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1. INTRODUCTION

Crossing resonance appears at the crossing point of
the dispersion curves of two interacting wave fields of
different physical natures. Crossing resonance in a
homogeneous medium is manifested in the lift of the
degeneracy of the interacting wave field frequencies at
this point, in the appearance of two resonance peaks in
the frequency dependences of the Green’s functions
of both wave fields, and in the resonant enhancement
of the excitation of waves of one physical nature by the
waves of the other physical nature coupled to the
former waves. Both the gap between the energy levels
in the spectrum and the spacing between the maxima
of each Green’s function, is determined by the cou�
pling parameter ε between the wave fields.

Crossing resonance in an inhomogeneous medium
was studied in the Bourret approximation [1, 2] (single
scattering of waves from inhomogeneities) in [3–5] for
the extremely inhomogeneous model of the interac�
tion between two wave fields, where the coupling
parameter between the fields is a random function of
the coordinates with zero mean value. In this case, the
interaction between the fields is due only to spatial
fluctuations of this parameter. Disorder�induced
crossing resonance, i.e., the lift of degeneracy and the

formation of a gap in the spectrum at the crossing
point of dispersion curves of wave fields, was pre�
dicted. In contrast to crossing resonance in the homo�
geneous medium, the gap in this case is determined by
the rms fluctuation Δε of the coupling parameter.

In [6–8], we considered the same model with the
inclusion of the multiple scattering of waves from
inhomogeneities of the coupling parameter with zero
mean value. The well�known self�consistent approxi�
mation involving all diagrams with noncrossing corre�
lation lines has been generalized to the case of stochas�
tically interacting wave fields. The results obtained
including the processes of multiple scattering of waves
from inhomogeneities are qualitatively new. Instead of
the lift of the degeneracy of the wave frequencies and
the splitting of resonance peaks of dynamic suscepti�
bilities at the crossing point of the unperturbed disper�
sion curves, a wide single�mode resonance peak
should be observed in each Green’s function. The fine
structure appears at the vertices of these wide peaks in
the form of a narrow resonance in the Green’s�func�
tion curve of one field and a narrow antiresonance at
the vertex of the Green’s�function curve of the other
field.

In view of the results obtained in [6–8], it can be
expected that the inclusion of multiple scattering of

Crossing Resonance of Wave Fields in a Medium
with an Inhomogeneous Coupling Parameter

V. A. Ignatchenko and D. S. Polukhin
L. V. Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036 Russia

Siberian Federal University, Svobodnyi pr. 79, Krasnoyarsk, 660041 Russia
e�mail: vignatch@iph.krasn.ru, polukhin@iph.krasn.ru

Received June 4, 2013

Abstract—The dynamic susceptibilities (Green’s functions) of the system of two coupled wave fields of dif�
ferent physical natures in a medium with an arbitrary relation between the mean value ε and rms fluctuation
Δε of the coupling parameter have been examined. The self�consistent approximation involving all diagrams
with noncrossing correlation lines has been developed for the case where the initial Green’s function of the
homogeneous medium describes the system of coupled wave fields. The analysis has been performed for spin
and elastic waves. Expressions have been obtained for the diagonal elements Gmm and Guu of the matrix
Green’s function, which describe spin and elastic waves in the case of magnetic and elastic excitations, and
for the off�diagonal elements Gmu and Gum, which describe these waves in the case of cross excitation. Change
in the forms of these elements has been numerically studied for the case of one�dimensional inhomogeneities
with an increase in Δε and with a decrease in ε under the condition that the sum of the squares of these quan�
tities is conserved: two peaks in the frequency dependences of imaginary parts of Gmm and Guu are broadened
and then joined into one broad peak; a fine structure appears in the form of narrow resonance at the vertex of
the Green’s function of one wave field and narrow antiresonance at the vertex of the Green’s function of the
other field; peaks of the fine structure are broadened and then disappear with an increase in the correlation
wavenumber of the inhomogeneities of the coupling parameter; and the amplitudes of the off�diagonal ele�
ments vanish in the limit ε  0.

DOI: 10.1134/S1063776113130049

SOLIDS
AND LIQUIDS



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 117  No. 5  2013

CROSSING RESONANCE OF WAVE FIELDS IN A MEDIUM 847

waves also leads to significant qualitative changes in
the results obtained in the Bourret approximation for
the general situation, where both the rms fluctuation
Δε and mean value ε of the coupling parameter
between two wave fields are nonzero [9].

The aim of this work is to generalize the self�con�
sistent approximation to the case of an arbitrary rela�
tion between the mean value and standard deviation of
the coupling parameter between two wave fields of dif�
ferent physical natures and to study changes in the ele�
ments of the Green’s function matrix with variation of
this relation from the situation corresponding to the
homogeneous case (ε ≠ 0, Δε = 0) to the situation cor�
responding to the extremely stochastic interaction
(ε = 0, Δε ≠ 0).

As in [6–8], we study a model problem corre�
sponding to the interaction between spin and scalar
elastic waves.

The paper is organized as follows. The system of
coupled equations for the Green’s functions of spin
and elastic waves is derived in Section 2. The self�con�
sistent approximation for one wave field is discussed in
Section 3, where the self�consistent approximation for
two interacting wave fields in a medium with the inho�
mogeneous coupling parameter between the fields is
also derived. The numerical analysis of the depen�
dence of the elements of the matrix Green’s function
on the ratio of the mean value and rms fluctuation of
the coupling parameter is given in Section 4. The
results are summarized and discussed in Section 5.

2. SYSTEM OF EQUATIONS
FOR GREEN’S FUNCTIONS

We consider the model of a ferromagnet where only
the magnetostriction parameter ε(x) (x = {x, y, x}) is
inhomogeneous. The equations of motion for this
medium include the Landau–Lifshitz equation for the
magnetization vector M and the equation of motion of
the theory of elasticity for the elastic displacement
vector u:

(1)

(2)

where g is the gyromagnetic ratio, p is the density of the
medium, and σij is the stress tensor, where i, j = x, y, z,
and f = f(x, t) is the external mass force. The effective
magnetic field He and stress tensor σij have the form

(3)

(4)

M· g M He×[ ],–=

pu·· i ∂σi j/∂xj fi,+=

He ∂�
∂M
�������– ∂

∂x
����� ∂�

∂ ∂M/∂x( )
����������������������,+=

σi j
∂�
∂uij

�������,=

where uij = (∂ui/∂xj + ∂uj/∂xi)/2 is the elastic strain
tensor. The energy density � is written in the form

(5)

Here, α is the exchange parameter, λ and μ are the
elastic force constants, and H = H0ez + h, where H0 is
the external static magnetic field along the z axis and h
is the external ac magnetic field perpendicular to the z
axis. The magnetoelastic parameter ε(x) can be repre�
sented in the form

(6)

where ε and Δε are the mean value and rms fluctuation
of this parameter, respectively, and ρ(x) is a centered

(  = 0) normalized (  = 1) random func�
tion of the coordinates. Angle brackets stand for aver�
aging over the ensemble of the realizations of the cor�
responding random function.

The stochastic properties of ρ(x) are characterized
by the correlation function depending on the differ�
ence r = x – x',

(7)

or by the Fourier transform of the correlation func�
tion, i.e., the spectral density

(8)

where d is the dimension of the space.
The substitution of energy density (5) into equa�

tions of motion (1) and (2) provides the following cou�
pled system of equations for the magnetization M and
displacement u:

(9)

(10)

where vl =  and vt =  are the longi�
tudinal and transverse components of the velocity of
elastic waves, respectively.

We linearize Landau–Lifshitz equation (9) in the
usual way (Mz ≈ M; Mx, My � M) and consider a model
problem for elastic waves, where the condition uz = 0,
as well as the condition vl = vt = vu, is imposed. Sup�
posing Mx, My ∝ exp(iωt) and introducing circular
projections

(11)

� α
2
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we arrive at the following coupled system of two scalar
equations for resonance projections m+ and u+ (below,
the superscript + will be omitted):

(12)

(13)

Here,

(14)

where ω0 is the frequency of the homogeneous ferro�
magnetic resonance, which depends on the magnetic
field and the demagnetizing factors of the sample and

vu = vt =  is the velocity of the elastic wave.
We represent the system of Eqs. (12) and (13) in the

matrix form

(15)
where

(16)

(17)

(18)

It can be seen in this representation that αm and μu are
the normalized variable for the coupled system of
equations. This normalization is used for the matrix
Green’s function satisfying the equation

(19)

Here,

(20)

where Gmm and Gmu (Guu and Gum) are the spin (elastic)
Green’s functions at the magnetic and elastic point
excitations, respectively, and

(21)

is the identity matrix.

We represent the Green’s functions  in the form

(22)

α ∇2 νm+( )m εM∂u
∂z
�����– Δε( )Mρ x( )∂u

∂z
�����– h,–=

μ ∇2 νu+( )u εM∂m
∂z
������ Δε( )M ∂

∂z
���� ρ x( )m( )+ + f.–=

νm
ω ω0–
αgM

�������������, νu
ω2

vu
2

�����,= =

μ/p

L̂ x( ) R̂ x( )–[ ]X̂ x( ) F̂ x( ),=

L̂ x( )
∇2 νm+ εM

μ
������ ∂

∂z
����–

εM
α

������ ∂
∂z
���� ∇2 νu+

,=

R̂ x( ) = 
0 Δε

μ
�����Mρ x( ) ∂

∂z
����

Δε
α

�����M ∂
∂z
����ρ x( ) ρ x( ) ∂

∂z
����+⎝ ⎠

⎛ ⎞– 0

,

X̂ x( ) αm

μu
, F̂ x( ) h–

f–
.= =

L̂ x( ) R̂ x( )–[ ]Ĝ x x0,( ) δ x x0–( )Ê.=

Ĝ x x0,( ) Gmm x x0,( ) Gmu x x0,( )

Gum x x0,( ) Guu x x0,( )
,=

Ê 1 0

0 1
=

Ĝ

Ĝ Ĝ0 Ĝ ',+=

where  is the initial Green’s function and  is the
correction caused by the inhomogeneous coupling
parameter.

The substitution of Eq. (22) into Eq. (19) gives the

following equations for  and :

(23)

(24)

Equation (23) for the initial Green’s function can be
solved exactly. We analyze this solution below. Here,
we only note that, according to the form of the opera�

tor , the initial Green’s function (x, x0) describes
coupled magnetoelastic waves in a homogeneous
medium. Thus, in contrast to single�field situations
and to the case of the stochastic interaction between
wave fields (ε = 0, Δε ≠ 0), which was considered in
[6–8], the Green’s function formalism in this case is
developed against the background of the initial system
of coupled wave fields.

We now analyze Eq. (24) for the correction (x,
x0). According to the general rules, the formal solution
of Eq. (24) can be generally represented in the form of
the integral of the product of the unperturbed Green’s
function and right�hand side of this equation. The
substitution of this solution into Eq. (22) gives the gen�
erating integral equation for the matrix Green’s func�

tion :

(25)

It is inconvenient for subsequent calculations that

the elements of the matrix  contain the derivatives of
the random function ρ(x). For this reason, we trans�
form the integral in Eq. (25) through integration by
parts, as was made earlier in [8, 10], and finally arrive
at the generating integral equation for the matrix

Green’s function  in the form

(26)

Here,

(27)

Ĝ0 Ĝ '

Ĝ0 Ĝ '

L̂ x( )Ĝ0 x x0,( ) δ x x0–( )Ê,=

L̂ x( )Ĝ ' x x0,( ) R̂ x( )Ĝ x x0,( ).=

L̂ Ĝ0

Ĝ'

Ĝ

Ĝ x x0,( ) Ĝ0 x x0,( )=

+ Ĝ0 x x ',( )R̂ x '( )Ĝ x ' x0,( ) x '.d∫

R̂

Ĝ

Ĝ x x0,( ) Ĝ0 x x0,( )=

+ γ Ŷ0 x x ',( )P̂ x '( )Ĝ x ' x0,( ) x '.d∫

Ŷ0 x x ',( )

=  
Gmm

0 x x ',( ) μ
α
���
∂Gmu

0 x x ',( )
∂z '

����������������������

Gum
0 x x ',( ) μ

α
���
∂Guu

0 x x ',( )
∂z '

����������������������

,
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(28)

(29)

Using the usual procedure of successive iterations
of Eq. (26), we obtain an infinite series for the matrix

Green’s function (x, x0). Averaging this series over
the ensemble of the realizations of the random func�
tions ρ(x) and decoupling correlation functions using
the Gauss formula, we obtain the perturbation series
for the averaged Green’s functions. The matrix Dyson
equation is obtained from these series in the form

(30)

where the mass operator (self�energy) has the form

(31)

Here, the elements of the matrices  are the initial
Green’s functions and their spatial derivatives,

whereas the elements of the matrices  are the desired
averaged Green’s functions and their spatial deriva�
tives:

(32)

(33)

(34)

and K(x', x'') ≡ K(x' – x'') is the correlation function
given by Eq. (7).

The diagrams of the matrix elements of the Green’s
functions and mass operators are shown in Fig. 1. The
matrix elements of Dyson equation (30) in the dia�
gram representation are shown in Fig. 2. It can be seen
that each of four elements of the Green’s functions is

P̂ x '( ) 0 α
μ
���ρ x '( ) ∂

∂z '
�����

ρ x '( ) 0

,=

γ Δε

αμ
���������M.=

Ĝ

G
ˆ

x x0,( ) Ĝ0 x x0,( )=

+ Ŷ0 x x ',( )Q̂ x ' x '',( )Y
ˆ

x '' x0,( ) x ' x '',dd∫∫

Q̂ x ' x '',( ) γ2X̂0 x ' x '',( )J K x ' x '',( )⋅=

+ γ4 X̂0 x ' x1,( )X̂0 x1 x2,( )X̂0 x2 x '',( )J∫∫
× K x ' x2,( )K x1 x '',( ) K x ' x '',( )K x1 x2,( )+[ ]

× dx1dx2 ….+

X̂0

Y
ˆ

X̂0 x ' x '',( )

μ
α
���
∂Gum

0 x ' x '',( )
∂z'

������������������������
∂2Guu

0 x ' x '',( )
∂z '∂z''

�������������������������

Ĝmm
0

x ' x '',( ) α
μ
���
∂Gmu

0 x ' x '',( )
∂z ''

������������������������

,=

Y
ˆ

x '' x0,( )
Gmm x '' x0,( ) Gmu x '' x0,( )

α
μ
���
∂Gum x '' x0,( )

∂z''
������������������������� α

μ
���
∂Guu x '' x0,( )

∂z ''
������������������������

,=

J 0 1

1 0
,=

expressed in terms of all four elements of the matrix
mass operator.

We write the above relations in the k space. All
quantities in the randomly homogeneous medium
depend only on the difference r = x – x'. Conse�
quently, the Fourier transforms of all quantities have
the form

(35)

The solution of Eq. (23) for the initial Green’s
function in the k space has the form

(36)

where

(37)

D0 is the determinant of the system of Eqs. (12) and
(13), which couples the spin and elastic waves in a
united system of magnetoelastic waves:

(38)

G
ˆ

r( ) G
ˆ

k( )eik r⋅ k,d∫=

G
ˆ

k( ) 1

2π( )d
����������� G

ˆ
r( )e ik– r⋅ r, etc.d∫=

Ĝ0 k( ) Gmm
0 k( ) iGmu

0 k( )

iGum
0 k( )– Guu

0 k( )
,=

Gmm
0 k( )

νu k2–

2π( )dD0
����������������, Gmu

0 k( )
ε/μ( )Mkz

2π( )dD0
��������������������,= =

Gum
0 k( )

ε/α( )Mkz

2π( )dD0
��������������������, Guu

0 k( )
νm k2–

2π( )dD0
����������������,= =

D0 νm k2–( ) νu k2–( ) γ0
2kz

2
,–=

,

,

,

,

,

,

,

,

,

,

.

,

Quu

Qum

Qmm

Qmu

Guu
0

Gmm
0

Gmu
0

Gum
0

Guu Gmm

GmuGum

Fig. 1. Diagram notation of the elements of the matrix

Green’s functions  and  and mass operator .Ĝ0 G
ˆ

Q̂
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(39)

For the one�dimensional case (kz = k, d = 1), the
elements of the initial Green’s function in the r space
can be found in an explicit form from Eqs. (37). To this
end, we represent D0 in the form

(40)

where

(41)
In this case, each element of matrix (36) can be written
in the form of the sum of two fractions:

(42)

γ0
ε

αμ
���������M.=

D0 k2 h1
2–( ) k2 h2

2–( ),=

h1 0.5 νu νm γ0
2 νu νm γ0

2+ +( )
2

4νuνm–+ + +[ ],±=

h2 0.5 νu νm γ0
2 νu νm γ0

2+ +( )
2

4νuνm––+ +[ ].±=

Gmm
0 k( )

Guu
0 k( )

1

2π h2
2 h1

2–( )
���������������������� h1

2 νu–

h1
2 νm–

⎩
⎪
⎨
⎪
⎧

=

× 1

k2 h1
2–

������������� + νu h2
2–

νm h2
2–

1

k2 h2
2–

�������������

⎭
⎪
⎬
⎪
⎫

,

Gmu
0 k( )

Gum
0 k( )

εMk

2π h2
2 h1

2–( )
����������������������=

× 1

k2 h1
2–

�������������– 1

k2 h2
2–

�������������+⎝ ⎠
⎛ ⎞ 1/μ

1/α
.

The inverse Fourier transform of Eqs. (42) gives the
matrix elements of the Green’s function in the homo�
geneous medium in the form

(43)

where r = .

The frequency spectrum of magnetoelastic waves
in the homogeneous medium was analyzed in [11–
17]. The main features of this spectrum are the lift of
degeneracy of frequencies of spin and elastic waves at
the crossing point of their unperturbed dispersion
curves (k = kr, ω = ωr) and the appearance of a gap in
the spectrum of coupled waves whose width Λ is pro�
portional to the coupling parameter ε,

(44)

where ωM = gM.

Expression (36) describes the form of the matrix
elements of the initial Green’s function. The intro�
duction of arbitrarily small damping results in the
appearance of imaginary components in these ele�
ments. In this case, the imaginary part of each diago�

nal element of the matrix Green’s function, (ω)

Gmm
0 r( )

Guu
0 r( )

ie
ih1r

2h1 h2
2 h1

2–( )
������������������������ h1

2 νu–

h1
2 νm–

=

+ ie
ih2r

2h2 h2
2 h1

2–( )
������������������������ νu h2

2–

νm h2
2–

,

Gmu
0 r( )

Gum
0 r( )

εMi e
ih2r

e
ih1r

–( )

2 h2
2 h1

2–( )
�������������������������������� 1/μ

1/α
,=

x ' x''–

Λ ω+ ω–– εM

μ
������ 2ωMωr,= =

Gmm
0

Fig. 2. Diagram representations for the matrix elements of Dyson equation (30). The arrows indicate the points at which the
derivatives are calculated.
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and (ω), at k = kr has two separated peaks at the

points  with the spacing Λ between them.
The amplitudes of the spin (m) and elastic (u) waves

in the homogeneous case (ε ≠ 0, Δε = 0) are expressed
in terms of the initial matrix Green’s function as

(45)

in the r space and

(46)
in the k space, where

(47)

(48)

The amplitudes m(k) and u(k) can be written in the
explicit form

(49)

According to Eqs. (47) and (48), the normalization of
the Green’s functions in this work differs from the nor�
malization of formulas in [8]. For agreement between
these normalizations, quantities α and μ in Eqs. (15),
(16), (22), (23), and (27)–(30) in [8] should be inter�
changed, i.e., α  μ, μ  α. This does not concern
the other formulas in [8] and the results obtained in
that work, which are valid in the new normalization.

After some algebra, the matrix Dyson equation for
the total Green’s function given by Eq. (30) in the k
space has the form

(50)

where

(51)

(52)

(53)

Guu
0

ω±

X̂ x( ) Ĝ0 x x0,( )F̂ x0( ) x0d∫=

X̂ k( ) 2π( )dĜ0 k( )F̂ k( )=

X̂ x( ) αm x( )
μu x( )

, F̂ x0( ) h x0( )–

f x0( )–
,= =

X̂ k( ) αm k( )
μu k( )

, F̂ k( ) h h( )–

f k( )–
.= =

m k( ) 2π( )d

α
����������� Gmm

0 k( )h k( ) iGmu
0 k( ) f k( )+[ ],–=

u k( ) 2π( )d

μ
����������� Guu

0 k( ) f k( ) iGum
0 k( )h k( )–[ ].–=

G
ˆ

k( ) Ê

Ĝ0
1–

k( ) 2π( )2dÊ1 k( )Q̂ k( )Ê2 k( )–
����������������������������������������������������������������,=

G
ˆ

k( ) Gmm k( ) iGmu k( )

iGum k( )– Guu k( )
,=

Q̂ k( ) Quu k( ) Qum k( )

Qmu k( ) Qmm k( )
,=

Ê1 k( ) 1 0

0 μ/αikz–
,=

Ê2 k( ) 1 0

0 α/μikz

.=

We emphasize that the Fourier transforms of the off�
diagonal elements of matrix (51) are written in the

form of the product of an imaginary unit by (k)

and (k), and the matrix (k) has the form where
the positions of the elements Qij(k) differ from the

positions of the elements in the matrix (k). The
amplitudes m and u are expressed in terms of the

matrix Green’s functions (x, x0) and (k) similar to
Eqs. (45)–(49).

Similar to [8], we seek an expression for the mass

operator (k) in the self�consistent approximation.
To this end, the noncrossing correlation approxima�
tion (see below) should be generalized to the case

where the initial Green’s function (k) in the uni�
form space describes coupled wave fields of different
physical natures.

3. SELF�CONSISTENT APPROXIMATION
FOR TWO COUPLED WAVE FIELDS

Before deriving the self�consistent approximation
for two stochastically interacting fields, we briefly
recall the main stages of the derivation of a similar
approximation for one wave field (these stages were
discussed in more detail in [8]). This variant of the
self�consistent approximation was used at the end of
the 1950s and at the beginning of the 1960s for a prob�
lem that does not concern inhomogeneous media. It
was proposed by Migdal [18] when studying the elec�
tron–phonon interaction in the homogeneous
medium and was analyzed in detail by Pines [19, 20],
Puff and Whitfield [21], and Abrikosov, Gor’kov, and
Dzyaloshinskii [22].

We briefly present the key results of those works.
The system of equations for electrons and photons is
approximately reduced to one equation for the elec�
tron Green’s function G(xi, xj), where the points xi and
xj are related by the electron–phonon interaction
operator D(xi, xj). As a result, the Dyson equation for
the electron Green’s function is obtained in the stan�
dard form

(54)

The Migdal self�consistent approximation is based on
the representation of the mass operator Q(x', x'') in the
form

(55)

In the same years, a similar variant of the self�con�
sistent approximation was independently proposed by
Kraichnan [23], who studied the effect of inhomoge�
neities on the dynamic susceptibility of disordered sys�
tems. The derivation of this self�consistent approxi�

Gmu

Gum Q̂

G
ˆ

G
ˆ

G
ˆ

Q̂

Ĝ0

G x x0,( ) G0 x x0,( )=

+ G0 x x ',( )Q x ' x '',( )G x '' x0,( ) x 'd x ''.d∫∫

Q x ' x '',( ) G x ' x '',( )D x ' x '',( ).≈
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mation from the expansion of the vertex part of the
Green’s function can be found in [24]. The Dyson
equation has the form of Eq. (54) and the mass opera�
tor is approximately represented in the form

(56)
where γ and K(x', x'') are the rms fluctuation and nor�
malized correlation function of inhomogeneities,
respectively (K(x', x') = 1).

A similar self�consistent approximation called the
self�consistent Born approximation [22, 25, 26] is
used in the theory of the scattering of electrons from
impurities.

Although the Migdal approximation, Kraichnan
approximation, and self�consistent Born approxima�
tion were proposed for different problems, they are
mathematically identical and have a common con�
straint: the expansion of the Green’s function
obtained in these approximations contains all dia�

grams appearing in the exact expressions for (x, x0)
except for the diagrams with crossing interaction/cor�
relation lines between different points. For this reason,
as in [8], this variant will be called below the noncross�
ing correlation approximation (NCA), where correla�
tions are treated in a wide sense as stochastic correla�
tions and averaged physical interactions.

In the k space, the NCA is used in two different
forms. The first form involves the exact representation

(k) in terms of the normalized mass operator Mk =
(2π)dQ(k),

(57)

for which the approximate self�consistency equation is
derived from Eq. (55) or (56):

(58)

where S(k) is the Fourier transform of the correlation
function K(x', x'') and ν is the normalized frequency.

In the second form, Eq. (55) or (56) is substituted
into Eq. (54), leading to the following approximate
nonlinear integral self�consistency equation for the

Green’s function (k):

(59)

The NCA approach is widely used both in the cal�
culations of the effects of the electron–phonon inter�
action (see, e.g., [27, 28]) and for various problems of
hydrodynamics and stochastic radiophysics (see, e.g.,
[29–32]). The NCA was also generalized to the case of
the inhomogeneity of nonlocal (off�diagonal) terms of
the phenomenological Hamiltonian: exchange con�
stants in ferromagnets and force constants in elastic
media. The integral term of the Dyson equation in this

Q x ' x '',( ) γ2G x ' x '',( )K x ' x '',( ),≈

G

G

G k( ) 1

2π( )d
����������� 1

ν k2– Mk–
����������������������,=

Mk γ2 S k k1–( ) k1d

ν k1
2– Mk1

–
�������������������������,∫≈

G

G k( ) G0 k( ) γ2 2π( )2dG0 k( )G k( )+≈

× S k k1–( )G k1( ) k1.d∫

case contains the spatial derivatives of the Green’s
functions rather than the functions themselves and the
mass operator is a matrix whose components contain
the second derivatives of the initial Green’s functions
[10]. We note that the authors of [10, 32] were inaccu�
rate in terminology: they considered the NCA as a
variant of another popular self�consistent approxima�
tion—the coherent potential approximation, which
was proposed by Soven [33] and Taylor [34] and was
further developed in numerous works (see, e.g., [35–
41]).

The applicability condition of the NCA for the
problem of the scattering of electrons from impurities
was approximately estimated in [22, 25, 26]:

(60)

where kF is the Fermi momentum and l is the mean
free path of the electron. For the problem of the scat�
tering of waves from impurities in the continuous
medium in the case where waves in the region of a cer�
tain resonance wavenumber kr play a dominant role,
condition (60) can be transformed to the form

(61)

where kc is the correlation wavenumber (  = rc is the
correlation radius of inhomogeneities). In [8], we sup�
plemented the estimate of the applicability of the
NCA, considering the limiting case kc = 0, where the
series for the Green’s function can be summed exactly.
In this case, the random functions ρ(x) become ran�
dom variables whose stochastic properties are
described by a certain distribution function f(ρ) (a
similar model of independent grains in a polycrystal
was proposed in [42] to calculate the lineshape of the
ferromagnetic resonance). The distribution function
f(ρ) for the exact averaged Green’s function is a Gaus�
sian function (Keldysh model, see [26]) and the imag�
inary part of the Green’s function has the form

(62)

where ξ = ν – k2 and σ is the rms fluctuation of the fre�
quency.

At the same time, the integral self�consistency
equation of the NCA in the limit kc  0 is also solved
exactly and gives the following expression for the aver�
aged imaginary part of Green’s function [32]:

(63)

The forms of functions (62) and (63) differ from each
other (see Fig. 5 in [8]). However, both Green’s func�
tions, exact (62) and approximate (63), give the same
results for the mean frequency and its standard devia�

kFl( ) 1–
 � 1,

kc/kr � 1,

kc
1–

G '' ν k,( ) π

2π( )7/2σ
����������������� ξ2

2σ2
�������–⎝ ⎠

⎛ ⎞ ,exp=

GNCA'' ν k,( )
2σ( )2 ξ2–

2π( )3
2σ2

������������������������, ξ 2σ,≤

0,   ξ 2σ.>⎩
⎪
⎨
⎪
⎧

=
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tion characterizing the half�width of the resonance
line:

(64)

Formulas (62) and (63) will be used below when dis�
cussing the results of this work.

In [8], we studied the stochastic interaction (ε = 0,
Δε ≠ 0) between two wave fields. The system of coupled

Dyson equations for the averaged spin, , and elas�

tic, , Green’s functions had the form

(65)

(66)

where the elastic mass operator Qu appeared in the

equation for the spin Green’s function , whereas
the spin mass operator Qm entered into the equation

for the elastic Green’s function . To introduce the

ν〈 〉 k2
, ν ν〈 〉 2–( )〈 〉 σ.= =

Gm

Gu

Gm x x0,( ) Gm
0 x x0,( )=

+ Gm
0 x x ',( )Qu x ' x '',( )Gm x '' x0,( ) x ' x '',dd∫∫

Gu x x0,( ) Gu
0 x x0,( )=

+
∂Gu

0 x x ',( )
∂z '

��������������������Qm x ' x '',( )∫∫

×
∂Gu x '' x0,( )

∂z ''
����������������������dx ' x '',d

Gm

Gu

generalized NCA, these mass operators were
expressed in terms of the desired Green’s functions as

(67)

(68)

It was shown that the substitution of these expressions
into Eqs. (65) and (66) and the subsequent iteration of
these equations really lead to the NCA, where the
expansions of the Green’s functions include all dia�
grams except for the diagrams with crossing correla�
tion lines.

We now derive approximate self�consistent equa�

tions for the mass operator (k). Following the ideas
proposed in [18, 23] and their development in [8, 32],
we approximately express the matrix elements of the

mass operator (x', x'') in terms of the elements of the

desired Green’s function (x', x''):

(69)

The Fourier transform provides expressions for the
components of the mass operator tensor in the k space:

(70)

The system of integral equations can be simplified
by introducing one normalized mass operator instead
of Qum and Qmu. To this end, we represent Eq. (50) in
the form

(71)

Qm x ' x '',( ) γ2Gm x ' x '',( )K x ' x '',( ),≈

Qu x ' x '',( ) γ2∂2Gu x ' x '',( )
∂z '∂z ''

������������������������K x ' x '',( ).≈

Q̂

Q̂

G
ˆ

Qmm x ' x '',( ) γ2Gmm x ' x '',( )K x ' x '',( ),≈
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α
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where

(72)

(73)

We represent the off�diagonal elements (k) and

(k) of matrix (71) in the form

(74)

(75)

where

(76)

We now verify that resulting expression (76) is correct.
Changing k to k1 in Eqs. (74) and (75), substituting
these expressions into the integrands in Eqs. (70), and
multiplying the resulting formulas for Qmu(k) and

Qum(k) by (2π)d /εM, we make sure that the equa�
tions are identical. Introducing the normalized diago�
nal mass operators

(77)

we obtain the final form of the system of Dyson equa�
tions

(78)

and the self�consistency equations for the mass opera�
tors Mk, Uk, and Tk:

(79)

Amm νu k2– 2π( )dkz
2Qmm k( ),–=

Auu νm k2– 2π( )dQuu k( ),–=

Amu i ε
μ
��Mkz 2π( )d α

μ
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Aum i ε
α
���Mkz– 2π( )d μ

α
��� ikzQmu k( ),–=
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ˆ 1–

k( ) Auu Amu–
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.=
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Gum

Gmu k( )
ε/μ( )Mkz 1 Tk+( )
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ε/α( )Mkz 1 Tk+( )

2π( )d
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εM

���������Qmu k( ) 2π( )d αμ
εM

���������Qum k( ).= =

αμ

Mk 2π( )dkz
2Qmm k( ), Uk 2π( )dQuu k( ),= =

Gmm k( )
νu k2– Mk–

2π( )dDk
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Uk γ2 k1z
2 Dk1
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where

Since all required variables Mk, Uk, and Tk also
appear in the denominator of each integrand,
Eqs. (79) constitute the system of complex coupled
integral equations with respect to these variables. This
system can be represented in the form of a system of
infinite continued fractions.

For numerical analysis, it is convenient to write
Eqs. (79) in the form of recurrence formulas

(80)

where

(81)

and superscript n is the number of terms taken into
account in continued fractions.

4. STUDY OF THE ELEMENTS
OF THE MATRIX GREEN’S FUNCTION

Below, we analyze system (80) only for one�dimen�
sional inhomogeneities of the coupling parameter
ε(x) = ε(z). In this case, d = 1 in Eqs. (78) and (79) and
the vector k has only one component kz = k.

Simulating the correlation properties of the ran�
dom function ρ(x) by an exponential correlation func�
tion, we obtain the expressions

(82)

for the one�dimensional case, where r =  and kc

is the correlation wavenumber of inhomogeneities

(rc =  is the correlation radius). We first consider
the first term of a continued fraction and set n = 1 in
Eqs. (80). In this case, these equations have the fol�
lowing form corresponding to the Bourret approxima�
tion [1]:

(83)
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Changing k to k1 in Eq. (40), we represent  in the

form

(84)

where h1 and h2 are given by Eqs. (41). Substituting
S(k) into Eqs. (83) and performing integration using
the residue theorem, we obtain Mk, Uk, and Tk in the
first approximation:

(85)

where Am, u = νu, m – k2 – , B = k2 + . The analyt�
ical expressions for Mk, Uk, and Tk even in the first
approximation contain a damping term proportional
to ikc in the denominator. For this reason, it is unnec�
essary to introduce an artificial damping term into
Eqs. (83) to remove divergence in subsequent numeri�
cal calculations.

The substitution of Eqs. (85) into Eqs. (78) gives

the elements of the matrix Green’s function  in the
first approximation. Further, using Eqs. (80) and mak�
ing successive substitutions, we obtain infinite
branched continued fractions. In the numerical calcu�
lation of each next approximation n, the number of
peaks in imaginary parts of the elements of Green’s
function (78) increases: in the first approximation at
n = 1 (Bourret approximation), there are four peaks in
each of the diagonal elements Gmm(ω) and Guu(ω); at
n = 2, there are six peaks; at n = 3, there are eight
peaks; etc. The area under each curve does not change
in the process of an increase in the number of succes�
sive substitutions and each curve tends to its extreme
value. All below figures show the shape of the elements
of the matrix Green’s function corresponding to the n
value ensuring the convergence of successive approxi�
mations. This n value depends on the chosen parame�
ters of the system, primarily on kc. For large kc values,
several successive approximations can be sufficient;
for small kc values, tens and even hundreds successive
numerical integrations of recurrence relations (80) are
required.

With the growth of inhomogeneities, ε decreases
from its initial value ε0 to zero and Δε increases from

zero to a certain maximum value  which is closed

to ε0. For simplicity, we set  = ε0 and analyze the
form of the diagonal and off�diagonal elements of the
Green’s functions at the crossing�resonance point k =
kr with an increase in Δε and with a decrease in ε with

the conservation of the sum of the squares of these
quantities,

(86)

Samples in which intermediate states between two
extreme states—homogeneous state (ε = ε0, Δε = 0)
and completely stochastic state (ε = 0, Δε ≠ 0)—will
be experimentally implemented by varying the com�
position or processing method should not necessarily
satisfy Eq. (86). This condition is used only for the
consistent consideration of all intermediate states with
any ratios (ε/ε0)

2 and (Δε/ε0)
2.

Figure 3 shows several characteristic pictures of
change in the shapes of the imaginary parts of the
Green’s functions (dashed lines) (ω) and (solid

lines) (ω) with an increase in Δε for a small kc value

corresponding to κc ≡ kc/kr = 0.8 × 10–2. Figure 3a cor�
responds to the coupling parameter close to homoge�
neous and describes the standard splitting of each
Green’s function into two resonance peaks, which
corresponds to the lift of degeneracy of frequencies in
the spectrum of spin and elastic waves at the crossing
resonance point. The peaks are spaced by Λ propor�
tional to the coupling parameter ε. The width of the
peaks is determined both by damping proportional to
the correlation radius kc and by the stochastic distribu�
tion of frequencies, which is proportional to Δε, so
that the latter contribution prevails at this relation
between Δε and κc. With an increase in Δε (Figs. 3b,
3c), the width of the peaks, which is due to the sto�
chastic distribution of frequencies, increases and
peaks continuously approach each other until they are
joined into one broad peak (Fig. 3d). A fine structure
appears on the top of this broad peak: a narrow reso�
nance is formed on the top of the wide peak of the
function (ω) and a narrow antiresonance is
formed on the top of the wide peak of the function

(ω). With a further increase in Δε (Fig. 3e), the for�

Tk
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mation of the fine structure continues and the picture
similar to that studied in [8] appears at the full ran�
domization of the system (Fig. 3f, Δε = ε0, ε = 0). It
was shown in [8] that resonance and antiresonance of
the fine structure have approximate mirror symmetry
in the state of the full randomization of the coupling
parameter. Both resonance and antiresonance lines
have the widths proportional to kc and, at small kc val�
ues, can be much narrower than those shown in
Figs. 3d–3f. With an increase in kc, the widths of reso�
nance and antiresonance lines of the fine structure
increase, whereas the width of the wide peak decreases
owing to the exchange narrowing effect. As a result,
the fine structure disappears first in the function

(ω) and, then, in the function (ω). Just the kc

value at which the fine structure for Δε = ε0 and ε = 0

should disappear only in the function (ω) was
chosen for the set of pictures shown in Fig. 4. The
peaks of the crossing resonance in Figs. 4a–4c are
much narrower and higher than those shown in
Figs. 3a–3c (the scales of the vertical axes in these fig�
ures are different). This is due to the exchange narrow�
ing effect, which is manifested in Fig. 4 stronger than
in Fig. 3 owing to a larger kc value in the former figure.
With an increase in Δε, these peaks approach each
other and are broadened and the fine structure is
formed (Fig. 4d) with wider resonance and antireso�
nance lines than those in Fig. 3. The “decomposition”
of this fine structure begins in Fig. 4e, and the fine
structure in the function (ω) is already absent in
Fig. 4f corresponding to the results of [8].

To discuss the results, we first consider the limiting
case of infinite correlation radius (kc = 0). In this case,
S(k – k1)  δ(k – k1) in integral self�consistency
equations (79) for mass operators, integrals are calcu�
lated exactly, and Eqs. (79) have the form of a system
of algebraic equations:

(87)

According to the first two equations in Eqs. (87),

(88)

Since the product MkUk cancels out, it follows from
Eq. (88) that

(89)

Passing from the normalized frequencies to ω on
the right�hand side of Eq. (89) and using Eqs. (78), we

conclude that the ratio of the diagonal elements 

Gmm'' Guu''

Gmm''

Gmm''
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2Dk
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Mk νm k2– Uk–( ) Uk νu k2– Mk–( ).=

Mk

Uk

�����
νu k2–

νm k2–
��������������.=

Gmm

and  at kc = 0 near the crossing resonance fre�
quency ω = ωr is given by the expression

(90)

where vm = 2αgMkr is the velocity of spin waves in the
region of crossing resonance. The inequality vm < vu is
satisfied near the first crossing point of the dispersion
curves of the spin and elastic waves. Therefore, at kc =
0 in this region, according to Eq. (90), we have the ine�
quality

(91)
Thus, Eqs. (90) and (91) obtained in [8] for the case
ε = 0 are valid for any relations between ε and Δε.

At the same time, it can be seen in Figs. 3 and 4
that, at kc ≠ 0 at the point ω = ωr, we have the other
relation

(92)

whereas Eq. (91) is satisfied at all other frequencies.
Thus, Eq. (92) obtained in [8] for the case ε = 0 and
any values kc ≠ 0 is valid for any relations between ε and
Δε. The universality of this relation supports the
assumption made in [8] that it is a consequence of the
general equiprobable distribution of the energy over
fluctuation oscillations of both physical fields at the
crossing resonance point.

According to the results of this work, the physical
picture is as follows. The value kc = 0 corresponds to
the model of independent grains in a polycrystal; for
two interacting fields, this model is an ensemble of
homogeneous samples differing only in the coupling
parameter in each nth sample. The spectrum of cou�
pled magnetoelastic fields in each sample has a gap
Λn ∝  at the crossing resonance point k = kr. The
fields in different samples are independent of each
other. The entire system is characterized by the aver�

aged matrix Green’s function (ω, k), which depends
on the averaged parameters of the system: the mean
value ε =  and the standard deviation Δε = 
of the coupling parameter. The peaks of the diagonal

elements (ω, k) and (ω, k) of the Green’s
function in the region of crossing resonance are spaced
by Λ ∝ ε and have the width Δω ∝ Δε. Damping in the
system is absent. Inequality (91) is satisfied for all fre�
quencies inside these peaks.

At an arbitrarily small value kc ≠ 0, fluctuation
components appear in the spin and elastic fields along
with the interaction both between these components
and between each of them and coherent (averaged)
components of these fields. At the crossing resonance
point k = kr, ω = ωr, the energy distribution over fluc�
tuation components of both fields should be equiprob�
able; equality (92) obtained in numerical calculations
likely follows from this equiprobable energy distribu�

Guu

Gmm ω kr,( )
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Ukr
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�����,= =
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tion. How are the Green’s functions transformed in
order to satisfy this law? This is shown in Fig. 5, which
corresponds to the same parameters ε and Δε as in
Figs. 3e and 4e, but corresponds to the value κc = 0.8 ×
10–3, which is an order of magnitude smaller than that

in Fig. 3e. The function (ω) “raises” a thin
“feeler” (fine�structure resonance) at the point ω =

ωr, whereas the function (ω) “drops” a similar
feeler (fine�structure antiresonance) at the same
point. These feelers touch each other between the
maxima of wide peaks of both functions, and the
required equality is satisfied at the point ω = ωr. The

inequality (ω) < (ω) remains valid for all other
frequencies except for ω = ωr and the shape of the
functions remains almost unchanged compared to the
case kc = 0. In view of this interpretation, the fast for�
mation of the fine structure with an increase in Δε is

natural: the fine structure should appear as soon as the

difference between the functions (ω) and (ω)
near ω = ωr becomes noticeable. The fine structure
appears in Fig. 3d already at (Δε/ε0)

2 = 0.3 and is well
developed in Fig. 4d at (Δε/ε0)

2 = 0.5.

The appearance of bends in the slopes of the
formed wide peak (Figs. 3e, 4e, and 5) is a surprising
effect. Since physical reasons for the appearance of
these bends in the slopes of the peak are apparently
absent, it was assumed that it is a manifestation of a
defect of the NCA approach. To verify this assump�
tion, we considered a simple model of the summation

of two noninteracting peaks, (ν), whose maxima
are closer to each other than the widths of these peaks.
According to Eq. (63), such a system of two peaks in
the NCA for one�dimensional inhomogeneities at kc =
0 is described by the expressions

(93)

where ξ0 is the spacing between the peaks. In this case,
according to Eqs. (62), the exact Green’s functions at
kc = 0 for one�dimensional inhomogeneities are given
by the formula

(94)

These functions and envelopes of their sums at ξ0 =
σ/2 are shown in Fig. 6 by the dashed and solid lines,
respectively. It can be seen that the sum of the exact
(Gaussian) peaks gives the smooth slopes of the result�
ing peak (Fig. 6b), whereas the sum of the peaks cor�
responding to the NCA is responsible for the appear�
ance of bends in the slopes of the resulting peak
(Fig. 6a). This model obviously does not reproduce all
features of really interacting peaks (induced by this
interaction) shown in Figs. 3–5. However, it certainly
shows that bends in the slopes of the wide peak in
Figs. 3e, 4e, and 5 are really due to the defect of the
NCA approach. This defect is not manifested in other
panels of Figs. 3 and 4, where the spacing between the
peaks is still large (panels a–d) or is zero (panel f). The
comparison of Figs. 3e, 4e, and 5 shows that the defect
of the NCA is most pronounced for small kc values
(Fig. 5, κc = 0.8 × 10–3) and is gradually smoothed with
an increase in this parameter, i.e., with an increase in

the damping of waves (Fig. 3e, κc = 0.8 × 10–2 and
Fig. 4e, κc = 0.8 × 10–1).

According to Eqs. (78), the off�diagonal elements
of the Green’s functions have the same frequency
dependence. For this reason, when analyzing the off�
diagonal elements, we calculated only one quantity
Gij(ω) related to Gmu and Gum as

(95)

The real and imaginary parts of the renormalized off�
diagonal element Gij(ω) at various relations between
the mean value ε and rms fluctuation Δε of the cou�
pling parameter are shown in Fig. 7. Since Gij(ω) ~ ε,
with an increase in Δε and a decrease in ε, the ampli�
tudes of both (ω) and (ω) decrease and vanish in
the limit ε  0. It can be seen in Fig. 7b that, with an
increase in Δε, the peaks of the imaginary part of off�
diagonal elements, as well as the peaks of the diagonal
elements in Figs. 3 and 4, first approach each other
and are broadened (thin solid, dashed, and dash�dot�
ted lines). However, the seeming peak “repulsion”
effect is observed with a further increase in Δε. In the
sum of the overlapping broadened peaks of different
signs, the inner parts of these peaks cancel each other,
whereas their outer parts do not cancel, which leads to
an increase in the spacing between their uncompen�
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sated parts. The manifestation of this effect is also
enhanced by the aforementioned defect of the NCA,
which distorts the shape of approaching peaks.

5. CONCLUSIONS

The self�consistent approximation (noncrossing
correlation approximation) has been developed for the
case of an arbitrary relation between the mean value ε
and rms fluctuation Δε of the coupling parameter
between two wave fields of different physical natures.
For definiteness, we study a model problem corre�
sponding to the interaction between spin and elastic
waves.

Since the mean value ε of the coupling parameter is

nonzero, the initial Green’s function (x, x0) is a
matrix function and describes coupled magnetoelastic
waves in a homogeneous medium. Thus, in contrast to
the single�field situation, as well as to the purely sto�
chastic interaction between the wave fields (ε = 0,
Δε ≠ 0) considered in [6–8], the Green’s function for�

Ĝ0

malism in this work has been developed against the
background of the initial system of coupled wave
fields. As a result, each element of the averaged matrix

Green’s function (x, x0) in the generalized Dyson
equation is expressed in terms of all four elements of

the matrix operator (x, x0). The generalization of
the NCA to this situation leads to the system of four
coupled integral equations for the elements of the
mass operator in the k space, which is reduced to the
system of three coupled integral equations for the nor�
malized spin, Mk, elastic, Uk, and off�diagonal, Tk,
mass operators.

The developed NCA approach has been used to study

the diagonal, (ω, k) and (ω, k), and off�diago�

nal, (ω, k) and (ω, k), elements of the averaged

G
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Fig. 6. (Solid curve) Envelope of (dashed curves) two non�
interacting resonance peaks corresponding at κc = 0 to
(a) the noncrossing correlation approximation and
(b) exact summation of the series of the Green’s functions.
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Fig. 7. (a) Real and (b) imaginary parts of the off�diagonal
element of the matrix Green’s function at κc = 0.8 × 10–2

and (ε/ε0)2/(Δε/ε)2 = (thin solid curves) 0.95/0.05, (dash�
dotted curves) 0.8/0.2, (dotted curves) 0.5/0.5, (dashed
curves) 0.25/0.75, and (thick solid curves) 0.1/0.9.
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tensor Green’s function (ω, k) of the coupled mag�
netoelastic waves at the magnetoelastic resonance
point k = kr, which corresponds to the crossing point
of the unperturbed dispersion curves of the spin and
elastic waves. The dependence of the shape of these
functions on the ratio of the mean value ε and rms
fluctuation Δε of the coupling parameter has been
analyzed throughout the entire range of this ratio
under the condition of the conservation of the sum of

their squares (ε2 + (Δε)2 = ). Thus, we have studied
the effect of all intermediate degrees of disorder of the
coupling parameter from the completely ordered case
(ε = ε0, Δε = 0) to the complete randomization of this
parameter (ε = 0, Δε = ε0). With an increase in Δε, the
width of both resonance peaks in the imaginary parts

of the diagonal functions (ω) and (ω)
increase, the peaks approach each other and are joined
into one wide peak. A fine structure appears on the
tops of wide peaks already at (Δε/ε0)

2 > 0.25–0.40: a

narrow resonance appears in the (ω) dependence

and a narrow antiresonance appears in the (ω)
dependence. Depending on the kc value, this fine
structure can hold for the case of full randomization or
can disappear at ε = 0 in one or both Green’s func�
tions. The amplitudes of the peaks in the real and
imaginary parts of the off�diagonal Green’s functions

(ω) and (ω) decrease with an increase in Δε
and vanish at Δε = ε0; i.e., the cross excitation of spin
and elastic elements of magnetoelastic oscillations in
the completely stochastic system is absent.

It has been shown that the equality of the spin and
elastic components of magnetoelastic waves at the

crossing resonance point, (ωr) = (ωr), which
was found in [8] for the case ε = 0, is valid for any rela�
tions between ε and Δε. To satisfy this equality, the fine
structure appears: a narrow maximum in the smaller
function (at ω ≠ ωr) coincides with a narrow minimum
in the larger function (at ω ≠ ωr). The other relation
found in [8]—the proportionality of the ratio

(ωr)/ (ωr) at kc = 0 to the ratio of the velocities
of the respective waves—is also valid for any relations
between ε and Δε.

In this work, the first crossing of dispersion curves,

which corresponds to the inequality (ω) < (ω)
at ω ≠ ωr, has been considered. At the point of the sec�

ond crossing, (ω) > (ω) and the fine�structure
pattern changes to opposite: narrow resonance and

narrow antiresonance appear in the (ω) and

(ω) dependences, respectively. The crossing reso�
nance of spin and elastic waves has been studied in this
work. Relations for the crossing resonance of waves or
quasiparticles of another nature will have another

G
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form. However, the general character of the variation
of dynamic susceptibilities with an increase in Δε and
a decrease in ε should remain unchanged: the width of
peaks in the imaginary parts of the diagonal elements
of Green’s functions of coupled wave fields increases;
the peaks approach each other and are joined into one
wide peak whose width is proportional to Δε; a fine
structure in the form of narrow resonance at the vertex
of the smallest diagonal element of the Green’s func�
tions and narrow antiresonance at the vertex of the
largest element is formed; the peaks of the fine struc�
ture is broadened with an increase in kc and disappears
at large kc values; the imaginary parts of the diagonal
elements of the Green’s function of wave fields at the
point of crossing of the dispersion curves k = kr, ω = ωr

are equal to each other; and the amplitudes of the off�
diagonal elements of the Green’s function vanish in
the limit ε  0.

The disadvantages of the NCA approach have also
been analyzed in application to the systems of coupled
wave fields. In these systems, the Green’s functions of
both fields in the crossing resonance region are split
into two resonance peaks, which approach each other
and are joined into one peak with a decrease in ε and
an increase in Δε. In contrast to the exact Green’s
functions, the peaks of the Green’s functions in the
NCA are described by function (63) rather than by a
Gaussian function. Owing to this circumstance, a spu�
rious effect of the appearance of additional bends dis�
torting the shape of these peaks occurs in the slopes of
the peaks of the Green’s functions calculated in the
NCA when the peaks approach each other at distances
smaller than their widths. These distortions decrease
and disappear with an increase in kc.

The experimental detection of the effects predicted
in this work would be of most interest for media with a
small kc value and with a quite large excess of the
velocity of waves of one field over the velocity of waves
of the other field at k = kr. The former property results
in small widths of the lines and the latter property is
responsible for large amplitudes of resonance and
antiresonance peaks of the fine structure.
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