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Increased interest in incommensurate magnetic
structures in the last decade has primarily been stimu�
lated by the discovery of multiferroic properties in
many of them [1]. The helical ordering of spins is
accompanied by the disappearance of the center of
symmetry and is responsible for the appearance of
electric polarization. The local polarization pij in many
mechanisms of the ferroelectric effect [2–4] is attrib�
uted to the noncollinearity of spins. In particular, for
the model with the inverse effect of the Dzyaloshin�
skii–Moriya interaction [4],

(1)

where eij is the unit vector connecting the spins. As a
result, both the direction of the spontaneous polariza�
tion and the magnetoelectric effect (dependence of
the polarization on the applied magnetic field) are
determined by the orientation of the modulation and
polarization vectors of incommensurate magnetic
structures. In describing incommensurate magnetic
structures with large modulation vectors, when the
angles between the interacting spins are comparable to
90°, the competition (frustration) between symmetric
exchanges is treated as the primary mechanism of the
formation of the structure. The antiferromagnetic
Dzyaloshinskii–Moriya exchange for ions of a transi�
tion group is relatively small and leads to the formation
of long�period structures [5]. For quasi�one�dimen�
sional magnetic structures with the competition of
exchanges between the nearest (Jnn) and next�nearest
(Jnnn) magnetic neighbors in the chain, e.g., LiCu2O2

[6], LiCuVO4 [7], CuCl2 [8], and CuBr2 [9], the mod�
ulation vector is directed along the chain. In these
multiferroics, Jnnn ≥ Jnn, which leads to a large noncol�
linearity of spins. In the CuO multiferroic with the

pij ei j Si Sj×( ),×∝

maximum temperature of the appearance of magneti�
cally induced electric polarization, the ground state is
quasidegenerate in the orientation of the magnetic
moments in neighboring planes owing to a large num�
ber of competing exchanges [10, 11]. As a result, the
transition to the long�period helicoidal phase with the
modulation�vector direction intermediate with
respect to crystal axes is accompanied by the rotation
of the moments in the neighboring planes at an angle
close to 90° (transition from the antiferromagnetic
ordering AF1 to the modulated phase AF2 [10]). This
rotation makes the main contribution to the electric
polarization. In hexagonal and rhombohedral mag�
nets, the geometrical frustration of the antiferromag�
netic exchange in the planes with a triangular lattice of
vector spins initiates the 120° orientation of magnetic
moments. The appearance of incommensurate mag�
netic structures in a number of such systems is also
accompanied by the appearance of the electric polar�
ization [4, 12, 13]. Taking into account the direct
dependence of the polarization on the noncollinearity
of magnetic moments (1), such geometrically frus�
trated magnets are considered as promising candidates
for multiferroics with strong magnetoelectric coupling
[12]. The problem of allowed incommensurate mag�
netic structures in three�dimensional frustrated mag�
nets with such symmetry has not yet been analyzed.
The aim of this work is to determine the form and con�
ditions of the appearance of incommensurate mag�
netic structures in a rhombohedral antiferromagnet of
the R3m symmetry with the geometrical frustration of
the exchange between nearest magnetic neighbors in
the basal plane and competition of exchange interac�
tions between the nearest and next�nearest planes.
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The Hamiltonian of the model has the form

(2)

where J1 and J2 are the exchanges between the nearest
and next�nearest planes, respectively, and J20 is the
exchange between spins in the basal (111) plane
(Fig. 1).

In the absence of rhombohedral distortion in the
simple cubic lattice (J2 = J20), there are two types of
collinear ordering depending on the relation between
the J1 and J2 antiferromagnetic exchanges [14]. The
first type (AF1) is the planes of spins with the parallel
orientation that are orthogonal to the diagonals of the
cube. An antiferromagnetic order is established
between neighboring planes. Such a structure has the
minimum energy in the J1 exchange and is completely
frustrated in the J2 exchange. The second type of
ordering (AF2) is the planes of antiferromagnetically
ordered spins repeating along one of the axes of the
crystal (a, b, or c). Such a structure is partially frus�
trated in both exchanges. Rhombohedral distortion
(along the [111] diagonal in Fig. 1) holds both types of
antiferromagnetic ordering, changing the exchange
energy. The energy of one spin in the ground state for
the AF1 and AF2 phases divided by J20S

2 has the form

(3)

where j1 = J1/J20 and j2 = J2/J20. The boundary
between the AF1 and AF2 phases on the ( j1 j2) phase
plane is the straight line

(4)

The incommensurate magnetic structure in the three�
dimensional lattice constitutes the planes of col�
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linearly (ferro� or antiferromagnetically) oriented
spins whose orientations in the neighboring planes dif�
fer from each other by constant angle ϕ. The case of
noncollinear orientation of spins in initial planes will
be considered below. The necessary condition of the
existence of such a structure is the presence of the frus�
trated (positive) exchange energy of interactions with
planes following the nearest plane: second (�2n), third
(�3n), etc., in the initial commensurate configuration
of spins. In a rhombohedrally distorted cubic lattice
(Fig. 1), there are ten variants of the choice of initial
planes of spins with the energy �2n ≠ 0. Variants with
initial planes interacting with more remote planes do
not give incommensurate states. Depending on the
type of ordering of spins in the initial planes and,
therefore, the energy of exchange bonds inside the ini�
tial plane (�0) and between planes (�1n and �2n), differ�
ent incommensurate magnetic structures appear at
different relations between exchanges (2). The AF1
ordering is symmetric with respect to the rhombohe�
dral axis. The operations of symmetry join the initial
planes into four subgroups invariant with respect to the
energies of exchange interactions �0, �1n, and �2n:

(111)1, { }1, {110}1, and { }1. Here and below,
the planes are denoted in the rhombohedral basis. The
subscript indicates the type of magnetic ordering in the
plane. The remaining planes in the last three sub�
groups are obtained by the permutation of indices. The
AF2 collinear ordering reduces symmetry, separating
one of the directions in the crystal (a, b, or c). As a
result, ten planes of the single�domain crystal where
the antiferromagnetic plane is repeated along the c axis

are joined into seven subgroups: (111)2, ,

, {110}2, , , and . The
prime in the notation of the subgroups means the per�
mutation of only the first two indices. Since the col�
linear ordering of the first type is completely frustrated
in the exchanges with the next�nearest neighbors, J2

and J20, all planes with such a type of ordering have
frustrated exchanges with the next�nearest planes
(�2n > 0). Among the planes with the second type of
ordering, this necessary condition is satisfied only for

the ( )2, (110)2, and ( )2 planes. The energy of
each spin in the helicoidal phase has the form

(5)

The solution with ϕ = 0 gives the energies of the AF1
and AF2 phases (3):

(6)

The minimization of the energy in the angle of heli�
coid ϕ provides the equilibrium value of cosϕ and the
threshold condition for the energies �1n and �2n under
which the helicoidal solution exists:

(7)
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Fig. 1. Exchange interactions in the unit cell of a rhombo�
hedral crystal.
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Under the threshold condition, the energy per spin of
the helicoid is given by the expression

(8)

Incommensurate magnetic structures with the initial

planes { }1 and {110}1 have energies higher than
those of remaining commensurate and incommensu�
rate structures at any antiferromagnetic exchanges (2).
The remaining five incommensurate magnetic struc�
tures are the ground states in various regions of the
( j1 j2) phase plane. The threshold conditions, cosϕ val�
ues, and the energies of helicoidal states with the ini�
tial planes (klm)1, 2 have the form

(9)

where �1 and �2 are the energies of the collinear phases
given by Eqs. (3). The spins in the (111)1, (110)2, and

( )2 planes are oriented ferromagnetically and the

spins in the ( )1 and ( )2 planes are oriented
antiferromagnetically.

The boundaries between the commensurate and
incommensurate phases on the phase plane are deter�
mined from the equality of the energies given by
Eqs. (3) and (9). The phase diagram (Fig. 2) consists
of the straight lines of second�order phase transitions
in which incommensurate magnetic structures with
ϕ  0 appear and curves of first�order phase transi�
tions, where a incommensurate magnetic structure
appears with a finite value ϕ > 0. In this case, the type
of ordering in planes changes. Both the length of the
modulation vector (ϕ value) and its direction change
at the boundaries between different helicoidal phases.
Two commensurate and two incommensurate phases
converge at the multicritical point ( j1 = 4, j2 = 1). At
this point, the lines of the threshold conditions on the
appearance of all incommensurate phases with the
first type of ordering in the initial (klm)1 planes con�
verge, including those with a high energy. The lines of
the threshold conditions for (klm)2 helicoids converge

� �0 �2n– �1n
2

/8�2n.–=
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at the second multicritical point (j1 = 0, j2 = 1). The
indicated points are located on the straight line j2 = 1,
which corresponds to the undistorted cubic lattice and
is the only straight line on the phase plane that does not
include incommensurate phases. At the coordinate ori�

gin, j1 = j2 = 0, the ( )2 incommensurate phase is
continuously confirmed to the 120° ordering of spins
in a triangular rhombohedral plane. The resulting
phase diagram is simply generalized to the case of the
ferromagnetic exchange between neighboring basal
(111) planes (J1 < 0) through the reflection with respect
to the j2 axis (Fig. 2). In this case, ordering in the planes
changes from ABCABC to A(–B)C(–A)B(–C),
where the minus sign means a change in the direction
of all spins to the opposite direction in a given plane at
each type of ordering. The AF2 type of collinear
ordering is transferred to the third AF3 type of the col�
linear antiferromagnetic ordering and the AF1 order�
ing is transferred to the ferromagnetic ordering of all
spins. In this case, the third multicritical point ( j1 =
⎯4, j2 = 1) appears. The generalization to the case with
ferromagnetic exchange J2 < 0 is not so trivial and
requires individual analysis.

In crystals where the number of magnetic neigh�
bors in each type of antiferromagnetic exchange is
multiple of three, four�sublattice noncollinear order�
ing can exist, as in geometrically frustrated antiferro�
magnets with a pyrochlore lattice [15] (Fig. 3). If addi�
tional anisotropic interactions are disregarded, such a
ground state is continuously degenerate in the angles
Θ and φ; as a result, the long�range magnetic order is
absent at zero temperature. The rhombohedral lattice
of spins can also exhibit four�sublattice ordering at
which the spins of each sublattice interact only with
the spins of the other three sublattices in all three types
of exchanges (2) (Fig. 4). The energy of this ordering

110

Fig. 2. Phase diagram of the magnetic states of a rhombo�
hedral crystal. The dashed line is the boundary between the
AF1 and AF2 collinear phases disregarding the effect of
helicoidal phases (klm)1, 2 (4).
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is �2. At the coplanar orientation of the spins of the
sublattices (φ = 0), helicoidal ordering with the con�
servation of total coplanarity is possible. However,
threshold conditions are enhanced in this case as com�
pared to collinear ordering of the second type (AF2) in
planes. For incommensurate magnetic structures with

the initial ( ) plane, we obtain

(10)

For the same exchanges, the energy of the helicoid

with ( )2 is always lower than the energy of the heli�
coid with Θ > 0. Threshold conditions and energies for
incommensurate magnetic structures with other initial
planes also change. This means that the energy of
excited states with collinear ordering in region AF2
(see Fig. 2), where helicoids are not ground states, is
also lower than the excitation energies of noncollinear
states. Therefore, the free energy of collinear ordering
at finite temperature is lower than the energy of non�
collinear states; for this reason, ordering occurs
through disorder [15, 16]. Continuous degeneracy is
lifted by incommensurate states both outside and
inside region AF2 (see Fig. 2).

In the absence of the inversion center, the antisym�
metric Dzyaloshinskii–Moriya exchange (Si ×

Sj), where n is the index of the corresponding
exchange bonds in Eq. (2), between interacting spins
appears as an additional mechanism of spin noncol�
linearity. It can lead either to weak ferromagnetism
[17] or to incommensurate magnetic structure [18],
lifting degeneracy of the AF2 phase [19]. In the former
case, the AF1 and AF2 phases become weak ferromag�
netic, whereas helicoidal states (9) become modulated

111

j2 1–( ) 2Θ( )cos 1 j1/4.+>

111

Dnijn∑

(double) helicoids, as incommensurate magnetic
structures of the high�temperature phase in CuB2O4

[20]. In the latter case, the incommensurate modula�
tion of the AF1 and AF2 phases depends on the distri�
bution of the directions of Dzyaloshinskii vectors Dn

and their lengths. When the components D1 and D2

along the [111] direction dominate, incommensurate
magnetic structures in these phases have the wave vec�
tor k(kkk). The phase boundary between the AF1 and
(111)1 phases disappears because both phases have the
same direction of the modulation vectors and the same
type of magnetic order in the initial plane. The other
phase boundaries hold because a transition through
them is accompanied by a change either in the order
parameter in planes or in the direction of the vector k.
The form of incommensurate magnetic structures is
complicated, but the noncollinearity of neighboring
interacting spins and, therefore, the polarization in
ferroelectric (1) are determined by the strongest
mechanism of incommensurability. For the ions of the
transition group with the small contribution from the
spin–orbit interaction, the change in the energy of
commensurate and incommensurate phases is about

/Jn. Correspondingly, the change in the threshold
conditions and boundaries between phases is of the
same order of magnitude.

To summarize, the existence of five different heli�
coidal structures is a feature of this type of crystal lat�
tice. Individual sets of incommensurate magnetic
structures will exist in other frustrated lattices under
the corresponding threshold relations for the exchange
interactions. In particular, only a helicoid with the
modulation vector along the tetragonal axis can
appear in a body�centered tetragonal lattice with three

Dn
2

Fig. 3. Orientation of the spins at four�sublattice ordering.

Fig. 4. Projection of four magnetic sublattices on the basal
(111) plane. The spins of each sublattice of the basal plane
interact only with spins of other sublattices both in the
plane (solid lines) and between nearest (closed circles) and
next�nearest (open circles) planes.
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nearest exchanges [21]. However, the distortion of the
rhombohedral crystal leading to the reduction of sym�
metry (e.g., to the monoclinic symmetry C2/m, as in
delafossite CuFeO2 [4, 22] with a decrease in the tem�
perature) can result in a change in the number of
allowed incommensurate magnetic structures only
through a change in the corresponding exchanges and,
as a result, threshold conditions. Consequently, the
disappearance of incommensurate magnetic struc�
tures existing in the high�symmetry phase and the
appearance of new phases in the low�symmetry phase
(in the phase space with a higher dimension) are pos�
sible primarily near multicritical (including tricritical)
points of the high�symmetry phase. The following
topological rule can be formulated: the phase diagram
of a partially frustrated Heisenberg magnet consists of
commensurate phases, which are separated by incom�
mensurate phases, and multicritical points lying on
the line of the high�symmetry phase.

I am grateful to A.I. Pankrats for stimulating dis�
cussions.

REFERENCES

1. T. Kimura, T. Goto, H. Shintani, et al., Nature (Lon�
don) 423, 55 (2003); S.�W. Cheong and M. Mostovoy,
Nature Mater. 6, 13 (2007).

2. H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev.
Lett. 95, 057205 (2005); M. Mostovoy, Phys. Rev. Lett.
96, 067601 (2006); A. S. Moskvin, Yu. D. Panov, and
S.�L. Drechsler, Phys. Rev. B 79, 104112 (2009).

3. I. A. Sergienko and E. Diagotto, Phys. Rev. B 73,
094434 (2006).

4. T. Arima, J. Phys. Soc. Jpn. 76, 073702 (2007).
5. Yu. A. Izyumov, Neutron Diffraction in Long Periodic

Structures (Energoatomizdat, Moscow, 1987) [in Rus�
sian].

6. T. Matsuda, A. Zheludev, B. Roessli, et al., Phys. Rev. B
72, 014405 (2005); S. Park, Y. I. Choi, C. I. Zhang, and
S. W. Cheong, Phys. Rev. Lett. 98, 057601 (2007);
Y. Naito, K. Sato, Y. Yasui, et al., J. Phys. Soc. Jpn. 76,
023708 (2007).

7. H. J. Xiang and M.�H. Whangbo, Phys. Rev. Lett. 99,
257203 (2007); Y. Yasui, Y. Naito, K. Sato, et al., J.
Phys. Soc. Jpn. 77, 023712 (2008).

8. M. G. Banks, R. K. Kremer, C. Hoch, et al., Phys. Rev.
B 80, 024404 (2009); S. Seki, T. Kurumaji, S. Ishiwata,
et al., Phys. Rev. B 82, 064424 (2010).

9. C. Lee, J. Liu, M.�H. Whanbo, et al., Phys. Rev. B 86,
060407(R) (2012).

10. G. Giovanneti, S. Kumar, A. Stroppa, et al., Phys. Rev.
Lett. 106, 026401 (2011).

11. P. Babkevich, A. Poole, R. D. Johnson, et al., Phys.
Rev. B 85, 134428 (2012); G. Jin, K. Cao, G.�C. Guo,
and L. He, Phys. Rev. Lett. 108, 187205 (2012); R. Vil�
lareal, G. Quirion, M. L. Plumer, et al., Phys. Rev. Lett.
109, 167206 (2012).

12. T. Kimura, J. C. Lashley, and A. P. Ramirez, Phys. Rev.
B 73, 220401(R) (2006).

13. R. D. Johnson, L. C. Chapon, D. D. Khalyavin, et al.,
Phys. Rev. Lett. 108, 087201 (2012); N. Terada,
D. D. Khalyavin, P. Manuel, et al., Phys. Rev. Lett.
109, 097203 (2012).

14. D. ter Haar and M. E. Lines, Philos. Trans. R. Soc.
London A 254 (1046), 521 (1962). 

15. R. Moessner and J. T. Chalker, Phys. Rev. B 58, 12049
(1998).

16. J. Villain, R. Bidaux, J. P. Canon, and R. J. Conte,
J. Phys. (Paris) 41, 1263 (1980); E. F. Shender, Sov.
Phys. JETP 56, 178 (1982); C. L. Henley, J. Appl. Phys.
61, 3962 (1987).

17. I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958);
T. Moriya, Phys. Rev. 120, 91 (1960).

18. I. E. Dzyaloshinskii, Sov. Phys. JETP 19, 960 (1964).
19. M. Elhajal, B. Chanals, R. Sunyer, and C. Lacroix,

Phys. Rev. B 71, 094420 (2005).
20. S. N. Martynov, J. Exp. Theor. Phys. 109, 979 (2009).
21. J. S. Smart, Effective Field Theories of Magnetism

(Saunders, London, 1966; Mir, Moscow, 1968).
22. Y. Tanaka, N. Terada, T. Nakajima, et al., Phys. Rev.

Lett. 109, 127205 (2012).

Translated by R. Tyapaev


