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1. INTRODUCTION

The Kohn–Luttinger mechanism [1] attracts con�
siderable current interest as a promising non�phonon
mechanism of superconductivity applicable for many
physical systems such as cuprate superconductors [2]
and doped graphene [3, 4], as well as the mechanism
underlying superfluidity in 3He [5–7] and in topolog�
ical superfluids [8]. The �wave superconductivity

arising in cuprates stimulated intense studies of the
interplay between superconducting phases with differ�
ent types of symmetry in the framework of the Hub�
bard model in the U � W limit [9–14].

The effect of the screened Coulomb interaction on
the Kohn–Luttinger mechanism for cuprate super�
conductors was recently studied in [15]. A renewed
interest in the effect of the long�range Coulomb corre�
lations on the structure of the phase diagrams for the
Mott–Hubbard systems at low electron density n led
to the additional studies [16, 17] based on the Shubin–
Vonsowsky model [18, 19], which takes into account
the interactions (V) between electrons located at dif�
ferent lattice sites. In [17], the phase diagram in the n–
V plane was constructed for such a model. This phase
diagram demonstrates the result of the interplay
between superconducting phases with different types
of symmetry. The corresponding calculations involve
only the intersite hopping within the first coordination
sphere and the intersite Coulomb interactions are
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considered including only the first�order terms of per�
turbation theory. Since the polarization Kohn–Lut�
tinger contributions manifest themselves only in the
second order, the analysis of the effects related to such
contributions appears to be promising for finding out
the ranges of existence for superconducting phases
with different symmetries.

In this paper, the Cooper instability for the Shu�
bin–Vonsowsky model is studied in the weak coupling
limit of the Born approximation (W > U > V) taking
into account the long�range hopping processes and
the intersite Coulomb interactions within the first and
second coordination spheres. In the calculation of the
effective interaction in the Cooper channel, we
include the polarization contributions, graphically
represented by four Kohn–Luttinger diagrams
(Fig. 1). We demonstrate that the long�range Cou�
lomb interactions and the long�range intersite elec�
tron hopping produce a pronounced effect on the con�
ditions needed for the Cooper pairing with s�, p�, and
d�wave symmetries of the order parameter. In particu�
lar, they illustrate the possibility of the  type of

pairing arising. Note that, in addition to the Shubin–
Vonsowsky model, the t–J model also remains a highly
probable challenger for the adequate description of
high�Tc superconductivity with d�wave pairing [20–
23]. A consideration of the Coulomb interaction
within the framework of the t–J model will be a subject
of our further studies.
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2. MODEL

The Hamiltonian of the Shubin–Vonsowsky model
in the crystal�momentum (sometimes referred to as
quasimomentum) representation has the form

(1)

where the electron energy including the long�range
intersite hopping with the intensity determined by the
parameters t2 and t3 is described by the expression

(2)

The Fourier transform corresponding to the Coulomb
repulsion between electrons located at the nearest�
neighbor or next�nearest�neighbor sites can be written
as

(3)

The utilization of the aforementioned Born approxi�
mation in the weak�coupling limit allows us to use
only the diagrams corresponding to the first and sec�
ond orders of perturbation theory in terms of the cou�
pling constant.

The opposite (strong�coupling) limit, U > V > W,
was studied in [16]. In this case, the inclusion of the
first� and second�order diagrams is justified only in the
low electron density limit (n � 1), for which the Fermi
gas type Galitskii–Bloom expansion [24, 25] works
well. Only the main exponential term for Tc is calcu�
lated in this work, as well as in [16]. The accurate eval�
uation of the pre�exponential factor requires the
inclusion of the third and fourth�order diagrams. The
Born approximation used in this paper allows us to
consider also higher values of the electron density.

It is well known that the intersite Coulomb interac�
tion suppresses the Cooper pairing in the first order of
perturbation theory. The contributions to the effective
interaction that improve the conditions favoring the
Cooper instability appear in the second order. It is also
important that the inclusion of the distant hopping
provides an opportunity to shift the position of the Van
Hove singularity in the electron density of states
toward lower densities. In this paper, we analyze only
the range of electron densities for which we do not
approach too close to the Van Hove singularities, in
order to avoid the summation of parquet diagrams
[27]. In the Mott–Hubbard systems, the screening
radius can exceed the unit cell size [28]. This deter�
mines the efficiency of the Shubin–Vonsowsky model,
which takes into account the intersite Coulomb inter�
action within several coordination spheres. In this
case, the effects related to the Brillouin zone manifest
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themselves in the momentum dependence of Vp,
which is described by a periodic function, and are
clearly pronounced.

3. RENORMALIZED INTERACTION
IN THE COOPER CHANNEL

The second�order correction δ (p, k) for the
effective interaction in the Cooper channel is deter�
mined by four Kohn–Luttinger diagrams shown in
Fig. 1. Solid lines with the light (dark) arrows corre�
spond to the Green’s functions of electrons with spin
projections equal to +1/2 (–1/2). In these diagrams,
the existence of two solid lines without arrows implies
the performed summation over the values of the spin
projections. The wavy lines correspond to the
unrenormalized interactions. The scattering of elec�
trons with the same spin projection gives rise only to
the intersite contribution. If we have the interaction
between electrons with opposite spins, the scattering
amplitude is determined by the sum of the Hubbard
and intersite interactions. Therefore, when we deal

only with the Hubbard repulsion, the δ (p, k) correc�
tion for the effective interaction is given only by the
fourth diagram. If we take into account the Coulomb
repulsion at the neighboring sites, all four diagrams
shown in Fig. 1 contribute to the renormalized ampli�
tude.

Introducing analytical expressions for the diagrams
in Fig. 1 (by using four�vectors p ≡ (p, iωn) and k ≡ (k,
iωm) and performing the summation over the Matsub�
ara frequencies, we arrive at the expression for the
effective interaction

Γ̃

Γ̃

Γ̃ p k,( ) U Vp k– δΓ̃ p k,( ),+ +=

Fig. 1. Second�order diagrams for the effective interaction.
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(4)

where f(ε) = .

4. BETHE–SALPETER EQUATION

Utilizing the renormalized interaction in the weak�
coupling approximation, we get the ladder�type equa�
tion for the scattering amplitude in the Cooper chan�
nel (see Fig. 2). In the explicit form, this equation
reads as

(5)

where ξq = εq – μ. Here, performing the summation
over the Matsubara frequencies ωl, we take into
account that the main contribution to the sum in the
Cooper channel in the weak�coupling approximation
comes from the ωl values close to zero. Therefore, we
can neglect the frequency dependence of the renor�
malized interaction. In this case, the total amplitude is
independent of the frequency and the summation over
ωl in the Bethe–Salpeter equation can be performed
explicitly. As a result, we get the following integral
equation, which determines the momentum depen�
dence of the scattering amplitude:

(6)
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It is well known that the pole corresponding to the
Cooper instability can be found analyzing the homo�
geneous part of the reduced equation [29]. Introduc�
ing the integration over the isoenergetic curves and
taking into account that the main contribution comes
from the contours close to the Fermi contour [10–12,
15], we get the equation

(7)

where λ–1 � ln(Tc/W), quasimomenta  and  lie on
the Fermi surface, and vF( ) is the Fermi velocity. To
solve this equation, we should consider an eigenvalue
problem.

We represent the kernel of integral equation (7) as a
superposition of the functions, each belonging to one
of the irreducible representations of the C4v symmetry
group on the square lattice. It is well known that this
group has five irreducible representations [30]. For
each representation, Eq. (7) has a solution with its
own effective coupling constant λ. Further on, we use
the following notation to classify the symmetries of the
order parameter: representations A1, A2, B1, B2, and E
correspond to the s�wave, extended s�wave, dxy�wave,

�wave, and p�wave types of symmetry, respec�

tively.

We seek a solution of Eq. (7) in the form

(8)

where α is the ordinal number of the representation, n
is the ordinal number of a function belonging to the
given representation, and φ is the angle characterizing
the direction of the quasimomentum  with respect to
the px axis. The explicit form of the orthonormalized
functions g

αn(φ) is given by the expressions

(9)
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π
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Fig. 2. Bethe–Salpeter equation.



JETP LETTERS  Vol. 97  No. 4  2013

EFFECT OF LONG�RANGE INTERACTIONS 229

Substituting Eq. (8) into Eq. (7), performing integra�
tion over the angles, and using the orthonormality
condition for the functions g

αn(φ), we find

(10)

where

(11)

Since Tc ~ exp(1/λ), each negative eigenvalue λ corre�
sponds to a superconducting phase with the specified
symmetry type of the order parameter. Each solution
corresponds to only one irreducible representation,
but its expansion in terms of the basis functions gener�
ally includes several angular harmonics. The highest
critical temperature corresponds to the largest abso�
lute value of λ.

5. RESULTS AND DISCUSSION

In Fig. 3, we illustrate the dependence of the effec�
tive coupling constant λ on the electron density n for
different types of symmetry of the superconducting
order parameter. The calculations were performed at
t2 = t3 = 0 and U = 1 (all energy parameters are mea�
sured in units of |t1|) at different values of the parame�
ters V1 and V2, which characterize the intersite Cou�
lomb interactions. In Fig. 3a, we plot the λ(n) curve in
the absence of the intersite Coulomb interaction (V1 =
0 and V2 = 0). It agrees well with the corresponding
curves reported in [11]. At low electron densities (n =
0–0.52), in the first two orders of perturbation theory,
we get superconductivity with the dxy�wave type of the
order parameter [10]. In the range n = 0.52–0.58, the
ground state corresponds to the phase with the p�wave
order parameter. At n > 0.58, the �wave type of

superconductivity is the dominant one.
The inclusion of the intersite Coulomb interaction

significantly affects the interplay between the super�
conducting phases. This is clearly seen in Fig. 3b,
where we represent the λ(n) plots for V1 = 0.5 and V2 =
0. Their comparison to the plots in Fig. 3a demon�
strates that the range of dominance for the dxy� and p�
wave phases becomes broader. At high electron densi�
ties (n ≥ 0.89), we have the s�wave type of pairing, for
which the main contribution comes from the gs, 1(φ) =

cos4φ harmonics.

It is necessary to note that the Cooper pairing cal�
culated up to the second order of perturbation theory
in terms of the Coulomb interaction is not suppressed
by the first�order terms. This stems from the fact that
the bare Coulomb repulsion Vp – k suppresses only a

Λ̂αn; βmΔβm λΔαn,=

Λ̂αn; βm
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part of the harmonics, whereas the other harmonics
lead to the Cooper instability. For example, in the
range of existence for the p�wave pairing, the main
contribution of the bare repulsion Vp – k in the p�wave

channel is given by the function gp, 0(φ) = (Asinφ +

Bcosφ), whereas the main contribution to the scatter�

1

π
������

Fig. 3. Electron density dependence of λ for t2 = t3 = 0 and
U = 1 at different values of the parameters characterizing
the intersite Coulomb interaction: (a) V1 = V2 = 0;
(b) V1 = 0.5, V2 = 0; and (c) V1 = 0.5, V2 = 0.25.
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ing amplitude in the p�channel comes from the func�

tion gp, 1(φ) = (Asin3φ + Bcos3φ).

In Fig. 3c, we represent the λ(n) curves plotted tak�
ing into account the intersite Coulomb interactions
within the first and second coordination spheres (V1 =
0.5 and V2 = 0.25). The comparison with Fig. 3b sug�

1

π
������

gests that the inclusion of the long�range Coulomb
repulsion V2 favors the �wave type of pairing at

low charge carrier densities (n = 0.05–0.34).

Distant electron hoppings (to the sites located out�
side the first coordination sphere) significantly affect
the interplay of different superconducting phases. This
is illustrated in Fig. 4, where we show the λ(n) curves
plotted at U = 1, V1 = 0.5, and V2 = 0.25 for different
values of t2 and t3. The plots shown in Fig. 4a are cal�
culated with the inclusion of the electron hoppings
within the first two coordination spheres (t2 = 0.15,
t3 = 0). At these parameters, the critical density of fer�
mions n

vH (corresponding to the Van Hove singularity)
shifts from the half filling toward lower electron densi�
ties (Fig. 5). Comparing Figs. 3c and 4a, we see that
the inclusion of the distant hoppings t2 leads to broad�
ening of the dominance range for the  type of

pairing to n = 0.4 and to an increase in the absolute
value of λ in this region.

   Figures 4b and 4c show the λ(n) dependence cal�
culated with the additional inclusion of hoppings to
the third coordination sphere with t3 < 0 and t3 > 0,
respectively. Comparison of these plots indicates that
the inclusion of hoppings with t3 > 0 leads to the addi�
tional broadening of the dominance range for the

�wave type of pairing at low charge carrier densi�

ties and to the enhancement of the effective interac�
tion in this region.

Note that with the growth of U, the superconduct�
ing phase with the �wave symmetry of the order

parameter becomes dominant in the density range
close to the Van Hove singularities. This can be seen in
Fig. 6, where we demonstrate the λ(n) curves calcu�
lated at U = 2. In the regions of low and high densities,
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Fig. 4. Electron density dependence of λ for U = 1, V1 =
0.5, and V2 = 0.25 at different values of the distant hopping
integrals: (a) t2 = 0.15, t3 = 0; (b) t2 = 0.15, t3 = –0.1; and
(c) t2 = 0.15, t3 = 0.1.

Fig. 5. Evolution of the electron density of states under
variation of the hopping integrals.
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the  phase corresponds to the ground state of the

system. This result seems to be important for the anal�
ysis of the mechanisms underlying the high�Tc super�
conductivity. Note in this context that the critical tem�
peratures Tc ~ 100 K appear at U = 3. However, this
case is on the verge of the applicability range of the
weak�coupling approximation, which we use in this
paper.

6. CONCLUSIONS

The analysis of the Cooper instability performed
within the framework of the Shubin–Vonsowsky
model in the weak�coupling limit (W > U > V) dem�
onstrates that the Kohn–Luttinger contributions of
the polarization type calculated up to the second
order of perturbation theory lead to a significant
renormalization of the effective interaction. Note that
the inclusion of the additional Coulomb repulsion at
the neighboring lattice sites (V1) and even at the next�
nearest�neighbor sites (V2) cannot suppress all super�
conducting channels in the calculations of the effec�

tive interaction  in the first two orders of perturba�
tion theory.

At V1 ≠ 0 and V2 ≠ 0, superconductivity arises in the
p�, dxy�, and �wave channels at low and interme�

diate electron densities. In the �wave and in the

specific s�wave channel (cos4φ harmonics), it arises
near the Van Hove singularity at high electron densi�
ties. Near the Van Hove singularity, with the growth of
the Hubbard repulsion U, we get the usual �wave

type of pairing typical of cuprates with rather realistic
values of the superconducting transition temperature.
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The inclusion of the distant hoppings t2 ≠ 0 and t3 ≠ 0
shifts the Van Hove singularity toward lower electron
densities but does not change the gross phase diagram
describing the superconducting states.
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