. (7) numerically for different F and (r,q).

Without any lost of generality one can restrict θ to the
interval 0 � θ < π/3, which means q > r � 0. Examples of
the spectrum (5) are given in Fig. 1 where the chosen energy
intervals include three band with i = 1 and three bands with
i = 2. In addition to Figs. 1 and 2 shows the width of the
energy bands,

� = max
κ

ε(κ) − min
κ

ε(κ), (8)

as the function of F for the field direction θ = π/6 (asterisk)
and some other directions. [Since � is independent of i,
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FIG. 1. (Color online) Fragments of the spectrum (5) for (r,q) =
(1,2) or θ = π/6 and different field magnitude F . The value of the
hopping matrix element J , which defines the energy scale, and the
lattice period are set to unity.

we drop the sublattice index in Eq. (8).] From the depicted
numerical data one draws the following conclusions: The
bands are well separated only in the limit of large F ; with
decrease of F the band width � monotonically grows while
the distance dF̃ between bands monotonically decreases and,
for some Fcr ∼ J , the bands almost touch each other. At this
critical field magnitude the width � takes its maximal value;
After reaching the maximum � shows monotonic decrease,
where bands become flatter; this decrease is followed by erratic
oscillations of the band width for small F . We note that in
this region of small F the quantity (8) is not sufficient to
characterize the spectrum because of rather complicated band
pattern with many avoided crossings.
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FIG. 2. (Color online) The band width (8) as the function of
the field magnitude for (r,q) = (1,2), asterisks, (1,3), circles, (1,5),
diamonds, and (2,5), crosses.
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FIG. 3. (Color online) Widths of the energy bands for different
rational directions for F = 2.

We also studied the asymptotic behavior of � for F → ∞.
Our numerical analysis reveals the dependence

� ∼ 1

Fν
, (9)

where ν increases with the increase of the denominator r + q

in Eq. (4). For example, ν = 1 for (r,q) = (1,1), ν = 2 for
(r,q) = (1,2), etc. This result resembles that for the band
widths of the Landau-Stark states (eigenstates of a quantum
particle in the Hall configuration) in the square lattice [21]. We
believe that the power ν = ν(r,q) in Eq. (9) can be calculated
analytically by adopting the perturbative approach of Ref. [21].

Dependence of the band width � on the field direction θ is
depicted in Fig. 3, which presents the energy spectrum of the
system (2) in the form of Hofstadter’s butterfly. Namely, the
figure shows energy bands for angles (4) with 1 < r � q � 21,
where the red (dark gray) and green (light gray) colors
correspond to i = 1 and i = 2, respectively. It is seen in Fig. 3
that the band widths progressively decrease with increase of
r and q. Together with the estimate (9) this means that for
irrational directions the spectrum is pure point and, hence, WS
states are localized states.

B. Irrational field directions

First we check that WS states for irrational directions are
localized states. In Fig. 4 we compare two eigenstates of the
Hamiltonian (2) with nearly the same energy for a rational
θ = π/2 ≈ 1.57 (equivalent to θ = π/6) and irrational θ =
3 − π/2 ≈ 1.43. The figure shows the integrated probabilities
ρy = ∫ |
(R)|2dx, dashed line, and ρx = ∫ |
(R)|2dy, solid
line. (From now on we do not distinguish A and B sites.) For
rational θ the WS state is seen to be an extended state in the
direction orthogonal to F, while for irrational θ it is localized
in both directions.
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FIG. 4. (Color online) Examples of extended (left panel, θ =
π/2) and localized (right panel, θ = 3 − π/2) WS states with nearly
the same energies. The dashed and solid lines show integrated
probabilities along and across the field, respectively. The field
magnitude F = 1.

An important characteristic of the localized WS states is
their participation ratio,

P =
(∑

R

|
(R)|4
)−1

, (10)

which indicates how many sites are occupied by a given state.
We note that the participation ratio (10) is the same for every
WS state because different WS states are related to each other
by translations. In the other words, one can obtain the complete
set of WS states from one state (or two states, if the lattice
consists of two sublattices) by translating it across the lattice.

A remarkable feature of the honeycomb WS states is that
their participation ratio wildly oscillates if F is varied. The
physics behind these oscillations is the following. Similar
to the case considered in the previous subsection the (now
discrete) spectrum of WS state consists of two subsets that
can be labeled by the subband index i or, what is the same,
by the letters A and B. Correspondingly, we have two families
of WS states [22]. When F is varied the energy levels of A
and B states nonmonotonically move on the energy axis. If
two levels of different symmetry come close to each other
they develop an avoided crossing where the A and B states
hybridize. As a consequence of the hybridization the function
P = P (F ) shows a local maximum, see inset in Fig. 5. It
should be mentioned that to resolve all local peaks of P (F )
(i.e, all avoided crossings in the spectrum) the step over F or,
more precisely, over z = 1/F should be infinitesimally small.
Figure 5 shows the function P = P (F ) for a moderate step
where only large peaks are resolved. Erratic oscillations with
increasing density of peaks are clearly seen. This figure also
reveals the expected average growth of the participation ratio
when F is decreased.

It is interesting to compare the localized honeycomb WS
states against the analytic results for the simple square lattice,


(R) = Jl−n(J/Fx)Jm−k(J/Fy), R = (l,m) (11)

[here Jn(z) are the Bessel functions of the first kind].
The square lattice has only one family of WS states and,
correspondingly, the energy levels show no avoided crossings.
Participation ration of the states (11) is depicted in Fig. 5 by
the thick line. Comparing two curves we conclude that WS
state in the honeycomb lattice are irregular or chaotic states,
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FIG. 5. (Color online) Localization length of WS states for
irrational direction θ = 3 − π/2. The thick and thin lines show
the square root of the participation ratio (10) for the square and
honeycomb lattices, respectively. The inset zooms into the region
1/F ≈ 1.

which are sensitive to variations of the system parameters [23].
The statistical analysis of these states in spirit of the random
matrix theory will be presented elsewhere.

III. BLOCH DYNAMICS

To study Bloch dynamics of the system (2) it is convenient
to use the interaction representation with respect to the Stark
term. This results in the time-dependent Hamiltonian

H (t) = −J
∑

R

⎛
⎝ 3∑

j=1

b
†
R+rj

aReiωj t + H.c.

⎞
⎠, (12)

where ωj = (F,rj ) are the Bloch frequencies. Notice that
the Hamiltonian (12) commutes with the translation operator.
Thus, when considering translation-invariant solutions of the
Schrödinger equation, we can impose periodic boundary
conditions.

A. Delocalized initial state

Consider initial state of the system 
(R,t = 0) given by
an eigenstate of the Hamiltonian (1), i.e., by the Bloch wave

k(R) with the quasimomentum k. Then the time evolution of
this state is naively expected to obey the equation 
(R,t) ∼

k+Ft (R), that is known as the acceleration theorem. This
simple Bloch dynamics, however, is complicated by the fact
that the spectrum of H0 consist of two sub-bands,

E(k)

= ±J

√
1 + 4 cos2

(√
3

2
ky

)
+ 4 cos

(√
3

2
ky

)
cos

(
3

2
kx

)
,

(13)

with the energy gap vanishing at the Dirac points. Thus one
generally can not avoid interband LZ tunneling and the actual
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0.5

1

|c
i|2

0 20 40 60 80
−3

0

3

t/T
J

E

FIG. 6. (Color online) Populations of two Bloch subbands as the
functions of time, upper panel, and the energies (13) for k′ = Ft ,
lower panel. Parameters are θ = π − 3 and F = 0.1. Initial condition
corresponds to the ground state of the system for F = 0, i.e., to the
Bloch wave with zero quasimomentum.

time evolution is given by the equation


(R,t) =
2∑

i=1

ci(t)

(i)
k+Ft (R), (14)

where i is the Bloch subband index and the coefficients ci(t)
obeys the equation

i
dc
dt

= −J

(
0 f (t)

f ∗(t) 0

)
c,

(15)

f (t) =
3∑

j=1

exp(ikrj + iFrj t).

[Notice that for F = 0 Eq. (15) defines the energy spectrum
(13).] The upper panel in Fig. 6 shows typical dynamics of
the coefficients ci(t) and the lower panel depicts the energies
(13) at k′ = k + Ft . It is seen that LZ tunneling predominantly
takes place when k′ appears in the vicinity of Dirac points.

It should be stressed that the discussed Landau-Zener
transitions may completely smear the periodic or quasiperiodic
dynamics of quantum observables that is usually associated
with BO. In what follows we focus on dynamics of the
projection of the mean momentum onto the field direction:

p(t) =
3∑

j=1

ωj

F
pj (t),

(16)
pj (t) = Im〈
(t)|J

∑
R

b
†
R+rj

aReiωj t |
(t)〉.

Figure 7 compares p(t) for F = 0.1 and θ = 0 (upper panel)
and θ = π − 3 (lower panel). In the former case the particle
trajectory in the (quasi)momentum space goes between Dirac
points and LZ tunneling can be neglected for chosen F . Thus
the upper sub-band remains unpopulated and we observe nice
periodic oscillations of the mean momentum which reproduce
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FIG. 7. (Color online) Projection of the mean momentum on the
field direction as the function of time for F = 0.1 and θ = 0, upper
panel, and θ = π − 3, lower panel.

the derivative of the dispersion relation (13) along the line
k = Ft ,

p(t) = 1

F
E′(Ft). (17)

In the latter case the upper sub-band gets populated indepen-
dent of how small F is. As a consequence, p(t) shows irregular
oscillations where one hardly recognizes the former periodic
BO.

To clarify further the difference between regular and
irregular oscillations we display in Fig. 8 the Fourier spectrum
of p(t), which is calculated according to the equation

p(ν) = 1

T

∫ T

0
p(t)eiνtdt. (18)
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FIG. 8. (Color online) Fourier spectrum of p(t) for the parameters
of Fig. 7 yet F = 1. Since the spectrum is symmetric with respect to
the origin, only positive part of the spectrum is shown.

By progressively increasing T in Eq. (18) we reveal the
discrete nature of the Fourier spectrum. Thus, independent
of the field direction, dynamic of the mean momentum (or any
other observable) is a quasiperiodic process. The difference is
in the complexity of this quasiperiodic process. For rational
directions, where the Bloch frequencies ωj in the governing
equation (12) are commensurate, p(ν) consists of few well-
separated peaks, see Fig. 8(a). On the contrary, for irrational
directions, where the frequencies ωj are incommensurate, the
spectrum is dense and resembles that of a random process,
see Fig. 8(b). This difference becomes especially apparent if
we consider the limit F → 0. As mentioned above, in this
limit and for rational directions LZ tunneling can be neglected
and p(t) converges to the periodic function (17). For irrational
directions, due to the presence of Dirac cones, LZ tunneling
is always present in the system and p(t) does not converge to
Eq. (17) or any other simple function.

B. Localized initial state

Wave-packet Bloch dynamics in a 2D lattice with two
sub-bands was considered earlier in Refs. [11,12]. The wave
packet was found to have a tendency to spread in the direction
orthogonal to F, while in the direction parallel to F it shows
oscillatory dynamics. In this work we consider the limiting
case of a localized initial packet where only one site is
populated at t = 0. Also we will discuss dynamics in terms of
WS states instead of discussing it in terms of Bloch states
as it was done in the above cited papers. To describe the
wave-packet time evolution we introduce the time-dependent
analog of Eq. (10),

P (t) =
(∑

R

|
(R,t)|4
)−1

. (19)

According to the results of Sec. II we expect qualitatively
different dynamics of the participation ratio (19) for rational
and irrational field directions.

The dashed line in Fig. 9 shows P (t) for F = 1 and rational
direction θ = 0. The participation ratio exhibits oscillatory
dynamics superimposed with a linear increase in the mean
value. This linear increase is due to ballistic spreading of the
packet in the direction orthogonal to F. The rate of ballistic
spreading is obviously defined by the width � of the Wannier-
Stark bands, while the characteristic frequency of oscillations
is given by the distance between neighboring Wannier-Stark
bands.

The case of irrational direction θ = π − 3 is depicted by the
solid line in Fig. 9. Now P (t) saturates at some level defined
by the localization length of the honeycomb WS states. The
wave-packet simulations also confirm 1/F 2 scaling law for the
saturation level of P (t) that follows from the 1/F 2 scaling law
for participation ratio of the localized honeycomb WS states.

We would like to mention that the observed saturation
of P (t) can be viewed as a dynamical localization. This
phenomenon was first observed for the quantum kicked rotor
[24] and then found in many other driven systems. Since the
effect of a static field amounts to (quasi)periodic driving of
the system with Bloch frequencies, our system of interest
obviously belongs to the class of quantum driven systems.
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FIG. 9. (Color online) Participation ratio (19) for θ = 0 (dashed
line) and θ = π − 3 (solid line). The initial condition corresponds to
population of a single site in the center of the lattice. The value of the
static force F = 1.

The dynamical localization in the kicked rotor was explained
in Ref. [25] by appealing to the Anderson localization for a
quantum particle in a random potential. In our case the Aubry-
André model [26], which describes the particle localization
in a quasiperiodic potential, seems to be more relevant than
the Anderson model. It is an open problem to prove the
saturation of P (t) for irrational directions (incommensurate
Bloch frequencies) from the viewpoint of the dynamical
localization.

To conclude this section we mention that for some system
parameters we observed rather exotic wave-packet dynamics
that essentially differs from the above discussed general
situation. One example is θ = π/6 and F = 2.3. As it is
seen from Fig. 1(b), for these parameters the energy bands
are straight lines with exception of vicinities of the points
κ = 0 and κ = π/

√
5. This mimics the dispersion relation

of a relativistic particle in one dimension—the problem that
attracted much attention in recent years [16,27–29]. Notice
that the reduction to one dimension is provided by the
Stark localization and, hence, no confinement potentials are
required.

IV. CONCLUSION

We calculated WS states of a quantum particle in a tilted
honeycomb lattice and compared them with WS states in

the tilted square lattice that are known analytically. The
comparison is done for both rational and irrational tilts, i.e.,
rational and irrational directions of a static field F.

For rational directions of the field defined in Eqs. (3) and (4)
the energies of WS states form energy bands. For the square
lattice these bands have zero width, excluding the case where
F is aligned with one of two primary axes. This prohibits any
transport in the system if the vector F is misaligned with a
primary axis. Unlike this situation, for the honeycomb lattice
the bands have finite width for any rational direction. If the
condition (4) is fulfilled, an initially localized wave packet
spreads in the direction orthogonal to F [30]. We note in
passing that this result provides an alternative explanation of
findings of the numerical experiment [31], where dynamics of
ultracold atoms in the parabolic square and hexagonal lattices
were compared.

For irrational directions of the field the energy spectrum
of WS states is discrete and, hence, they are localized states.
We found the localization length of the honeycomb WS states,
which we define as the square root of the participation ratio
(10), to grow in average as 1/F , i.e., in the same way as for
the square lattice. However, in a smaller scale the localization
length shows large fluctuations that do not present in the case
of square lattice. This observation motivates us to put forward
a hypothesis about irregular (chaotic) nature of the honeycomb
WS states. This hypothesis is further supported by the
irregular character of BO for irrational directions of the static
field.

The results of this work can be verified in laboratory
experiments with cold atoms in honeycomb optical lattices
[16,29,31], honeycomb photonic crystals [32,33], and mi-
crowave billiards with honeycomb array of scatterers [34].
The common feature of these systems is that they offer
direct visualization of the wave function. Another direction
is ballistic conductivity of the graphene sheets. It is expected
that the reported nonanalytic angular dependence of WS states
could strongly affect the conductivity. We reserve the latter
problem for future studies.

ACKNOWLEDGMENTS

The authors express their gratitude to D. N. Maksimov for
useful remarks and acknowledge financial support of Russian
Academy of Sciences through the SB RAS integration Project
No. 29 (Dynamics of atomic Bose-Einstein condensates
in optical lattices) and the Russian Foundation for Basic
Research (RFBR) Project No. 12-02-00094 (Tunneling of the
macroscopic quantum states).

[1] M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon,
Phys. Rev. Lett. 76, 4508 (1996).

[2] M. G. Raizen, C. Salomon, and Qian Niu, Phys. Today 50, 30
(1997).

[3] O. Morsch, J. H. Müller, M. Cristiani, D. Ciampini, and E.
Arimondo, Phys. Rev. Lett. 87, 140402 (2001).

[4] S. Kling, T. Salger, C. Grossert, and M. Weitz, Phys. Rev. Lett.
105, 215301 (2010).

[5] T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, and F. Lederer,
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A. Tünnermann, and S. Longhi, Phys. Rev. Lett. 102, 076802
(2009).

[9] M. Glück, A. R. Kolovsky, and H. J. Korsch, Phys. Rep. 366,
103 (2002).

[10] M. Glück, F. Keck, A. R. Kolovsky, and H. J. Korsch, Phys. Rev.
Lett. 86, 3116 (2001).

[11] A. R. Kolovsky and H. J. Korsch, Phys. Rev. A 67, 063601
(2003).

[12] D. Witthaut, F. Keck, H. J. Korsch, and S. Mossmann, New J.
Phys. 6, 41 (2004).

[13] G. J. Ferreira, M. N. Leuenberger, D. Loss, and J. C. Egues,
Phys. Rev. B 84, 125453 (2011).

[14] V. Krueckl and K. Richter, Phys. Rev. B 85, 115433 (2012).
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