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1. INTRODUCTION

The Hubbard model is one of a few basic models in
condensed state physics. Its exact solution using the
Bethe ansatz [1] is one of the fundamental results in
the physics of strongly correlated systems. The spec�
trum of both charge and spin elementary excitations
was analyzed at T = 0 in [2]. In the limit U  ∞, the
exact wavefunction is simplified upon elimination of
local two�particle states and can be written in the form
of the product of the spin and charge functions [3].

The thermodynamics of the 1D model was investi�
gated by various methods (based on the Bethe ansatz
with the string hypothesis [4, 5] and using the quan�
tum transfer matrix [6]). All these methods are rather
complicated; therefore, it would be interesting to
obtain exact results using a simpler method. In this
study, we will use the splitting of spin and charge
degrees of freedom [3], which leads to factorization of
the partition function in the form of the product of the
partition functions of spinons and holons. For
U ∞, the exchange interaction between the near�
est neighbors is J = 2t2/U  0; therefore, we have a
chain of noninteracting spins with partition function

Z(s) = , where Ne is the total number of electrons in
the chain. The partition function Z(h) for holons can
easily be estimated owing to exact diagonalization of
the Hamiltonian of interatomic jumps for spinless fer�
mions. As a result, simple relations were derived
between the thermodynamic parameters of electrons
and spinless fermions (holons).

Eliminating the states of twos from the complete

basis of local states ,  = , and  =

, we in fact project the Hubbard model onto

2
Ne

0| 〉 σ| 〉 aσ
† σ| 〉 2| 〉

a↑
† a↓

† 0| 〉

the t–J model, which can be written for U  ∞ in the
form

(1)

Here,  =  represents the Hubbard operator
constructed on the truncated local basis for site f con�
taining three states , , and . In this case, the
electron–hole symmetry is broken and we therefore
cannot consider the half�filled band with electron
concentration ne = Ne/N = 1 (N is the total number of
sites). Our solutions are valid for concentrations of 0 ≤
ne < 1. In this study, we take into account only the
jumps tfm between the nearest neighbors.

The article has the following structure. In Section 2,
we analyze multielectron wavefunctions and write the
exact expression for the partition function in the near�
est neighbor approximation. In Section 3, the exact
solution is obtained in the atomic limit (t = 0). The
concentration and temperature dependences of the
thermodynamic parameters of electrons, which are
obtained from the exact solution for finite values of
hopping parameter t, are considered in Section 4.
Finally, in Section 5, we compare our results with the
available data. The appendix contains proof of factor�
ization of the partition function in the form of the
product of the partition functions for holons and
spinons.

2. ANALYSIS OF MULTIELECTRON STATES

For spinless fermions, the basis of local states at site

f consists of only two vectors  and  = . The

H εXf
σσ

f σ,

∑ tfmXf
σ0Xm

0σ
.

f m σ, ,

∑–=

Xf
pq p| 〉 q〈 |

0| 〉 ↑| 〉 ↓| 〉

0| 〉f 1| 〉f af
† 0| 〉f
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holon creation operator at site f is . The condition

for the completeness of the basis assumes the form

(2)

The Hamiltonians for holons have the form

(3)

and holons satisfy the conventional commutation
relation typical of free fermions:

(4)

It should be noted that the electron creation and anni�
hilation operators obey a more complex commutation
relation:

(5)

For operators (1) and (3), a very convenient basis of
the functions exists in which the matrices of these
operators can be written. Namely, for such a basis it is
convenient to take wavefunctions of the form

(6)

where

(7)

(8)

for a nonzero spin.
Dimensionality g of the Hilbert space of wavefunc�

tions of the electron system is related to dimensional�
ity g(h) of the Hilbert space of the spinless (holon) sys�
tem by the obvious relation

(9)
where

(10)

The basis is defined by relations (6)–(8) to within
the numbering of the basis vectors, which, however,
does not affect the physical results being derived. Hav�
ing defined the basis, we can consider the matrices of
operators (1) and (3) in these bases. It will be rigor�
ously proved in the Appendix proceeding from such
analysis and general considerations that the canonical
partition function in the limit U  ∞ can be factor�
ized into the product of partition functions for holons
and spinons:

(11)
where

(12)

and Z(s) is defined as

(13)
Relations (11)–(13) are very important because

these formulas determine the relation between the
canonical partition functions for the spinless and non�

zero�spin cases and they make it possible to calculate
the thermodynamic parameters of a system with non�
zero spin if these parameters for the spinless system are
known. Namely, introducing the notation

(14)

for the hole concentration and using the well�known
identities of statistical physics and thermodynamics,
we immediately obtain the following relations:

(15)

for the free energy,

(16)

for the entropy,

(17)
for the internal energy,

(18)
for the heat capacity at constant volume and number
of particles, and

(19)

for the chemical potential. It should be noted that
each formula in (15)–(19) has the following general
form:

(20)

where a(h) is the contribution to quantity a from factor
Z(h) in equality (11) (holon contribution) and a(s) is the
contribution from factor Z(s) in the same equality
(spinon contribution).

Xf
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i 1=

N

∏= =

ψ| 〉i

0| 〉i, if site i is not occupied by an electron,

1| 〉i, if site i is occupied by an electron,⎩
⎨
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=
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↑| 〉i, if site i is occupied by an electron with spin 1/2,
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⎪
⎨
⎪
⎧

=

g 2
Neg h( )

,=

g h( ) N!
Ne! N Ne–( )!
�������������������������� .=

Z Z h( )Z s( )
,=

Z h( )
Sp H h( )

kBT
�������–⎝ ⎠

⎛ ⎞exp⎝ ⎠
⎛ ⎞ ,=

Z s( ) 2
Ne.=

x 1 ne–=

f f h( ) kBT 1 x–( ) 2ln–=

s s h( ) kB 1 x–( ) 2ln+=

u u h( )=

c c h( )=

μ μ h( ) kBT 2ln–=

a a h( ) a s( )
,+=



332

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 116  No. 2  2013

SIDOROV et al.

3. ATOMIC LIMIT

In atomic limit t = 0, Hamiltonians (1) and (3)
assume the form

(21)

for holons and

(22)

for electrons.
The canonical partition functions for the systems

described by Hamiltonians (21) and (22) are given,
respectively, by

(23)

(24)

It can be seen from these relations that the validity of
equalities (11) and (13) is obvious in this case.
Expanding the factorials in formulas (23) and (24) by
Stirling’s formula n! ≈ (n/e)n, we obtain the following
expressions for the partition functions:

(25)

(26)

Using these expressions for partition functions with
notation (14) for the hole concentration, we can cal�
culate all thermodynamic parameters of the system
progressively. For the free energy per atom, we obtain,
in accordance with the identity F = –kBT lnZ,

(27)

(28)

These expressions can be used to directly calculate the
specific entropy and internal energy for holons and
electrons:

(29)

(30)

(31)
Note that relations (29) and (30) are in complete
agreement with the Boltzmann formula, according to
which

H h( ) εXf
11

f

∑=
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σσ

f σ,

∑=

Z h( ) N!
Ne! N Ne–( )!
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NeNN
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Neε
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f h( ) ε 1 x–( ) kBT x xln 1 x–( ) 1 x–( )ln+( ),+=

f ε 1 x–( ) kBT+=

× x xln 1 x–( ) 1 x–( )ln 1 x–( ) 2ln–+( ).

s h( ) kB x xln 1 x–( ) 1 x–( )ln+( ),–=

s kB 1 x–( ) 2ln x xln 1 x–( ) 1 x–( )ln+( )–( ),–=

u h( ) u ε 1 x–( ).= =

s kB wln– kB wk wk.ln
k

∑–= =

Then, heat capacity c =  in the atomic

limit is zero:

(32)

This result has a simple interpretation: the form of
Hamiltonians (21) and (22) implies that all their
eigenvalues are identical and equal to Neε so that the
internal energy remains unchanged upon a variation of
temperature. Finally, the chemical potential

can be written in the form

(33)

(34)

It is important that relations (27)–(34) derived above
are in complete conformity with relations (15)–(19).

4. EXACT CALCULATION
OF THERMODYNAMIC PROPERTIES

FOR FINITE VALUES OF THE HOPPING 
PARAMETER

Commutation relation (4) for holons, which is typ�
ical for free fermions, makes it possible to easily diag�
onalize Hamiltonian (3) using simple Fourier trans�
formation. As a result, we obtain the exact expression
for the spectral function:

(35)

which coincides with the expression for the Fermi–
Dirac free electron distribution function. In expres�
sion (35), t(k) is the conventional band spectrum,
which has the following form in the 1D case in the
nearest neighbor approximation:

(36)

To calculate the thermodynamic parameters of the
system, we must primarily solve the equation for the
chemical potential,

(37)
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where summation is carried out over all vectors k from
the first Brillouin zone. At the second stage, we calcu�
late the internal energy of the holon system:

(38)

This expression is used to successively calculate the
heat capacity for a constant volume and number of
electrons, entropy, and free energy:

(39)

(40)

(41)

As a result, we obtain the well�known dependences
describing the behavior of an ideal Fermi gas [7]. It
should be noted that the total number of states per
atom in the holon band is unity; therefore, in the near�
est neighbor approximation, the concentration

u h( ) 1
N
��� t k( ) fFD t k( )( )

k

∑=

=  2t
π
��� ycos y 2t ycos– μ h( )–

kBT
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⎛ ⎞exp 1+
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.d
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V Ne,

,=

s h( ) c h( )

T
������ T,d

0

T

∫=

f h( ) u h( ) Ts h( )
.–=

dependence for the chemical potential is antisymmet�
ric, while for other thermodynamic characteristics of
holons, it is symmetric with respect to a concentration
of x = 1/2.

Let us now calculate the thermodynamic parame�
ters of a system with nonzero spin. As mentioned
above, such thermodynamic parameters can be calcu�
lated using relation (11). It is with this relation that we
have derived formulas (15)–(19). The results of our
numerical calculation for the chemical potential are
shown in Fig. 1. By virtue of relation (19), the energy
and the Fermi wavenumber of the electron system do
not differ from their values for the holon system. In the
latter system, these values are calculated from the
familiar elementary considerations. As a result, we
obtain the radius of the 1D Fermi sphere,

(42)

and the Fermi energy,

(43)

Thus, at T = 0, the dependence of the chemical poten�
tial on the hole concentration has the form of a con�
ventional cosine. However, as soon as the temperature
becomes nonzero, the chemical potential for x = 0 and
x = 1 turns to +∞ and –∞, respectively. This is visually

kF
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N
�����π

a
�� 1 x–( )π
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Fig. 1. (a) Concentration and (b) temperature depen�
dences of the electron chemical potential. Bold dashed
curves in (b) are the results from [8].
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Fig. 2. (a) Concentration and (b) temperature depen�
dences of the electron internal energy. Bold dashed curves
in (b) are the results from [8].
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demonstrated the best using Eq. (37), which was con�
sidered above for holons. For x = 0, we have Ne = N.
However, the sum consisting of N terms can be equal
to N iff each term separately is equal to unity. This
condition can be satisfied either by setting μ(h) ≥ 2t and
T = 0 (in accordance with relation (43), we see that
μ(h) = 2t in this case), or setting μ(h) = +∞ and T ≠ 0. In
accordance with relation (19), if the system has a non�
zero spin, the curve describing the function

is simply shifted downwards along the ordinate axis.
The case when x = 1 can be analyzed similarly.

In accordance with relations (17) and (18), the
internal energy and the heat capacity of electrons
coincide with the corresponding quantities for holons.
Let us briefly consider the results (Figs. 2 and 3). All
dependences u(x, T/t = const) lie between the curve
describing the ground state,

(44)

μ
t
�� μ

t
�� x t

T
���  = const,⎝ ⎠

⎛ ⎞=

u h( ) T = 0( ) 1
N
��� ε k( )

k kF–=

kF

∑=

=  t
π
�� ycos yd

1 x–( )π–

1 x–( )π

∫– 2t
π
��� πx( ),sin–=

and the curve corresponding to an infinitely high tem�
perature,

(45)

Thus, upon an increase in temperature, the curve
smoothly shifts from its position (44) at T = 0 to the
limiting position (45) as T  ∞.

Naturally, analogous behavior is also observed for
the temperature dependences of internal energy
u(kBT/t, x = const): the curves originate at points
(0, ⎯(2t/π)sin(πx)) and tend to horizontal asymptote
(45) for T  ∞.

Curves c(x, T/t = const) describing the concentra�
tion dependence of the heat capacity for a constant
volume and number of electrons increase with tem�
perature from their initial position c = 0 at T = 0,
attain a certain critical (uppermost) curve, and then
collapse, tending to zero for T  ∞. The same phys�
ical peculiarity is also observed when analyzing the
temperature dependence of the heat capacity.

In accordance with formula (16), the entropy
increases by kB(1 – x)ln2 as compared to the contribu�

u h( ) T = ∞( ) 2 1
π
�� ε k( )

k πx/a=
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Fig. 3. (a) Concentration and (b) temperature dependences
of the electron heat capacity taking into account equal�
ity (18). Bold dashed curves in (b) are the results from [8].
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tion of holons. The concentration dependences result�
ing from such an increment are shown in Fig. 4a. For
x = 0, we observe the well�known result s(x = 0) =
kBln2; i.e., the entropy is determined by localized
spins σ = 1/2. Further, upon an increase in ratio t/kBT,
the s(x) curve “passes” from its initial position
described by equality (30) to the straight line described
by the equation s = kB(1 – x)ln2. The s(kBT/t) curves
“emerge” from point (0, kB(1 – x)ln2) and tend to
their asymptote described by equality (30) for
kBT/t  ∞ (Fig. 4b).

Finally, let us consider the behavior of the free
energy. Upon an increase in the t/kBT ratio, the f(x)
curve (Fig. 5a) tends from minus infinity to the “criti�
cal” curve f(x,T = 0) = u(x, T = 0) = –(2t/π)sin(πx),
which, in accordance with relation (15), is described
by the same equation for spinless systems and for sys�
tems with a nonzero spin. The f(kBT/t) curves emerge
from point (0, –(2t/π)sin(πx)) and asymptotically
approach the straight lines described by the equation

(46)

as kBT/t  ∞ (Fig. 5b).

f 2t
π
��� πx( )sin=

– kBT 1 x–( ) 2ln x xln– 1 x–( ) 1 x–( )ln–( )

5. COMPARISON WITH RESULTS
OF OTHER STUDIES

The temperature dependences of thermodynamic
quantities were calculated in [8] for the 1D Hubbard
model for U = ∞ without employing the idea about the
spin–charge splitting. It can be seen from the temper�
ature dependences depicted in Figs. 1b, 2b, 3b, 4b,
and 5b that our results completely coincide with the
data from [8]. However, the concentration depen�
dences were not reported in the literature. For finite
values of U, the temperature dependences of heat
capacity reported in [5, 6] have two peaks at small val�
ues of x. The narrow low�temperature peak is associ�
ated with spin excitations and is attained at T ~ J/kB ~

t2/kBU; this peak is not observed in the limit U  ∞.
The broader high�temperature peak is due to charge
excitations. It exhibits a weak dependence on U and is
attained at Tmax ≈ 0.6t/kB for U = 4t and U = 8t at x =
0.5. In view of the weak dependence of this peak on the
value of U, it can be compared with our results for
U  ∞ (lower curve in Fig. 6). It can be seen that the
value of Tmax as well as the value of heat capacity c/kB ≈
0.3 at the point of maximum are very close to those
reported in [6]. As noted in [5], an increase in the hole
concentration smears the two (holon and spinon)
peaks in the temperature dependence of the heat
capacity because the interrelation between the charge
and spin excitations is restored in the metallic system.
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APPENDIX

Let us prove formula (11), which is of fundamental
importance for the entire paper. We introduce the fol�
lowing notation for operators:

(47)

(48)

(49)

(50)

We can verify by direct calculations that

(51)

The equality of these commutators to zero entails the
following matrix equalities:

(52)

(53)

Then, considering that matrices exp(– /kBT) and
exp(–H0/kBT) are diagonal matrices containing
exp(⎯Neε/kBT) on both diagonals, we obtain the fol�
lowing expressions for the canonical partition func�
tions for the spinless and nonzero spin cases, respec�
tively:

(54)
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Let us now consider the action of operator  on a state

of type (6), in which  are defined by equalities (7).
We have

where the left�hand side contains the vector symboliz�
ing the state in which holons are at sites f1, f2, …, 

and holes are at the remaining sites; braces { f1, f2, …,
} indicate a set consisting of sites f1, f2, …, ; h is

the set of all sites of the system; symbol “\” indicates
the difference of sets; and ΔNgm is the number of
holons located strictly between sites g and m. Clearly,
all vectors appearing on the left�hand side of the last
equality are different. The coefficients of these vectors
are also different. Forming the scalar product of this
equality and a bra vector from

possible vectors, we obtain the matrix element either

equal to zero or to , where i ∈ { f1, f2, …,

} and j ∈ h\{ f1, f2, …, }. It should be noted by the

way that we have proved an important statement. For
its formulation, we will refer to a pair of vectors on
which the given matrix element is constructed as the
pair generating this element. Then the above argu�
ments lead to the conclusion that a matrix element dif�
fers from zero iff the vectors of the pair generating this
matrix element can be transformed into each other by
a jump of only one electron from one position to the
other. Analogously, for a system with a nonzero spin,
the matrix element differs from zero iff one of the vec�
tors of the pair generating this matrix element can be
transformed into the other by a jump of a single elec�
tron from one position to the other (which preserves its
spin). This statement can be proved by analyzing the
action of operator Ht on a state of type (6), there 
are now defined by equality (8).

We can now easily determine the algorithm for
obtaining the matrix of operator Ht from the matrix of

operator . Obviously, each matrix element is

transformed into a  ×  block. It is clear now that
if this matrix element is zero, it is transformed into the
zero block. This statement holds if only due to the fact
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that any matrix element of the block under investiga�
tion is generated by a pair of vectors such that a transi�
tion from one vector to the other by a jump of a single
electron from one position to the other is ruled out
(because the matrix element being transformed is
zero). If, however, the matrix element is equal to the
hopping parameter between the nearest neighbors
with the minus sign, the diagonal elements of the
block are equal to this element. Indeed, for a pair gen�
erating a diagonal element, there exists a transition
from one vector of the pair to the other by a jump of
only one electron, whose spin is preserved. The direc�
tions of the remaining spins for the vectors in the pair
generating a diagonal element coincide (because we
are considering precisely the diagonal element). Con�
versely, for off�diagonal elements, the directions of the
spins of at least one pair of electrons located in two
vectors generating the matrix element under consider�
ation and located in the same position are necessarily
different (due to the fact that the element itself is off�
diagonal). Thus, the matrix of operator Ht can be

obtained from the matrix of operator  by trans�

forming each matrix element into a  ×  block
with the numbers on the diagonal equal to the element
being transformed, while all off�diagonal elements are
zeros.

In accordance with the rule of multiplication of block
matrices, we can readily conclude (taking into account

the definition of the matrix exponential as a matrix
series) that matrix exponential exp(–Ht/kBT) can be

formed from exponential exp(– /kBT) by trans�

forming each matrix element into a  ×  block with
the numbers on the diagonal equal to the matrix element
being transformed and with zero off�diagonal elements.
This immediately leads to relation (11).
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