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1. INTRODUCTION

Extensive studies of superfluidity in 3He and ultra�
cold quantum Fermi gases and superconductivity in
cuprates, heavy�Fermion intermetallic compounds,
semimetals and superlattices have stimulated interest in
nonconventional mechanisms of the Cooper pairing.
One of the most popular nonphonon mechanisms of
superconductivity is the Kohn–Luttinger mechanism
[1], proposed in 1965. It was shown in [1] that, due to
the presence of the long�range component in the effec�
tive potential of interaction of particles via the fermi�
onic background, any three�dimensional electron sys�
tem with the bare repulsive interaction between parti�
cles is certainly unstable with respect to the transition to
the superconducting state with a large orbital moment
of the relative motion of a Cooper pair (l � 1).

The Kohn–Luttinger mechanism is closely related
to Friedel oscillations [2]. It is well known that due to
the sharp boundary 2kF in the electron density distri�
bution in the momentum space at the Fermi level, the
impurity potentials in a metal do not decease mono�
tonically but oscillate (Friedel oscillations [3]). Kohn
and Luttinger showed [1] that such oscillations appear
in the effective electron–electron interaction, result�
ing in attraction between two electrons upon averaging
over a potential relief of Friedel maxima and minima.

This attraction can in turn cause the Cooper instability
in a channel with l ≠ 0.

However, the estimates [1] of the critical tempera�
ture for realistic parameters of electron systems in a
metal gave very low values for this temperature (Tc ~
10–16 K for 3He and Tc ~ 10–11 K for a metal plasma for
l = 2). Such a low value of Tc was one of the reasons
why the Kohn–Luttinger mechanism has not inter�
ested researchers for a long time.

The asymptotic results of Kohn and Luttinger
obtained for large orbital moments l � 1 were general�
ized in [4–6] for the case of arbitrary l, and it was also
shown that a low�density Fermi gas with repulsion is
unstable with respect to superconducting p�wave pairing
(l = 1) [4–6]. The generalization of the approach used in
[4, 5] to the case of superfluid 3He [7–11] and an elec�
tron plasma in metals [5, 12] gave estimates Tc ~ 1 mK in
3He [5, 13] and Tc ~ 10 mK in very clean metals [12].

In addition, a number of important results, such as
cascade superconducting transitions with different
values of l in a three�dimensional dense Coulomb
plasma [12], were obtained in [12, 14, 15]. Supercon�
ductivity in the three�dimensional and two�dimen�
sional Hubbard models with a low electron density was
also predicted in [16, 17], and the anomalous super�
conductivity in heavy�Fermion systems was consid�
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ered in [18]. Finally, it was shown in [19, 20] that the
critical temperature of superconducting p�wave pair�
ing in two�dimensional or layered systems can be dras�
tically increased already at low carrier densities by
considering the two�band or spin�polarized situation.
In this case, a superconducting transition in hetero�
structures and layered materials [14, 19, 20] (organic
superconductors, semimetals, and superlattices) can
be expected in the temperature range Tc = 1–5 K.

After the appearance of these papers and the dis�
covery of HTSC systems, the Kohn–Luttinger mech�
anism attracted considerable attention as a promising
mechanism for nonphonon superconductivity in
cuprate oxides. Because the experimental data sug�
gested that the superconducting order parameter in
these compounds corresponds to the  symmetry

type, the competition between different symmetry
types of the order parameter was actively investigated
using this mechanism in the phase diagram of the
Hubbard model [21] close to half�filling [22–26]. At
present the popularity of the Kohn–Luttinger mecha�
nism is increasing due to the possibility of its implemen�
tation in other actual physical systems. For example, the
question of the conditions for its realization in doped
graphene was recently discussed in [27, 28] and in [29]
where topological superfluid liquids were studied [29].

The role of the combined influence of the onsite,
U, and intersite, V, Coulomb interaction on supercon�
ductivity in cuprates within the framework of the
Kohn–Luttinger mechanism was recently discussed in
[30]. The increasing interest in the problem of
accounting for the long�range intersite Coulomb cor�
relations in the description of the phase diagram of the
weakly doped Mott–Hubbard systems [31] made the
extended Hubbard model, which includes the interac�
tion of electrons located at different crystal lattice sites
(this model is often called the Shubnikov–Vonsovsky
model in the Russian literature [32, 33]), very popular.
This model has been widely used for studying polar
states in solids [34], the metal–dielectric transition
[35], and the influence of intersite Coulomb interac�
tion on the superconducting properties of strongly
correlated electron systems [36–38].

Based on this model and the Kohn–Luttinger
mechanism, the authors of [39] constructed the phase
diagram, which clearly reflects the result of the com�
petition between superconducting phases with differ�
ent symmetry types of the order parameter. The effec�
tive coupling constant was calculated taking into
account only the contributions of the order of U2 in
analytic expressions for Kohn–Luttinger diagrams,
while the energy spectrum of electrons was deter�
mined in the nearest neighbor approximation. These
restrictions significantly simplified the phase diagram
of the superconducting state.

As mentioned above, the Kohn–Luttinger mecha�
nism of SC instability is related to Friedel oscillations
induced by second�order processes with respect to the
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bare interaction. In this case, the possibility of achiev�
ing the superconducting state is determined by the
matrix elements of the expansion of the effective inter�
action between electrons in a Cooper channel with the
basis functions of the irreducible representations of a
two�dimensional square lattice. Therefore, taking into
account the terms of the order of V 2 (which have a
more complicated momentum dependence) could
initiate the contributions of the representations that
would make a comparatively small contribution or
would be not present at all without an account for this
effect. This makes it important to study the conditions
for the appearance of the Kohn–Luttinger instability
taking into account second�order terms in the intersite
Coulomb interaction. Since interference effects caused
by the spatial separation of the interacting electrons affect
both the effective coupling constant for the specific sym�
metry type of the order parameter and the coefficients
determining the set of the basis functions of the irreduc�
ible representation, it is important to take into account
the interaction between electrons separated by the dis�
tances corresponding not only to the first but also the sec�
ond coordination sphere. Meanwhile, it is also important
to go beyond the nearest�neighbor approximation when
simulating the energy spectrum of electrons. This is
explained by the fact that the main contribution to the
effective coupling constant is determined by the electrons
located near the Fermi surface, whose geometry depends
on the structure of the energy spectrum. This structure in
the Wannier representation is determined both by the
number of hopping integrals taken into account and their
relative intensity. Therefore, the inclusion of long�range
hoppings can modify the phase diagram determining the
regions of the realization of the superconducting states
with different symmetry types of the order parameter.

In this paper, we consider the effects mentioned
above. The Cooper instability in the Shubin–Von�
sovsky model is studied in the weak coupling Born
approximation W > U > V (W is the bandwidth) taking
into account the long�range hoppings and the Cou�
lomb interaction of electrons from the first and second
coordination spheres. Correspondingly, the scattering
amplitude in the Cooper channel is calculated by

using the effective interaction (p, k) between two
electrons with opposite values of quasi�momentum
and spin, which is determined in graphic form by sum�
ming up five diagrams in Fig. 1. The first diagram in
Fig. 1 corresponds to the bare interaction of two elec�
trons in the Cooper channel and is analytically deter�
mined by the expression U + Vp – k. The following four
diagrams (Kohn–Luttinger diagrams) are related to
the second�order scattering processes and take into
account polarization effects of the occupied Fermi
sphere. One can see that the second�order effective
interaction of two electrons in the Cooper channel is
determined by processes also involving electrons with
the same spin projections. The intensity of such pro�
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cesses depends only on the intersite Coulomb interac�
tion.

We have shown in this paper that an account of the
long�range Coulomb correlations and long�range
electron hoppings significantly affects the conditions
for attaining Cooper pairing with the s�, p�, and d�
wave symmetry types of order parameter, providing, in
particular, the possibility of �wave pairing in

rather broad density intervals.

The paper is organized as follows. In Section 2, we
discuss the physics of the Shubin–Vonsovsky model
and the main approximations used for studying the
Kohn–Luttinger superconductivity mechanism. In
Section 3, taking into account the contributions from
the Kohn–Luttinger diagrams up to and including the
second order of perturbation theory inclusive, we
obtain the expression for the effective interactions of
electrons in the Cooper channel. In Section 4, we
briefly describe the method for solving the integral
Bethe–Salpeter equation on a two�dimensional
square lattice, which includes the renormalized effec�
tive interaction. In Section 5, we present the details of
the numerical analysis of the system under study. In
Section 6, we present the results of the numerical cal�
culations for the superconducting phase diagram in
the Shubin–Vonsovsky model, which were obtained
both by taking into account long�range Coulomb
interactions in second�order perturbation theory and
considering long�range electron hoppings. The angu�
lar dependence of the order parameter for the s�wave
pairing was compared with recent ARPES experi�
ments in one of the iron�containing superconductors,
KFe2As2. The results are discussed in the final section.

2. SHUBIN–VONSOVSKY MODEL

The Hamiltonian of the Shubin–Vonsovsky model
for a square lattice in the single�band approximation
can be written in the form

(1)

d
x

2
–y

2

H 'ˆ
ε μ–( )cfσ

† cfσ

fσ

∑ tfmcfσ
† cmσ

fmσ

∑+=

+ U n̂f ↑n̂f ↓

f

∑
V1

2
���� n̂f n̂f δ1+

fδ1

∑+

where the first two terms describe an ensemble of non�
interacting electrons in the Wannier representation;

 (cfσ) is the electron creation (annihilation) opera�
tor at site f with spin projection σ = ±1/2; ε is the sin�
gle�site electron energy; μ is the chemical potential of
the system; and tfm is the matrix element (hopping
integral) corresponding to the process intensity when
an electron is annihilated at site m and is created at site
f. The third term describes the onsite repulsion of the

electrons;  =  is the operator of the electron

density at site f with spin projection σ, and  =  +

 is the operator of the total electron density at site
f. The fourth term in (1) takes into account an energy
V1 of the Coulomb interaction of electrons at neigh�
boring sites f and f + δ1. Finally, the last term in the
Hamiltonian (1) takes into account the interaction of
electrons at next�to�neighboring sites. The energy of
this interaction is specified by the parameter V2.

The last three terms of Hamiltonian (1) reflect in
combination the fact that the screening radius in the
systems under consideration is equal to a few unit cell
parameters [35]. The intersite Coulomb interaction in
the Shubin–Vonsovsky model is taken into account
within a small number of coordination spheres. The
bare interaction Uvac in this model is qualitatively
shown in Fig. 2. It is important that the Fourier trans�
form of the bare potential is Uvac(q) = U + Vq, where

q is the transferred momentum, and d is the intersite
distance. Note that the potential Uvac(q) quadratically
depends on the quasi�momentum only in the region
q ⋅ d � 1. It is important that the momentum depen�
dence of Vq beyond this region is determined by the
periodic functions. As a result, the behavior of the
potential Uvac(q) is considerably modified compared to
the momentum dependence of the Fourier transform
of the Yukawa potential. These factors considerably
affect the conditions for the realization of the Cooper
instability at high electron densities, when the Fermi
surface has no spherical symmetry. Therefore, it can be
expected that the conditions for the realization of the
superconducting pairing in the framework of the

+
V2

2
���� n̂f n̂f δ2+ ,

fδ2

∑

cfσ
†

n̂fσ cfσ
† cfσ

n̂f n̂f ↑
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Vq 2V1 qxdcos qydcos+( ) 4V2 qxd qyd,coscos+=

Fig. 1. First� and second�order diagrams for effective interaction. Solid straight lines with a light (dark) arrow correspond to the
Green’s function of electrons with spin projection 1/2 (–1/2). Wavy lines correspond to the bare interaction.
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Kohn–Luttinger mechanism will be determined not
only by the dynamic effects caused by Coulomb inter�
actions but also by the influence of the Brillouin zone.

After the Fourier transformation, we obtain

(2)

where the uncorrelated spectrum of electrons with an
account of long�range hoppings (with the intensity
determined by parameters t2 and t3) is described by the
expression

(3)

The utilization of the weak�coupling Born approx�
imation allows us to calculate the effective interaction
for the Cooper channel by restricting ourselves to the
diagrams of the first and second order in the bare
interaction Uvac. In this case, the real small parameter
of the problem is the parameter

(4)

where ρ(μ) is the density of states at the Fermi level.
Note that in [31], we considered the opposite strong�
coupling limit U > V > W. In this case, an account of
only the first� and second�order diagrams for the
effective interaction Γ is justified only in the low�elec�
tron density limit n � 1, when the Galitsky–Bloom
Fermi�gas expansion is valid [40, 41]. In this paper, as
in [31], we calculate only the main component for Tc.
Exact evaluation of the pre�exponential factor
requires consideration of the third� and fourth�order
diagrams [15]. At the same time, the use of the Born
approximation in this paper allows us to consider arbi�
trary electron densities 0 < n < 1.

3. EFFECTIVE INTERACTION OF ELECTRONS 
IN A COOPER CHANNEL

The second�order correction (p, k) for the
effective interaction in a Cooper channel is deter�
mined by the four Kohn–Luttinger diagrams shown in
Fig. 1. The presence of two solid lines without arrows
in the diagram means the summation over the spin
projection values. The scattering of electrons with
identical spin projections is related to the intersite
contribution only. If the interacting electrons have
opposite spins, the scattering amplitude is determined
by the sum of the Hubbard and intersite interactions.
Therefore, in the case of the Hubbard repulsion alone,
the first three Kohn–Luttinger diagrams are mutually
cancelled out upon the summation in spin, and the

correction (p, k) to the effective interaction is
determined only by the last exchange diagram [1, 4, 5].

Ĥ ' εp μ–( )cpσ
† cpσ

pσ

∑ U cp↑
† cp ' q↓+

† cp q↓+ cp '↑

pp 'q

∑+=

+ 1
2
�� Vp p '– cpσ

† cp ' qσ '+
† cp qσ '+ cp 'σ,

pp 'qσσ '

∑

εp 2t1 pxdcos pydcos+( ) 4t2 pxd pydcoscos+=

+ 2t3 2pxdcos 2pydcos+( ).

Uvac q = 0( )ρ μ( ) 1,<

δΓ̃

δΓ̃

When the Coulomb repulsion on neighboring sites is
added, all diagrams in Fig. 1 contribute to the renor�
malized amplitude.

By relating the analytic expressions to the diagrams
shown in Fig. 1, we find the second�order correction
for the renormalized interaction,

(5)

Summation over the Matsubara frequencies yields

(6)
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Fig. 2. The bare interaction in the Shubin–Vonsovsky
model with Hubbard repulsion U and additional Coulomb
repulsions V1 and V2 between electrons located at nearest
and next�to�nearest sites.
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where f(x) = {exp[(x – μ)/T] + 1}–1 is the Fermi–
Dirac distribution function. In expressions (5)–(7),
the four�momenta and Matsubara frequencies are
introduced,

4. BETHE–SALPETER INTEGRAL EQUATION

Knowledge of the renormalized expression for the
effective interaction allows us to analyze the condi�
tions for the realization of the Cooper instability in the
model under study. To solve this problem, we will find,
as usual, the total scattering amplitude Γ(p, k) of two
electrons with opposite momenta and spin projection
values (Cooper amplitude) and with the energies close
to the Fermi energy. This amplitude in the ladder
approximation satisfies the Bethe–Salpeter equation,

in which the renormalized interaction (p, k) (the
irreducible vertex for the Cooper channel) serves as the
“bare” interaction. The diagrammatic form of this
equation is shown in Fig. 3. The Bethe–Salpeter inte�
gral equation in the analytic form is described by the
expression

(8)

where q ≡ (q, ωq) and ξq = εq – μ. The summation over
intermediate Matsubara frequencies ωq is performed
taking into account that the main contribution to the
scattering amplitude Γ(p, k) is provided by the scatter�
ing of electrons with the energies close to the Fermi

energy. This allows us to neglect the dependence of 
in (8) on the Matsubara frequency. In this case, the
total amplitude Γ(p, k) is also independent of Matsub�
ara frequencies and the Bethe–Salpeter equation is
simplified,

(9)

where L(ξq) = tanh(ξq/2T)/2ξq is a standard expres�
sion for the Cooper loop.

It is known [42] that the appearance of the Cooper
instability can be found by analyzing the homoge�
neous part of Eq. (9). In this case, the dependence on

p p iωn,( ), ωn≡ 2n 1+( )πT, n 0 1± …,, ,= =

k k iωm,( ), ωm≡ 2m 1+( )πT, m 0 1± …, ,= =
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��������������,

q

∑+=

Γ̃

Γ p k,( ) Γ̃ p k,( )
1
N
��� Γ̃ p q,( )L ξq( )Γ q k,( ),

q

∑–=

momentum k is factorized and we can omit it in the
further discussion. As a result, an integral equation for
Γ(p, k) or for the superconducting gap Δ(p) appears.
By passing to integration over isoenergetic contours
(in the two�dimensional case), we find that the possi�
bility of the Cooper pairing is determined by the char�
acteristics of the energy spectrum in the vicinity of the
Fermi level and by the renormalized interaction

(p, k) of the electrons located near the Fermi surface
εq = μ [13, 16, 22, 24–26, 30]. As a result, analysis of
the Cooper instability reduces to solving the eigen�
value problem

(10)

in which the superconducting order parameter Δ( )
plays the role of the eigenvector, and the eigenvalues
satisfy the condition λ–1 ≈ ln(Tc/W). In this case,
quasi�momenta  and  are located on the Fermi sur�
face and vF( ) is the Fermi velocity. One can see that
the allowed solutions to Eq. (10) with λ < 0 are deter�

mined not only by the effective interaction (p, q) but
also by the shape of isoenergetic contours. Since the
particular structure of these contours is closely related
to the energy spectrum, it is obvious that the outcome
beyond the nearest�neighbor approximation, when
hoppings to the sites located in distant coordination
spheres are taken into account, can substantially affect
the conditions for the realization of the Cooper insta�
bility and noticeably modify the structure of the phase
diagram of the superconducting state (see below).

To solve Eq. (10), we represent its kernel as a super�
position of functions, each of them related to one of
the irreducible representations of the symmetry group
C4v of a square lattice. This group has five irreducible
representations [43], and Eq. (10) has for each of the
representations its own solution with the correspond�
ing effective coupling constant λ. Below, we will use
the following classification for the symmetry of the
order parameter: the representation A1 corresponds to
the s�wave symmetry type, A2 to the extended s�wave
symmetry (sext), B1 to the dxy�wave symmetry, B2 to the

�wave symmetry, and E to the p�wave symmetry.
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Fig. 3. Bethe–Salpeter integral equation for two electrons in the Cooper channel.



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 117  No. 4  2013

THE KOHN–LUTTINGER MECHANISM AND PHASE DIAGRAM 733

The solution to Eq. (10) for the irreducible repre�
sentation α is sought in the form

(11)

where m is the number of the basis function of the rep�
resentation α, and φ is the angle characterizing the
direction of momentum  with respect to the px axis.
The explicit form of orthonormalized functions

(φ) is determined by the expressions

(12)

The basis functions satisfy the orthonormalization
conditions

(13)

By substituting (11) into Eq. (10), performing the
integration over angles, and using the orthonormaliza�

tion condition for functions (φ), we obtain

(14)

where

(15)

Since Tc ~ Wexp(1/λ), a superconducting phase with
α symmetry of the order parameter corresponds to
each negative eigenvalue λ

α
. The expansion of the

order parameter Δ(α)(φ) over the basis functions
includes, generally speaking, a large number of har�
monics, but the main contribution is determined by
only a few terms (see below). The larger value of the
critical temperature corresponds to the largest abso�
lute value of λ
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5. NUMERICAL CALCULATION

Equation (14) was solved numerically by dividing
the Fermi contour into 300 intervals, while the Bril�
louin zone was divided into 106 squares with a linear
size of 2π10–3. It was found that this partition method
was sufficient to describe correctly the dependence of
the effective coupling constant λ on the electron den�
sity n [44]. Based on the dependences λ(n) found for
different values of intersite Coulomb interactions V1
and V2, we constructed the phase diagrams of the Shu�
bin–Vonsovsky model reflecting the competition
between superconducting phases with different sym�
metry types of the order parameter.

To conveniently present our results and demon�
strate the relative contributions of different compo�
nents of the effective interaction in first� and second�
order perturbation theory to the development of Coo�

per instability, we represent the expression for  as the
sum of four terms:

(16)

where

The functions of momenta entering these expressions
have the form

(17)

where v = V2/V1, and the generalized susceptibilities
(polarization loops) have the form

(18)

Since the first�order perturbation theory in the
intersite Coulomb interaction always tends to suppress
the superconductive pairing, the possibility of obtain�
ing the Cooper instability based on the Kohn–Lut�
tinger mechanism is attributed to the appearance (in
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the second�order perturbation theory) of the contri�
butions to the matrix of the effective interaction for the
Cooper channel (15), (16), which correspond to the
attraction and have a sufficiently high intensity. The
conditions required to achieve the superconducting
phase with the specified symmetry of the order param�
eter Δ(α)(φ) can be obtained by analyzing the matrix ele�

ments of the effective interaction  for the same sym�
metry type. By analyzing each partial contribution in the
similar manner, we can also determine the main second�
order terms for the effective interaction in (16) that pro�
duces the Cooper pairing. For this purpose, we will write

the resulting effective interaction  for each irreducible
representation α as the sum of the matrix elements in the
representation of the basis functions (12):

(19)

where

(20)

(21)

Γ̃

Γ̃

Γ̃
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α( )
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× gm
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����������� φp φqΓ̃U
2 p̂ q̂,( )d

0
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(22)

(23)

As mentioned above, the inclusion of long�range
electron hoppings is also important, which can shift
the van Hove singularity in the density of states from
the half�filling (n = 1) to the region of the lower (or
higher) electron densities (Fig. 4). In this paper, to
avoid the summation of parquet diagrams [45], we
analyzed the concentration dependences of the effec�
tive coupling constants only for electron densities not
very close to the van Hove singularity, for which
Uvac(q = 0)ρ(μ) < 1.

6. PHASE DIAGRAM OF THE SHUBIN–
VONSOVSKY MODEL

6.1. First Order in V

If the intersite Coulomb interaction is taken into
account only for the electrons located at nearest sites
(V1 ≠ 0, V2 = 0) and the excitation spectrum is
described by one hopping parameter (t1 ≠ 0, t2 =
t3 = 0), then for U = , the phase diagram of the
superconducting states contains five regions (Fig. 5).
This diagram was obtained by taking into account only
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Fig. 4. Density of electron states calculated for sets of
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(dashed curve), and t2 = 0.15 , t3 = 0.10  (dash�and�

dot curve).
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first�order contributions in V in the expression for the
effective interaction of electrons in the Cooper channel,

(24)

and neglecting contributions proportional to UV
and V2.

The parts of the phase diagram lying on the abscissa
(V1 = 0) agree well with regions in the phase diagram
obtained in [24]. In the region of low electron densities
n = 0–0.52 in the first two orders of the perturbation
theory, superconductivity with the dxy�wave symmetry
of the order parameter is achieved in [13, 16]; in the
interval n = 0.52–0.58, the phase with p�wave pairing
corresponds to the ground state, but the absolute value
of λp slightly exceeds . For n > 0.58, superconduc�

tivity of the �wave type appears.

Note that an account of the Coulomb interaction
V1 of electrons located at neighboring sites in the first�
order perturbation theory leads to a decrease in the
absolute value of λ for all symmetry types. In this case,
the superconducting �wave phase is more

strongly suppressed, and as V1 increases, the phases
with other symmetry types of the order parameter
appear at the same concentrations.

6.2. Phase Diagram Taking into Account Second�Order 
Contributions in V

As mentioned above, polarization effects are man�
ifested through second�order contributions in V to the
effective interaction of electrons in the Cooper chan�
nel. Therefore, to account for Kohn–Luttinger effects
connected with the intersite Coulomb interaction, it is
necessary to use total expression (16) rather than trun�
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2 p q,( ),+=

λdxy

d
x

2
–y

2

d
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2
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2

cated expression (24) for (p, q). In this case, polar�
ization effects, proportional to UV and V2, consider�
ably change and complicate the structure of the phase
diagram even for small V1 (Fig. 6a). In particular, for
V1/  = 0–0.2, a strong competition between the
dxy�, p�, s�, and sext�wave superconductivity types takes
place in the entire region of electron densities. The
result of this competition can be determined by com�
paring small values of the effective coupling constant
λ. This is demonstrated in Fig. 6 where the dashed
curves correspond the constant λ values. As the inter�
site Coulomb interaction parameter V1 is increased,
the absolute value of λ increases. In this case, only
three phases corresponding to the dxy�, p�, and s�wave
symmetry types of the superconducting order param�
eter are stabilized. Note that in the region of high elec�
tron concentrations and for V1/  = 0.25–0.5, the
polarization Kohn–Luttinger effects give rise to the
superconducting s�wave phase. This qualitative effect
clearly demonstrates the importance of the second�
order effects when calculating the effective interaction
of electrons in the Cooper channel and constructing
the complicated phase diagram in Fig. 6.

Let us quantitatively compare the different partial
contributions to the total effective interaction and
demonstrate the significant role of the second�order in

V contributions to . Matrix elements { }mn (20)–
(23) calculated for small m and n are presented below
in the table. The values of the matrix elements for n,
m > 2 are not given because of their smallness. The
table reflects the results for a point of the phase dia�
gram in which the superconducting phase with the s�
wave symmetry of the order parameter corresponds to
the ground state. One can see from the table that, for
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the chosen parameters, the first� and second�order

contributions  and , respectively, give only posi�

tive values of the matrix elements. This means that an
account of only these processes would not lead to the
superconducting phase with the s�wave symmetry of
the order parameter. Similarly, the second�order con�

tributions  would not give rise to the supercon�
ducting s�wave phase either, and only the second�

order contributions  (the fourth line of the table)

provide the negative values of the matrix elements

{ }mn (and thereby negative eigenvalues λ) leading to
the realization of the superconducting s�wave phase.
Note that the main contribution to the angular depen�
dence of the superconducting order parameter is made

by the harmonic (φ) = (1/ )cos4φ (the last line
in the table). It should be pointed out in this connec�
tion that, despite the large value of the matrix element

{ }00 for (φ) = 1/ , other partial contribu�

tions suppress the tendency toward superconductivity
in a channel with the absence of the angular depen�

dence of the order parameter (  ~  = const).

Let us comment on the values of  in the table.
We determined the Cooper instability by analyzing the
homogeneous part of the Bethe–Salpeter equation. It
is known that in this case the order parameter is deter�
mined with an accuracy of the common factor Δ,

which is proportional to  in the vicinity
of the critical point T < Tc in the weak coupling case
(the BCS model). Therefore, the values in the table
reflect only the relative contribution of each harmonic
to the angular dependence of the order parameter.
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This scenario of achieving superconducting s�wave
pairing due to higher harmonics correlates well with
recent experimental data obtained in [46], where an
iron arsenide superconductor KFe2As2 was studied by
photoemission spectroscopy with ultrahigh angular
resolution. These investigations have shown that this
compound is a nodal (containing zeroes of the gap)
superconductor with s�wave symmetry of the order
parameter, which has eight points at which the gap
vanishes.

For comparison, Fig. 7 shows the results of our cal�
culation performed for the point of the phase diagram
discussed above in which the superconducting phase
with s�wave symmetry of the order parameter corre�
sponds to the ground state at high electron densities.

The expansion of the order parameter  in angular
harmonics in this case is described by the expression

(25)

with coefficients  given in the last line of the table.

Note that, starting from , the expansion coeffi�
cients are small, so that the gap is described well by the
first three terms. Figure 7a shows the corresponding
angular dependence of the superconducting order
parameter Δ(s)(φ), which demonstrates the presence of
the eight nodal points at which the gap vanishes. Note
that the arrangement of nodal points of Δ(s)(φ) on the
Fermi contour (Fig. 7b) in our calculation qualita�
tively agrees with the picture presented in [46].

The scenario of realization of the superconductiv�
ity, which resembles the scenario of the appearance of
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The values of the matrix element for partial contributions { }mn, { }mn, { }mn, { }mn, and the resulting effective

interaction { }mn and the values of the expansion coefficients of the order parameter . Calculations were performed for

parameters t1 = –1, t2 = t3 = 0, U = |t1|, V1 = 0.5|t1|, V2 = 0, and n = 0.95
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s�wave pairing, is also observed in the p�wave channel:
the superconductivity realized in the second�order of
the perturbation theory in the Coulomb interaction is

suppressed by the bare repulsion  only for the first

harmonic . The main contribution to Δ(p)( ) is
introduced by the function of the next harmonic of

p�wave pairing (φ) = (1/ )(Asin3φ + Bcos3φ).

The inclusion of the intersite Coulomb interaction
V2 of the electrons from the second coordination
sphere considerably modifies the phase diagram of the
Shubin–Vonsovsky model. This is demonstrated by
the phase diagrams in Fig. 6b, which are constructed
for the ratio V2/V1 = 0.5, while the other parameters
are not changed. For small V1 values, the phase dia�
gram considerably changes (remaining complex, as in
Fig. 6a); however, the effective interaction constant λ
in this region is still small. For this reason, we will not
consider in detail the region of small V1. For large V1

values, the region in which p�wave pairing is realized
expands, while in the region of low electron densities,

�wave pairing is realized instead of the dxy�wave

phase for the order parameter.

Note that in the region of high electron densities
(n > 0.6) and small V1, the main contribution to �

wave Cooper pairing is introduced by the  matrix.

As the parameter V1 increases, this contribution is sup�

pressed by the bare interaction . Meanwhile,
the superconducting contribution begins to increase.

This contribution is caused by the  matrix with
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the second d�pairing harmonic (φ) =

(1/ )cos6φ, but the corresponding value of the cou�
pling constant λ is still comparatively small. For this
reason, an account of the interactions proportional to
V2 weakly changes this region of the phase diagram.

In the case when V1 ≠ 0 and V2 ≠ 0, the contribution
to the �wave pairing in the region of low concen�

trations is completely induced by the  matrix with

the dominant role of the first d�wave pairing harmonic

(φ) = (1/ )cos2φ. This contribution exceeds
the bare repulsion contribution.

The competition between different superconduct�
ing phases is considerably affected by the inclusion of
the electron hoppings to sites located beyond the first
coordination sphere. This is demonstrated in Fig. 8,
which shows the phase diagram of the model obtained
for the values of parameters U =  and V2/V1 = 0.5
taking into account electron hoppings within the first
two coordination spheres (t2 = 0.15  and t3 = 0). For
this set of electron�hopping parameters, the critical
electron density n

vH at which the van Hove singularity
is realized shifts from the half�filling region (n

vH = 1)
to the region of lower electron densities (see Fig. 4). By
comparing Figs. 6b and 8, we see that the inclusion of
the hopping integral t2 leads to the expansion of the
region of �wave pairing at low electron densities

and to an increase in the absolute values of λ in this
region. (We have shown that the effective interaction
constant λ in the region of small V1 are negligibly small.
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Fig. 7. Angular dependence of the superconducting order parameter Δ(s)(φ) (a) and location of the nodal points at which the gap
Δ(s)(φ) vanishes on the Fermi contour (b), calculated for the parameters t1 = –1, t2 = t3 = 0, U = , V1 = 0.5 , V2 = 0, and

n = 0.95.
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Therefore, further on, the phase diagrams of the model
are constructed for V1 intervals with large λ).

Note that for larger V1 values (V1 � 0.2 ), the
phase diagrams in Figs. 6 and 8 are significantly sim�
plified.

Figure 9 shows the phase diagram calculated by
additionally including electron hoppings to the third
coordination sphere. By comparing phase diagrams in
Figs. 8 and 9, we see that the inclusion of the hopping
integral t3 > 0 leads to an increase in the effective inter�
action at low electron densities and to the additional

t1

expansion of the �wave pairing region. Note that

the inclusion of the hopping integral t3 < 0 results in
the opposite effect.

We emphasize that in Section 6.1 we took into
account Kohn–Luttinger corrections for the effective

interaction that are only proportional to . In this

case, the phase diagram depends on only one parame�

ter VW/U2. However, when the contributions  and

 are taken into account, the dependence of the

phase diagram on the Coulomb interaction parame�
ters again becomes more complicated even for not too
small values of V1. Figure 10 shows the modification of
the phase diagram of the Shubin–Vonsovsky model
that occurs with an increase in Hubbard repulsion
parameter U. The calculations were performed for the
set of parameters t2 = 0.15 , t3 = 0.1 , and V2/V1 =

0.5, as in Fig. 9, but for U = 2 . One can see that at
low electron densities and at electron densities close to
the van Hove singularity, the �wave supercon�

ducting phase with sufficiently large values  ~ 0.1–
0.2 is realized. This result seems important for study�
ing the possibility of implementing the Kohn–Lut�
tinger mechanism to high�temperature superconduc�
tors. Note that for ≈ 0.2, the critical superconduct�
ing temperatures can reach realistic values Tc ~ 100 K.

7. DISCUSSION

The results of the investigation of the Kohn–Lut�
tinger mechanism of superconductivity and the char�
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t1

t1

p

s

sext

0.03

0.01
dx2 − y2

0.5

0.4

0.3

0.2

V1

0.4 0.6 1.00.8

0.1

0.2

dxy

p

n

Fig. 9. Phase diagram of the Shubin–Vonsovsky model in
n–V1 variables constructed for U =  and V2/V1 = 0.5 for

electron hopping parameters t1 = –1, t2 = 0.15 , and t3 =

0.1 . Dotted curves correspond to constant λ values.

t1

t1

t1

p

s

0.15

0.05
dx2 − y2

0.5

0.4

V1

0.4 0.6 1.00.8

0.1

0.2

p

n

0.9

0.8

0.7

0.6

0.3

0.15

Fig. 10. Phase diagram of the Shubin–Vonsovsky model in
n–V1 variables constructed for parameters t1 = –1, t2 =

0.15 , t3 = 0.1 , U = 2 , and V2/V1 = 0.5. Dotted

curves correspond to constant λ values.

t1 t1 t1



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 117  No. 4  2013

THE KOHN–LUTTINGER MECHANISM AND PHASE DIAGRAM 739

acter of the superconducting phase diagram in the
Shubin–Vonsovsky model demonstrate a number of
qualitatively new effects.

The first one is that the consideration of the sec�
ond�order contributions of the perturbation theory in
intersite Coulomb interaction V in the weak�coupling
regime W > U > V leads to significant renormalization
of the effective interaction for two electrons in the
Cooper channel. Such a renormalization is related to
the polarization Kohn–Luttinger effects, resulting in
effective attraction of electrons in different channels
on a two�dimensional square lattice. Note that the
bare Coulomb interaction V always tends to suppress
the Cooper pairing, whereas the second�order polar�
ization effects in V facilitate an effective attraction.
The main result is that the bare interaction suppresses
superconductivity in some channels (in channels with
some angular functions), whereas the second�order
Kohn–Luttinger contributions generate supercon�
ductivity in the channels with other angular functions.
Therefore, despite their parametric smallness, the sec�
ond�order effects in V make the decisive contribution
to the superconductivity mechanism in the Shubin–
Vonsovsky model [39, 44].

The second effect is related to the modification of
the phase diagram of the superconducting phase
caused by the inclusion of the Coulomb interaction. In
the absence of Coulomb interaction (V1 = 0, V2 = 0),
the phase diagram of the 2D Hubbard model is quite
simple and contains only three regions of the p�, dxy�,
and �wave pairing [44] at different electron den�

sities 0 < n < 1. When the first�order contributions in
the Coulomb interaction V1 at neighboring sites are
taken into account, the phase diagram of the super�
conducting state in the Shubin–Vonsovsky model is
only slightly complicated. The three pairing types
mentioned above are supplemented with another
extended s�wave pairing (sext�wave), while the phase
diagram itself contains five regions (two p�wave pairing
regions and dxy�, �, and sext�wave pairing

regions).
However, when the second�order contributions in

the Coulomb interaction at nearest sites (V1) and next�
to�nearest sites (V2) are taken into account, the super�
conducting phase diagram becomes much more com�
plicated and contains more than ten regions with dif�
ferent pairing types s�, sext�, p�, dxy�, and �wave.

The phase diagram is especially complex for small V1

(Fig. 6). For larger V1 values, the phase diagram is
again simplified (see Figs. 8 and 9). Nevertheless, as V1

increases, the presence of the regions with anomalous

s�wave pairing Δ(s)(φ) ~ cos4φ at high electron
densities n  1 in the diagram becomes typical. Note
that such an angular dependence of the superconduct�
ing gap with eight points on the Fermi surface where
the gap vanishes (Fig. 7) agrees well with recent exper�

d
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2

d
x

2
–y

2

d
x

2
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2
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imental results obtained by ARPES for one family of
superconductors based on iron arsenide KFe2As2 [46].

Note also that the inclusion of the long�range hop�
pings (t2 ≠ 0, t3 ≠ 0) shifts the van Hove singularity in
the density of states from the half�filling n

vH = 1 to the
region of lower (or higher) electron densities and, gen�
erally speaking, substantially changes the Fermi con�
tour and the Fermi velocity vF on the contour. Never�
theless, this inclusion does not drastically change the
phase diagram for large V1 values, retaining the domi�
nant role of the �, p�, and anomalous s�wave

pairing regions for V1 � 0.3  (see Figs. 8, 9) and typ�
ical critical temperature values (coupling constants λ
in the different channels).

The final, and quite important, effect is manifested
in the strong expansion of the region of the realization
of the �wave superconducting phase with

increasing Hubbard repulsion parameter U (Fig. 10),
and for U/  = 2–3, near the half�filling n  1, the
critical temperature can reach realistic values of Tc ~
100 K. This result is of special interest because it opens
a realistic way for using the Kohn–Luttinger mecha�
nism in high�temperature superconductivity.

A more detailed analysis of the phase diagram of
the superconducting state at temperatures below Tc

requires the construction of the functional of the Gin�
zburg–Landau free energy and determination of all of
its local and global extrema taking into account
strong�coupling corrections [47, 48] to the fourth (in
the order parameter Δ) terms and calculation of the
pre�exponential factor (consideration of the third�
and fourth�order diagrams) for Tc [8, 15, 28]. In this
case, the situation can arise in which, at least before
taking into account strong�coupling corrections, the
free energy values corresponding to some local min�
ima of the Ginzburg–Landau functional can be very
close to each other. Thus, for some types of crystal lat�
tice, the phases, for example, with dxy� and �

wave symmetries of the order parameter can be
strongly bound [28, 49]. As a result, when the strong�
coupling corrections are taken into account, then near
Tc (or for the second phase transition inside the super�

conducting phase at  < Tc), the states with the
superposition of the two order parameters for the p� or
d�wave pairing (of the AΔxy + B  type) can appear

in principle. In particular (see discussion in [28]), of
interest is the possibility of getting the p + ip or d + id
chiral state, when one of the coefficients, A or B, in
this superposition is imaginary. It was shown experi�
mentally that the px + ipy chiral state with p�wave sym�
metry of the order parameter was obtained in the
anisotropic superconducting A phase in 3He [8–10]
and probably in superconducting ruthenates Sr2RuO4

[50, 51].
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Note in conclusion that the development of the
Kohn–Luttinger ideology in the strong�coupling
regime for nearly half�filling is one of the most urgent
directions in the theory of superconductivity in
strongly correlated electron systems. However, the
solution of this problem requires consideration of
strong intersite correlations in all orders of the pertur�
bation theory. In this case, however, intersite correla�
tions should be described taking into account the sec�
ond�order contributions. One of the scenarios of con�
struction of the theory in this direction involves atomic
representation [52]. The actual models in which
Kohn–Luttinger renormalizations can be included
are the t–J model [53–56] and the generalized t–J–V
model [57], which represent effective low�energy vari�
ants of the Shubin–Vonsovsky model.
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