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1. INTRODUCTION

It is well known that the interaction between two
wave fields of different physical natures in a solid is
responsible for the existence of coupled oscillations of
these fields (magnetoelastic waves, polaritons, etc.).
At the crossing point of the dispersion curves (if it
exists), this interaction results in crossing resonance at
which the features of coupled oscillations are most
pronounced. For definiteness, we consider in this work
crossing resonance between spin and elastic waves,
which is usually called magnetoelastic resonance.
Magnetoelastic resonance was predicted by
A.I. Akhiezer at the International Conference on the
Physics of Magnetic Phenomena [1]. The phenome�
nological theory of this phenomenon was developed in
[2–4]. These fundamental works stimulated intensive
theoretical and experimental investigations of effects
caused by the interaction between spin and elastic
waves in ferro�, ferri�, and antiferromagnets, which
were reported in original papers, as well as in reviews
and books [5–7]. As any crossing resonance in a uni�
form medium, the magnetoelastic resonance is mani�
fested both in degeneracy removal of the interacting
wave field frequencies at the crossing point of their
unperturbed dispersion curves and in the appearance
of two resonance peaks in the frequency dependences
of the Green’s functions (ω) and (ω) of spin and
elastic waves, respectively. The gap between the energy
levels in the spectrum, as well as the spacing between
the maxima of each Green’s function, is determined
by the coupling parameter ε between the wave fields.

Gm'' Gu''

Crossing resonance in an inhomogeneous medium
was studied in the Bourret approximation [8, 9] (single
scattering of waves from inhomogeneities) in [10]. The
investigation was performed for the extremely inho�
mogeneous model of the interaction between two wave
fields, where the coupling parameter between the
fields is a random function of the coordinates with
zero mean value. In this case, the interaction between
the fields is due only to spatial fluctuations of this
parameter. There are two reasons for the investigation
of crossing resonance in this model. First, such mate�
rials are now produced artificially because a number of
physical properties are improved owing to zero mean
value of the coupling parameter (e.g., the initial sus�
ceptibility in alloys with zero magnetostriction
increases [11]). Second, the theory of the spectrum of
waves in the extremely inhomogeneous medium
should be developed for the subsequent transition to a
more complex case of an arbitrary relation between the
mean and rms values of the coupling parameter.

Consideration performed in [10] for the scalar
model of acoustic and optical phonons predicted dis�
order�induced crossing resonance, i.e., degeneracy
removal and the formation of a gap in the spectrum at
the crossing point of dispersion curves of wave fields.
In contrast to crossing resonance in the homogeneous
medium, the gap in this case is determined by rms
fluctuation of the coupling parameter Δε. Other signif�
icant differences from the homogeneous case were also
obtained; they will be discussed in Section 4. In the
sequel, disorder�induced crossing resonance was also
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examined for coupled magnetoelastic waves [12] and
polaritons [13] (see also [14] and references therein).

In [15, 16], we considered the same model with the
approximate inclusion of the multiple scattering of
waves from inhomogeneities and obtained preliminary
results fundamentally differing from those obtained in
[10, 12–14]. The main result of those works remains
valid: crossing resonance caused only by spatial fluctu�
ations of the coupling parameter occurs at zero mean
value of this parameter. However, physical phenomena
that should be observed at this resonance are signifi�
cantly different from those predicted in the Bourret
approximation.

To take into account the effect of the multiple scat�
tering of waves from inhomogeneities on the spectral
properties of the waves, several variants of the self�
consistent approximation are used. In this work, we
use the variant of the self�consistent approximation
proposed by Migdal [17] in order to take into account
the electron–phonon interaction in the homogeneous
medium and by Kraichnan [18] in order to examine
the spectral properties of waves in inhomogeneous
media. This variant of the self�consistent approxima�
tion in its development is discussed in Section 3, where
the relation between this variant of self�consistent
approximation and another variant, coherent poten�
tial approximation, proposed by Soven [19] and Taylor
[20] is also briefly discussed.

The aim of this work is to generalize this variant of
the self�consistent approximation to the case of two
stochastically interacting wave fields of different phys�
ical natures and to use this generalization to develop
the theory of crossing resonance in a medium with an
inhomogeneous coupling parameter with zero mean
value.

The paper is organized as follows. The system of
coupled equations for the Green’s functions of spin
and elastic waves is derived in Section 2. The self�con�
sistent approximation for one wave field is discussed in
Section 3, where the self�consistent approximation for
two stochastically coupled wave fields is also derived.
The theory of crossing resonance in a medium with an
inhomogeneous coupling parameter with zero mean
value is developed in Section 4. The results are sum�
marized and discussed in Section 5.

2. SYSTEM OF EQUATIONS
FOR GREEN’S FUNCTIONS

We consider the model of a ferromagnet where only
the magnetostriction parameter ε(x), (x = {x, y, z}) is
inhomogeneous. The equations of motion for this
medium include the Landau–Lifshitz equation for the
magnetization vector M and the equation of motion of
the theory of elasticity for the elastic displacement
vector u:

(1)M· g M He×[ ],–=

(2)

where g is the gyromagnetic ratio, p is the density of the
medium, and σij is the stress tensor, where i, j = x, y, z.
The effective magnetic field He and stress tensor σij

have the form

(3)

(4)

where uij = (∂ui/∂xj + ∂uj/∂xi)/2 is the elastic strain
tensor. The energy density � is chosen in the form

(5)

where H is the external static magnetic field, α is the
exchange parameter, and λ and μ are the elastic force
constants. The magnetoelastic parameter ε(x) can be
represented in the form

(6)
where ε and Δε are the average value and rms fluctua�
tion of the magnetoelastic parameter and ρ(x) is a cen�

tered (  = 0) and normalized (  = 1)
random function of coordinates. Angle brackets stand
for the average over the ensemble of the realizations of
the corresponding random function.

We assume that the mean value of the magnetoelas�
tic parameter is ε = 0. The stochastic properties of ρ(x)
are characterized by the correlation function depend�
ing on the difference r = x – x',

(7)
or by the Fourier transform of the correlation func�
tion, i.e., the spectral density

(8)

where d is the dimensionality of the space.
The substitution of energy density (5) into equa�

tions of motion (1) and (2) provides the following cou�
pled system of equations for the magnetization M and
displacement u:

(9)

(10)

where vl =  and vt =  are the longi�
tudinal and transverse components of the velocity of
elastic waves, respectively.
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We linearize Landau–Lifshitz equation (9) in the
usual way (Mz ≈ M; Mx, My � M) and consider a model
problem for elastic waves, where the condition uz = 0, as
well as the condition vl = vt = vu (vu is the velocity of the
elastic wave), is imposed. Supposing Mx, My ∝ eiωt) and
introducing circular projections

(11)

we arrive at the following coupled system of two scalar
equations for resonance projections m+ and u+ (below,
the superscript + will be omitted):

(12)

(13)

Here,

(14)

where ω0 is the frequency of the homogeneous ferro�
magnetic resonance, which depends on the magnetic
field and the demagnetizing factors of the sample and

vu = .

The system of equations for the Green’s functions
Gm(x, x0) and Gu(x, x0) for spin and elastic waves,
respectively, correspond to the system of equations (12)
and (13) has the form

(15)

(16)

We represent the Green’s functions Gm and Gu in the
form

(17)

where  and  are the initial Green’s functions of
the noninteracting spin and elastic waves, respectively,
and  and  are the respective corrections caused
by the inhomogeneous interaction parameter.

The substitution of Eqs. (17) into Eqs. (15) and
(16) gives the following system of two independent

equations for  and :

(18)

(19)

m± Mx iMy,±=

u± ux iuy,±=

∇2m νmm Δε
α
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2
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0 Gu

0

Gm' Gu'
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0
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0 x x0,( ) νmGm

0 x x0,( )+ δ x x0–( ),=

∇2Gu
0 x x0,( ) νuGu

0 x x0,( )+ δ x x0–( ),=

and the following coupled system of two equations for
 and :

(20)

(21)

where

(22)

(23)

Formal solutions of Eqs. (20) and (21) can gener�
ally be represented in the form of integrals of the prod�
ucts of unperturbed Green’s functions and right�hand
sides of these equations. Therefore, generating integral
equations for series of the Green’s functions Gm and Gu
have the form

(24)

(25)

It is inconvenient that Eq. (25) contains the derivatives
of the random function ρ(x). For this reason, we trans�
form this equation through integration by parts, as was
made for a similar case in [21]:

(26)

where P(x', x0) = ρ(x')Gm(x', x0). Setting the surface S
at infinity, where the Green’s functions vanish, we
obtain the following form for the system of two cou�
pled generating integral equations for Green’s func�
tions Gm and Gu:

(27)

(28)

The substitution of Eq. (27) into the right�hand
side of Eq. (28) and Eq. (28) into the right�hand side
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of Eq. (27) provides the following two independent
integrodifferential equations for the Green’s functions
Gm and Gu:

(29)

(30)

Using the usual procedure of successive iterations of
each of these equations, we obtain the series for the
Green’s functions Gm(x, x0) and Gu(x, x0). Averaging
these series over the ensemble of random functions
ρ(x) and decoupling correlation functions using the
Gauss formula, we obtain the following perturbation
series for the averaged Green’s functions:

(31)

(32)

Gm x x0,( ) Gm
0 x x0,( )=
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α
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where K(xl, xn) ≡ K(xl – xn) are the correlation func�
tions given by Eq. (7) and

(33)

It is well known that the series for the averaged

Green’s functions  in the presence of inhomogene�
ities in the local terms of the Hamiltonian contain the
products of initial Green’s functions G0. In [21], it was

shown that the series for  in the presence of inhomo�
geneities in the nonlocal terms contain the products of
the first and second derivatives of the initial Green’s
functions G0 and do not contain these functions them�
selves. On the contrary, the series of the Green’s func�
tions given by Eqs. (31) and (32) corresponding to
inhomogeneities of the magnetoelastic coupling
parameter contain the products of both the derivatives

of initial elastic Green’s functions  and the initial

spin Green’s functions . The Green’s functions 

and derivatives of the Green’s functions  in each
term of series (31) and (32) alternate with each other.

Figure 1 shows diagrams, where the notation intro�
duced in [21] for the elastic Green’s functions and
their derivatives is used and wavy lines corresponding
to the spin Green’s functions are added.

The diagram representation of Eqs. (31) and (32) is
shown in Fig. 2. The system of Dyson equations is

+ K x1 x4,( )K x2 x3,( ) ]dx1 x2 x3 x4 …,+ddd

γ2 Δε( )2

αμ
�����������M2

.=

G

G

Gu
0
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0 Gm

0

Gu
0

Fig. 1. Diagram notation. Arrows indicate the points at
which derivatives are calculated.
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derived from Eqs. (31) and (32) in the standard way
and has the form

(34)

(35)

where the mass operators (self�energies) Qm and Qu are
given by the series

(36)

(37)

Figure 3 shows the diagrams corresponding to the sys�
tem of Dyson equations (34) and (35) and mass oper�
ators (36) and (37). The main feature of the system of
Dyson equations is that the elastic mass operator Qu

enters into the equation for the spin Green’s function

 and the spin mass operator Qm appears in the equa�

tion for the elastic Green’s function .
All quantities for a randomly homogeneous medium

depend on the coordinate difference r = x – x'. Per�
forming the Fourier transforms

(38)

Gm x x0,( ) Gm
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+ Gm
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+ γ4 Gm
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× K x ' x2,( )K x1 x '',( ) K x ' x '',( )K x1 x2,( )+[ ]
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×
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Gu

Gm u, r( ) Gm u, k( )eik r⋅ k,d∫=

Gm u,
0 r( ) Gm u,

0 k( )eik r⋅ k,d∫=

we obtain the system of Dyson equations for the Fou�
rier transforms of the Green’s functions from Eqs. (35)

and (36) and express (k) and (k) from this sys�
tem as

(39)

(40)

The following expressions for the Fourier trans�

forms (k) of the initial Green’s functions are
obtained from Eqs. (18) and (19):

(41)

(42)

The substitution of Eqs. (41) and (42) into Eqs. (39)
and (40) gives the following final form of the system of
Dyson equations in the k space:

(43)

(44)

Thus, all exact equations for the Green’s functions

 and  are represented in the r and k spaces.

3. SELF�CONSISTENT APPROXIMATION

3.1. One Wave Field

Before deriving the self�consistent approximation
for two stochastically interacting fields, we briefly
recall the main stages of the derivation of a similar
approximation for one wave field. This section is nec�
essary because the concepts and formulas presented
here are used below and for some terminological spec�
ifications. This variant of the self�consistent approxi�
mation was used at the end of the 1950s and the begin�
ning of the 1960s for a problem that does not concern

Qm u, r( ) Qm u, k( )eik r⋅ k,d∫=

Gm Gu

Gm k( ) 1
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Gu k( ) 1
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Gm u,
0
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0 k( ) 1

2π( )d
����������� 1
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��������������,=

Gu
0 k( ) 1

2π( )d
����������� 1

νu k2–
������������� .=

Gm k( ) 1

2π( )d
����������� 1

νm k2– 2π( )dQu k( )–
������������������������������������������,=

Gu k( ) 1

2π( )d
����������� 1

νu k2– 2π( )dkz
2Qm k( )–

����������������������������������������������.=

Gm Gu

Fig. 2. Diagrammatic representation of Eqs. (31) and (32). Fig. 3. Diagrammatic representation of Eqs. (34)–(37).
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inhomogeneous media. It was proposed by Migdal
[17] for studying the electron–phonon interaction in
the homogeneous medium and was analyzed in detail
by Pines [22, 23], Puff and Whitfield [24], and Abriko�
sov, Gor’kov, and Dzyaloshinskii [25].

We briefly present the key results of those works.
The system of equations for electrons and photons is
approximately reduced to one equation for the elec�
tron Green’s function G(xi, xj), where the points xi and
xj are related by the electron–phonon interaction
operator D(xi, xj). As a result, the Dyson equation for
the electron Green’s function is obtained in the stan�
dard form

(45)

where both the Green’s function G0(x, x') and mass
operator Q(x', x'') depend on the parameters of the
electron–phonon interaction. The Migdal self�con�
sistent approximation is based on the representation of
the mass operator Q(x', x'') in the form

(46)
After the Fourier transform of Eqs. (45) and (46),

the Green’s function (k) is expressed from the first
equation in terms of the mass operator Q(k) in the
standard form

(47)

and the second equation has the form

(48)

The initial Green’s function for this problem in the k
space has the form [22]

(49)

where ν and ν0 are the normalized frequencies of elec�
trons and phonons, respectively. Substituting Eq. (49)
into Eq. (47), changing k by k1 in Eq. (47), and substi�
tuting the resulting equation into Eq. (48), we obtain
the following final equations of this variant of the self�
consistent approximation:

(50)

(51)

where Mk = (2π)dQ(k) is the renormalized mass oper�
ator.

To examine the properties of the introduced
approximation, Eq. (46) in [22–24] was substituted
into Eq. (45) and the successive iteration of the
obtained closed nonlinear equation for the Green’s
function in the x space was performed. As a result, a

G x x0,( ) G0 x x0,( )=

+ G0 x x ',( )Q x ' x '',( )G x '' x0,( ) x ' x '',dd∫∫

Q x ' x '',( ) G x ' x '',( )D x ' x '',( ).≈

G

G k( ) 1

G0 k( )[ ]
1–

2π( )2dQ k( )–
����������������������������������������������,=

Q k( ) G k1( )D k k1–( ) k.d∫≈

G0 k( ) 1

2π( )d
����������� 1

ν ν0– k2–
��������������������,=

G k( ) 1

2π( )d
����������� 1

ν ν0– k2– Mk–
�������������������������������,=

Mk
D k k1–( ) k1d

ν ν0– k1
2– Mk1

–
��������������������������������,∫≈

series for the approximate Green’s function (x, x0),
whose diagrammatic representation is shown in Fig. 4,
where the solid and dashed lines correspond to the ini�
tial electron Green’s function and phonon interac�
tion, respectively, in contrast to all other diagrams in
this work. This series contains all diagrams entering

into the exact expressions for (x, x0), except for the
diagrams with crossing lines of the phonon interaction
(the first of such diagrams in Fig. 4 is crossed out). Puff
and Whitfield [24] showed that the initial self�consis�
tent approximation corresponds to the limit T  0 in
the Hartree–Fock approximation. The variant of the
self�consistent approximation specified by Eqs. (50)
and (51) was widely used in the calculations of various
effects of the electron–phonon interaction (see, e.g.,
[26, 27]).

In the same years, a similar variant of the self�con�
sistent approximation was independently proposed by
Kraichnan [18], who studied the effect of inhomoge�
neities on the dynamic susceptibility of disordered sys�
tems. The derivation of this self�consistent approxi�
mation from the expansion of the vertex part of the
Green’s function can be found in [28]. The Dyson
equation has the form of Eq. (45) and the mass opera�
tor is approximately represented in the form

(52)

where γ and K(x', x'') are the rms fluctuation and nor�
malized correlation function of inhomogeneities,
respectively (K(x', x') = 1). In [18], this approximate
equation was substituted into Dyson equation (45) and

the following closed integral equation nonlinear in 
is obtained:

(53)

The successive iteration of Eq. (53) leads to a series for
Green’s functions whose diagrammatic representation
formally coincides with the representation shown in
Fig. 4, but the dashed lines denote stochastic correla�
tion between the points rather than the interaction.
The Fourier transform of Eq. (53) gives the following
simpler form of the Kraichnan equation in the k space:

(54)

G

G

Q x ' x '',( ) γ2G x ' x '',( )K x ' x '',( ),≈

G

G x x0,( ) G0 x x0,( ) γ2 G0 x x ',( )K x ' x '',( )∫∫+≈

× G x ' x '',( )G x '' x0,( )dx 'dx ''.

G k( ) G0 k( ) γ2 2π( )2dG0 k( )G k( )+≈

× S k k1–( )G k1( ) k1,d∫

Fig. 4. Series for the approximate Green’s function of one
wave field.
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where S(k) is the Fourier transform of the correlation
function. The Kraichnan approximation in this form
was analyzed in many works (see, e.g., [29–31]) and
its approximate solutions were used when discussing
various problems of stochastic hydrodynamics and
stochastic radiophysics. The Kraichnan approxima�
tion can be represented in another form. Using the
same method applied to derive the Migdal approxima�
tion, we obtain

(55)

(56)

The Kraichnan approximation in this form was used,
e.g., in [32] to calculate the effect of inhomogeneities
of magnetic anisotropy on the width and shape of

magnetic resonances in a ferromagnet.
1
 

The comparison of Eqs. (55) and (56) with
Eqs. (50) and (51) shows that the Migdal approxima�
tion [17] and Kraichnan approximation [18], which
were proposed for different problems, are mathemati�
cally identical and have the common constraint: the
expansion of the Green’s function obtained in these
approximations contain all diagrams except for the
diagrams with crossing interaction/correlation lines
between different points. For this reason, this variant
will be called below the noncrossing correlation
approximation, where correlations are treated in a
wide sense as stochastic correlations and averaged
physical interactions. A similar noncrossing correla�
tion approximation called the self�consistent Born
approximation is also used in the theory of the scatter�
ing of electrons from impurities [25, 33, 34]. Owing to
the specific shape of noncrossing interaction lines of
electrons with impurity, the corresponding diagrams
are sometimes called wigwam diagrams. In view of iso�
lation of different fields of physics, mathematical
results obtained with the Kraichnan noncrossing cor�
relation approximation in the stochastic hydrodynam�
ics and radiophysics are usually not cited and used in
the works where the noncrossing correlation approxi�
mation is developed and used in the theory of con�
densed matter. The same is referred to the works where
the Kraichnan noncrossing correlation approximation
is developed and used.

The applicability condition of the noncrossing cor�
relation approximation for the problem of the scatter�
ing of electrons from impurities was approximately
estimated in [25, 33, 34]. It was shown that the ratios
of the contributions from two diagrams (crossed out
and included in the noncrossing correlation approxi�

1 Formula (21) in [32] contains an extra term with the product
K(x1, x3)K(x2, x4). This does not affect the results of that work,
because Eq. (21) was not used.

G k( ) 1

2π( )d
����������� 1

ν k2– Mk–
����������������������,=

Mk γ2 S k k1–( ) k1d

ν k1
2– Mk1

–
�������������������������.∫≈

mation) in the second line in Fig. 4 is small under the
condition

(57)

where kF is the Fermi momentum and l is the electron
mean free path. For the problem of the scattering of
waves from inhomogeneities of a continuous medium,
where waves with wavenumbers near a certain reso�
nance wavenumber kr play the main role, condition
(57) can be transformed to the form

(58)

where kc is the correlation wavenumber (  = rc is the
radius of correlations of inhomogeneities).

Conditions (57) and (58) are derived from the
comparison of two second�order diagrams in the
expansion of the Green’s function. However, the ratio
of the number of the rejected diagrams to the number
of the diagrams included in the noncrossing correla�
tion approximation increases rapidly with the order of
diagrams. To supplement the estimate of the applica�
bility of the noncrossing correlation approximation,
we consider the limiting case kc = 0, where the series
for the Green’s function can be summed exactly. In
this case, random functions ρ(x) become random val�
ues whose stochastic properties are described by a cer�
tain distribution function f(ρ) (a similar model of
independent grains in polycrystal was introduced in
[35] to calculate the lineshape of the ferromagnetic
resonance). The averaged Green’s function is speci�
fied by the expression

(59)

where G(ν, k; ρ) is one of the realizations of the ran�
dom ensemble of the Green’s functions, which is a
solution of a differential equation with the constant
coefficients. For example, the Green’s function for
spin waves in a ferromagnet with the random value of
uniaxial magnetic anisotropy (and the unchanged ori�
entation of the anisotropy axis) has the form [32]

(60)

Here, σ = Δβ/α, where Δβ is the rms fluctuation of the
anisotropy magnitude, and ρ is a centered (  = 0)

and normalized (  = 1) random value specific for
each grain of the polycrystal. The distribution function
f(ρ) for the exact averaged Green’s function in
Eq. (59) is the Gaussian [34]

(61)

Since the imaginary part of function (60) is a Dirac
delta function multiplied by π/σ, the imaginary part of
integral (59) is easily calculated:

(62)

kFl( ) 1–
 � 1,

kc/kr � 1,

kc
1–

G ν k,( ) G ν k; ρ,( ) f ρ( ) ρ,d∫=

G ν k; ρ,( ) 1

2π( )d
����������� 1

ν k2– σρ–
����������������������.=

ρ〈 〉

ρ2〈 〉

f ρ( ) 1

2π( )1/2
������������� ρ2

2
����–⎝ ⎠

⎛ ⎞ .exp=

G '' ν k,( ) π

2π( )7/2σ
����������������� x2

2σ2
�������–⎝ ⎠

⎛ ⎞ ,exp=
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where x = ν – k2.
At the same time, the integral self�consistency

equation for the noncrossing correlation approxima�
tion in the limit kc  0 is also solved exactly and leads
to the following expression for the averaged Green’s
function [32]:

(63)

Substituting Eqs. (60) and (63) into Eq. (59), we easily
determine that the averaging of the Green’s function
in the noncrossing correlation approximation corre�
sponds to the distribution function

(64)

Green’s functions (62) and (63) are shown in
Fig. 5. The shapes of the functions are different and
repeat the shapes of respective distribution functions (61)
and (64). The denominators of both Green’s functions
have no poles and the characteristics of the spectrum
are determined from the condition of zero denomina�
tor of unaveraged Green’s function (60). The ensem�
ble of random frequencies in independent grains is
determined by the expression

(65)
and the averaged characteristics are determined by
averaging of this ensemble with the corresponding dis�
tribution function. Both distribution functions, exact
(61) and approximate (64), provide the same results
for the mean frequency and its standard deviation
characterizing the half�width of the resonance line:

(66)
and the imaginary parts of the frequencies vanish at
kc = 0. Damping�induced tails in the approximate
Green’s function appear at kc ≠ 0 [32] and the shape of

the function (ν) becomes more similar to the
shape of the exact function (if  � σ; otherwise,
damping leads to the strong asymmetry of the reso�
nance line [32]). It is noteworthy that the noncrossing
correlation approximation specified by Eqs. (52)–(56)
can be used to take into account the effect of inhomo�
geneities of the parameters of only local terms of the
Hamiltonian of the continuous medium model (or,
correspondingly, the diagonal terms of the lattice
Hamiltonian) such as magnetic anisotropy for spin
waves, density of the substance for elastic waves, and
the dielectric constant for electromagnetic waves. The
off�diagonal terms of the lattice Hamiltonian, which
describes the interactions with atoms of the environ�
ment (exchange in ferro� and ferrimagnets, elastic

GNCA'' ν k,( )
2σ( )2 x2–

2π( )3 2σ2⋅
�����������������������, x 2σ,≤

0,  x 2σ.>⎩
⎪
⎨
⎪
⎧

=

f ρ( )
4 ρ2–
2π

���������������, ρ 2,≤

0  ρ 2.>⎩
⎪
⎨
⎪
⎧

=

ν k2 σρ,–=

ν〈 〉 k2
, ν ν〈 〉–( )2〈 〉 σ,= =

GNCA

ν〈 〉

interactions between atoms, etc.) correspond to non�
local terms containing the derivatives of the general�
ized coordinates of the system in the Hamiltonian of a
continuous medium. The noncrossing correlation
approximation was generalized in [21] to the case of
inhomogeneities of the parameters of the nonlocal
terms of the Hamiltonian. The integral term of the
Dyson equation in this case contains the spatial deriv�
atives of the Green’s functions rather than the func�
tions themselves:

(67)

where the mass operator is a matrix whose compo�
nents contain the second derivatives of the initial
Green’s functions and have the following form for the
exact problem:

(68)

.

G x x0,( ) G0 x x0,( )
∂G0 x x ',( )

∂xi'
��������������������Qi ' j '' x ' x '',( )∫∫+=

×
∂G x '' x0,( )

∂xj''
���������������������dx 'dx '',

Qi ' j '' x ' x '',( ) γ2∂
2G0 x ' x '',( )

∂xi'∂xj''
������������������������K x ' x '',( )=

+ γ4 ∂2G0 x ' x1,( )

∂xi'∂x1
k

�����������������������
∂2G0 x1 x2,( )

∂x1
k∂x2

l
������������������������

∂2G0 x2 x '',( )

∂x2
l ∂xj''

������������������������∫∫
× K x ' x2,( )K x1 x '',( ) K x ' x '',( )K x1 x2,( )+[ ]

× dx1dx2 …+

5

3

1

σG ''(ν) × 103

1 2 30
(ν − k2)/σ

−1−2−3

Fig. 5. Imaginary part of the Green’s function for the case
kc = 0 calculated (solid curve) in the noncrossing correla�
tion approximation and (dashed curve) by the accurate
summation of all diagrams.
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In order to introduce the noncrossing correlation
approximation, each component of this matrix is rep�
resented in the form

(69)

This representation of the mass operator for the non�
local terms of the Hamiltonian is equivalent to repre�
sentation (52) for local terms. Details of the subse�
quent derivation can be found in [21], where simple
final expressions of the noncrossing correlation
approximation for inhomogeneities of the nonlocal
terms of the Hamiltonian were obtained:

(70)

(71)

Here, the scalar interaction potential Tk is the sum of
all components of the matrix of the products

(k):

(72)

In addition to the noncrossing correlation
approximation considered in this work, we briefly
mention another variant of the self�consistent
approximation—coherent potential approximation,
which is widely used for lattice models of solids. The
classical form of the coherent potential approxima�
tion developed by Soven [19] and Taylor [20] in 1967
was based on the requirement of zero mean value of
the scattering matrix; in the simplest case, this
requirement leads to the following integral equation
for the mass operator:

(73)

where ν0 is the average frequency of vibrations of ions.
Numerous advantages of the coherent potential

approximation were manifested in calculations of the
density of states of disordered alloys. However, its clas�
sical form has two fundamental constraints: stochastic

Qi ' j '' x ' x '',( ) γ2∂2G x ' x '',( )
∂xi'∂xj''

����������������������K x ' x '',( ).≈

Gk
1

2π( )d
����������� 1

ν k2– Tk–
���������������������,=

Tk
γ2

2π( )d
�����������

k k1⋅( )2S k k1–( ) k1d

ν k1
2– Tk1

–
�����������������������������������������.∫=

kikjQi ' j ''

Tk 2π( )dkikjQi ' j '' k( ).=

Mk σ2 Mk
2–( )

k1d

ν ν0– k1
2– Mk1

–
��������������������������������,∫≈

independence of inhomogeneities and applicability
only to inhomogeneities of the diagonal terms of the
Hamiltonian. The coherent potential approximation
was subsequently developed in numerous works,
where various cluster schemes of the generalization of
the coherent potential approximation were proposed,
correlation of inhomogeneities was approximately
taken into account, etc. (see, e.g., [36–42]). These
improvements of the coherent potential approxima�
tion made it possible to obtain a number of important
physical results. Since the coherent potential approxi�
mation was widely used and integral equations (73)
and (56) exhibited some similarity, the equations of the
noncrossing correlation approximation were incor�
rectly considered in some works (see, e.g., [21, 32]) as
a variant of the coherent potential approximation. In
reality, the noncrossing correlation approximation,
rather than the coherent potential approximation, was
used in [32] to calculate the effect of inhomogeneities
of magnetic anisotropy on the shape and width of the
line of magnetic resonances, and the noncrossing cor�
relation approximation, rather than the coherent
potential approximation, was generalized in [21] to
inhomogeneities of the nonlocal parameters of the
Hamiltonian.

3.2. Two Wave Fields

We now derive the approximate self�consistent
equations for the mass operators Qm(k) and Qu(k)
entering into Eqs. (43) and (44). To this end, the mass
operators Qm, u(x', x'') are approximately expressed in

terms of the desired Green’s functions (x', x''):

(74)

(75)

Representation (74) for the spin operator formally
corresponds to the noncrossing correlation approxi�
mation for the local terms of Hamiltonian (52) and
representation (75) for the elastic operator corre�
sponds to the noncrossing correlation approximation
for the nonlocal terms (69). The substitution of
Eqs. (74) and (75) into Dyson equations (34) and (35),
respectively, provides the closed system of nonlinear
integrodifferential equations of the noncrossing corre�

lation approximation for the functions  and :

(76)

(77)

Gm u,

Qm x ' x '',( ) γ2Gm x ' x '',( )K x ' x '',( ),≈

Qu x ' x '',( ) γ2∂2Gu x ' x '',( )
∂z '∂z ''

������������������������K x ' x '',( ).≈

Gm Gu

Gm x x0,( ) Gm
0 x x0,( ) γ2 Gm

0 x x ',( )K x ' x '',( )∫∫+≈

× ∂
2Gu x ' x '',( )
∂z '∂z ''

������������������������Gm x '' x0,( )dx 'dx '',

Gu x x0,( ) Gu
0 x x0,( )≈

+ γ2 ∂Gu
0 x x ',( )
∂z'

��������������������K x ' x '',( )∫∫

Fig. 6. Diagrammatic representation of approximate func�

tions (a) (x, x0) and (b) (x, x0).Gm Gu

(a)

(b)
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Successive iterations of these equations provide series

of the functions  and , which are shown in Fig. 6
in the diagrammatic representation. Comparison of
these diagrams with the diagrams for exact Green’s
functions (see Fig. 2) shows that Eqs. (76) and (77) do
not contain terms with crossing correlation lines.
Thus, the representation of mass operators in the form
of Eqs. (74) and (75) and the closed system of inte�
grodifferential equations (76) and (77) following from
this representation really correspond to the noncross�
ing correlation approximation for two (spin and elas�
tic) stochastically interacting wave fields.

The system of Eqs. (76) and (77) in the k space has
the form

(78)

(79)

It can be seen that the resulting closed system of equa�
tions of the noncrossing correlation approximation is
too complex for analysis in the r space given by
Eqs. (76) and (77) and in the k space specified by
Eqs. (78) and (79). For this reason, we pass to another
representation of this system corresponding to
Eqs. (55), (56), (70), and (71) for the case of one wave
field. To this end, we take the Fourier transform of
Eqs. (74) and (75):

(80)

(81)

The substitution of exact expressions (43) and (44)
into Eqs. (80) and (81) gives the following system of
approximate coupled integral equations for the mass
operators in the k space:

(82)

(83)

In terms of the quantities

(84)

expressions (43) and (44) for the Green’s functions, as
well as self�consistency equations (82) and (83), can
be represented in the final compact simple form

(85)

(86)

(87)

(88)

The system of Eqs. (85)–(88) is the generalization
of the noncrossing correlation approximation for the
case of two wave fields of different physical natures
that are coupled through the inhomogeneous interac�
tion parameter with zero mean value. Below, we will
use the equations of the noncrossing correlation
approximation in the form of Eqs. (85)–(88) and, for
simplicity, Mk and Uk will be called spin and elastic
mass operators, respectively. This will not provide mis�
understanding because the true mass operators Qm(k)
and Qu(k) are not used in the self�consistent scheme of
Eqs. (85)–(88).

4. DISORDER�INDUCED CROSSING 
RESONANCE

In this section, we use the noncrossing correlation
approximation generalized in Section 3 to examine
phenomena appearing at the crossing point of disper�
sion curves of two wave fields coupled by the inhomo�
geneous parameter with zero mean value.

We consider a one�dimensional model. In this
case, in Eqs. (85)–(88), d = 1 and the vector k has one
component kz = k. To analyze self�consistency equa�
tions (87) and (88), we represent these equations in
several forms. Substituting the first equation into the
right�hand side of the second equation and vice versa,
we obtain two independent nonlinear integral equa�
tions for the mass operators Mk and Uk:

(89)

(90)

The successive iteration of each of these equations
provides the representations of Mk and Uk in the form
of the infinite chain fractions

×
∂Gu x '' x0,( )

∂z ''
����������������������dx 'dx ''.

Gm Gu
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Uk γ2 k1z
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(91)

(92)

For the numerical analysis, it is convenient to repre�
sent Eqs. (87) and (88) in the form of the recurrent for�
mulas

(93)

(94)

where the superscript n is the number of included links
of chain fractions (91) and (92).

Simulating the correlation properties of the ran�
dom function ρ(x) by an exponential correlation func�
tion, we obtain the expressions

(95)

where r =  and kc is the correlation wavenumber

of inhomogeneities (rc =  is the correlation radius).
We first consider the first link of a chain fraction and
set n = 1 in Eqs. (93) and (94). In this case, these equa�
tions have the following form corresponding to the
Bourret approximation [8]:

(96)

(97)

Substituting S(k) in form (95) and performing integra�
tion using the residue theory, we obtain Mk and Uk in
the first approximation:

(98)

(99)

The substitution of these expressions into Eqs. (85)

and (86) gives the Green’s functions  and  in
the first approximation. Figure 7 shows the depen�
dences of the imaginary parts of these Green’s func�
tions at the crossing resonance point k = kr on the fre�
quency ω and correlation wavenumber kc (the dimen�
sionless quantities ηGm and ηGu, where η = γkr, are
plotted).
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νm k1
2– γ2 k2
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Fig. 7. Imaginary parts of the first�approximation Green’s functions (ω) and (ω) at k = kr versus the normalized corre�

lation wavenumber of inhomogeneities uc = kc/ .

Gm
1( )

Gu
1( )

η



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 116  No. 2  2013

CROSSING RESONANCE OF STOCHASTICALLY INTERACTING WAVE FIELDS 217

The following equations of the first approximation
for the complex eigenfrequencies νm and νu are
obtained from the condition of zero denominators of

the functions  and :

(100)

(101)

Such (and similar) equations were examined in [10,
12–14]. Equations (100) and (101) with kc = 0 coin�
cide with each other and describe frequency degener�
acy removal and the appearance of a gap in the spec�
trum at the crossing point of the initial dispersion
curves. The width of this gap is determined by the
expression

(102)

where ζ = (Δε)M/ , ωM = gM, and ωr is the fre�
quency corresponding to the crossing of the dispersion
curves of unperturbed spin and elastic waves. Damping
different for spin and elastic waves appears at kc ≠ 0,

(103)

(104)

and the widths of the gaps in the spectrum of spin and
elastic waves become different,

Gm
1( ) Gu

1( )

νu k2–( ) νm ikc–( )
2

k2–[ ]

– γ2k2 1 ikc/ νm–( ) 0,=

νm k2–( ) νu ikc–( )
2

k2–[ ]

– γ2 k2 ikc νu kc
2+ +( ) 0.=

Λ ζ 2ωMωr,=

μ

ωm'' 2 ωr ω0–( )ωMαkc
2
,=

ωu'' vukc,=

(105)

At small kc values, ,  < Λ (open gap) and the
picture is similar to the magnetoelastic resonance,
which appears under the action of the nonrandom
coupling parameter in a homogeneous medium. Dif�
ference is that the width of the gap in our case is deter�
mined by the rms fluctuation of the coupling parame�
ter rather than by this parameter itself (its mean value
is zero). An increase in kc is accompanied by an

increase in the damping frequencies ,  and by a
decrease in the widths of the gaps Δm and Δu. The exist�
ence of different dispersion equations (100) and (101)
for spin and elastic waves and differences in the depen�
dences of Δm and Δu on kc were explained in [10, 12–
14] by the fact that Eq. (100) describes the interaction
of coherent spin waves with fluctuation elastic waves
and Eq. (101) describes the interaction of coherent
elastic waves with fluctuation spin waves.

We now demonstrate that all these effects are
unreal and are due to the Bourret approximation [8]
used in [10, 12–14]. We consider the form of the imag�
inary parts of the Green’s functions (ω) and (ω)
successively in the first, second, and third approxima�
tions for a small parameter kc corresponding to uc ≡

kc/  = 0.05. In the numerical calculation in each
approximation n, the preceding approximation for the

elastic mass operator  is substituted into the
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Fig. 8. Imaginary parts of the Green’s functions of (a) spin, (ω), and (b) elastic, (ω), waves at k = kr and uc = 0.05 as cal�

culated in the approximations (dashed lines) n = 1 (Bourret approximation), (dotted lines) n = 2, (dash–dotted lines) n = 3,
(thick solid lines) n  ∞, and (thin solid lines) exact solutions (114) and (115) for uc = 0. The real parts of the Green’s functions

(ω) and (ω) are also shown for n  ∞ and exact solutions.
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integrand in recurrence formula (93) for the mass

operator , and the preceding approximation for

 is substituted into the integrand in Eq. (94) for

. The first approximations (Bourret approxima�

tions) lead to the expressions for (ω) and (ω)
that are presented in Fig. 8 by dashed lines having two
peaks at the points

(106)

However, this picture is destroyed in the next (n = 2)

approximation. The corresponding functions (ω)

and (ω) are shown in Fig. 8 by dotted lines. Each
of these functions has three peaks and is not similar to
crossing resonance in the homogeneous medium.

Each of the functions (ω) and (ω) obtained
with the inclusion of the next term in continued frac�
tions has four maxima (dash–dotted lines in Fig. 8).

We temporarily interrupt the derivation of succes�
sive approximations and consider the limit kc  0
corresponding to the model of independent grains in
the polycrystal with random values of the magneto�
striction parameter in grains. In this case,

(107)

where δ(k) is the Dirac delta function and all integrals
in Eqs. (89)–(94) are calculated exactly. The system of
Eqs. (89) and (90) or Eqs. (93) and (94) is reduced to
equations quadratic in Mk or Uk. Substituting the solu�
tions of these equations into Eqs. (85) and (86), we
obtain the exact expressions for the Green’s functions
in the case kc = 0 in the form

(108)

(109)

where x = νm – k2 and y = νu – k2. The condition of
zero denominators of these expressions provides the
dispersion laws for the real frequencies of spin and
elastic waves, which coincide with the initial disper�
sion laws,

(110)

The imaginary parts of the frequencies are absent,
because damping caused by inhomogeneities appears
only at kc ≠ 0. However, the dynamic susceptibilities
given by Eqs. (108) and (109) have both real and imag�
inary parts. Multiplying the numerators and denomi�
nators of Eqs. (108) and (109) by the complex conju�
gate quantities, we obtain

Mk
n( )

Mk
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Gm
1( ) Gu
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ω ωr Λ/2.±≈

Gm
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Gu
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S ki kj–( ) δ ki kj–( ),

Gm ω( ) 1
π
�� 1

x i 4γ2k2x
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Gu ω( ) 1
π
�� 1

y i 4γ2k2y
x
�� x2––

����������������������������������,=

νm k2
, νu k2

.= =

(111)

(112)

We pass from normalized frequencies to ω in these
expressions:

(113)

where ωm(k) = ω0 + αgMk2 and ωu(k) = vuk. We con�
sider Eqs. (111) and (112) at k = kr. In this case,
ωm(kr) = ωu(kr) = ωr and Eqs. (111) and (112) after the
corresponding algebra become

(114)

(115)

The real and imaginary parts of the Green’s functions
corresponding to these expressions are shown by thin
solid lines in Fig. 8. It can be seen that (ω) and

(ω) for kc = 0 have wide single�mode peaks with the
width approximately equal to Λ. Since damping in the
system is absent, the width of the peak is completely
determined by the stochastic distribution of the fre�
quencies of δ�like peaks forming this wide peak.

According to Eqs. (114) and (115), the ratio of the
amplitudes of these wide peaks at ω = ωr is

(116)

where vm = 2αgMkr is the velocity of spin waves at k =
kr. The inequalities vm < vu and vm > vu are always sat�
isfied at the first and second crossing points of the dis�
persion curves of spin and elastic waves, respectively.

We now return to the derivation of successive
approximations for the Green’s functions (ω) and

(ω) at kc ≠ 0. As n increases, the number of peaks on

the plots of the Green’s functions (ω) and (ω)
increases as n + 1 and the amplitude of the peaks
decreases. The area under each of the (ω) and

(ω) curves remains unchanged and these curves
approach their limiting positions corresponding to the
exact solutions of integral equations (89) and (90)
(Fig. 8, thick solid lines). As can be seen in this figure,
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the curves corresponding to a small kc value (uc = 0.05)
differ only slightly from the curves for kc = 0 (thin solid
lines in Fig. 8) and differ strongly from the dashed
lines calculated in the Bourret approximation for the

same uc value. Instead of degeneracy removal and the
appearance of two peaks at the distance Λ, a wide sin�
gle�mode peak with the width Λ is observed for each of
the functions (ω) and (ω). However, the vertices
of these peaks are not smooth: a specific fine structure
appears on the vertex of each peak. This structure for

(ω) and (ω) has the form of narrow (compared
to Λ) resonance and narrow antiresonance, respec�
tively. The fine structure corresponding to these for�
mations is also manifested in the (ω) and (ω)
curves, which are also shown in Fig. 8.

We now examine the properties of the functions
(ω) and (ω) in more detail. All next figures show

the Green’s functions corresponding to the n value
ensuring the convergence of successive approxima�
tions. This n value depends on the chosen parameters
of the system, primarily on the kc value. For large kc

values, several n values can be sufficient, whereas tens
and even hundreds successive numerical integrations
of recurrent relations (93) and (94) are required for
small kc values.

Figure 9 shows the functions (thin lines) Gm(ω) and
(thick lines) Gu(ω) in the same scale for three uc values.
It can be seen that these characteristics of the fine struc�
ture are more sensitive to a change in the correlation
wavenumber kc of inhomogeneities than the character�
istics of wide peaks. An increase in small kc values by an
order of magnitude almost does not change the width of
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Fig. 9. Green’s functions of (thin lines) spin, (ω) and

(ω), and (thick lines) elastic, (ω) and (ω), waves

at uc = (dashed lines) 1.6 × 10–2 and (solid lines) 1.6 × 10–3

and (dotted lines) exact solutions (108) and (109) at uc = 0.
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the wide peak. At the same time, the width of a narrow
resonance in the (ω) curve, as well as the antireso�

nance in the (ω) curve, increases by several times.

The dependence of this fine structure on the corre�
lation wavenumber is shown in more detail in Fig. 10.
According to Fig. 10a, the resonance and antireso�
nance peaks for small kc values (uc ~ 0.001–0.01)
exhibit approximate mirror symmetry (the amplitude
of resonance is somewhat smaller than the amplitude
of antiresonance). The widths of resonance and anti�
resonance are approximately the same and increase
with kc (Fig. 10b). A further increase in kc (Fig. 11) is
accompanied by a significant change in the shape and
the narrowing of the main wide peak. This is due to the
exchange narrowing of the magnetic resonance lines,
which was studied using the noncrossing correlation
approximation for ferromagnetic and spin�wave reso�
nances in [21, 32]. As can be seen in Fig. 11, an
increase in kc leads to the opposite effects for wide
peaks and fine�structure peaks. The former are nar�
rowed and the latter are broadened and, then, disap�
pear. The fine structure first disappears at the peak of
the function (ω) and, then, at the peak of the func�

tion (ω).

Above, we considered the effects occurring at the
first crossing point of the dispersion curves of spin and
elastic waves, k = kr. At this point, vm < vu and,

according to Eq. (116), (ωr) < (ωr) at kc = 0.
Near the second crossing point of the dispersion
curves, k = kr ', vm > vu and, correspondingly,

(ωr ') > (ωr ') at kc = 0. In this case, the fine struc�
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Gu''

Gm''

Gu''

Gm'' Gu''

Gm'' Gu''

ture at the vertices of the wide peaks of the functions
(ω) and (ω) is opposite: narrow resonance

appears in the (ω) curve, whereas narrow antireso�

nance occurs in the (ω) curve. All Figs. 8–11
change similarly. In the cases of both inequalities vm <
vu and vm > vu, there is a common property: at kc ≠ 0
and ω = ωr, the point of the maximum of the reso�
nance of the fine structure of one Green’s function
coincides with the point of the minimum of the anti�
resonance of the fine structure of the other Green’s
function and

(117)

As can be seen in Fig. 11, this property holds even
when the fine structure disappears. It is reasonable to
assume that this property is a consequence of the gen�
eral law of the uniform distribution of the energy of
oscillations over the degrees of freedom, in this case,
over spin and elastic oscillations, at the crossing point
of dispersion curves k = kr, ω = ωr. In the case kc = 0
corresponding to the model of independent grains in a
polycrystal with a random (both in magnitude and in
sign) coupling parameter in each grain, the fine struc�
ture is absent and the functions (ω) and (ω) at
k = kr have single�mode peaks with the width Λ. The

inequality (ω) < (ω) is satisfied for all frequen�
cies in the region of existence of these peaks. At arbi�
trarily small value kc ≠ 0, the interaction appears
between grains and the law of the equiprobable energy
distribution from which the equality (ωr) = (ωr)
follows should be satisfied at the crossing point of the
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dispersion curves. How are the Green’s functions
transformed to satisfy this law? The function (ω)
“raises” a thin “feeler” (fine�structure resonance) at
the point ω = ωr, whereas the function (ω) “drops”
the analogous feeler (fine�structure antiresonance) at
the same point. These feelers touch each other
approximately at the middle of the distance between
the maxima of wide peaks of both functions, and the
required equality is satisfied at the point ω = ωr. The

inequality (ωr) < (ωr) remains valid for all other
frequencies except for ω = ωr.

5. CONCLUSIONS

The dynamic susceptibilities (Green’s functions)
of the system of two interacting wave fields of different
physical natures with the stochastically inhomoge�
neous coupling parameter with zero mean value have
been studied. The study has been performed for spin
and elastic waves in a ferromagnet with the inhomoge�
neous magnetostriction parameter. The model prob�
lem has been considered including only transverse
elastic vibrations.

The system of Dyson equations and series for aver�

aged Green’s functions of spin, , and elastic, ,
waves have been obtained. The main feature of the sys�
tem of Dyson equations is that the elastic mass opera�
tor Qu appears in the equation for the spin Green’s

function , whereas the spin mass operator Qm

appears in the equation for the elastic Green’s func�

tion . The main feature of the Green’s functions 

and  is that the initial Green’s functions  alter�
nate with the derivatives of the initial Green’s func�

tions  in each term of the series. The series for 
contains the products of alternating initial spin
Green’s functions and second derivatives of the initial

elastic Green’s functions. The series for  contains
the products of alternating first derivatives of the initial
spin elastic Green’s functions and the initial spin
Green’s functions.

The self�consistent approximation taking into
account all diagrams with noncrossing correla�
tion/interaction lines in the expansion of a Green’s
function (called the noncrossing correlation approxi�
mation in this work), which is known as the Migdal
approximation and the self�consistent Born approxi�
mation in the theory of condensed matter and the
Kraichnan approximation in stochastic hydrodynam�
ics and radiophysics, has been generalized to the case
of two interacting wave fields of different physical
natures with the stochastically inhomogeneous cou�
pling parameter between these fields; the mean value
of this parameter is zero.
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Gm Gu
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Disorder�induced crossing resonance occurring at
the crossing of the dispersion curves of spin and elastic
waves has been examined within the developed
method. The system of integral equations for the spin
and elastic mass operators has been solved numerically
for the case of one�dimensional inhomogeneities of
the coupling parameter. The results obtained taking
into account the processes of multiple scattering of
waves from inhomogeneities are significantly different
from those obtained for this situation in the Bourret
approximation [10, 12–14]. Instead of frequency
degeneracy removal in the wave spectrum and the
splitting of resonance peaks of dynamic susceptibili�
ties, a wide single�mode peak with the fine structure in
the form of narrow resonance (antiresonance) peaks

should appear in the Green’s function  ( ) at the
crossing point of the unperturbed dispersion curves. It
has been shown that, at small correlation wavenum�
bers kc of inhomogeneities, the width of the wide peaks
is determined by the rms fluctuation Δε of the coupling
parameter, whereas the width of the narrow resonance
and antiresonance peaks is determined by kc. This will
allow the independent measurements of both these
main characteristics of inhomogeneities. As kc

increases, the sharp exchange narrowing of the wide
peak occurs and the narrow resonance and antireso�
nance peaks are broadened and gradually disappear.

The properties of the fine�structure peaks can be
explained assuming that this structure is due to the law
of the uniform energy distribution between spin and
elastic oscillations at the crossing point of the disper�
sion curves k = kr, ω = ωr.

Investigation in this work has been performed for
disorder�induced crossing resonance of spin and elas�
tic waves. Particular relations for crossing resonance of
waves or quasiparticles of another nature (e.g., optical
and acoustic phonons) will have another form. How�
ever, the general form of the dynamic susceptibilities
should remain unchanged: the fine resonance struc�
ture against the background of the wide peak of the
susceptibility of one wave field and the fine antireso�
nance structure against the background of the wide
peak of the susceptibility of the other wave field; the
sharp dependence of the fine�structure peaks on kc for
small kc values; and the equality of the imaginary parts
of the susceptibilities of both wave fields at the crossing
point of the dispersion curves k = kr, ω = ωr.

The experimental detection of the predicted effects
would be of most interest for media with small kc val�
ues and with sufficient excess of the velocity of waves
of one field over the velocity of waves of the other field
at k = kr. The former property leads to small widths of
lines, whereas the latter property is responsible for
large amplitudes of the resonance and antiresonance
peaks of the fine structure.
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