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11. The destruction of the long�range order at the
quantum phase transition is caused by an increase in
quantum fluctuations whose intensity is governed by a
control parameter (e.g., pressure) [1, 2]. The applica�
tion of hydrostatic pressure in cerium intermetallides
at temperatures below the Néel temperature sup�
presses the long�range antiferromagnetic order, lead�
ing to its sharp destruction at the quantum phase tran�
sition. In this case, a transition to a superconducting
state is observed near the quantum critical point.

The CeRhIn5 compound is of particular interest in
recent years because the coexistence phase of super�
conductivity and antiferromagnetism, which is homo�
geneous at the microscopic scale, is implemented in it
[3]. The role of cerium ions and itinerant p states of
indium atoms is significant in the formation of the
electronic structure of this compound [4]. It was
shown that hybridization mixing is implemented
between 4f Ce states and p In states [5]. These facts
underlie the assumption that the periodic Anderson
model can be used for the qualitative description of
features of the low�energy spectrum of Fermi excita�
tions in CeRhIn5. In this description, it is accepted
that the subsystem of 4f electrons is responsible for the
formation of both the antiferromagnetic order and
Cooper instability.

1 The article is based on a preliminary report delivered at the 36th
Conference on Low�Temperature Physics (St. Petersburg,
July 2–6, 2012).

The first approach to the problem of quantum crit�
ical points is based on the generalization of the fluctu�
ation theory of phase transitions to the case of zero
temperature [6]. It was shown in [7] that quantum
fluctuations can make significant corrections to the
thermodynamic properties of a itinerant electron sys�
tem. To determine the role of localized electrons in the
critical region, the concept of the local quantum criti�
cal point was proposed more recently [8]. The transi�
tion from the paramagnetic region through such a crit�
ical point is accompanied by the appearance of the
long�range antiferromagnetic order and by the viola�
tion of the Kondo regime induced owing to the s–d( f)
coupling between itinerant and localized electrons.

The transition through the quantum critical point
in some heavy�fermion systems is accompanied by the
appearance of anomalous properties. This concerns
primarily the effective electron mass whose depen�
dence on the control parameter exhibits divergence in
the region of the quantum phase transition. Moreover,
the Fermi surface grows [9]. These effects were
detected when analyzing the pressure dependence of
the frequency of de Haas–van Alphen oscillations in
CeRhIn5 [10]. An additional feature is associated with
the implementation of a non�Fermi liquid regime
[11]. In particular, the temperature dependence of the
electrical resistivity near the quantum critical point in
the CeRhIn5 compound becomes almost linear [12].
Such a dependence is implemented, e.g., in the two�
band model [13].
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Deviations from the Fermi�liquid behavior are not
necessarily due to the closeness to the quantum critical
point. In particular, the phenomenological two�liquid
model [14] implies that the thermodynamic charac�
teristics below the coherence temperature are deter�
mined by two contributions. The first contribution
comes from the appearance of the heavy�fermion
coherent state caused by the hybridization between
localized and conduction electrons. The second con�
tribution comes from isolated Kondo impurities
remaining in the system on which spin–fluctuation
scattering occurs.

Several scenarios of the anomalous behavior of the
effective mass and cross section of the Fermi surface
are under discussion now. One of them is associated
with the violation of the Kondo regime at the local
quantum critical point [9]. According to this scenario,
when the Kondo regime is broken, the Fermi surface
is formed only by itinerant electrons. For this reason,
the area of the Fermi surface decreases. Another
mechanism is attributed to the presence of strong
valence fluctuations [15].

The possibility of implementing the coexistence
phase of antiferromagnetism and superconductivity in
heavy�fermion intermetallides is analyzed in this work
within the extended periodic Anderson model and it is
shown that the effective electron mass anomalously
increases near the quantum critical point. In this case,
the quantum phase transition is accompanied by a
sharp change in the Fermi surface.

2. To describe the anomalous behavior of quasipar�
ticle characteristics observed near the implementation
boundary of the antiferromagnetic state in heavy�fer�
mion compounds, we consider the Anderson model in
the atomic representation [16, 17]. In the Hamilto�
nian of such a system, we separate the effective inter�
action responsible for the formation of the long�range
antiferromagnetic order:

(1)
The Hamiltonian of the periodic Anderson model

 in the strong electron correlation regime is given
by the usual expression

(2)

Here, cmσ
 are the Fermi operators in the Wannier rep�

resentation, ε0 is the one�site energy of electron states,
tml is the hopping integral, E0 is the bare energy of

localized states, μ is the chemical potential, and 
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are the quasi�Fermi Hubbard operators. The intensity
of the hybridization of wavefunctions of itinerant and
localized electrons is determined by the matrix ele�
ments Vml. The interaction between localized electrons
is described by the operator

(3)

Such an interaction appears in the periodic Anderson
model after the inclusion of high�energy hybridization
processes [18].

3. To derive self�consistency equations, we use the
method of irreducible two�time temperature Green’s
functions [19] and the Zwanzig–Mori projection for�
malism. To describe the antiferromagnetic phase, it is
sufficient to take into account a two�sublattice set of
basis operators (sites f and g belong to the F and G sub�
lattices, respectively):

(4)

Deriving the equations for the Green’s functions using
the indicated method and solving the resulting system
of equations, we obtain the explicit expressions for the
desired Green’s functions:

(5)

for the electrons in the localized subsystem and itiner�
ant electrons, respectively. In Eqs. (5),

(6)

The dispersion equation determining the energy spec�
trum of the system is obtained from the condition that
the denominator of the resulting Green’s functions is
zero:

(7)

The physical meaning of the introduced notation is
as follows. The renormalized expression for the energy
of the localized level, E
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effect of the exchange interaction (contribution of
about –JnL) and a contribution of about –2η

σ
JR

(η
σ

= ±1, σ = ↑, ↓), which leads to the lift of the
degeneracy of this level in the projection of the spin.
The quantity ξp = ε0 + tp – μ is the part of the kinetic
energy of itinerant electrons that is measured from the
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chemical potential and is associated with intrasublat�
tice hopping. The functions tp, Γp, Vp, and Wp are
determined in terms of the Fourier transforms of ,

, , and .

The average number of localized electrons nL =

 and the magnetization of the antiferromag�

netic sublattice R =  are unknown and

characterize the ground state of the system. The Hub�
bard renormalization for the antiferromagnetic phase
is represented in terms of these parameters as α

σ
 =

α + η
σ
R (where α = 1 – nL/2 is the standard renor�

malization in the paramagnetic phase). To calculate nL

and R, we use the self�consistency procedure in the
equation obtained using the spectral theorem,

(8)

where f(x) = 1/(ex + 1) is the Fermi–Dirac function
and subscripts j and i vary from 1 to 4, which corre�
spond to the contribution from four branches of the
energy spectrum Ejk in the antiferromagnetic phase.

Figure 1 shows the dependence of the magnetiza�
tion R on the bare energy of the localized level at zero
temperature. The energies are measured in units of the
hopping parameter of itinerant electrons between
nearest neighbors . It can be seen that an increase
in the energy E0 is accompanied by a decrease in the
magnetization. When E0 reaches the critical value
(quantum critical point), the magnetization of the sys�
tem vanishes (the long�range antiferromagnetic order
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disappears). It is noteworthy that the suppression of
the antiferromagnetic order in this case is determined
by the control parameter E0. A change in this parame�
ter is usually associated with the external pressure.

4. The shape of the Fermi surface and the effective
mass are determined by solving dispersion equation (7).
To simplify the calculations, we consider only the
energy range in which a narrow hybridized band asso�
ciated with the heavy�fermion band is located. For this
energy band, an approximate analytical expression
[20] determining the quasimomentum dependence of
the heavy�fermion band in the antiferromagnetic
phase can be obtained in the form

(9)

where

It is accepted that the shifted localized level EJ = E0 – JnL

intersects the lower antiferromagnetic subband of itin�
erant electrons (EJ < 0). In derivation, we used the
nearest neighbor approximation for electron hopping
and take into account only one�site and intrasublattice
hybridization processes.

Figure 2 shows the dispersion dependences of the
heavy�fermion band along the principal direction of
the magnetic Brillouin zone for various energies E0.
The lower two panels correspond to the spectrum of
heavy fermions in the antiferromagnetic state and the
upper panel corresponds to the paramagnetic state. The
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Fig. 1. Magnetization of the antiferromagnetic sublattice R
versus the energy of localized states E0 at the electron con�
centration ne = 1.1 for the model parameters V0 = 0.6 and
J = 0.2.

Fig. 2. Modification of the quasiparticle band correspond�
ing to heavy fermions with increasing energy E0 and at the
transition from (two lower panels) the antiferromagnetic
phase to (upper panel) the paramagnetic phase. The thin
dashed line indicates the chemical potential. The calcula�
tion parameters are the same as in Fig. 1.
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dashed lines are obtained by approximate formula (9)
and the solid lines are calculated from Eq. (7). It can
be seen that an increase in the energy E0, which leads
to a decrease in the magnetization according to Fig. 1,
is accompanied by the narrowing of the heavy�fer�
mion band and the structure of this band changes
qualitatively at the transition to the paramagnetic
phase.

A decrease in the width of the heavy�fermion band
leads to an increase in their effective mass. The effec�
tive electron mass divided by the bare mass of the itin�
erant electron m0 = �2/ b (b is the lattice parameter)
is estimated by the expression

t1

Figure 3 shows the effective electron mass as a
function of the energy E0. It can be seen that the
dependence of the mass on the control parameter is
anomalous near the quantum critical point (E0 ≈
⎯0.95). The effective mass becomes negative above the
antiferromagnetic–paramagnetic transition. This
means that the type of charge carriers changes at the
quantum critical point.

The condition determining the strong renormal�
ization of the mass has the form

(10)

It is taken into account that the density of localized
electrons and the magnetization depend on the
energy E0.

According to Eq. (10), the divergence of the mass
of heavy fermions occurs near the quantum critical
point and correlates with the modification of the
heavy�fermion band at the quantum phase transition
(Fig. 2). As a parameter describing this modification,
we use the width of the heavy�fermion band for the
principal direction given by the expression

(11)

It is easy to verify that the width of the band
decreases with a decrease in the magnetization and an
increase in the energy E0. The quasimomentum
dependence of the energy spectrum in the paramag�
netic region is inverted as compared to the depen�
dence of the spectrum in the antiferromagnetic phase.
Consequently, an extremely narrow band with a large
effective mass can appear as the width of the band in
the antiferromagnetic phase decreases. It can be
shown that Eq. (10) at which the effective electron
mass diverges is a solution of the equation WHF = 0.
Thus, the divergence of the electron mass is due to the
strong reduction of the heavy�fermion band. The
appearance of the weakly disperse narrow band in turn
indicates the closeness of the quantum phase transi�
tion.

The broadening of the Fermi surface at the transi�
tion through the quantum critical point is illustrated in
Fig. 4. The solid and dashed lines show the Fermi sur�
faces for various energies E0 in the antiferromagnetic
and paramagnetic phases, respectively. It can be seen
that the size of the Fermi surface in the antiferromag�
netic phase is almost independent of the energy E0 and
several curves merge to one. However, the Fermi sur�
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Fig. 3. Anomalous increase in the effective electron mass at
the quantum phase transition from the antiferromagnetic
phase to the paramagnetic phase.
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Fig. 4. Fermi surfaces in (solid lines) the antiferromagnetic
phase for the energy E0 = –2, –1.5, –1.2, and –0.97 and
in (dashed lines) the paramagnetic phase for the energy
E0 = –0.95, –0.8, and –0.5. The lowest energy corre�
sponds to the smallest Fermi surface.
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face expands strongly at the transition through the
antiferromagnetic–paramagnetic boundary. A further
increase in the energy E0 in the paramagnetic phase
does not lead to such a strong increase in the Fermi
momentum. This behavior is caused by a change in the
type of charge carriers at the quantum phase transition
point. Thus, the transition from the effectively elec�
tron Fermi surfaces to hole Fermi surfaces occurs at
the quantum critical point. Therefore, significant
anomalies in the Hall effect will be observed at the
quantum phase transition.

5. Interaction (3) in the proposed model can
induce Cooper instability. The experimental data for
CeRhIn5 indicate that the superconducting phase at
pressures above the critical value has d�wave symme�
try. In the coexistence phase of superconductivity and
antiferromagnetism, the symmetry of the order
parameter is not determined; it is assumingly d�wave
symmetry, but with additional nodal points on the
Fermi surface [21]. It is significant that the consider�
ation of superconducting d�wave pairing against the
background of the antiferromagnetic ordering is in
qualitative agreement with the phase diagram of
CeRhIn5.

To analyze the coexistence phase of superconduc�
tivity and antiferromagnetism, it is necessary to use the
basis set of operators that makes it possible to take into
account both anomalous averages and anomalous
Green’s functions. For this reason, we use the
extended basis

(12)

instead of basis (4). Deriving the equations for normal
and anomalous Green’s functions and projecting on
the set of irreducible Green’s functions corresponding
to basis (12), we obtain a closed system of equations.
This system is solved taking into account experimental
information that the superconducting order parameter
assumingly has d�wave symmetry. This order parame�
ter is given by the expression

(13)

Since the amplitude  in the coexistence phase of
superconductivity and antiferromagnetism is small,
the energy spectrum of heavy fermions is modified
insignificantly as compared to the spectrum given by
Eq. (9). For this reason, the quasiparticle characteris�
tics of fermions in this phase will be well described by
the expressions presented in the preceding section.

The self�consistency equations for the supercon�
ducting phase allow solutions for which the symmetry
of the order parameter can differ from d�wave symme�
try. The analysis shows that the superconducting phase
with d�wave symmetry without the antiferromagnetic
order has a higher critical temperature and, therefore,
a higher condensation energy. This corresponds to the
experimental situation. According to the calculations,
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the appearance of the antiferromagnetic order can
lead to a change in the results of the competition
between superconducting phases with the d�wave and
s�wave symmetries of the order parameter. However, at
a small antiferromagnetic order parameter, its effect
will be small and the d�wave phase will be preferable.
The complete analysis of this problem is beyond the
scope of this work and will be reported elsewhere.

6. To conclude, it is noteworthy that the inclusion
of the exchange interaction in the subsystem of local�
ized electrons leads to the possibility of implementing
the antiferromagnetic phase, superconducting phase,
and microscopically homogeneous coexistence phase
of superconductivity and antiferromagnetism. The
regime has been revealed at which the effective elec�
tron mass increases anomalously and the Fermi sur�
face expands similar to a behavior in a number of rare�
earth intermetallic systems with an increase in the
pressure. It has been shown that the divergence of the
mass of heavy fermions occurs in the antiferromag�
netic phase immediately near the quantum phase tran�
sition point to the paramagnetic phase. The diver�
gence of the mass is accompanied by the formation of
the weakly disperse band of heavy fermions. This
behavior of f electrons occurs only near the quantum
critical point. In the antiferromagnetic phase region
far from the quantum phase transition, an increase in
the magnetization of the antiferromagnetic sublattice
leads to a decrease in the effective electron mass.
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