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1. INTRODUCTION 

At present, much attention has been paid to the
study of materials with a strong correlation between
the electrical and magnetic properties due to the prac�
tical interest in the development of the element base of
microelectronics [1, 2]. Of special interest from the
viewpoint of basic research are compounds containing
variable valence elements, which undergo metal–
insulator phase transitions and magnetic phase trans�
formations, including variations in the magnetic prop�
erties with retaining the magnetic symmetry. 

Among these compounds are EuS [3, 4] and SmS
[5, 6]. Rare�earth elements Eu2+ and Sm2+ have no
electrons in 5d orbitals, and their electronic configura�
tions (except for 4f orbitals) are similar to configura�
tions for alkaline�earth metals. The 4f and 5d orbitals
with relatively close energies are responsible for spe�
cific properties exhibited by compounds containing
these elements [7]. 

The divalent samarium ion Sm2+ has an isoelec�
tronic configuration similar to that of the europium
ion Eu3+ and undergoes a transition with the energy
Efd = 0.18 eV from the 4f 6 state to the 4f 5(6H)5dt2g

state [8]. The band gap Eg between the valence band
and the conduction band in SmS is slightly smaller
than that in MnS [9]. Under an external pressure P ~
6.5 kbar, the SmS lattice undergoes strong compres�
sion, so that the unit cell parameter becomes equal to
a = 5.69 Å, the electrical resistance decreases by one
order of magnitude, the volume decreases by 13%, and
the magnetic susceptibility is reduced by 60% [5, 10].

According to Deen et al. [10], these changes are asso�
ciated with the transition of the samarium ion from the
divalent state to the trivalent state. 

The divalent ions 4f 6 exist in the singlet ground
state J = 0 and the triplet excited state J = 1, which is
30 meV higher in energy. Using inelastic neutron scat�
tering, the dispersion of singlet–triplet excitations was
determined as a function of the temperature, which
confirms the thermal dynamics of the singlet–triplet
model [11]. A decrease in the energy of singlet–triplet
excitations at low temperatures, as compared to the
free Sm2+ ion, was observed in Raman scattering [12].
This is associated with the exchange interactions
between nearest neighbor samarium ions, as well as
with the decrease in the splitting due to the spin–orbit
interaction. A similar result was obtained from the Van
Vleck paramagnetic susceptibility and expressed in the
form χ = 8Nμ2/E(T), where E(T) is the singlet–triplet
gap, which depends on the temperature, and Ns is the
spin density [13]. The magnetic susceptibility of the
trivalent samarium ion Sm3+ is of less importance as
compared to the divalent samarium ion Sm2+ [3]. 

The long�range magnetic order in SmS, according
to the nuclear magnetic resonance data and measure�
ments of the specific heat at high pressure [14, 15], is
formed at a pressure of 2.0 GPa. 

It is assumed that the transformation of SmS into
the trivalent state occurs at a sufficiently high pressure
with the formation of a long�range magnetic order,
because Sm3+ is a Kramers ion. This is confirmed by
the measurements of X�ray absorption spectra in SmS
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at a temperature of 4.5 K and a high pressure, where it
was found that samarium has an intermediate valence
of 2.8 at a pressure of 3.0 GPa [10]. 

Manganese and samarium sulfides have a face�
centered cubic (fcc) crystal lattice of the NaCl type
with the unit cell parameters a = 5.222 Å (MnS) [16]
and a = 5.965 Å (SmS) [17], which dramatically
decrease under pressure. It can be expected that, upon
the substitution of samarium ions for manganese cat�
ions, the pressure produced by the nearest neighbors
can induce electrons into the d�band and initiate a
number of phase transitions (both magnetic and elec�
tric). The conduction band of manganese sulfide lies
higher in energy than the conduction band of samar�
ium sulfide. In the region of interaction between the
elements Mn–Sm, there can occur a bending of the
bands due to the exchange interaction and the exist�
ence of electrostatic forces between the manganese
and samarium ions. Conduction electrons polarize
spins of localized electrons of the manganese ions on
the surface of samarium clusters. De Gennes calcu�
lated the paramagnetic Curie temperature in the s–f
model in the molecular field approximation [18] and
established its dependence on the concentration of
conduction electrons. 

The concentration of electrons in the conduction
band is proportional to the ratio of ions x =
Sm3+/Sm2+ divided by the number of degenerate
states. The possible formation of ferromagnetic bonds
also follows from the double�exchange model [19].
The analytical calculation of the phase diagrams of

magnetic structures in the double�exchange model
taking into account the indirect antiferromagnetic
interaction (K) gives two phases in the range of elec�
tron occupation of the bands from 0.3 to 0.5. The
canted ferromagnetic phase exists at zKS2/t > 0.4,
whereas the ferromagnetic state is observed at zKS2/t <
0.4 [20]. For parameters K ~ 0.001 eV, t = 0.1–0.2,
and zKS2/t ≈ 0.1, the ferromagnetic arrangement of
the manganese spins was found near the samarium
clusters. 

The competition between ferromagnetic and anti�
ferromagnetic interactions can lead to the formation
of a new magnetic structure, for example, the spin
glass or antiaspiromagnetic state, which has a long�
range magnetic order in the longitudinal component
of the spin with the “freezing” of the transverse spin
projections. 

The purpose of this work was to investigate the
influence of a singlet–triplet transition in the mixed�
valence regime on the magnetic properties of
SmxMn1 – xS compounds and to elucidate the mecha�
nism of interaction between the spin, phonon, and
electron subsystems. 

2. SAMPLES AND EXPERIMENTAL 
TECHNIQUE 

The SmxMn1 – xS compounds were grown using the
procedure described in [21]. The phase composition
and crystal structure of the SmxMn1 – xS samples were
determined in the monochromatic CuK

α
 radiation on

a DRON�3X diffractometer at a temperature of 300 K.
According to the X�ray diffraction analysis, the
SmxMn1 – xS samples have an fcc crystal lattice of the
NaCl type, which is similar to the lattice of the mono�
sulfide α�MnS (antiferromagnet with TN = 150 K).
The specific magnetization was measured in a vacuum
at temperatures of 5 and 50 K in magnetic fields up to
9 T. The magnetization of the samples in a magnetic
field H = 0.05 T and the real and imaginary parts of the
magnetic permeability at frequencies of 0.1, 1.0, and
10.0 kHz were measured on a Physical Property Mea�
surement System (PPMS) in the temperature range
5 K < T < 300 K. 

3. EXPERIMENTAL RESULTS 
AND DISCUSSION 

The real part of the magnetic permeability Reμ as
a function of the temperature at a frequency f =
10 kHz for the SmxMn1 – xS samples with x = 0.10,
0.20, and 0.25 is presented in Fig. 1. The investigation
of the complex magnetic permeability μ = Reμ + Imμ
makes it possible to determine the dynamic process of
magnetization and the relaxation of the magnetic
moment. The real part of the magnetic permeability at
a frequency of 1 kHz and the magnetic moment in a
field H = 0.05 T, divided by their values measured at
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Fig. 1. Temperature dependences of the real part of the
magnetic permeability Reμ at a frequency f = 10 kHz for
SmxMn1 – xS samples with x = (1) 0.10, (2) 0.20, and
(3) 0.25. The inset shows the normalized values of (1) the
magnetic permeability Reμ(T)nor = Reμ(T)/Reμ(T =
290 K) and (2) the magnetic susceptibility χ(T)nor =
χ(T)/χ(T = 290 K) for x = 0.25 as a function of the tem�
perature. 
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T = 290 K, are presented in the inset to Fig. 1. The
temperature dependences of the magnetic permeabil�
ity Reμ/Reμ (T = 290 K) and the magnetization
M(T)/M(T = 290 K) of the SmxMn1 – xS compounds
remain almost unchanged with variations in the con�
centration for the samples with x = 0.1 and 0.2; how�
ever, the difference is observed in the magnetic charac�
teristics measured for the sample with x = 0.25 at
T < 40 K in an external magnetic field and without
the field. 

The temperature Tg determined from the derivative
of the real part of the magnetic permeability dReμ/dT
increases by 3 K with an increase in the frequency
from f = 0.1 to 10.0 kHz. The imaginary part of the
magnetic permeability Imμ has a maximum at the
temperature Tg, which is shifted toward higher fre�
quencies. This behavior is adequately described by the
linear logarithmic dependence Tg = 36.0 + 1.5ln f. 

The imaginary part of the magnetic permeability
Imμ is almost independent of the temperature and
tends to zero for the samples with x = 0.1 and 0.2
(Fig. 2). The measurement of the complex magnetic
permeability gives important information about the
dissipation of the energy of magnetic oscillations
induced by an external alternating magnetic field. The
dissipation of the magnetic moment is described by
different functional dependences on the temperature
and can be caused by the exchange interaction, mag�
netoelastic interaction, or interaction with delocalized
electrons. These interactions determine three types of
relaxation in semiconductors, namely, the spin–spin
relaxation, the spin–lattice relaxation, and the relax�
ation due to the interaction of localized spins of the
electrons with the band electrons. The low�frequency
relaxation in the range 0.1–100.0 kHz is predomi�
nantly described by the longitudinal relaxation time,
for which the temperature dependences τ(T) are
found theoretically. The “paramagnet–long�range
magnetic order” transition is accompanied by an
enhancement of spin–spin correlations with the for�
mation of a short�range magnetic order. As follows
from the generally accepted theory of dynamic scal�
ing, the relaxation time diverges as a power law with
the correlation length ξ: τ = Aξz, where z is the
dynamic exponent. According to the static scaling
hypothesis, ξ ~ [(T/TN) – 1]ν, where ν is the critical
exponent. These exponents depend on the dimension
(of the system) and the number of components of the
order parameter: in the Heisenberg model, z = 1.5; in
the Ising model, z = 2.175 [22]; and for the spin glass,
z and ν vary between 8 and 10 [23]. 

The superparamagnetic relaxation of the ideal sys�
tem of noninteracting single�domain and magnetic
nanoparticles is described by the Néel–Brown equa�
tion: τ = τ0exp(Ea/kBT) [24]. Here, τ is the relaxation
time at a given temperature, Ea is the energy required
to change the orientation of the magnetic moment to
opposite, and τ0 is the frequency factor. On the other

hand, the Vogel–Fulcher law τ = τ0exp(Ea/kB(T –
T0)) (where kB is the Boltzmann constant, and τ0 and
T0 are the constants related to the external frequency
and the interaction force between the particles) gives
the value in accordance with superparamagnetic
behavior of the system of weakly interacting nano�
particles. 

The process of relaxation of the magnetic sub�
system can occur through the lattice as a result of the
magnetoelastic interaction in which the exchange
energy depends on the distance between the ions. In
the direct interaction of magnons and phonons, the
relaxation time 1/τ ~ (hω)3coth(hω/kBT) depends on
the quasiparticle energy hω. The relaxation frequency
rapidly increases in Raman scattering and is propor�
tional to 1/τ ~ T9 and T7 for ions with even and odd
numbers of 4f electrons, respectively [25]. The relax�
ation due to the conduction electrons occurs as a result
of the exchange interaction with localized electrons,
and the relaxation time is inversely proportional to the
temperature: 1/τ = π/h(IsdNE(EF))2kBT ≈
1010(IsdNE(EF))2T, where NE(EF) is the electronic den�
sity of states at the Fermi level [26]. The imaginary part
of the magnetic permeability Imμ is predominantly
determined by the relaxation time Imμ ~ τ. The
dependence of the imaginary part of the magnetic per�
meability of the SmxMn1 – xS solid solution on the
reciprocal of the temperature is adequately described
by the linear function Imμ(T) = 60Imμ(Tg)/T. The
experimental data and fitting functions are presented in
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Fig. 2. Temperature dependence of the imaginary part of
the magnetic permeability Imμ for SmxMn1 – xS samples
with x = (1) 0.10, (2) 0.20, and (3) 0.25 at a frequency f =
10 kHz in an external field H = 0. The inset shows (1) the
magnetic permeability of the SmxMn1 – xS compound
with x = 0.25 at a frequency f = 10 kHz, normalized to the
quantity Imμ(Tg) measured at a temperature Tg as a func�
tion of the inverse temperature and (2) the fitting function
Imμ(T) = 60Imμ(Tg)/T. 
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the inset to Fig. 2. A similar dependence of the relax�
ation time is observed for the spin glass CuMn [27]. 

This indicates that the interaction between local�
ized and delocalized electron spins is responsible for
the relaxation of the magnetic moment at low temper�
atures. The samarium ions induce electrons into the d�
band, which leads to a ferromagnetic ordering between
the nearest neighbor spins of the manganese ions. 

The presence of Sm3+ impurities in the samples can
be determined from electron paramagnetic resonance
(EPR) measurements, because the Sm3+ ground state
is the Γ7 doublet. The averaged experimental value of
the g�factor in all directions for the SmS crystal is g =
0.70 + 0.02 [28]. According to the EPR measurements
carried out for the composition with x = 0.2, a single
resonance is observed in the temperature range
150 K < T < 300 K. The temperature dependences of
the EPR resonance field Hr and the g�factor for the
Sm0.2Mn0.8S sample are shown in Fig. 3a. The g�factor
does not depend on the temperature in the paramag�
netic state and agrees well with the g�factor of MnS
[16], which confirms the stability of the cubic lattice
and the absence of distortions in the lattice of the
SmxMn1 – xS solid solutions. We did not reveal Sm3+

impurities in the SmxMn1 – xS solid solutions. There�
fore, the magnetic ordering can be associated with
spins of the manganese ions. 

The magnetic susceptibility is the integrated char�
acteristic that depends on the spin–orbit and spin–
lattice interactions. The temperature of the “long�
range magnetic order–paramagnet” phase transition
is difficult to determine from the temperature depen�
dence of the magnetic susceptibility. Electron para�
magnetic resonance makes it possible to determine the
Néel temperature from the divergence of the line
width in the vicinity of TN. The mechanism of the
relaxation of the magnetic moment in the gigahertz
frequency range can be determined using the temper�
ature dependence of the line width presented in
Fig. 3b. 

The EPR line width is adequately described by the
power�law relationship dH = A/(T – TN)α with
parameters A = 8000 and α = 0.44. This relationship is
consistent with theoretical calculations of (T – TN)–1/4

[26], which were performed in the molecular field
approximation with the inclusion of the exchange and
dipolar interactions. The difference in the exponents
can be caused by different factors. The calculations
disregard the magnetic field that causes a change in the
spin–spin correlation function and its derivative. In
addition, the molecular field approximation does not
account for the spin correlations at the nearest neigh�
bors. As a result, the exponents calculated for the
spin–spin correlation function in the molecular�field
and renormalization�group approximations differ
from each other. 

It is necessary to note that the line width in the
MnF2 antiferromagnet is described by a power�law
function (T – TN)–3/8 [29] in zero magnetic field.
Based on the experimental data, it is concluded that
the spin relaxation in the SmxMn1 – xS solid solutions
in the temperature range 160 K < T < 300 K occurs as
a result of the spin–spin interaction in comparison
with which the spin–lattice contribution is small. 

4. MODEL AND INTERPRETATION
OF THE RESULTS 

The magnetic structure of the SmxMn1 – xS solid
solution is formed by the exchange interaction
between electrons of the manganese ions. The SmS
compound is a Van Vleck paramagnet in the metal and
semiconductor states. The direct hybridization of the
3t2g–5t2g electron orbitals of the samarium and manga�
nese ions and the overlap of the t2g–3p electron orbitals
of sulfur result in the formation of an impurity sub�
band with the ferromagnetic exchange interaction
between manganese spins on the surface of samarium
clusters. Hereinafter, this interaction will be denoted
by K. We calculate the magnetic characteristics in the
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function of the temperature difference T – TN for the
composition with x = 0.2. 
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Heisenberg model with random interactions. The
Hamiltonian has the form 

(1)

where H is the external magnetic field, and ζi are ran�
dom numbers that follow the law of distribution 

(2)

For the calculation of the magnetic characteristics, we
used the Monte Carlo (MC) method with the number

H Ji j, SiSjζiζj

i j

∑– HSiζj,

i

∑–=

P ζi( ) 1 x–( )δ ζi 1–( ) xδ ζi( ),+=

P Jij( ) Iijδ ζi h+ 1–( )δ ζj h+ 1–( )=

+ Kijδ ζi h+( )δ ζj h+( ).

of lattice sites N = 18 × 18 × 18, 22 × 22 × 22 and the
number of MC steps MMC = 50000–100000 per site
with periodic boundary conditions. The magnetic
structure is analyzed using the spin–spin correlation
function. The temperature, at which the spin correla�
tion 〈Sz(0)Sz(r = 5)〉 tends to zero, is related to the
Néel temperature. The magnetic susceptibility is cal�
culated as the arithmetic average of the magnetization
induced by an external magnetic field H/J (H = 0.05 T)
directed along the axes (x, y, z): χ = (Mx/Hx + My/Hy +
Mz/Hz)/3. The order parameter in the spin glass is the
Edwards–Anderson parameter [30], which is calcu�
lated in the form 

(3)

where the index of the sum k is the thermodynamic
average and the index i is the configurational average. 

The thermodynamic characteristics are calculated
for small concentrations in the case of percolation in a
cubic lattice. For example, for x = 0.1, the concentra�
tion of clusters containing two and three empty sites is
proportional to x2 = 0.04 and x3 = 0.002 with S = 0,
respectively. The temperature behavior of the mag�
netic susceptibility for this case is shown in the inset to
Fig. 4a for λ = K/|J | = 1 and 2. The maximum in the
magnetic susceptibility is observed at the Néel temper�
ature. An increasing susceptibility χ(T) at low temper�
atures in the antiferromagnet with λ = 2 is associated
with the canted antiferromagnetic structure in the
cluster. The external magnetic field rotates the mag�
netic moment of the cluster in the field, which is
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Fig. 4. (a) Temperature dependences of the magnetic sus�
ceptibility of the antiferromagnet with a random distribu�
tion of exchange interactions in the percolation region
according to the Monte Carlo calculations with parame�
ters λ = K/|J | = (1) –0.5, (2) 0.5, (3) 1.0, and (4) 1.5. The
inset shows the magnetic susceptibility of the antiferro�
magnet containing clusters with two and three sites with
S = 0 and λ = K/|J | = (1) 1 and (2) 2. (b) Temperature
dependences of the spin–spin correlation function
〈Sz(0)Sz(r = 5)〉 in the antiferromagnet in the percolation
region of empty sites with λ = K/|J | = (1) –0.5 and (2) 1.0.
The inset shows the Edwards–Anderson parameter qEA for
the antiferromagnet with λ = K/|J | = (1) 1 and (2) 2 as a
function of the temperature. 
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responsible for the nonlinear dependence M(H) in
weak fields (see inset to Fig. 5). 

We investigate the percolation of empty sites in the
framework of the model assuming that the spin chain
with S = 0 starts on one face of the cube, goes ran�
domly through the cube, and comes out on the oppo�
site or nearest face. The chain is surrounded by ferro�
magnetic exchange interactions. The magnetic sus�
ceptibility of the sample consisting of eight chains is
presented in Fig. 4a for different parameters of the fer�
romagnetic exchange. The behavior of the magnetic
susceptibility χ(T) differs from that characteristic of a
typical antiferromagnet at λ > 1. The maximum in the
dependence χ(T) vanishes, and the magnetic suscepti�
bility increases with a decrease in the temperature. In
this case, the long�range antiferromagnetic order is
retained, which follows from the spin–spin correla�
tion function shown in Fig. 4b. The quantity
|〈Sz(0)Sz(r)〉| describing the antiferromagnetic corre�
lations decreases, the transverse components of the
spins are “frozen” in random directions, and the anti�
ferromagnetic ordering is observed only along the lon�
gitudinal components of the spins. This state is identi�
fied as a antiaspiromagnetic state with the Edwards–
Anderson parameter shown in the inset to Fig. 4b. 

The dependence of the magnetization on the mag�
netic field is adequately described by a linear function
for the antiferromagnet with K < 0 and becomes non�
linear when the exchange interaction changes sign
(K > 0). The curves M(H) are shown in Fig. 5. The
uncompensated magnetic moment arises in the anti�
ferromagnet when the ferromagnetic exchange inter�
action exceeds the antiferromagnetic interaction. 

Based on the theoretical results, we can explain the
temperature behavior of the dependences of the mag�
netic susceptibility and magnetization on the mag�
netic field, which were measured in the SmxMn1 – xS
solid solutions. For a random distribution of samarium
ions in the lattice, the exchange interactions between
manganese ions on the surface of the boundaries of
samarium clusters (Mn–Sm) become ferromagnetic.
The competition between the ferromagnetic and anti�
ferromagnetic interactions results in the formation of
a local noncollinear magnetic structure at samarium
concentrations lower than the critical concentration.
The percolation leads to an increase in the magnetic
susceptibility at low temperatures. In the percolation
region, there are domains with a canted antiferromag�
netic ordering and frozen transverse spin components,
which is responsible for the maximum in the relax�
ation of the magnetic moment at T = 40 K. 

5. CONCLUSIONS 

It has been found that, in the SmxMn1 – xS com�
pound with a samarium concentration x = 0.25, there
exists a spin�glass state. The temperature associated
with the maximum in the relaxation of the magnetic

moment increases logarithmically with an increase in
the frequency. 

The relaxation of the magnetic moment is caused
by the exchange interaction between localized and
delocalized electrons at low temperatures and is well
described by a hyperbolic function of temperature. 

The substitution of samarium for manganese does
not lead to a change in the g�factor; in the Sm0.2Mn0.8S
solid solution, a single resonance is observed in the
temperature range 150 K < T < 300 K. The spin relax�
ation determined from the EPR line width is associ�
ated with spin–spin interactions in the paramagnetic
state. We have proposed a model with competing anti�
ferromagnetic and ferromagnetic interactions on the
surface of the samarium cluster. The magnetic charac�
teristics calculated using the Monte Carlo method are
in qualitative agreement with the experimental data. 
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