
ISSN 1063�7834, Physics of the Solid State, 2013, Vol. 55, No. 5, pp. 924–929. © Pleiades Publishing, Ltd., 2013.
Original Russian Text © Yu.I. Mankov, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 5, pp. 850–854.

924

1. INTRODUCTION

In recent time, propagation of light pulses with a
negative group velocity in various optical media has
been intensively investigated experimentally [1–3].
This phenomenon, in addition to the fundamental
importance [4–6], can be of practical importance for
the development of means for signal control based on
it [2]. Achievements in optics stimulated the search of
materials in which their inherent excitations possess a
negative group velocity. Continuous media, in which
the propagation with a negative group velocity of
acoustic [7–9] and spin [10, 11] waves as well as exci�
tons and polarons [12] is possible, are considered. The
existence of solitons with a negative group velocity in
one�dimensional arrays of “small” Josephson junc�
tions was predicted in [13].

In addition to solitons, collective electromagnetic
plasma�like excitations occur in the Josephson junc�
tions (the Josephson plasma waves), the investigation
of which attracts great attention [14]. The frequency of
these excitations in some superconducting materials
and structures varies from a few hundred gigahertz to
tens terahertz. This frequency range of the electro�
magnetic radiation, which is important in many
respects and attracts the attention of specialists in the
field of physics of the solid state, the high energy phys�
ics, biology, and medicine, is intermediate between the
microwave and infrared spectral regions. Therefore, it
is inaccessible for conventional devices of signal gen�
eration and reception, which makes the Josephson
plasma waves promising for adoption of this frequency
range [15]. The thickness of the Josephson junctions
usually does not exceed several nanometers; therefore,
the influence of various inhomogeneities, mainly of
random character, especially strongly affects them.

Such inhomogeneities can be caused, for example, by
the spatial variation in the thickness and composition
of the dielectric layer, by inhomogeneity of contact
banks, etc. The influence of random inhomogeneities
on solitons (fluxons) in the Josephson junction was
investigated in [16], where the model was suggested,
according to which, inhomogeneities of geometric and
physical parameters of the junction manifest them�
selves in spatial fluctuations of its critical current. The
same model was used in [17] to investigate the Joseph�
son plasma waves in the junction with one�dimensional
random inhomogeneities during the exponential and
monotonic decay of their correlations.

This study is devoted to the investigation of electro�
magnetic waves in a randomly inhomogeneous Joseph�
son junction during the nonmonotonic decay of inho�
mogeneity correlations. It is shown that such correla�
tion properties of spatial fluctuations of the junction
lead to a minimum in the wave spectrum with a nonzero
value of the wave number and possibility of excitation
propagation with a negative group velocity.

2. MODEL AND WAVE EQUATION

Let us consider two identical superconductors sep�
arated by a thin dielectric layer with thickness w,
which is located in the xy coordinate plane. The origin
of count along axis z perpendicular to the contact
plane of superconductors is selected in the layer cen�
ter. With the coherence length of the superconductor
much larger than w, the Josephson electric current jz =
jcsinϕ, where jc is the critical current of the Josephson
junction and ϕ is the phase difference of wave func�
tions of superconducting electrons between junction
edges, flows across the contact. It is known [18, 19]
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that the phase difference for the homogeneous
Josephson junction in the absence of losses in it is
described by the equation 

(1)

Here, t is time, c0 =  is the propagation veloc�
ity of electromagnetic waves in the junction (the Swi�
hart velocity); c is the velocity of light in vacuum; ε is
the dielectric constant of the junction; d = w + 2λ,
where λ is the penetration depth of the magnetic field
into the superconductor; and λJ is the Josephson pen�
etration depth. We will further consider the “large”
Josephson junction: Lx, Ly � λJ, where Lx, Ly, and Lz

are the sample sizes in directions of corresponding
coordinate axes; the sample volume is V = LxLyLz.

In the case of a randomly inhomogeneous Josephson
junction, physical quantities in Eq. (1) are random func�
tions of coordinates. In order to simplify the model, we
will assume following [16] that velocity c0 is uniform,
while the Josephson penetration depth fluctuates

(2)

where ρ(x) is the statically uniform random function,
which is centered (〈ρ〉 = 0) and normalized (〈ρ2〉 = 1).
Angle brackets denote averaging over the ensemble of
realizations of random function ρ(x); x = {x, y, z}; and
γ is the relative root�mean�square fluctuation of the
critical current, 0 ≤ γ < 1. Using formula (2) in Eq. (1),
assuming ϕ � 1, and performing the Fourier transform
over time, we derive

(3)

where ν = (ω2 – )/ ; ω is the wave frequency, ωJ =

c0/λJ is the Josephson plasma frequency; η = γ/ ;
ϕ ~ exp[i(kx – ωt)]; and k = {kx, ky}. For the homoge�
neous junction (γ = 0), it follows from expression (3) that

; (4)

from here, we derive the formula for the wave spectrum

(5)

according to which the group velocity vg0 = dω/dk has
the form

(6)

In order to investigate the Josephson plasma waves in
the randomly inhomogeneous junction (γ ≠ 0), let us
use the Kraichnan approximation [20], which makes it
possible to take into account the multiple wave scatter�
ing at inhomogeneities and is also known as the self�
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consistent approximation [21]. A simple formulation
of this approximation is given in [22]. According to the
approach stated in these publications, the Fourier
image of the averaged Green’s function, which corre�
sponds to Eq. (3), has the form

(7)

where mass operator Σ(k, ν) follows the integral equation

(8)

Here, S(k) is the spectral density related to the corre�
lation function of inhomogeneities Kρ(r) = 〈ρ(x)ρ(x +
r)〉; k1 = |k1| by the Fourier transform.

Let us consider the Josephson junction with ran�
dom inhomogeneities possessing the nonmonotonic
correlation decay. To describe such inhomogeneities,
we will use the correlation function and the spectral
density in the form

(9)

where kc is the correlation wave number of inhomoge�
neities, r = |r|, and k = |k|. Function ρ(x) and the cor�
relation decay are assumed to be rather smooth (corre�
lation radius rc = 1/kc � a0, where a0 is the interatomic
distance). Expression (9) describes a nonmonotonic
correlation decay of inhomogeneities. It assumes the
presence of local correlations between the positive and
negative fluctuations [23], which lead to equality

 = 0, where V0 is a small local volume. It fol�

lows from this condition for the correlation function

that  = 0, from here, we have S(0) = 0. The

notion of a nonmonotonic decay is widely used when
studying the randomly inhomogeneous materials
(e.g., [23–28]). In [28], the possibility of anomalous
dispersion of bulk plasma waves in the conductor with
spatial fluctuations of the lattice potential, the correla�
tion properties of which are described by functions (9),
is shown in the second order of the perturbation the�
ory. Such correlations are inherent to inhomogeneities
with an average size proportional to rc (the spectral

density in (9) has a maximum at k = ks ≡ kc/ ). Par�
ticularly, the nonmonotonic correlation decay implies
the absence of uniform realizations in the ensemble of
random functions. Temporal fluctuations, the spectral
density of which S(ω) turns to zero not only at ω  ∞
but also at ω  0 are also known; they were called
“the green noise”. Its influence was investigated in
[29], including the Josephson junctions.
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3. SPECTRUM AND GROUP VELOCITY 
OF WAVES

Using expression (9) for the spectral density in
integral equation (8) and assuming that the mass oper�

ator in the integrand of this equation depends only on
|k1|, let us find its numerical solution; substituting it
into formula (7), let us determine the dependence of

position νm and width Δν of the peak of function (k,

ν) = Im (k, ν) on k. Functions νm(k) and Δν(k) are
shown in Figs. 1a and 1b, respectively. Particularly,

Fig. 1a shows the shift of peak (k, ν) to the lower�
frequency region (νm – k2 < 0) compared with its posi�
tion in the homogeneous medium, which is reflected
by straight line Q = 0. The value of |νm – k2| is largest

in region k ≤ , where a nonmonotonic dependence
of difference νm – k2 on k (squares), which is charac�

teristic of kc � , is found. At kc < , difference νm

– k2 increases monotonically as k increases (circles).

Width Δν of the peak of (k, ν), which was calcu�
lated at its half�height, also behaves differently
depending on kc. This is illustrated in Fig. 1b by the
sequence of points found at various values of kc. For

example, for all kc � , function Δν(k) tends to zero

at k  0 (squares), while at kc < , it remains finite
(circles). The latter is caused by the fact that the non�
uniform (fluctuation) broadening, which is deter�
mined by a stochastic spread of resonant frequencies,
contributes to the peak width calculated in the self�
consistent approximation.

We will determine the spectrum of the Josephson
plasma waves in the region of values of stochastic junc�

tion parameters kc � . At such kc and η in the
denominator of the integrand in the right side of
Eq. (8), we can use the approximation Σ(k1, ν) =
Σ(k, ν) suggested in [22]. This substitution is admissi�
ble [30] if inequalities are valid:

(10)

Indeed, from the expansion of the integrand denomi�
nator of Eq. (8) in the vicinity of point k1 = k into the
power series 

(11)

with the conservation of three first terms in it and ful�
fillment of inequalities (10), it follows that

(12)

In expression (11), g = ν – k2 – Σ(k, ν) is the
denominator of the Green’s function (7). Inequalities
(10) are fulfilled for the Josephson plasma waves at
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Fig. 1. Spectrum ν' of the Josephson plasma waves and

position νm of the peak of function (k, ν): Q = (νm –

k2)/η (points), Q = (ν' – k2)/η (lines). Attenuation ν'' of

the wave and width Δν of the peak of function (k, ν):
R = Δν/η (points) and R = 2ν''/η (lines). Squares and cir�
cles (they are determined by formulas (7) and (8)), as well
as solid and dashed curves (they are specified by expression

(14)) are plotted at kc/  = 1.0 and 0.5, respectively.
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kc > kc1 ≈ 0.7  and k < kc/2 as well as at k �  irre�
spective of the magnitude of kc. Thus, integrating in
the right side of Eq. (8), we derive 

(13)

where F1 =  + (7g + 12k2) + (3g – 4k2) – 3g3

and F2 = (g2 +  + ). Expression
(13) is reduced to the sixth�order algebraic equation

relative to . Its numerical solution allows us to
find magnitude Σ(k, ν), which coincides with the solu�
tion of starting integral equation (8) at kc ≥ kc1. This
correspondence allows us to apply formula (13) for
determining the dispersion law of averaged waves.
Using equality g = 0 in expression (13), we derive

(14)

The real part of function ν(k) and the doubled value of
its imaginary part are shown in Figs. 1a and 1b, respec�
tively: ν' = Reν(k), ν'' = –Imν(k). Good coincidence
of solid lines and square�marked sequences of points is
seen. Such a behavior is characteristic of the spectrum

and wave attenuation at kc � . The first term in the
right side of expression (14) has a minimum at k = k

ν
≡

kc/ , which coincides with the position of maxi�
mum ks of the spectral density by the order of magni�
tude and indicates the cause of nonmonotonicity of
the dispersion curve: the modification of the wave
spectrum is especially large at those k which corre�
spond to the vicinity of the maximal value of the spec�
tral density. Particularly, for the monotonic decay of
inhomogeneity correlations, when function S(k) is
maximal at k = 0, the frequency of uniform excitations
is subjected to the largest modification.

Inequality Imω2 � Reω2 follows from formula (14)
and definition of ν at kc > kc1. This inequality allows us
to simplify the expressions for spectrum ω' = Reω(k)
and attenuation ω'' = –Imω(k) of the waves. In such
approximation, we have

(15)

from here, for the group velocity vg = dω'/dk, we
derive 

(16)

η η

Σ k ν,( ) η2 F1 iF2+

3 g kc
2

+( )
2

4k
2
kc

2
+[ ]

2
������������������������������������������,–=

kc
6

kc
4

gkc
2

8kc g k
2

+ gkc
2

2k
2
kc

2

g k
2

+

ν k( ) k
2

– –η2 kc
2

12k
2

+

3 kc
2

4k
2

+( )
2

������������������������ η2 16ik
3

3kc kc
2

4k
2

+( )
2

�����������������������������.–=

η

2 3

ω' ωJ
2

c0
2
k

2 η2
c0

2 kc
2

12k
2

+

3 kc
2

4k
2

+( )
2

������������������������–+
1/2

,=

vg
c0

2
k

ω'
������ 1 η24 kc

2
12k

2
–( )

3 kc
2

4k
2

+( )
3

�������������������������– .=

Figure 2 shows dependences vg(k) at several values of
kc. It is seen that vg < 0 at k < kg, where kg can be found
from the equality to zero of the bracketed expression
in (16),

(17)

Here, A = (  + )1/3, Kc = kc/ . Ine�

quality kc < kc2 ≡ (4/3)1/4  follows from the require�
ment of positivity of the radicand in formula (17).
Function kg(kc), which is shown in Fig. 3, reaches the

maximum kg = /6 in the point kc = /3 in range
kc1 < kc < kc2, and tends to zero at kc  kc2 remaining
finite at kc = kc1. Thus, inequality vg < 0 is fulfilled
inside the region bounded by curve kg(kc) and straight
line kc = kc1. Within the limits of this region, inequality
k � kc is valid, which allows us to use the power series
expansion with respect to k in expression (14) and to
obtain
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where ω0 = ωJ(1 – γη/ )1/2. It follows from here
that at γ = 0.5 and kc1 < kc < kc2, the range of varying ω'
is determined by inequalities –0.25 < (ω' – ωJ)/ωJ <
⎯0.08. In addition, it follows from formula (18) for
wave attenuation that ω'' � |ω' – ωJ | and ω'' ∝ k3. A
similar dependence of attenuation on the wave vector
was obtained in study [27] for spin waves in a ferro�
magnet with the fluctuating magnetic anisotropy with
the Gaussian nonmonotonic decay of inhomogeneity
correlations.

4. CONCLUSIONS

Using the method of the averaged Green’s func�
tions, the modification of the spectrum and the atten�
uation of electromagnetic waves in a randomly inho�
mogeneous Josephson junction with the nonmono�
tonic decay of inhomogeneity correlations have been
investigated. Dependences of frequency and attenua�
tion of averaged waves as well as positions νm and
widths Δν of the imaginary part of the Fourier image of
the averaged Green’s function have been determined
based on the self�consistent approximation, which
makes it possible to take into account the multiple
wave scattering at inhomogeneities. The evolution of
these dependences have been investigated when mea�
suring the correlation radius and relative root�mean�
square fluctuations of inhomogeneities. The region of
existence of a negative group velocity of the Josephson

3kc
2

plasma waves caused by random inhomogeneities of
the junction is determined. This effect is most pro�

nounced at kc ~ (kc1 < kc < kc2), from where it fol�

lows that vg ~ , i.e., |vg| ~ vg0/3. If kc ~ ,

then the correlation radius is rc ~ λJ/ . At λJ =
10⎯4 cm and γ ~ 0.5, inhomogeneities with rc ~ 1.4 ×
10–4 cm are effective. The stochastic parameters of the
junction rc and  are formed during its fabrication
including the targeted formation of random inhomo�
geneities with desired properties. As a rule, strong
effect on the sample is required to vary values of rc and
γ. Therefore, it would be possible to “tune” to the
effect of negative group velocity by varying λJ, for
example, varying the junction temperature. An appro�
priate object for experimental investigations of phe�
nomena considered in this study possibly would be the
Josephson junctions from the YBa2Cu3O7 – x high�
temperature superconductor, in which the nonuni�
form current distribution was mentioned [15].

We note that formula (14), which determines the
spectrum and attenuation of the waves, can be
obtained in the second order of the perturbation the�

ory [31] if γ � 1 and kc � . The self�consistent
approximation that we used substantially extends the
applicability region of expression (14) and formulas
(15) and (16) obtained based on it for the spectrum of
waves and their group velocity.
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