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Global phase and minimum time of quantum Fourier transform
for qudits represented by quadrupole nuclei
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We demonstrate the relation between a global phase of the quantum gate and the layout of energy levels
of its effective Hamiltonian required for implementing the gate for minimum time. By an example of the
quantum Fourier transform gate for a qudit represented by a quadrupole nucleus with the spin I = 1, the effective
Hamiltonians and minimum implementation times for different global phases are found. Using numerical optimal
control methods, the problem of the global phase in searching for the optimal pulse shape is considered in detail
for the quantum Fourier transform gate at I = 1, 3/2, 2, and 5/2. It is shown that at the constrained control time
the gradient algorithms can converge to the solutions corresponding to different global phases or the same global
phase with different minimum times of the gate implementation.
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I. INTRODUCTION

Implementation of quantum algorithms requires perform-
ing basic quantum operations (gates) with maximum fidelity
for minimum time [1,2]. Quantum computations can be
performed with the use of not only two-level (qubits) but also
multilevel quantum systems (qudits) [3–5]. The latter have a
number of advantages; in particular, a specified size of the com-
putational basis is provided by fewer qudits. In implementation
of quantum algorithms, one must take into account not only
the operational complexity (the number of gates for algorithm
execution [1]) but also the time complexity (the algorithm exe-
cution time) [6–11]. The shorter the algorithm execution time,
the smaller is the loss caused by the interaction with the en-
vironment. The time complexity of quantum logic operations
is determined by the quantum system and the control method
used. Generally, the existence of minimum (critical) time Tc

for implementation of a quantum gate with an allowed error is
the fundamental limitation imposed on the speed of quantum
operations.

The search for effective techniques for controlling quantum
systems that implement the gates with maximum fidelity for
minimum time is an important problem on the way to the
creation of a full-scale quantum computer. In recent years, var-
ious numerical methods have become increasingly popular that
allow calculating control fields for various tasks with relatively
high efficiency. The well-known numerical GRAPE [12] and
Krotov [13,14] algorithms are based on finding the minimum
of a certain objective functional by using information on its
gradient. Although the gradient methods yield only a local
solution, these algorithms are successfully used for controlling
quantum systems, since they often converge to the global
minimum [15]. Moreover, in the absence of the control field
constraints, the objective functional to be minimized has the
only global minimum and the only global maximum, with the
rest of the functional critical points being saddle points [15,16].
However, the problem of suboptimal minima in optimization
at certain control field constraints remains under-investigated
[17,18]. Here, we demonstrate that there are local minima
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related not only to the global phase problem but also to the
existence of solutions with the same global phase but different
critical times Tc.

As is known [7,11] for a system with the traceless
Hamiltonian, the unitary quantum gate UG can be implemented
just up to the global phase factor,

U (T ) = eiφpUG, (1)

where U (T ) is the operator of the system evolution for
time T . The global phase can be chosen from the set of
values [7]

φp = φ0 + 2πp/N, p = 0, 1, . . . , N − 1, (2)

where N is the Hilbert space dimension for the system under
consideration and φ0 is the smallest angle φ0 ∈ [0, π ] at which
det{eiφ0UG} = 1. The numerical calculations for the quantum
Fourier transform (QFT) gate in the system of spins 1/2
showed that the minimum time for implementing the gate
strongly depends on the global phase [7]. The same result was
obtained for the QFT and SWAP gates on two spins 1/2 [11].
Finally, in study [19], the numerical simulation of the QFT on
qudits with N = 3 and 4 represented by quadrupole nuclei
with the spins I = 1 and 3/2, respectively, also showed
the strong dependence of the minimum gate duration on the
global phase value. In this study, we explore in more detail
the effect of the global phase on the minimum time for the
system with the spins I = 1, 3/2, 2, and 5/2. Note that the
QFT gate is often chosen for testing various control methods,
since it plays a key role in many quantum algorithms [1,2]
and has rather a nontrivial form, i.e., is not straightforward to
implement [7].

The paper is organized as follows. In Sec. II, we derive
theoretical foundations for the existence of many solutions in
the optimal control task for the case of a traceless Hamiltonian.
By an example of the QFT gate on a qutrit (N = 3) represented
by a quadrupole nucleus with the spin I = 1 and controlled
by rf magnetic field, we find approximate analytical solutions
for the control field that correspond to different global phases
(2) and the same global phase but with different critical times
Tc. In Sec. III, we present numerical data on the effect of
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the global phase on the minimum time of the QFT gate
implementation on the quadrupole nucleus with the spins
I = 1, 3/2, 2, and 5/2 (N = 2I + 1). Section IV contains the
conclusions.

II. GLOBAL PHASE AND EFFECTIVE HAMILTONIAN

A. Correlation of the global phase and the effective
Hamiltonian of a gate

We consider the problem of the implementation of a
quantum gate in a closed quantum system with Hamiltonian

H (t) = H0 +
∑
f

uf (t)Hf , (3)

where H0 is the field-free Hamiltonian, Hf is the f th control
Hamiltonian operator, and uf (t) is the amplitude of the
corresponding control fields. We have to find the control fields
uf (t) at which the operator of the system evolution for time T

is

U (T ) = T̂ exp

[
−i

∫ T

0
H (t)dt

]
, (4)

that performs the desired logic transformation specified by the
unitary matrix UG ∈ U(N ) in a certain computational basis.
Here, T̂ is the time-ordering operator. Unitary gate UG can be
presented in the exponential form

UG = exp(−iK). (5)

For convenience, we take the negative exponent, by analogy
with the definition of evolution operator (4). Using transfor-
mation P , we reduce matrices UG and K to the diagonal
form

P †KP = D =
N∑

k=1

λk |k〉 〈k|,
(6)

P †UGP = exp(−iD) =
N∑

k=1

exp(−iλk) |k〉 〈k|,

where |k〉 〈k| is the projector onto eigenstate |k〉. Now, if
we add the numbers 2πmk , where mk is an integer, to one
or several eigenvalues λk , then the value of the exponential
operator in Eq. (6) does not change, but matrix D changes
and, consequently, matrix K is transformed to the new matrix,

Km ≡ K(m1, . . . ,mN ) = P

(
D +

∑
k

2πmk |k〉 〈k|
)

P †

= K +
∑

k

2πmkP |k〉 〈k|P †, (7)

with the transformed trace

�̃m = TrKm = TrK +
∑

k

2πmk. (8)

To implement gate UG on the quantum system with the
traceless Hamiltonian [i.e., U (T ) ∈ SU(N )], one should take
the operator

T H eff
m = Km − �mE, (9)

as an effective Hamiltonian. Here, �m = �̃m/N and E is
the identity operator. Substituting this expression in evolution
operator definition (4), we obtain

Um(T ) = exp
(−iT H eff

m

) = exp(i�m)UG. (10)

Comparing (10) and (1), we obtain φp = �m mod (2π ). Thus,
different effective Hamiltonians (9) can lead to different global
phases (2). Moreover, it is reasonable to suggest that there
exists a set of solutions of control task (4). Different solutions
corresponding to different H eff

m can have different critical
times. Therefore, one may choose the one from the set of
effective Hamiltonians H eff

m that has the required advantages,
e.g., allows implementing gate UG in a shorter period
of time.

Transformations (7) and (9) have a simple physical mean-
ing. When in expression (7) different sets of numbers mk are
chosen, effective Hamiltonian (9) changes such that one or
several energy levels in it shift by 2πmk/T . The change that
occurs in the average energy is eliminated by shifting the
energy scale, with this average value taken for the origin of
coordinates. It should be noted that transformation (7) allowed
us to change the trace of matrix K and, thus, pass from one
global phase to another, while the unitary transformations
(e.g., rotations caused by an external field) retain the matrix
trace.

B. Model system

We demonstrate the application of the above formulas
for controlling a qudit represented by a quadrupole nucleus
with spin I in a strong static magnetic field and a control
rf magnetic field. In the reference frame rotating around the
static field direction (axis z) with rf field frequency ωrf [20],
the Hamiltonian acquires the form

H (t) = (ωrf − ω0)Iz + Hq + ux(t)Ix + uy(t)Iy,

Hq = q
[
I 2
z − 1

3I (I + 1)
]
. (11)

Here, ω0 is the Larmor frequency, Iα is the spin projection
operator along the axis α (α = x, y, z), q is the constant of the
quadrupole interaction of a nucleus with the axially symmetric
crystal field gradient, and uα(t) is the projection of the control
rf field onto the axis α. We assume ωrf = ω0 � q. Hereinafter,
the energy is measured in frequency units with h̄ = 1. In
addition, we pass to dimensionless time and frequencies
expressed in units 1/q and q, respectively.

Note that in model (11), we set the only control field with
two time-dependent components along the axes x and y which
simultaneously affects all the frequency transitions. In most
of the simulations on multiqubit systems (see, for example,
[7,11,17]), a set of control fields each affecting a separate
qubit and not affecting the others is assumed.

In the absence of the rf field, system (11) has N = 2I + 1
nonequidistant energy levels for the states with different values
of spin projection Iz:

|Iz = I 〉 = |1〉; |Iz = I − 1〉 = |2〉; · · · |Iz = −I 〉 = |N〉.
(12)

We choose these states as a qudit computational basis.
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Below, we focus on the QFT gate implementation in the
system described above. In the general case of an N -level
system, the QFT operator in basis (12) has the form [1,2]

FN = 1√
N

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1

1 σ σ 2 · · · σN−1

1 σ 2 σ 4 · · · σ 2(N−1)

...
...

...
. . .

...

1 σN−1 σ 2(N−1) · · · σ (N−1)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

σ = exp

(
2πi

N

)
. (13)

C. Quantum Fourier transform on a qutrit

Before moving on to the numerical results for the QFT on
system (11), we consider a simple example allowing analytical
solution and helping us to understand qualitatively the findings
of Sec. II A. Let us consider the QFT gate for a qutrit (N =
3). Matrix (13) can be diagonalized by means of a sequence of
selective rotations. Such sequences were explicitly found for
N = 3, 5, and 7 in [21] and N = 4 and 8 in [22]. For the gate
UG = F3 (13), in expression (7) we have

K = −π

2

⎛
⎜⎝

2g1 −g2 −g2

−g2 1 + g2/2 g2/2

−g2 g2/2 1 + g2/2

⎞
⎟⎠ , (14)

where g1 = sin2(θ/2), g2 = cos θ = 1/
√

3, and θ = arctg
√

2.
The diagonalizing operator is

P = 1√
2

⎛
⎝

√
2 0 0

0 1 1
0 1 −1

⎞
⎠
⎛
⎜⎝

sin θ/2 cos θ/2 0

− cos θ/2 sin θ/2 0

0 0 1

⎞
⎟⎠ .

(15)

The operators specifying the changes in the effective
Hamiltonian are

2πm1P |1〉 〈1| P † = πm1

⎛
⎝ 2g1 −g2 −g2

−g2 1 − g1 1 − g1

−g2 1 − g1 1 − g1

⎞
⎠ ,

2πm2P |2〉 〈2| P † = πm2

⎛
⎝ 2(1 − g1) g2 g2

g2 g1 g1

g2 g1 g1

⎞
⎠ ,

2πm3P |3〉 〈3| P † = πm3

⎛
⎝0 0 0

0 1 −1
0 −1 1

⎞
⎠ . (16)

Expressions (14) and (16) allow us to determine the effective
Hamiltonian (9) required for the QFT implementation. Now,
we need to find the method of its realization on system (11).
The similar task for I = 1 was solved previously for a selective
rotation operator [23]. We apply the same approach to the QFT
gate. We express the effective Hamiltonian as

T H eff
m = A + B + C, (17)

A = e−iϕIx (Hqt1)eiϕIx , B = e−iψIy (Hqt2)eiψIy ,

C = ξIx + ηIz. (18)

Substituting Hamiltonian (17) in the expression for the
evolution operator and using the Trotter-Suzuki formula [24],

(e−i A/2re−i B/2re−iC/re−i B/2re−i A/2r )r

= e−i (A+B+C) + O(1/r3), (19)

we arrive at the operator product, which can be presented as
the pulse sequence

{ϕ}x t1/2r→ {ϕ}−x{ψ}y t2/2r→ {ψ}−y{�/r}�{ψ}y
t2/2r→ {ψ}−y{ϕ}x t1/2r→ {ϕ}−x. (20)

where {θ}α ≡ exp(−iθIα) is the operator of nonselective

rotations by angle θ around the axis α and
t→ ≡ exp(−it Hq)

is the free evolution for time t . In the center of sequence (20),
there is the rotation by the angle � =

√
ξ 2 + η2 around the

axis with the direction cosines ξ/� and η/� along the axes x

and z, respectively. The nonselective rotations can be obtained
using a simple or composite pulse of the rf field with a large
amplitude [25].

Thus, to implement the QFT gate, it remains for us to
determine the parameters of pulse sequence (20) by equating
the sum of matrices (18) to (9). As a result, we obtain the
system of equations

Km − �mE =

⎡
⎢⎣

1
6 [(3 cos2 ϕ − 1)t1 + (3 cos2 ψ − 1)t2] + η

1√
2

(it1 sin ϕ cos ϕ + t2 sin ψ cos ψ + ξ )

− 1
2 (t1 sin2 ϕ − t2 sin2 ψ)

· · ·

1√
2

(−it1 sin ϕ cos ϕ + t2 sin ψ cos ψ + ξ ) − 1
2 (t1 sin2 ϕ − t2 sin2 ψ)

− 1
3 [(3 cos2 ϕ − 1)t1 + (3 cos2 ψ − 1)t2] 1√

2
(it1 sin ϕ cos ϕ − t2 sin ψ cos ψ + ξ )

1√
2

(−it1 sin ϕ cos ϕ − t2 sin ψ cos ψ + ξ ) 1
6 [(3 cos2 ϕ − 1)t1 + (3 cos2 ψ − 1)t2] − η

⎤
⎥⎥⎦ . (21)

The joint solution of these equations yields the desired
values of the parameters (Table I). For each value of the global
phase φ = {π/6, 5π/6, 9π/6}, we select the solutions with

positive evolution times t1 and t2 that yield the minimum sum
Tm = t1 + t2 and one solution with time Tm next in magnitude
but with the same global phase. [If we neglect the rf pulse
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TABLE I. Parameter for implementing H eff
m (9) with the use of pulse sequence (20).

�m m1, m2, m3 ϕ ψ ξ η t1 t2 Tm

π/6 1, 0, 0 π/2 −0.905 0.790 0.105 3.441 4.267 7.71
1, 1, −1 π/2 −0.984 4.764 3.822 0.503 7.548 8.05

5π/6 0, −1, 0 π/2 0.245 −1.431 −1.465 2.409 0.633 3.04
0, 0, −1 0 −0.963 2.542 2.251 2.283 2.688 4.97

9π/6 0, 0, 0 0 1.083 0.320 0.680 1.077 2.324 3.40
0, −1, 1 π/2 0.574 −3.653 −3.036 5.477 5.197 10.67

length in (20), then the total sequence duration is Tm = t1 + t2;
this value is the minimum time for implementation of the QFT
gate with the use of the method under consideration. Here, we
use the notation Tm instead of Tc, because this value is only a
rough estimate of critical time Tc determined in Sec. III].

It can be seen from Table I that the solutions corresponding
to the different global phases have different times Tm. Nev-
ertheless, since we can choose arbitrary numbers mk in (7),
there are many solutions that yield the same global phase (2)
but different times of the gate implementation.

III. NUMERICAL EVALUATION OF THE MINIMUM
TIME FOR THE QFT

A. Optimization procedure

To determine the optimal control field by numerical
methods, a certain iterative procedure minimizing a specific
objective functional is usually used [11–14,26]. When no
constraints are imposed on the control field shape or amplitude,
the error of the obtained gate is often chosen as an objective
functional. The error can be determined either accurate to the
global phase,

J1 = 1

2
− 1

2N
Re{Tr[U †

GU (T )]}, (22)

or ignoring this phase,

J2 = 1 − 1

N
|Tr[U †

GU (T )]|. (23)

Both functionals are determined in the interval [0, 1].
In this study, to find the optimal control field in (11) that

minimizes gate error (22) or (23), we applied a BFGS-GRAPE

algorithm [17,26] using a standard fminunc function in the
MATLAB package [27]. Time interval T is divided into S equal
steps with the length �t = T/S; the field amplitude in each
sth step is constant and amounts to uα(ts), where ts = s�t

and s = 1, 2, . . . , S. For the concatenated control field vector
u = [ux(t),uy(t)], the update rule in the kth algorithm iteration
is given by

u(k+1) = u(k) − βkH−1
k ∇Jk, (24)

where β is the small positive parameter, H−1 is the approximate
inverse Hessian defined by the BFGS formula [28], and the con-
catenated gradient vector ∇J = [∇J (x),∇J (y)] is determined
for the gate errors (22) and (23) as [12]

∇J
(α)
1 (ts) = − 1

2N
ReTr

[
U

†
GUSUS−1 · · · ∂Us

∂uα(ts)
Us−1 · · · U1

]
,

(25)

∇J
(α)
2 (ts) = − 1

N
Re

{
Tr

[
U

†
GUSUS−1 · · · ∂Us

∂uα(ts)
Us−1 · · ·U1

]

× Tr(U †
1 · · ·U †

SUG)

}
. (26)

Here, the propagator Us = exp [−i�tH (ts)] determines the
system evolution in the interval [ts−1,ts]. The derivative of
the evolution operator was calculated by the exact gradient
formula in the eigenbasis of operator Us [26]:

〈
λk

∣∣∣∣ ∂Us

∂uα(ts)
λl

〉

=
{−i�t〈λk |Iα| λl〉 e−i�tλk if λk = λl

−i�t〈λk |Iα| λl〉 e−i�tλk −e−i�tλl

−i�t(λk−λl )
if λk 	= λl

,

where λ are the eigenvalues of Us and spin projection
operator Iα describes the interaction with the control field
in Hamiltonian (11) along the respective axis α = x,y.

Since the gradient method converges to a local minimum,
which can be different from the global one, the calculations
must be repeated for many times with different guesses of
initial pulse u(0) in (24). In our calculations for S = 500, the
initial pulse shape was formed by setting random amplitudes
in the range [ − 3, 3] at each 50th point of the time interval
[0, T ] with the further spline interpolation at the rest of the
points. After that, during the optimization run, the control field
amplitude is free to change without any constraints. The run is
stopped when the gate error is J (k) < 10−8 or J (k−1) − J (k) <

10−6J (k−1).
To determine the exact critical time for the different global

phases of the gate, we calculated the dependence of the gate
error on control time T (Pareto front) by a Pareto front
tracking (PFT) method [11]. In this technique, the optimal
pulse obtained for control time T is taken as an initial pulse
for the optimization run for time T ± �T . We set �T = 0.01.
The number of time steps at passing from T to T ± �T

was fixed; i.e., step length �t was varied. Such a run-to-run
variation of �t does not significantly affect the calculation
accuracy at large S; in our viewpoint, however, it makes
the calculation more stable as compared with the regime
when �t is fixed and S is varied. The PFT technique makes
it possible to significantly reduce the calculation cost and
calculate the Pareto fronts for certain families of solutions
with high efficiency.
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J 1

π/6
5π/6
9π/6

FIG. 1. (Color online) Pareto fronts for the QFT on the spin
I = 1 for three global phases of the gate.

B. Numerical results

Figure 1 shows the Pareto fronts for the QFT gate on the
spin I = 1 obtained by minimizing error J1 (22). For the
three possible values of the global phase, the dependences are
similar, but shifted by the time scale. As critical times Tc,
we take the values for which J1 < 10−5. The shortest time
Tc = 1.83/q corresponds to the global phase φ = 5π/6 and
the longest time Tc = 4.44/q is obtained for φ = π/6, which
is qualitatively consistent with the results given in Table I. The
quantitative difference is related to the fact that, considering
the Hamiltonian in form (15), we significantly limited the class
of possible solutions. To obtain an exact analytical solution, the
explicitly time-dependent Hamiltonian should be considered.

As a rule, in practical tasks, error J2 (23) independent of
the global phase is minimized, since the global phase is not
directly observed in the experiment. As was shown in [11], in
the minimization of error J2 at a fixed control time and random
initial guesses, the algorithm converges to error values lying on
one of the Pareto fronts (Fig. 1) corresponding to the different
global phases. Suppose that such a minimization procedure
yields the final operator U (T ) = eiφUG + δU , where δU is
the matrix characterizing the error of the resulting gate. For
‖δU‖ � 1, the difference between gate errors J1 (22) and J2

(23) depends on φ as

|J1 − J2| ≈ sin2(φ/2). (27)

Thus, if we run the minimization of gate error J2 and then
recalculate error J1 for the final evolution operator, then
we can determine the global phase of the obtained solution.
We demonstrate this by the calculation of the QFT gate on
the four-level system (spin I = 3/2). Figure 2(a) shows
the diagram obtained by 500 runs for random initial pulses
to minimize gate error J2 (23) at T = 2/q. The runs are
given in the order of increasing final gate error. The observed
four distinct steps correspond to four different families of
solutions with very similar errors. Figure 2(b) shows error J1

(22) with the operator UG = F4 recalculated for the same runs.
Comparing Figs. 2(a) and 2(b), we see that, in fact, the first step
in Fig. 2(a) with the error J2 < 10−8 contains the solutions with
two global phases π/8 and 9π/8, since sin2(π/16) = 0.038
and sin2(9π/16) = 0.962. The fourth step also corresponds

0 100 200 300 400 500
0

0.1

0.2
(a)

(b)

(c)

Run number

J 2

0 100 200 300 400 500
0

0.5

1

Run number

J 1

0 100 200 300 400 500
0

0.05

0.1

Run number

J 1

FIG. 2. (Color online) Gate error for 500 optimization runs with
random initial pulses and the control time T = 2/q for the QFT on
the spin I = 3/2. (a) Results of optimization of phase-independent
gate error (23). The runs are given in the order of increasing final gate
error. (b) Gate error (22) with UG = F4 for the corresponding runs in
(a). (c) Results of optimization of gate error (22) with UG = eiπ/8F4.
The runs are given in the order of increasing final gate error.

to the solutions with the same global phases, but with larger
error J2. According to the findings of Sec. II, we suggest that
the solutions that have the same global phase and different
errors J2 at fixed control time T correspond to the solutions
with the different set of numbers mk in (7) and therefore
different critical times Tc. We will refer to the solutions with
the shortest value of Tc for each phase as main solutions, and
the solutions with greater value of Tc as secondary ones. The
second step in Fig. 2(a) corresponds to the main solutions
with global phases 5π/8 and 13π/8 [sin2(5π/16) = 0.691
and sin2(13π/16) = 0.309], and the third step is the secondary
solutions with these global phases. Thus, only about 36% of
the algorithm runs [first and second steps in Fig. 2(a)] converge
to the main solutions with the various global phases. The
remaining solutions are secondary ones with large critical time.
It should be emphasized that the solutions with the similar error
values usually have significantly different pulse shapes; thus,
the formation of the steps in Figs. 2 and 4 is not related to the
multiple convergence to the same pulse.

The presence of secondary solutions with the same global
phase and different critical times is observed more clearly in
the minimization of error J1 (22) for the QFT gate with a
fixed global phase, e.g., ϕ = π/8, at random initial guesses
[Fig. 2(c)]. It can be seen that in this case, only about 10%
of the runs converge to the main solutions with gate error
J1 < 10−8 and two families of secondary solutions with large
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J 1 π/8
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13π/8
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FIG. 3. (Color online) Pareto fronts for the QFT on the spin I =
3/2 for four global phases of the gate. Solid lines show the Pareto
fronts for main solutions; dotted lines, for secondary solutions with
the phase φ = π/8; and dash-and-dot lines, for secondary solutions
with the phase φ = 5π/8.

errors are observed at given control time. (Notice that while
J1 is minimizing the solutions corresponding to other global
phases should have large error J1 ≈ 1/2 for 5π/8 and 13π/8
or J1 ≈ 1 for 9π/8. Therefore the probability of convergence
to such solutions is extremely low, if any).

The ratio between the number of runs converging to the
main and secondary solutions may differ significantly for
different phases and control times T . It is inherent in both
J1 and J2 scenarios of optimization. Nevertheless, for the
model (11) the variation of control time T did not result in
a significant decrease in the probability of convergence to the
secondary solutions in both scenarios.

The results of optimization shown in Fig. 2 were used in
establishing the time dependence of the gate error by the
PFT method for different global phases at I = 3/2. The
Pareto fronts are shown in Fig. 3. In addition to the main
solutions with the shortest critical time for each global phase,
several Pareto fronts for the secondary solutions with global
phases π/8 and 5π/8 are shown. The shortest time Tc =
1.62/q corresponds to global phases π/8 and 9π/8. It can
be seen in Fig. 3 that in the case N = 4 the Pareto fronts
for global phases π/8 (5π/8) and 9π/8 (13π/8) coincide
pairwise within the calculation error. This also concerns
the secondary solutions for the corresponding global phases.
This coincidence of the critical time for the gates with the
global phases different by π reflects the general properties
of half-integer spins. Indeed, since for half-integer spins the
equality ei(φ+π)UG = −eiφUG = e2πiIzeiφUG is valid and the
operator e2πiIz can be realized by a strong field for a negligible
time, the minimum time of the gates with different signs
should be the same. The same conclusion can be made after
consideration of the gates with global phases φp and φp′ such
as |φp − φp′ | = π . From expression (2), we have

|φp − φp′ | = 2π

N
|p − p′| = π ⇒ |p − p′| = N

2
.

Since p and p′ are integers, this equality is valid only for even
N = 2I + 1. For integer spins (odd N ) it is not true and,
generally, the gates with different global phases should have
different critical times.
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0.2

Run number

J 2
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J 1
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(b)

FIG. 4. (Color online) Gate error for 500 optimization runs with
random initial pulses and the control time T = 2.5/q for the QFT on
the spin I = 2. (a) Results of optimization of phase-independent gate
error (23). The runs are given in the order of increasing final gate error.
(b) Gate error (22) with UG = F5 for corresponding runs from (a).

With increasing N the number of solutions with different
global phases and the number of secondary solutions increase.
As was mentioned in [11], this can lead to the situation when
the Pareto fronts for different solutions lie very close to each
other. While at N = 4 we still can clearly distinguish the
main and secondary solutions and easily grade them to the
global phase (Fig. 2), already at N = 5 such a differentiation
becomes complicated (Fig. 4). Having minimized gate error
J1 (22) for N = 5 for several hundreds of random initial pulses
for each global phase and several control times T , we chose
the runs with the minimum error and plotted the Pareto fronts
for the corresponding global phases φp = π/5 + 2πp/5, p

= 0, 1, 2, 3, 4. The result obtained is presented in Fig. 5.
The shortest time Tc = 1.90/q corresponds to the global phase
7π/5. The figure also shows the Pareto fronts for the secondary
solutions. It can be seen that after T > 3/q the curves of
different solutions become very close to each other. This can
make certain difficulties in optimization of phase-independent

1.5 2 2.5 3 3.5

10−5

10−4

10−3

10−2

control time T (in units of 1/q)

J 1

π/5
3π/5
π
7π/5
9π/5

FIG. 5. (Color online) Pareto fronts for the QFT on the spin I =
2 for five global phases of the gate. Solid lines show the Pareto fronts
for main solutions and dotted lines, for secondary solutions (one for
each phase).
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FIG. 6. (Color online) Pareto fronts for main solutions for the
QFT on the spin I = 5/2 for six global phases of the gate.

gate error J2 (23) for these control times, since at random
initial guesses the algorithm can converge to different solutions
with objective functional J2 that differ by several orders of
magnitude.

Figure 6 shows the results for I = 3 (N = 6). As was
mentioned above, in this case the Pareto fronts for the global
phases different by π should coincide. The minor difference in
such Pareto fronts (Fig. 6) is caused by numerical inaccuracy
and can be eliminated by enhancing S and reducing �T . The
shortest time Tc = 2.09/q corresponds to the global phases
2π/3 and 5π/3.

Note that the secondary solutions are not observed at I = 1.
We attribute this fact to the simplicity of a three-level system.
All of the several thousands of runs for different T and global
phases converge very quickly to the global minimum of J1

lying on a corresponding Pareto front in Fig. 1.
To verify the numerical results, some of the calculations

were repeated using the Krotov algorithm with no constraints
imposed on a control field [29,30]. Despite the remarkable
property of monotonic convergence, the characteristics of
this algorithm are similar to those of the GRAPE first-order
gradient method [30]. We observed no qualitative differences
between the results obtained with the use of the Krotov and
BFGS-GRAPE algorithms. Quantitative differences lie within the
errors caused by discretization and features of the algorithms.
In particular, the convergence rate and accuracy of the Krotov
algorithm are significantly worse at the small errors J < 10−4.

Our numerical data show that at constraints imposed on
the control time, the gradient algorithms for random initial
guesses can converge not only to desired solutions with a

minimum gate error, but also to the secondary solutions with
a much larger error. The existence of such solutions that
have large critical times is consistent with the theoretical
conclusions in Sec. II. Thus, the use of the gradient methods
for minimizing gate error J1 (22) as well as J2 (23) do not
guarantee the convergence to the global minimum of the
functional at U (T ) ∈ SU(N ) and constrained control time.
These conclusions may explain the traps observed in previous
simulations [17,31].

IV. CONCLUSIONS

We showed that the same quantum gate can be implemented
with the use of traceless effective Hamiltonians that differ
by energy levels layout. As a consequence, the control fields
implementing an effective Hamiltonian can be characterized
by both the different global phases of the final gate and
the minimum time for its implementation. Moreover, for a
specified global phase, there can be sets of solutions with
different minimum times. The methods of implementation
of various effective Hamiltonians and the corresponding
minimum times depend on a chosen quantum system. We
chose rf-field-controlled quadrupole nuclei to implement
the QFT on qudits. Minimum times for N = 3 − 6 were
determined by numerical optimal control methods. For N = 3,
additional analytical solutions for the effective Hamiltonians
corresponding to different times and global phases were found.
The results obtained confirm our findings.

Thus, we explained the effect of the global phase on the
minimum time of the gate implementation. The obtained
general relations for the change in the phase factor at the
variation in the effective Hamiltonian of the gate can be
useful for the systems consisting of both qubits and qudits. In
construction of complex quantum circuits, the global phases
discussed in this study should be controlled. Otherwise, they
can spoil the interference necessary for implementation of
quantum algorithms. The specific results obtained for the QFT
can be used in implementation of quantum algorithms on
molecules in a liquid-crystal matrix with a weak quadrupole
interaction [32] and other multilevel physical systems, such as
atoms controlled by laser pulses [4,33,34].
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84, 022305 (2011).

[27] http://www.mathworks.com.
[28] Ph. E. Gill, W. Murray, and M. H. Wright, Practical Optimization

(Academic Press, London, 1981).
[29] S. G. Schirmer and P. de Fouquieres, New J. Phys. 13, 073029

(2011).
[30] R. Eitan, M. Mundt, and D. J. Tannor, Phys. Rev. A 83, 053426

(2011).
[31] F. F. Floether, P. de Fouquieres, and S. G. Schirmer, New J. Phys.

14, 073023 (2012).
[32] R. Das, A. Mitra, V. Kumar, and A. Kumar, Int. J. Quantum Inf.

1, 387 (2003).
[33] A. B. Klimov, R. Guzman, J. C. Retamal, and C. Saavedra, Phys.

Rev. A 67, 062313 (2003).
[34] K. Hosaka, H. Shimada, H. Chiba, H. Katsuki, Y. Teranishi, Y.

Ohtsuki, and K. Ohmori, Phys. Rev. Lett. 104, 180501 (2010).

042320-8

http://dx.doi.org/10.1103/PhysRevA.75.042308
http://dx.doi.org/10.1103/PhysRevA.75.042308
http://dx.doi.org/10.1103/PhysRevA.86.054302
http://dx.doi.org/10.1103/PhysRevA.86.062309
http://dx.doi.org/10.1103/PhysRevA.86.062309
http://dx.doi.org/10.1016/j.jmr.2004.11.004
http://dx.doi.org/10.1063/1.1564043
http://dx.doi.org/10.1063/1.2903458
http://dx.doi.org/10.1063/1.2903458
http://dx.doi.org/10.1080/01442350701633300
http://dx.doi.org/10.1080/01442350701633300
http://dx.doi.org/10.1103/PhysRevA.77.042306
http://arXiv.org/abs/arXiv:1004.3492
http://dx.doi.org/10.1063/1.4757133
http://dx.doi.org/10.1063/1.4757133
http://dx.doi.org/10.1117/12.2016983
http://dx.doi.org/10.1117/12.2016983
http://dx.doi.org/10.1134/S0030400X07120211
http://dx.doi.org/10.1134/S0021364008060143
http://dx.doi.org/10.1134/S0021364007160023
http://dx.doi.org/10.1134/S1063776109010026
http://dx.doi.org/10.1103/PhysRevA.84.022305
http://dx.doi.org/10.1103/PhysRevA.84.022305
http://www.mathworks.com
http://dx.doi.org/10.1088/1367-2630/13/7/073029
http://dx.doi.org/10.1088/1367-2630/13/7/073029
http://dx.doi.org/10.1103/PhysRevA.83.053426
http://dx.doi.org/10.1103/PhysRevA.83.053426
http://dx.doi.org/10.1088/1367-2630/14/7/073023
http://dx.doi.org/10.1088/1367-2630/14/7/073023
http://dx.doi.org/10.1142/S0219749903000292
http://dx.doi.org/10.1142/S0219749903000292
http://dx.doi.org/10.1103/PhysRevA.67.062313
http://dx.doi.org/10.1103/PhysRevA.67.062313
http://dx.doi.org/10.1103/PhysRevLett.104.180501



