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Symmetry breaking in binary chains with nonlinear sites
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We consider a system of two or four nonlinear sites coupled with binary chain waveguides. When a
monochromatic wave is injected into the first (symmetric) propagation channel, the presence of cubic nonlinearity
can lead to symmetry breaking, giving rise to emission of antisymmetric wave into the second (antisymmetric)
propagation channel of the waveguides. We found that in the case of nonlinear plaquette, there is a domain in the
parameter space where neither symmetry-preserving nor symmetry-breaking stable stationary solutions exit. As
a result, injection of a monochromatic symmetric wave gives rise to emission of nonsymmetric satellite waves
with energies differing from the energy of the incident wave. Thus, the response exhibits nonmonochromatic
behavior.
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I. INTRODUCTION

To the best our knowledge, symmetry breaking (SB) in
nonlinear systems was first predicted by Akhmediev, who
considered a composite structure of a single linear layer
between two symmetrically positioned nonlinear layers [1].
One could easily see that if the wavelength is larger than the
thickness of the nonlinear layers, then Akhmediev’s model
could be reduced to a dimer governed by the nonlinear
Shrödinger equation. Independently, the SB was discovered
for the discrete nonlinear Schrödinger equation with a finite
number of coupled cites (nonlinear dimer, trimer, etc.) [2–8].
For example, in the case of the nonlinear Schrödinger dimer,
Eilbeck et al. found two different families of stationary
solutions [2]. The first family is symmetric (antisymmetric)
(|φ1| = |φ2|), while the second is nonsymmetric (|φ1| �= |φ2|).
This consideration was later extended to a nonlinear dimer
embedded into an infinite linear chain [9] with the same
scenario for the SB. Multiple bifurcations to the symmetry-
breaking solutions were demonstrated by Wang et al. [10] for
the nonlinear Schrödinger equation with a square four-well
potential. Remarkably, the above system can also support a
stable state with a nodal point, i.e., quantum vortex [11]. In
the framework of the nonlinear Schrödinger equation, one can
achieve bifurcation to the states with broken symmetry, varying
the chemical potential which is equivalent to the variation
of the population of the nonlinear sites or, analogously, of
the constant in the nonlinear term of the Hamiltonian. In
practice, however, one would resort to the optical counterparts
of the quantum nonlinear systems where the variation of the
amplitude of the injected wave affects the strength of Kerr
nonlinearity (see Refs. [12–22] for optical examples of the SB).

In the present paper we consider a nonlinear dimer and
a square four-site nonlinear plaquette coupled with two
channel waveguides in the form of binary tight-binding chains.
The latter system is analogous to that recently considered
in Ref. [23], where the plaquette, however, was set up
without mirror symmetry with respect to the center line of
the waveguide. Due to nonlinearity of the plaquette, the
system can spontaneously bifurcate between diode-antidiode
and bidirectional transmission regimes. In our case, we will
show that when a monochromatic wave is injected into the
first (symmetric) propagation channel the presence of the

cubic nonlinearity can lead to symmetry breaking, giving
rise to emission of antisymmetric waves into the second
(antisymmetric) propagation channel of the waveguides.

This result raises an important question about the effect of
a probing wave on the SB. To allow for symmetry breaking,
the architecture of the open system should support some
symmetries of its closed counterpart. Then the growth of
the injected power can result in bifurcations into the states
violating the symmetry of the probing wave by the amplitude
of the scattering function [12–14,17,18,20,21,24] or by its
phase [25].

The second important question is whether the solutions
in the linear waveguides could be stationary monochromatic
plane waves, reflected ψ(n,t) = R exp (−ikn − iE(k)t) and
transmitted ψ(n,t) = T exp (ikn − iE(k)t), where R and T

are the reflection and transmission amplitudes. If the answer
is positive, then we can apply the Feshbach projection
technique [26–30] and implement the formalism of the non-
Hermitian effective Hamiltonian (now nonlinear) which acts
on the nonlinear sites only, thus truncating the Hilbert space
to the scattering region [21,30]. When the radiation shifts
of the energy levels are neglected, that formalism reduces to the
well-known coupled mode theory (CMT) equations [31–34].
In the present paper we will show that there are domains in the
parameter space where there are no stable stationary solutions.
We will demonstrate numerically that a plane wave incident
onto a nonlinear object gives rise to emission of multiple
satellite waves with energies (frequencies) differing from the
energy (frequency) of the probing wave.

II. STRUCTURE LAYOUT AND BASIC EQUATIONS

We consider the two tight-binding structures shown in
Fig. 1, the nonlinear dimer [Fig. 1(a)] and nonlinear four-site
square plaquette [Fig. 1(b)] coupled with linear binary chains.
Each chain, left and right, supports two continua of plane
waves,

ψ
(±)
1 (n,t) = 1√

2| sin k1|
(

1
1

)
exp (±ik1n − iE(k1)t),

(1)

ψ
(±)
2 (n,t) = 1√

2| sin k2|
(

1
−1

)
exp (±ik2n − iE(k2)t),
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FIG. 1. (Color online) (a) A two-channel waveguide in the form
of a binary tight-binding chain which holds a nonlinear dimer (shown
by filled circles). (b) The same as in (a) but with four nonlinear
sites (four-site plaquette). A green dotted box is placed around the
nonlinear scattering region.

where indices p = 1,2 enumerate continua or channels with
the propagation bands given by

E(kp) = −2 cos kp ∓ 1, − π � kp � π. (2)

In order to control the resonant transmission we adjust the
hopping matrix element between the nonlinear sites and
waveguides ε < 1 [30] shown in Fig. 1 by dashed lines.
The coupling between nonlinear sites (shown in Fig. 1 by a
dash-dot line) is controlled by constant γ .

In the case of the nonlinear dimer the Schrödinger equation
takes the following form:

iu̇n = −Jnun+1 − Jn−1un−1 − Knvn + λδn,0|un|2un,
(3)

iv̇n = −Jnvn+1 − Jn−1vn−1 − Knun + λδn,0|vn|2vn,

where Jn = 1 + (ε − 1)(δn,−1 + δn,0), Kn = 1 + (γ − 1)δn,0.
In the case of a nonlinear square plaquette the Shcrödinger
equation could be written down essentially in the same way.

III. NONLINEAR DIMER

First, let us follow Refs. [35–41] and search for the solution
of the Schrödinger equation (3) in the form of a stationary
wave,

un(t) = une
−iEt , vn(t) = vne

−iEt , (4)

where the discrete space variable n and the time t are
separated. The absence of nonlinearity in the waveguides
drastically simplifies analysis of Eq. (3). Assuming that a
symmetric-antisymmetric wave is incident from the left, we
can write the solutions in the left ψL(n,t) and right ψR(n,t)
waveguides as

ψL(n,t) = A0ψ
(+)
p (n,t) + Rp,1ψ

(−)
1 (n,t) + Rp,2ψ

(−)
2 (n,t),

(5)
ψR(n,t) = Tp,1ψ

(+)
1 (n,t) + Tp,2ψ

(+)
2 (n,t),

where parameter A0 is introduced to tune the intensity of the
probing wave. Notice that Eq. (5) implicitly defines reflection
and transmission amplitudes Rp,p′ and Tp,p′ with the first

subscript p indexing the channels and, respectively, the sym-
metry of the incident wave. One can now match the solutions
Eq. (5) to the equations for the nonlinear sites to obtain a set
of nonlinear equations for on-site and reflection-transmission
amplitudes. Computationally, however, it is more convenient
to use the approach of the non-Hermitian Hamiltonian [28,30]
in which the number of unknown variables equals the number
of nonlinear sites. Following Ref. [21] we write the equation
for the amplitudes on the nonlinear sites,

(E − Heff)|ψ〉 = A0ε|in〉, (6)

where

Heff = H0 −
∑
C

V
†
C

1

E + i0 − HC

VC

=
(
−ε2(eik1 + eik2 ) + λ|u0|2 −γ − ε2(eik1 − eik2 )

−γ − ε2(eik1 − eik2 ) ε2(eik1 + eik2 ) + λ|v0|2
)

.

(7)

Here vector 〈ψ | = (u0,v0) is the state vector of the dimer,
H0 is the nonlinear Hamiltonian of the dimer decoupled from
the waveguides, VC is the coupling operator [30] between the
nonlinear sites and the left and right waveguides C = L,R with
the Hamiltonian HC , and 〈in| = (1, ± 1) is the source term
for symmetric-antisymmetric incident waves correspondingly.
One can easily see that in the limit ε → 0 the dimer is
decoupled from the waveguides and Eq. (6) limits to the
standard nonlinear Schrödiner equation of the closed nonlinear
dimer. After Eq. (6) is solved, one easily obtains transmission-
reflection amplitudes from Eq. (3).

In Fig. 2 we present the response of the nonlinear dimer
to a symmetric probing wave both in form of transmission
probabilities |T11(E)|2, |T12(E)|2 [Fig. 2(a)] and phase θ2 − θ1

and intensity I1 − I2 differences [Fig. 2(b)]. On-site phases and
intensities are defined through u0 = √

I1e
iθ1 ,v0 = √

I2e
iθ2 .

There are two principally different families of solutions similar
to those obtained in Ref. [21]. The symmetry-preserving
family inherits the features of the linear case in which a
symmetric probing wave excites only the symmetric mode
φs = 1√

2
(1,1) with eigenvalue Es = −γ . In fact, we see a

typical example of nonlinear transmission through a reso-
nant state. The transmission probability |T11(E)|2 for the
symmetry-preserving family of solutions with I1 = I2,θ1 = θ2

are shown in Fig. 2(a) by blue dashed lines. The energy
behavior of the transmission is very similar to the case of
a linear waveguide coupled with one nonlinear in-channel
site [35,36,42]. However, one can see that the peak of the
resonant transmission is now unstable, which is a key to
mode conversion, as will be shown below. The stability of the
solutions was examined by standard methods based on small
perturbations technique (see, for example, Refs. [43,44]).

The SB occurs due to excitation of the second (antisym-
metric) mode of the dimer φa = 1√

2
(1,−1) with eigenvalue

Ea = γ . The phase and intensity differences for the SB
solutions are shown in Fig. 2(b). One can see that the symmetry
is broken simultaneously by both intensity I1 �= I2 and phase
θ1 �= θ2 of the wave function. This scenario of SB differs from
the case of the closed dimer [2,3,5] or the dimer opened
to a single chain (off-channel architecture) [21], where the
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FIG. 2. (Color online) Response of nonlinear dimer to symmetric probing wave. (a) Transmission probability |T11|2 for the symmetry-
preserving solution (blue dash-dotted line), |T11|2 for SB solutions (solid red line), and |T12|2 for SB solutions (dashed black line). (b) Phase
difference θ2 − θ1 for the pairs of SB solutions (dashed red line); intensity difference I1 − I2 (solid blue line). Thicker lines mark stable
solutions. The parameters are as follows: ε = 0.2,A0 = 1,λ = 0.025,γ = 0.

symmetry was broken either by the intensities or by the phases
of the on-site amplitudes.

In Fig. 3 we show the case when the antisymmetric wave
is injected to the system. Although the energy behavior of
the on-site intensities, on-site phases, and the transmission
probabilities to the first and second channels |T21|2, |T22|2 is
similar to the case of the symmetric probing wave, the stability
pattern of the symmetry-preserving solution is now typical
for the nonlinear transmission through a single nonlinear site
Ref. [42]. Finally, following Ref. [45], we present the plots
output vs. input, i.e., transmission probabilities |Tp,p′ |2 vs.
A2

0, for both symmetric and antisymmetric probing waves.
In Fig. 4 one can see that the input-output curves for the
symmetry-preserving family of solutions have typical bifurca-
tion behavior while the symmetry-breaking family exists only
within a bounded domain of the input.

As mentioned above, the SB phenomenon results in the
mode conversion, i.e., emission of scattered waves into a
different channel. Let us consider the time evolution of the
wave front given by

|ψin(n)〉 = f (n)ψ (+)
1 (n,0), (8)

where

f (n) =
{

1 if n � −100 ;

e−(n+100)2/250 if n > −100,
(9)

is an auxiliary function that provides a smooth increase of the
incident plane wave amplitude. As the wave front propagates
to the right, the input signal converges to ψ

(+)
1 (n,t) so one

could expect that in the course of time the system would
stabilize in one of the solutions shown in Fig. 2. In order
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FIG. 3. (Color online) Response of a nonlinear dimer to an antisymmetric probing wave. (a) Transmission probability |T22|2 for the
symmetry-preserving solution (blue dash-dotted line), |T22|2 for SB solutions (solid red line), and |T21|2 SB solutions (dashed black line).
(b) Phase difference θ2 − θ1 for the pairs of SB solutions (dashed red lines) and intensity difference I1 − I2 (solid blue lines). Thicker lines
mark stable solutions. The parameters are as follows: ε = 0.2, A0 = 1, λ = 0.03, γ = 0.
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FIG. 4. (Color online) Input A2
0 vs. outputs |Tp,p′ |2 for nonlinear dimer. (a) Symmetric probing wave 〈in| = (1,1), |T11|2 for symmetry-

preserving solutions (blue dash-dotted line), |T11|2 SB solutions (solid red line), and |T12|2 SB solutions (dashed black line). (b) Antisymmetric
probing wave 〈in| = (1, − 1), |T22|2 for symmetry-preserving solutions (blue dash-dotted line), |T22|2 SB solutions (solid red line), |T21|2 SB
solutions (dashed black line). The parameters are as follows: ε = 0.2, E = 0.45, λ = 0.025, γ = 0.

to perform numerical computations, we directly applied both
standard fourth-order Runge-Kutta method and the Besse-
Crank-Nicolson relaxation scheme [46] to Eq. (3) with both
techniques yielding the same result (Crank-Nicolson approach
being slightly advantageous in terms of computational time).
The absorbing boundary conditions were enforced at far ends
of the waveguides according to Ref. [47] to truncate the
problem to a finite domain.

Let us, first, choose the energy in the domain where the
symmetry-preserving solution is stable, for example, E = 0.35
[shown in Fig. 2(a) by a red circle]. To detect the SB
we use the populations As and Aa of the symmetric φs

and antisymmetric φa modes correspondingly. Figure 5(a)
shows that although stable SB solutions exist at E = 0.35
the response to the probing signal [Eq. (8)] contains only
symmetric contribution and after several oscillations converges
to the stationary transmission. On the other hand, if one
chooses the energy of the incident wave from the domain where

the symmetry-preserving solutions are unstable, E = 0.25
[shown in Fig. 2(a) by a red star], the system first stabilizes
in an unstable symmetry-preserving solution but then, due to
accumulation of numerical round-off error, it is forced to leave
the unstable equilibrium and occupy one of the stable states
with broken symmetry [Fig. 3(a)]. Thus, the round-off error
induces the SB playing the role of noise in a real experiment.
It is important to notice that the results in Fig. 5 agree with
the data obtained with the use of the effective non-Hermitian
Hamiltonian Eq. (6).

IV. FOUR-SITE NONLINEAR PLAQUETTE

In the previous section we demonstrated how the phe-
nomenon of SB occurs in the nonlinear dimer due to resonant
excitation of both symmetric and antisymmetric modes φs,φa .
Notice that a necessary condition for the SB is that both
modes be near degenerate to be excited at the same energy.

0 200 400 6000

0.5

1

1.5

2

2.5

time

A
s,A

a

(a)

0 200 400 6000

5

10

15

20

25

time

A
s,A

a

(b)

FIG. 5. (Color online) Time evolution of populations As (dashed blue line) and Aa (solid red line). ε = 0.2, A = 1, λ = 0.025, γ = 0.
(a) Stable symmetry-preserving solution E = 0.35 [red circle in Fig. 2(a)]. (b) Unstable symmetry-preserving solution E = 0.25 [red star in
Fig. 1(a)]. The parameters: ε = 0.2, A0 = 1, λ = 0.025, γ = 0.
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This forced us to chose the inner coupling constant γ = 0.
In fact, our numerical tests show that the SB will quickly
vanish as γ increased. In that sense, the setup of a four-site
plaquette seems more feasible because now the closed system
supports two degenerate modes of different symmetries at

any value of γ , namely 〈χs | = 1
2 (1,1,−1,−1) and 〈χa| =

1
2 (1,−1,1,−1). The corresponding degenerate eigenvalue is
Es,a = 0.

In the case of the four-site plaquette, the effective Hamilto-
nian takes the following form [28,30]:

Heff =

⎛
⎜⎜⎜⎜⎝
−ε2(eik1 + eik2 )/2 + λ|u0|2 −γ − ε2(eik1 − eik2 )/2 −γ 0

−γ − ε2(eik1 − eik2 )/2 −ε2(eik1 + eik2 )/2 + λ|v0|2 0 −γ

−γ 0 −ε2(eik1 + eik2 )/2 + λ|u1|2 −γ − ε2(eik1 − eik2 )/2

0 −γ −γ − ε2(eik1 − eik2 )/2 −ε2(eik1 + eik2 )/2 + λ|v1|2

⎞
⎟⎟⎟⎟⎠.

(10)

Equation (6) should now be solved for the state vector of the
plaquette 〈ψ | = (u0,v0,u1,v1) [see Fig. 1(b)] with the source
term 〈in| = (1, ± 1,0,0). The results of a numerical solution
are presented in Fig. 6.

Although the result is similar to the case of a nonlinear
dimer (Figs. 2 and 3), there is one important difference.
Namely there is now a domain the parameter space where
all stationary solutions are unstable, as shown in Fig. 6.
Respectively, the solution of the transmission problem in
such a system can be described neither by transmission and
reflection amplitudes Eqs. (5) nor by the Feshbach projection
method, i.e., by the effective non-Hermitian Hamiltonian
[Eq. (6)]. The problem of plane-wave scattering from the
nonlinear plaquette can be solved only through numerical
simulation of the time-dependent equation.

To perform numerical tests we repeated the wave-front
simulations explained in the previous section. Figure 7 shows
the time evolution of populations As,Aa of symmetric and an-
tysimmetric resonant modes |χs〉,|χa〉. At t = 0, a symmetric
wave front (8) is sent from the left waveguide towards the
plaquette with its energy and amplitude within the domain of

unstable stationary solutions E = 0.4 [shown by red star in
Fig. 6(a)]. First, when t ∈ [150,350], only the symmetric state
of the plaquette is excited; Aa = 0. However, the symmetry-
preserving solution is unstable. That causes a transition to the
symmetry-breaking solution Aa > 0 at t ≈ 400. As a result,
the plaquette emits stationary plane waves of both symmetries
with the same energy as the probing wave when t ∈ [450,650].
Since this solution is also unstable, the system transits to
another regime at t ≈ 700. It is clearly seen in Fig. 7 that in
this regime the solution is also symmetry breaking; however,
what is more interesting, it is nonstationary. The Fourier power
spectrum F (E) (Fig. 8) of the amplitude u3 (see Fig. 1) for
t � 800 clearly shows the presence of three peaks, the central
peak with energy E = 0.4 and two satellites with energies
E1 = −1.71, E2 = 2.51.

With the growth of the nonlinearity constant λ, which is
equivalent to the growth of the amplitude of the injected wave,
the dynamical properties of the nonlinear plaquette change
drastically. Figure 9(a) shows the transmission probabilities
versus the incident energy. One can see that, compared against
Fig. 6, the transmission peak is now shifted towards the edge
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FIG. 6. (Color online) Response of nonlinear plaquette to symmetric probing wave ε = 0.4, γ = 1, λ = 0.09, transmission probability
|T11|2 for symmetry-preserving solutions (blue dash-dotted line), |T11|2 SB solutions (solid red line), |T12|2 SB solutions (dashed black line).
(a) Transmissions vs. energy, A = 1. (b) Transmissions vs. A2, E = 0.35. Thicker lines mark stable solutions. In both cases, one can see
windows where neither symmetry-preserving nor symmetry-breaking stable solutions exist.
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FIG. 7. (Color online) Time evolution of populations of symmetric Bs (blue solid line) and antisymmetric Ba (red dashed line) resonant
modes, ε = 0.4, γ = 1, λ = 0.09, E = 0.4. The insets show the real parts of amplitudes u3 (blue solid line) and v3 (red dashed line) vs. time
t in the corresponding regimes. One can clearly see that in the course of time the system evolves to a nonstationary solution.

of the propagation band. When the energy of the incident wave
belongs to the instability window of the symmetry-preserving
solution E = 0.5 [red star in Fig. 9(a)], the system rapidly
evolves to a nonstationary symmetry-breaking regime. The
time-Fourier power spectrum with several equidistant satellite
peaks is shown in Fig. 9(b). It should be noted that, although
there now is a pair of stable symmetry-breaking solutions
at E = 0.5, the system nevertheless does not access them
but immediately transits to the nonstationary regime. That
phenomenon of satellite peak generation obviously differs
from the second harmonic generation where the waves of twice
the energy (frequency) would be emitted [48].

V. SUMMARY AND DISCUSSION

In this paper we considered the simplest nonlinear open
systems whose closed analogs allow for symmetry breaking,
namely dimer and four-site square plaquettes [2–8]. The term
“open” means that linear waveguides are now attached to
the nonlinear objects. The waveguides are chosen in the
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FIG. 8. (Color online) Logarithmic plot of a Fourier power
spectrum of output amplitude u3 in the nonstationary regime of Fig. 7.

form of tight-binding double chains. As shown in Fig. 1,
this architecture preserves the mirror symmetry with respect
to the center line of the waveguides. Then, if there are
stationary solutions (4), the standard procedure of matching
reflected or transmitted waves (5) can be applied to obtain the
transmision or reflection coefficients. It is more convenient,
however, to use the Feshbach projection technique to project
the total Hilbert space onto the space of the inner states
that describe the scattering region only [26–28,30]. The
resulting equation could be seen as a nonlinear equivalent
of the Lippmann-Schwinger equation (6), where Heff is the
nonlinear non-Hermitian effective Hamiltonian whose matrix
elements depend in turn on the amplitude of the injected
wave. The corresponding equations are written down for
both dimers by Eq. (7) and the four-site square nonlinear
plaquette [Eq. (10)]. The effective Hamiltonian differs from
the nonlinear Hamiltonian considered in Refs. [2–7,10] due to
the presence of dissipative terms ε2 exp(ikp), where ε is the
hopping matrix element that controls the coupling between the
closed system and the waveguides.

In the case of transmission of a symmetric plane
wave through the nonlinear dimer we found two families
of solutions. In the symmetry-preserving family the incident
symmetric wave is reflected and transmitted into the same
symmetric channel. The second family, however, violates the
symmetry of the probing wave. It means that when a symmetric
wave is injected into the system, the SB gives rise to emission
of the antisymmetric plane waves and vice versa. Therefore the
nonlinear dimer is capable for the mode conversion, although
with maximum efficiency around 50%. We found that the
direct solution of the time-dependent Schrödinger equation
with a wave front incident to the nonlinear dimer gives the
same results for the transmission probabilities as found from
the approach of the non-Hermitian Hamiltonian. It should be
pointed out that the key feature that makes it possible to access
the SB solutions is the presence of domains in the parameter
space where all symmetry-preserving solutions are unstable.
It means that in the course of time the symmetry-preserving
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FIG. 9. (Color online) (a) Response of nonlinear plaquette to symmetric probing wave ε = 0.4, γ = 1, λ = 0.4, A0 = 1. Transmission
probability |T11|2 for symmetry-preserving solutions (dash-dotted blue line), |T11|2 SB solutions (solid red line), |T12|2 SB solutions (dashed
black line). (b) Corresponding Fourier power spectrum of amplitude u3 at E = 0.5 [red star in Fig. 9(a)].

solution will eventually collapse due to the presence of noise.
The second important aspect about the open nonlinear dimer
is that symmetry is broken by both intensity and phase of the
scattering function.

Similar consideration was made for the open nonlinear
four-site plaquette [see Fig. 1(b)]. Its closed counterpart has
the symmetry group D4 that provides many opportunities for
symmetry breaking [10]. However, the presence of the waveg-
uides in the design shown in Fig. 1(b) substantially reduces
this symmetry to the symmetry of the open dimer. Therefore
one can expect a similar scenario for SB. However, in the case
of plaquettes, four nonlinear degrees of freedom participate in
the transmission, which dramatically changes the dynamical
picture. The standard theory of stability [43,44] based on small
perturbation technique reveals that there are domains in the
parameter space where none of the stationary solutions (neither
symmetry preserving nor symmetry breaking) are stable. It
means that the scattering problem could not be reduced to
stationary equations. Direct solution of the time-dependent
Schrödinger equation revealed the emission of satellite waves
at the energies differing from the energy of incident wave
provided that this energy is chosen within the domain where

the symmetry-preserving solution is unstable. The number of
satellite wave and their energies depend mostly on the intensity
of injected wave (or, equivalently, on the nonlinearity con-
stant). This effect differs from the second-harmonic generation
with satellite energies not equal twice the injected wave energy.
Emergence of additional equidistant peaks in the Fourrier
power spectrum of four-cite nonlinear systems was reported
almost 30 years ago in the seminal paper by Eilbeck et al. [2].
We believe that nowadays, with the ongoing development of
experimental techniques, in particular in handling photonic
crystal waveguides, that phenomenon opens a new opportunity
for harmonics generation. Another interesting possibility for
constructing nonlinear quantum double-chain setups could be
Bose-Hubbard ladders in optical lattices [49].
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