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1. In studies of nanometer hybrid systems, special
emphasis is put on film structures (e.g., Josephson
junctions [1–3], semiconductor [4] or magnetic [5]
heterojunctions) and on one� and zero�dimensional
objects [6]. The current–voltage characteristics of the
latter systems exhibit specific features directly related
to many�body effects, which are manifested by the
electron transport (Coulomb blockade, Kondo corre�
lations [7, 8]), or to the electron–phonon interaction
[9, 10]. In addition, an atomic or molecular complex
with an uncompensated magnetic moment can be
used for information recording and storage [11] or as a
qubit [12].

The experiments on scanning tunneling micros�
copy of magnetic atomic and molecular complexes
revealed an inelastic character of the electron trans�
port through such systems [13]. It turned out that spin�
flip scattering of transported electrons by the potential
profile of the structure provides the control of its mag�
netic state [14]. In particular, the spin projection of the
electron transported through the magnetic device
(e.g., spin dimer [15]) is changed and the device
occurs in another magnetic state (the dimer switches
from the singlet to triplet state) owing to the spin�flip
processes. In this case, the electron can be reflected
back to the metallic contact and then scatter again by
the already changed structure of the potential profile.

In the presence of an ensemble of electrons, one
also has to take into account many�body effects when
scattering of a particular electron becomes dependent
on the result of interaction with the structure of other

electrons. As a result of multiple recurrence of such
processes, there appears an essentially nonequilibrium
population distribution of the states of the magnetic
system. Accordingly, there appear renormalizations of
the current–voltage characteristics, which depend on
the properties of the tunneling current�induced non�
equilibrium state of the magnetic device. In addition,
the solid�state environment, which considerably
affects transport through the atomic�scale magnetic
systems [11, 16], is also important.

In this work, the problem of the current–voltage
characteristics of an adsorbed atom, which exhibits
anisotropy of magnetic properties owing to the effect
of a substrate, is solved taking into account the above
factors. A large number of non�equidistant states of
the system “magnetic atom + electrons” are described
exactly with the use of Hubbard operators [17, 18, 7].
Nonequilibrium occupation numbers of the states of
such a magnetic device are found from the set of
kinetic equations derived on the basis of the Keldysh
diagram technique [19] for nonequilibrium Fermi
Green’s functions and the diagram technique for the
Hubbard operators [17, 18] modified by introducing
the Keldysh loop for the nonequilibrium case [20, 21].
This approach allowed us to take into account the pro�
cesses of multiple electron scattering and to derive the
expression for the current which satisfies the symme�
try requirements [10]. It is shown that the environ�
ment determining the crystal field can favor the
enhancement of the effect of negative differential con�
ductance. The influence of asymmetric coupling of
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the magnetic atom to the contacts on conducting
properties of the atom is investigated.

2. We consider the tunneling transport of electrons
through a magnetic impurity with the spin S = 1 in the
geometry (see Fig. 1) used in the experiment [16, 22].
The role of such an impurity can be played by a transi�
tion�metal or rear�earth atom (e.g., Co, Mn, Fe, Ce)
or a molecule in which the magnetic nucleus is sur�
rounded by ligands (e.g., cobalt or iron phthalocya�
nine; Mn12).

Let us write the Hamiltonian of the system “left
contact + device + right contact” in the form

(1)

where the operators  and  include the presence
of electrons in the left and right metallic contacts,
respectively. In the second�quantization representa�
tion, these operators are given by the expressions

where  is the creation operator of an electron
with the wave vector k(p) and the spin σ in the left
(right) contact and ξk = εk – μ and ξp = εp + eV – μ are
the single�electron energies of the left and right con�
tacts measured from the Fermi level μ, respectively.
Below, we will assume that the contacts are single�
band paramagnetic metals with the band width W ~
1 eV, much greater than the characteristic energy
parameters of the system. The voltage V is thought to
be applied across the contacts.

The second term in Eq. (1) corresponds to the
Hamiltonian of the magnetic atom (ξd = εd + eV/2 – μ):

(2)

which describes a change in the energy of the system
upon the appearance of additional electrons (nσ =

) in the atom, the Hubbard repulsion of two elec�
trons with opposite spins, the effect of uniaxial anisot�
ropy with the parameter D for the description of the
experimentally established anisotropy of the magnetic
properties of the impurity atom [16], and the presence
of the s–d( f) exchange coupling between the localized

Ĥ ĤL ĤD ĤR T̂,+ + +=

ĤL ĤR

ĤL R( ) ξk p( )ck p( )σ
+ ck p( )σ,

k p( )σ

∑=

ck p( )σ
+

ĤD ξdnσ Un↑n↓ D Sz( )
2

A σS( ),+ + +
σ

∑=

aσ
+aσ

spin S of the impurity atom and the spin σ of the trans�
ported electron (the coupling strength is given by the
parameter A). This coupling not only creates the addi�
tional potential profile for the transported electrons,
on which they scatter, but also induces a number of
phenomena leading, e.g., to the spin�dependent Fano
effect [15].

The last term in Eq. (1) describes the transitions of
electrons between the contacts and the magnetic
impurity:

(3)

where tk and tp are the parameters of impurity coupling
to the contacts and H.c. stands for the Hermitian con�
jugate.

3. Solving the Schrödinger equation with Hamilto�
nian (2), we find 12 eigenstates of an isolated magnetic
impurity and electrons. Three of them are the elec�
tron�free states ψ1 = , ψ2, 3 = , where the
first and second numbers are the number of electrons
and the projection of the total spin σ + S of the system,
respectively. The single�fermion sector of the Hilbert
space contains three doubly degenerate states ψ4, 5 =

,  = , and ψ8, 9 = . In
addition, there are three two�electron states ψ10 =

 and ψ11, 12 = . There are ten allowed tran�
sitions with a change in the number of electrons with
the spin σ at the level of the magnetic impurity by one.
Since σ does not have a preferential direction, the
transition energies with opposite σ values coincide. As
a result, the transition energies with σ = 1/2 are

(4)

where Δ = A/4 – D/2 and ν = .
Since Hamiltonian (2) of the device includes a

number of interactions, it is not diagonal in the initial
representation. If this form of the Hamiltonian is used,
one has to build the perturbation series not only in
powers of the parameters of coupling to the contacts
but also in the parameters characterizing the internal
interactions in the device. However, reduction of the
Hamiltonian of the device to the diagonal form in the
usual representation leads to the situation where the
Fermi operator of electron annihilation in the device
in the interaction representation is described by the
expression that prevents the direct implementation of
the Vick theorem. Overcoming this hindrance is asso�
ciated with the use of the atomic representation. In the

T̂ tk p( ) ck p( )σ
+ aσ H.c.+[ ],

k p( )σ

∑=

0 0,| 〉 0 1±,| 〉

1 1/2±,| 〉– ψ6 7, 1 1/2±,| 〉+ 1 3/2±,| 〉

2 0,| 〉 2 1±,| 〉

E4 1, εd ν– Δ, E6 1,– εd ν Δ,–+= =

E5 3, εd ν– Δ– D, E7 3,– εd ν Δ– D,–+= =

E8 2, εd A/2, E10 5,+ εd U ν Δ,+ + += =

E11 4, εd D U ν Δ, E10 7,+ + + + εd U Δ ν,–+ += =

E11 6, εd D U Δ ν, E12 9,–+ + + εd U A/2,–+= =

Δ2 A2
/2+

Fig. 1. Magnetic impurity with the spin S and up to two
electrons on the outer shell situated between the metallic
contacts.
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mathematical language, this corresponds to introduc�
ing the Hubbard operators Xα, where α = α(n, m) and
n and m specify the initial and finite states of the tran�
sition α(n, m) [18]. In this case, the second�quantiza�
tion operators aσ of electron annihilation at the impu�
rity are described in terms of the Hubbard operators
with the use of the respective representation parame�
ters γσ(α). Thus, the Hamiltonian of the structure in

the atomic representation has the simple form  =

.

4. We use the well�known definition of the electric
current I = edNL/dt. After simple transformations and
the implementation of the atomic representation, we
come to the expression that is convenient for practical
calculations:

(5)

Equation (5) takes into account that, under the pas�
sage of the electric current, when the electron is trans�
ported from a contact to the device, the latter changes
its state and switches to the other sector of the Hilbert
space with the number of electrons increased by one.
Many transitions of this kind can exist. All of them
generally give a nonzero contribution. This is taken
into account by including the sum over the variable α
into Eq. (5). Hereinafter, � = 1.

The averages involved in Eq. (5) can be expressed in
terms of nonequilibrium mixed Green’s functions

(t+, t–) = –i  and

(t+, t–) = –i , where SC =

exp[–i (τ)] [19]. The times t+ and t– (t+ < t–)

are situated at the lower branch of the Keldysh loop C. It
can be shown by analyzing the diagrammatic series for

the mixed Green’s functions  and  that these
functions are proportional to the product of the Green’s

function Gkσ(τ – τ') = –i  of the left
contact and the Green’s function Dαβ(τ – τ') =

⎯i  of the structure. Thus, the
expression for the current after the Fourier transfor�
mation reads

(6)

ĤD
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C∫
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∫
kσ αβ,
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–+ ω( )Dαβ

+– ω eV
2

�����–⎝ ⎠
⎛ ⎞

– Gkσ
+– ω( )Dαβ
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It is noteworthy that the third� and higher order per�
turbations should be taken into account in order to
obtain an expression for the current naturally symme�
trized with respect to tk and tp. This was mentioned, in
particular, in [10]. The multiple scattering processes
were included in all orders of perturbation theory with
respect to tk and tp by solving the Dyson equation for
the Green’s function Dαβ(ω). This equation is shown
in the diagrammatic form in Fig. 2. The double dashed
line corresponds to the full Green’s function Dαβ(ω),
the dashed line represents the bare function D0α(ω),
the solid line bended upward (downward) is the
Green’s function Gk(p)σ (ω ± eV/2) of the isolated left
(right) contact, and the wavy line is the factor
tk(p)γσ(α). Taking into account the summation over the
variables referred to all internal vertices, we find the
following expressions for the components of the mass
operator:

(7)

where Γj(ω) = 4  is the parame�
ter of the level broadening of the system owing to the
coupling to the jth contact, nj is the Fermi–Dirac dis�
tribution function of the jth contact, gj is the density of
states of the jth contact, and tj is the parameter of elec�
tron hopping from the last node of the jth contact to
the level of the magnetic atom. In Eq. (7), we used the
approximation of wideband contacts. This implies
that we neglected the level shift in the analysis of the
effect of the contacts on the levels of our structure. In
addition, this allows us to neglect the frequency
dependence of the level broadening in particular cal�

culations. In this case, as is often assumed, Γj � π gj.

Acting by the operator  = i  + Eα on the

Dyson equation (by the analogy with [19]) and solving

Σαν
++ Σαν

–– i γσ α( )γσ ν( ) 2nj 1–( )Γj
,

j L R; σ,=

∑= =

Σαν
+– 2i γσ α( )γσ ν( )njΓ

j
,

j L R; σ,=

∑–=

Σαν
–+ 2i γσ α( )γσ ν( ) 1 nj–( )Γj

,

j L R; σ,=

∑=

tj
2gj 1 4 ω μ+( )2

/W2–

tj
2

D̂0α
1– ∂

∂t
����

Fig. 2. Dyson equation for the Green’s function Dαβ(ω).
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the resulting set of equations with respect to (ω –

eV/2) and (ω – eV/2), we find the expression
describing the electron current through the magnetic
atom

(8)

Here, Eα = En – Em if α corresponds to the transition
of the magnetic atom from the state m to the state n;
i.e., α = α(n, m). It is noteworthy that Eq. (8) is sym�
metric with respect to tL and tR.

The appearance of the renormalized end factor
shown by the dark circle in Fig. 2 is associated with
nonequilibrium processes leading to multiple scatter�
ing. Therefore, the occupation numbers Nn and Nm of
the nth and mth states of the system turn out to depend
not only on the temperature T and the parameters of
the system but also on the remaining occupation num�
bers. To find N1, N2, …, N12, the following set of kinetic
equations is solved under the additional condition

 = 1:

Dαβ
+–

Dαβ
–+

I 2e ωd
π

�����
ΓLΓRLσ α, Lσ β,

1 ΓLσ ν,

ν

∑
2

+

�������������������������������

∞–

+∞

∫
σ αβ,

∑=

× nR ω eV–( ) nL ω( )–[ ],

Lσ α,
bαγσ

2 α( )
ω eV/2– Eα+
�����������������������������,=

bα Nn Nm, Γ+ ΓL ΓR
.+= =

Nii 1=
12∑

(9)

Here,

In the region T � Eα, the integral in Eq. (9) can be
evaluated analytically and the set of kinetic equations
is represented in the simpler form

(10)

Below, we perform the numerical calculations of the
transport characteristics of the magnetic impurity in
the weak�coupling regime ΓL, ΓR � Eα, which is most
important for applications. In this case, broadening of
the energy levels of the system is much smaller than
the energy difference between these levels. As is seen

from the definition of the quantities ΓL = πgL , ΓR =

πgR , the smallness of the products gRtR, gLtL � 1
allows one to separate two cases. In the first case, the
weak�coupling regime takes place even if A < tL, tR. In
the second case, A > tL, tR and the possibility of weak
coupling is obvious.

The reality of the first case follows from compari�
son of the results of theoretical and experimental
works. According to the theoretical estimates [23, 24],
A ~ 10–4–10–3 eV. On the other hand, as follows from
the experimental works [25, 26], in the weak�coupling
regime, ΓL, ΓR ~ 10–5–10–4 eV. Then, taking gL(R) �
1/W, we find tL, tR ~ 10–2 eV and A < tL, tR.

The dependence of the occupation numbers N1,
N2, … on the energy eV of the bias electric field in the
first case is shown in Fig. 3. The energy parameters of
the impurity were chosen such that at D > 0 the impu�
rity does not contain electrons in the zeroth approxi�
mation with respect to tL, tR, the ground state is the
singlet , and N1 = 1. With the inclusion of multi�
ple reflection, N1 decreases even at V = 0 (solid line in
Fig. 3). An increase in the bias field leads to a shift of
the energy levels of the impurity. At each value of the
electric field satisfying the condition eV/2 ~ Eα, the
transition of the impurity system from the state with
the number r to the state with the number l (presum�

Nm
1

2πi
������ ωDαα

+– ω( )d
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∫=
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πΓ
������
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�����

ωσ α, eV+
κσ α,
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tL
2

tR
2

0 0,| 〉

Fig. 3. Nonequilibrium occupation numbers for the states
of the system “magnetic impurity + electrons” with the
parameters t = –1 eV, tL = tR = t/100, εd = A = 0.005 ,

D = 0.003 , U = 0.01 , and T = 1 K.

t

t t
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ably, α = α(l, r)) becomes possible. As a result, the
occupation number Nl increases and the other occu�
pation numbers decrease. This leads to the stepwise
behavior of the occupation numbers shown in Fig. 3.
In addition, the populations of all previously excited
states undergo sharp changes in the vicinity of the
“resonance” values of the electric field. Thus, at high
voltages, the impurity subsystem can occur with equal
probability in each of the 12 states.

Considered features produce the stepwise current–
voltage characteristics similar to that observed in the
case of Coulomb blockade. The results of the calcula�
tion of the current–voltage characteristics for two
signs of the anisotropy parameter D are shown in
Fig. 4. These curves agree with the experimental data
obtained by studying the transport through individual
molecular magnets [22]. Each step indicates opening
of an additional channel for the transmission of the
electron and occurs at the above�mentioned reso�
nance values of the bias field, when eV/2 ~ Eα.

An essential feature of the calculated current–volt�
age characteristics is that, as in the experiment [22],
there are the regions of negative differential conduc�
tance. For a better visibility, the presence of negative
differential conductance is shown in the inset in Fig. 4.

Let us discuss the origin of negative differential
conductance. As follows from Eq. (8), the current is
the sum of the diagonal (Iαα) and off�diagonal (Iαβ)
partial components. According to numerical esti�
mates, Iαα � Iαβ. The partial contribution Iαα to the
current associated with the channel corresponding to
the transition of the impurity system from the state r to
the state l (i.e., to the root vector α(l, r)) can be written
in the form

(11)

This implies that, at the bias field below the resonance
value (eV/2 < Eα), Iαα = 0.

Over the transition through the resonance bias field
(eV/2 > Eα), the argument of the second arctangent
changes its sign and

(12)

Obviously, a change in the partial current in the
open channel is associated with a change in the end
factor defined as the sum of the occupation numbers.
Since the number of nonzero occupation numbers
increases under the transition through the resonance
value of the bias field, the occupation numbers that
were nonzero before the transition decrease owing to
the above�mentioned completeness condition. This

Iαα � 2e
π
����Γ

LΓR

Γ
���������� bαγσ

2 α( )
Eα eV/2+

Γbαγσ
2 α( )

��������������������⎝ ⎠
⎛ ⎞arctan

σ

∑

–
Eα eV/2–

Γbαγσ
2 α( )

��������������������⎝ ⎠
⎛ ⎞ .arctan

Iαα
ΓLΓR

Γ
���������� bαγσ

2 α( ).
σ

∑∼

implies a decrease in the partial currents Iββ for the
channels that were open before the particular transi�
tion. In view of these circumstances, the condition of
the appearance of negative differential conductance
can be easily written as

(13)

It is noteworthy that the effect of negative differential
conductance depends on the sign of the anisotropy
constant D. Consequently, considerable modification
of the transport properties of a magnetic atom or a
molecule can be achieved by changing their crystal
environment, e.g., by placing them in topologically
nonequivalent sites on a substrate [16].

In the second case (tL, tR < A), the fulfillment of the
weak�coupling condition is obvious. The behavior of
the current–voltage characteristics remains qualita�
tively similar to that considered above. Importantly,
the regions of negative differential conductance also
persist in this regime (see Fig. 5).

If tL ≠ tR, a considerable amplification of the effect
of negative differential conductance takes place in
addition to the asymmetry of the current–voltage
characteristics (see the region of eV ~ –0.02  in
Fig. 6). In this case, the voltage dependence of the
occupation numbers is also asymmetric with respect to
a change in polarity. At V > 0, the electrons move
toward the left contact. However, their tunneling from
the right contact to the impurity orbital is suppressed
because tR � tL. This leads to the absence of electrons
in the central region, i.e., to the preferential occupa�
tion of the states  and  at high V values.
This situation for D > 0 is illustrated in Fig. 7. In the

Iββ V1( )
β

∑ Iββ V2( ) Iαα V2( ), V1+
β

∑ V2.<>

t

0 0,| 〉 0 1±,| 〉

Fig. 4. Current–voltage characteristics of the magnetic
impurity at D = (dashed line) 0.003  and (solid line)
⎯0.003 |t|; the other parameters are the same as in Fig. 3.
The inset shows the region of negative differential conduc�
tance at D < 0.

t
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opposite case (under change of the sign of V), the
states with two electrons become dominant.

It is noteworthy that the possibility of consecutive
switching between various states of the system under
the action of the electric field is essential for informa�
tion recording and storage. An almost 100% transition
from the ground electron�free state  to the mag�
netic single�electron state  (the behavior of
the population of this state is shown by the dashed line
in Fig. 7) without the preferential direction of the total
spin occurs under a decrease in V below zero. Under a
further decrease in the region eV ~ –0.025 , the sys�
tem with a high probability can be in the nonmagnetic

0 0,| 〉
1 1/2±,| 〉–

t

two�electron state  (the respective curve is shown
by triangles).

5. In conclusion, we discuss a number of specific
features of the above calculations. The main feature is
associated with the fact that, owing to the s–f
exchange coupling between the spins of the trans�
ported electron and impurity, the passage of the tun�
neling current through the magnetically active atom is
accompanied by inelastic processes leading to the
excitation of upper energy states of the impurity cen�
ter. Therefore, the tunneling characteristics of the sys�
tem under investigation in the steady state are deter�
mined by both scattering on the ground state of the
impurity center and the processes involving the
excited states. In this case, multiple scattering pro�
cesses, in which the electron after reflection and trans�
fer of the impurity center to the excited state experi�
ences secondary scattering by the transformed struc�
ture of the magnetic ion owing to a change in the
occupation probability of the states, become signifi�
cant.

In this work, inelastic processes and the effects of
multiple reflection are described on the basis of the
combination of the Keldysh method for the calcula�
tion of nonequilibrium Green’s functions and the ide�
ology of atomic representation with the use of diagram
technique for Hubbard operators [17, 18]. The inclu�
sion of the atomic representation turned out to be
quite effective for the description of inelastic processes
under the quantum transport through the magnetic
atom, since it allows one to represent the multilevel
Hamiltonian of the impurity center in the diagonal
form. In addition, the terms corresponding to the con�
tributions of all scattering channels are involved in the
theory explicitly. As a result, it proves possible to derive
the closed system of transcendental quantum kinetic

2 0,| 〉

Fig. 5. Region of the current–voltage characteristics of the
magnetic impurity with negative differential conductance
for the case of tL, tR < A at the parameters t = – 1 eV, tL =

tR = t/1000, εd = 0.008 , A = 0.011 , D = –0.009 ,

U = 0.01 , and T = 1 K.

t t t

t

Fig. 6. Current–voltage characteristics of the magnetic
impurity for the case of asymmetric coupling with the con�
tacts: tL = t/50, tR = tL/10; the other parameters are the
same as in Fig. 4.

Fig. 7. Nonequilibrium occupation numbers of the states
of the system at D > 0; the other parameters are the same
as in Fig. 6.

(|t|)
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equations which determine implicitly the nonequilib�
rium occupation numbers of the structure.

The calculation of the current–voltage characteris�
tics in the weak�coupling regime has shown that the
possibility of the occupation of the excited states of the
system “magnetic atom + electrons” by intensifica�
tion of nonequilibrium inelastic scattering leads to the
stepwise behavior of the current–voltage characteris�
tics and induces negative differential conductance.
The effects found in this work agree with those
observed in experiments on the transport through
individual molecular magnets [22].

It has been mentioned that the magnitude of the
effect of negative differential conductance depends
strongly on both the solid�state environment of the
magnetic ion and the parameters of coupling to the
metallic contacts. Based on this fact, it has been pre�
dicted that the atomic�size magnetic object with an
asymmetric coupling to the contacts can be used to
record information.
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