
ISSN 1063�7834, Physics of the Solid State, 2013, Vol. 55, No. 10, pp. 2136–2141. © Pleiades Publishing, Ltd., 2013.
Original Russian Text © E.M. Aver’yanov, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 10, pp. 2020–2025.

2136

1. INTRODUCTION

Liquid crystals (LCs) represent the general model of
self�organized anisotropic molecular media. This
causes interest in LC self�organization manifestations
in properties of molecules, features of LC structural
ordering, and phase transitions [1]. The properties of
molecules are characterized by molecular susceptibili�
ties of various ranks, among which the molecule polar�
izability γ is most important [2, 3]. The components γij

depending on the electronic structure and conforma�
tion of molecular fragments control the anisotropic
intermolecular interactions and mesophase stability [1,
4]. At the same time, as a result of electronic structure
perturbations and changes in the conformation of
molecular fragments in LCs due to short� and long�
range�order intermolecular interactions, the compo�
nents γij themselves depend on the nature and degree of
ordering of LC molecules [1], i.e., the polarizability
and structural ordering of LC molecules vary mutually
consistently. To clarify the consequences of these fac�
tors with respect to the phase transitions in LCs, it is
necessary to determine the dependence of the compo�
nents γij on LC order parameters.

Currently, this problem can be experimentally
solved only for thermotropic uniaxial LCs, which is
caused by two circumstances. First, to determine the
components γj averaged over molecule orientations in
the system of LC refraction ellipsoid axes, the differ�

ence of the local field (ω) of the light wave polar�
izing the molecule from the macroscopic field Ej(ω) of
the light wave in a medium should be considered [5].

Ej
loc( )

These fields are related as  = fjEj. The compo�
nents fj = 1 + Lj(εj – 1) of the local field tensor diago�
nal in this coordinate system are related to the compo�
nents Lj of diagonal Lorentz tensor (SpL = 1) and the
permittivity εj. The method for determining Lj from
experimental data [6], free of a priori assumptions
about unobservable properties of molecules, is still
developed for uniaxial molecular media. Second, in
uniaxial LCs, during free rotation of molecules about
their longitudinal axes I (effective uniaxiality of the
tensor γ), two measured values of γj are sufficient for
determining the longitudinal (γl) and transverse (γt)
components of the tensor γ with the availability of
magnitudes of the molecule orientational order
parameter S determined by independent methods.
This dictated the choice of 4�methoxybenzylidene�4'�
butylaniline (MBBA) nematic LC with the molecular
formula 

as an object of the present study.

The objectives of this work are the study of the
experimental dependences Lj(T), γl, t(λ, S) on the tem�
perature of the MBBA nematic phase, the light wave�
length, and order parameter S; the interpretation of
the dependences γl, t(S) within the phenomenological
approach with clarification of their effect on the nem�
atic–isotropic liquid (N–I) phase transition.
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2. DETERMINATION 
OF THE COMPONENTS Lj

For a uniaxial LC with N uniaxial molecules per
unit volume, the tensor γ is characterized by the
parameters  = (γl + 2γt)/3, Δγ = γl – γt. In the coor�
dinate system of the director n in the visible transpar�

ency region, we have εj = , where nj are the LC
refractive indices for light waves polarized along
( j = ||) and normally to n ( j = ⊥). We introduce the
parameters  = (ε|| + 2ε⊥)/3, Q = (ε|| – ε⊥)/(  – 1) and
the quantities 

(1)

The desired component L⊥ (L|| = 1 – 2L⊥) is related to
these quantities as [7]

(2)

where L⊥k = (3 + 2Q)/[3(3 + Q)]. The function b(λ, T)
depends on the unknown function (λ, T) and the
signs of b and Δf = f|| – f⊥ are identical [7]. The equality
L⊥ = L⊥k corresponds to the condition Δf = b = 0.
Without a priori assumptions about the function (λ,
T) at a given LC temperature, the unknowns L⊥(T)
and b(λ, T) are determined as follows [6]. At known
values of nj(λi, T), for a discrete set of λi (i = 1 – p) in
the visible region, the function b(λ, T) in the range
λ1 – λp is approximated by the polynomial 

(3)

The parameter L⊥(T) is independent of λ; at tempera�
ture T of the nematic phase, there are m + 2 unknowns

{ , a0 – am}. They are determined from the system
of m + 2 = p equations (2) each corresponding to one
of values of λi. The higher approximation in polyno�
mial (3) requires a higher accuracy of nj(λ, T), other�

wise, the system of equations for { , a0 – am} can
have no physical solutions. The criterion of adequacy
of the used approximation in (3) is the agreement of

the values of  with the values of  averaged

over the values of  which correspond to all pos�
sible combinations of p – 1 references λi from the set
λ1 – λp [6].

The dependences nj(λ, ΔT) for the nematic and
isotropic phases of MBBA are tabulated in [8] at λ1 =
0.4678, λ2 = 0.48, λ3 = 0.5086, λ4 = 0.5893, and λ5 =
0.6438 μm. Here, ΔT = TNI – T, TNI is the N–I tran�
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sition temperature. The degrees m ≥ 1 of polynomial
(3) are inadequate to the accuracy of the values of nj(λ,

T) [8], since the dependences (ΔT) and

 are irregular and differ between each
other; at some values of ΔT and combinations of λi,

physical solutions for  are absent. For (ΔT),
physical solutions to the system of equations (2) exist
for all values of ΔT and all pairs λk, n of the set λi. Stan�

dard deviations of (ΔT) from averages 
do not exceed 0.005. Within the accuracy of

 and , they are in agreement

with the dependence  in the entire nematic
phase and at ΔT ≥ 16°, respectively. Thus, it should be

accepted that L⊥(ΔT) = ; this dependence
is shown in Fig. 1.

There is correlation between the dependences
L⊥(ΔT) and L⊥k(ΔT, λ), 

(4)

whose parameters are related as B ≈ (1 – A)/3. At λ =
λ4, dependence (4) with the parameters A = 1.631 and
B = –0.203 is shown in Fig. 1. From relation (4), it fol�
lows that

(5)

Taking into account the smallness Q � 3, we have
(L⊥k – 1/3) ∝ Q. At the same time, Q ∝ S [5] is valid in
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Fig. 1. Temperature dependences of (1) the component L⊥

and (2–4) the orientational order parameter S of mole�
cules in the MBBA nematic phase according to (2) 13C
NMR data [9], (3) 2H NMR data [10, 11], and (4) [12].
Solid curves 1 and 5 are dependence (4) at λ = 0.5893 μm
and dependence (7), respectively, with the parameters
given in the text.
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the approximation linear in S, and, from (5), we
obtain (L⊥ – 1/3) ∝ S.

3. DEPENDENCES (S) AND Δγ(S)
IN THE NEMATIC PHASE 

For the uniaxial LC, components εj, γj, and Lj are
related as [5]

(6)

from which the parameters  = (γ|| + 2γ⊥)/3, Δγ = (γ|| –
γ⊥)/S, γl =  + 2Δγ/3, γt =  – Δγ/3 are determined.
Here, S = 〈3cos2θ – 1〉/2, θ is the angle between the l
molecular axis and n, and angle brackets 〈…〉 mean
averaging over molecular ensemble. On the ΔT scale,
the quantities nj(ΔT), S(ΔT), and the density ρ(ΔT) for
various samples is low�sensitive to the difference of
TNI due to the presence of impurities. In this study,
these values for various MBBA samples are combined
at the same ΔT. The magnitudes of S for MBBA,
determined by 13C [9] and 2H [10–12] NMR methods

γ

εj 1 4πNγj 1 Lj εj 1–( )+[ ] j || ⊥,=( ),+=

γ

γ γ

are shown in Fig. 1. They were approximated by the
function [13]

(7)

with TNI = 317.16 K [8], S0 = 0.978 ± 0.028, TH – TNI =
0.78 ± 0.17°C, and βH = 0.211 ± 0.009. The values of
L⊥(ΔT) in Fig. 1, S (7), and ρ(ΔT) [14] were used in (6)
to determine γj(ΔT, λ) and γl, t(ΔT, λ) from the refrac�
tive indices nj(ΔT, λ) [8].

In the MBBA nematic phase, the thermal change
in the parameters , γl, t, and Δγ at all λ1–5 is best
approximated by the function

(8)

with the coefficients given in the table. Figure 2 shows
the typical dependences of  and γt on S2 at λ = λ1, 5.
The values of Γ0 correspond to the values of the
parameters , Δγ, γl, t at S = 0. This is confirmed by
good agreement of the values of Γ0( , λ) with the val�
ues of (λ) in the isotropic MBBA phase at all λ1–5.

The dependences Γ0, 2(λ) for , γl, Δγ have normal dis�
persion in the range λ1–5. To determine the electronic
transitions responsible for this dispersion, the depen�
dences of , γl, Δγ, and Γ0, 2 on λ in the range λ1–5 were
approximated by the function

(9)

The use of this procedure for the nematic phase for
each value of ΔT yielded the values λr( ) = 0.298 ±
0.015, λr(γl) = 0.301 ± 0.011, and λr(Δγ) = 0.305 ±
0.011 μm having no regular temperature behavior.
They are localized between the maxima λnπ = 0.285 μm
and λππ = 0.325 μm of long�wavelength MBBA elec�
tronic absorption bands [15, 16] related to the n–π*
and π–π∗ transitions with polarization along the N–
phenyl bond of the MBBA molecule [17]. These tran�
sitions control the dispersion variance of (λ), γl(λ),
and Δγ(λ) in the visible region. The coefficient yb in (9)

yields background values of , , and Δγb caused by
shorter�wavelength transitions. In the nematic phase,

thermal changes in , , and Δγb is absent. The

thermal change in the parameters , , and Δγ∞
corresponding to the limit λ  ∞ and obtained from
approximation (9) is characterized by function (8)
with the coefficients given in the table.

Approximation of the values of Γ0(λ) for , γl, and
Δγ by function (9) yielded the values λr( ) = 0.311,
λr(γl) = 0.320, and λr(Δγ) = 0.324 μm close to the same
values for the nematic phase and experimental values

[15, 16]. The values  = Γ0(λ  ∞) for , γl, and
Δγ coincide with the coefficients Γ0 of formula (8) for
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Coefficients Γ0, 2 (Å3) of dependence (8) for the quantities
Γ, correlation coefficients R, and parameters κ = Γ2/Γ0 at
indicated values of λ, μm

Γ λ Γ0 Γ2 R κ

0.4678 37.87 5.60 0.9893 0.1479

0.4800 37.60 5.29 0.9978 0.1407

0.5086 36.99 5.08 0.9979 0.1373

0.5893 35.94 4.60 0.9956 0.1280

0.6438 35.63 4.12 0.9949 0.1156

∞ 34.14 3.00 0.9230 0.0879

γl 0.4678 67.42 9.04 0.8797 0.1341

0.4800 66.72 8.10 0.9349 0.1214

0.5086 64.71 7.98 0.9373 0.1233

0.5893 61.24 8.45 0.9698 0.1380

0.6438 60.55 6.15 0.9296 0.1016

∞ 56.00 4.02 0.8321 0.0718

γt 0.4678 23.11 3.86 0.9451 0.1670

0.4800 23.03 3.88 0.9626 0.1685

0.5086 23.13 3.61 0.9441 0.1561

0.5893 23.29 2.68 0.9549 0.1151

0.6438 23.16 3.12 0.9684 0.1347

∞ 23.36 2.06 0.9109 0.0882

Δγ 0.4678 44.31 5.21 0.6060 0.1176

0.4800 43.69 4.22 0.6818 0.0966

0.5086 41.58 4.41 0.6998 0.1061

0.5893 37.95 5.77 0.8944 0.1520

0.6438 37.40 3.02 0.6526 0.0807

∞ 32.74 2.06 0.6891 0.0629
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the parameters , Δγ∞, and . The coefficients P
of function (9) are given by the expressions

(10)

Here D = const, Sβ = (3cos2β – 1)/2, β is the angle
between the l molecular axis and the direction of the
dipole moment of the electronic transition responsible
for the dispersion of Γ0(λ) in the range λ1–5. The relations 

(11)

and  =  = 1 + 2Sβ used to determine cos2β

follow from formulas (9) and (10). The values of

(λ1–5) obtained from the table data and the val�

ues ( ) = 29.47 Å3, (γl) = 43.05 Å3, and

(Δγ) = 20.23 Å3 yield cos2β = 0.962 ± 0.013 and
the angle β = 11.2° ± 2°. It is close to the angle β* ≈
10° between the N�phenyl bond and the axis passing
through the centers of MBBA molecule phenyl rings,
accepted as the molecular l axis in the analysis of
NMR data [9–12]. This confirms the dominant contri�
bution of the n–π* and π–π* transitions polarized
along the N�phenyl bond to the dispersion of the
parameters (λ), γl(λ), and Δγ(λ) in the visible region.
The low value of β explains the weak dispersion of γt(λ).

Approximation of the dependences Γ2(λ) for γl and
Δγ by function (9) in the range λ1–3, 5 without regard to
Γ2(λ4) fluctuations yields λr(γl) = 0.304 μm and λr(Δγ) =
0.327 μm close to λnπ and λππ, together with values of

 coinciding with the coefficients Γ2( ) and
Γ2(Δγ∞) of formula (8) in the table. This shows the rela�
tion of the coefficient Γ2(λ) to the change in oscillator
strengths fnπ(S) and fππ(S) of the n–π* and π–π* transi�
tions, which correlates to the experimental dependence
fππ(S) of type (8) in the MBBA nematic phase [18].

The MBBA electronic structure is sensitive to the
angle ϕN between the fragment C(H)=N and the
aniline ring [17]. For an isolated MBBA molecule in
gas or an isotropic medium (LC isotropic phase), the
expressions fππ(ϕN) ∝ cos2ϕN, fnπ(ϕN) ∝ sin2ϕN [1, 17]
are valid. For the LC, the measured parameter of the
conformational state of its molecules is the ensemble�
average quantity Q2 = 〈cos2ϕN〉 [1], on which the mea�
sured oscillator strengths fππ ∝ Q2, fnπ ∝ (1 – Q2)
depends. The consequence of the change in the
parameter Q2 in the MBBA nematic phase [19]

(12)
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relative to its value Q2i in the isotropic phase are the
quadratic dependences fππ(S) and fnπ(S) which con�
tribute to quadratic dependences (8) for the measured
polarizability parameters. A comparison of the values
of κ = Γ2/Γ0 for the parameters  and Δγ in nematic
MBBA phases, 4�n�alkyl�4'�cyanobiphenyls (nCB)
[1, 5] and 4�nitrophenyl�4'�octyloxybenzoate
(NP8OB) [20] shows that the conformational contri�
bution (change in Q2) to the coefficient Γ2 is not
unique. For nCB, the quantity Γ2(Δγ) is defined by the
dependence of the oscillator strength fππ(ϕ) ∝ cos2ϕ of
the long�wavelength electronic π–π* transition on the
angle ϕ between phenyl rings of the biphenyl fragment
[21] and the change in Q2(S) in the nematic phase
according to (12) [19]. In the visible region, the values
of κ( ) for MBBA are close to those for 5CB and 7CB
[1, 5], whereas the values of κ(Δγ) for MBBA are sig�
nificantly lower than κ(Δγ) > 0.5 for these homologues
nCB. The ratios Γ2(Δγ)/Γ2( ) > 3 for nCB are signifi�
cantly larger than those for MBBA. For the nematic
NP8OB phase, positive (negative) values of Γ2 for 

and γt(Δγ, γl) correspond to the dependences of , γl, t,
and Δγ on S in the visible region [20]. These facts show
the existence of the negative contribution to Γ2(Δγ)
(along with the positive conformational contribution),
associated with intermolecular interactions in LCs.
The determination of the general dependence (8) for
polarizability parameters in nematic LCs makes it
possible to turn to its interpretation and clarification
of physical consequences within the phenomenologi�
cal approach not limited by particular types of inter�
molecular interactions.
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Fig. 2. Dependence of the parameters (1, 2)  and (3) γt on

S2 in the MBBA nematic phase at λ = (1) 0.4678 and
(2, 3) 0.6438 μm. Plot 3 is shifted upward by 10 Å3. Solid
lines are dependences (8) with tabulated coefficients.
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4. CONSEQUENCES OF THE DEPENDENCES 
(S) AND Δγ(S)

The molecular polarizability tensor γ averaged over
molecule orientations with respect to the director n in
an arbitrary coordinate system can be written as γ =

E + (2/3)ΔγS, where E is the unit tensor with com�
ponents Eik = δik, S is the tensor order parameter of
nematic with components Sik = S(3nink – δik)/2, ni, k

are components of the director n in this coordinate
system [22]. In the system of the director n || Z, the
diagonal tensor γ(γ⊥, γ⊥, γ||) with components γ⊥ =  –
ΔγS/3, γ|| =  + 2ΔγS/3 corresponds to the diagonal
tensor S(–S/2, –S/2, S) with the indicated compo�
nents. The dependences (S) and Δγ(S) minimize the
nematic free energy density

(13)

The term ΔFS caused by the orientational ordering of
molecules in the absence of the relation of the tensors
S and γ is given as [22]

(14)

where the temperature dependence of the coefficients
B, C, … in a narrow interval of the nematic phase is dis�
regarded. The contribution of ΔFγ is associated with
the changes ξ1 = Δγ – Δγi and ξ2 =  –  in the

parameters Δγ and  in the liquid crystal relative to the
equilibrium parameters Δγi and  in the isotropic
phase. Dependence (8) is satisfied in the entire range
of λ variation from the visible region to λ = ∞, and the
values of Δγ(λ) and (λ) differ from the extrapolated
values Δγ∞ and  by a weakly varying proportionality

factor. Therefore, we suppose that Δγ∞ and  figure in
formula (13). The function ΔFγ(ξ1, 2) with a minimum
at ξ1, 2 = 0 is given in the lowest approximation by the
positive definite quadratic form 

(15)

with the coefficients χ1, 2 > 0 and  > χ1χ2. Due to the
non�critical behavior of ξ1, 2 with respect to nematic
ordering of molecules, the temperature dependence of
χ1, 2, m can be neglected. The term ΔFSγ is caused by the
relation of the tensors S and γ. In the lowest order in
S, Δγ, , the function ΔFSγ(I1, I2) depends on the
invariants I1 = Sp(Sγ) = ΔγS2, I2 = Sp(S2)Sp(γ) =
9 S2/2 and has the form ΔFSγ = –(η1I1 + 2η2I2/9). It
consists of the two parts 

(16)
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Substitution of the term ΔFSγ(γi) into (13) and its
inclusion into ΔFS (14) yields

(18)

The experimental difference between the tempera�
tures TNI and T* is about one degree [4, 5, 22], and the
dependence (18) is also valid for TNI. At η1 > 0, the lin�
ear increase in TNI(Δγi) is consistent with that during
the increase in Δγi due to substituents in mesogenic
molecules [1]. At η2 > 0, the linear dependence
TNI( ) corresponds to the linear correlation between

TNI and molecular refraction RM ∝  of nematic LCs
as RM is varied due to variations of substituents in mol�
ecules [23, 24]. The dependence of the TNI on Δγi and

 explains the increase in TNI for a number of LCs
with a simultaneous decrease in Δγi and an increase in

 [1], which is a stumbling block for the Maier–

Saupe theory [4] in which TNI ∝ (Δγi)
2. Thus, for

known LCs, η1, 2 > 0 is satisfied.

Minimization of the sum ΔFγ + ΔFSγ(ξ1, 2) with
respect to ξ1, 2 yields 

(19)

These dependences ξ1, 2(S) correspond to the experi�
mental ones (8). The values χm < 0 (ξ1, 2 > 0) exclude
the feasibility ξ1 < 0, ξ2 > 0 observed for NP8OB and
are disregarded. At χm > 0, either ξ1, 2 is determined by
two opposite�sign contributions. The case η1 > η1c =
η2χ2/χm, ξ1 > 0 is characteristic of homologues nCB
and MBBA. At ξ1 = 0, due to the mutual compensa�
tion of contributions to ξ1, we have ξ2 = η2χ2S2. The
relations η1 < η1c, ξ1 < 0 correspond to the nematic
NP8OB phase [20] and some other LCs [5]. The case
ξ2 = 0 at η2 = η2c = η1χ1/χm and ξ1 = η1χ1S2 was
observed for cyan�phenyl ether of heptyl cinnamic
acid [25]. For other LCs studied to date, the relations
η2 > η2c, ξ2 > 0 hold true [5, 20, 26]. Depending on
R1 = η1/η1c and R2 = η2/η2c, the quantity ξ1/ξ2 =
Γ2(Δγ)/Γ2( ) = η2(R1 – 1)/[η1(R2 – 1)] can widely vary.

Substitution of ξ1, 2 (19) into (15) and (17) leads
functional (13) to the form 

(20)

with the parameter T* (18) and coefficient C* = C –
ΔC, where

(21)

T* T0
* 2/a( ) η1Δγi η2γi+( ).+=

γi

γi

γi

γi

ξ1 S
2χ1 η1 η2χ2/χm–( )

1 χ1χ2/χm
2

–
�����������������������������������,=

ξ2 S
2χ2 η2 η1χ1/χm–( )

1 χ1χ2/χm
2

–
����������������������������������� .=

γ

ΔFS a T T*–( )S
2
/2 BS

3
/3– C*S

4
/4 …+ +=

ΔC
2η1cη2cχm

1 χ1χ2/χm
2

–
������������������������ R1 R2 2–+( ).=
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Taking into account R1R2 = /χ1χ2 > 1, from the ine�

qualities (R1 + R2) > 2(R1R2)
1/2 > 2, it follows that ΔC > 0

at any R1, 2 > 0. The decrease in C* and the possibility
of changing the C* sign to the negative one shows the
need to consider the following terms of series (20) to
adequately describe experimental dependences S(T)
by the theoretical dependence S*(T) minimizing
functional (20). This is confirmed by the approxima�
tion of the dependences S(T) for nCB and MBBA [5],
4�n�alcoxy�4'�cyanobiphenyls (nOCB) [27] and others
LCs [28] by the functions S*(T) for series (20) with a
term ∝S6. The Γ2(Δγ) sign change from negative
(NP8OB) to positive and the further increase in the ratio
Γ2(Δγ)/Γ2( ) when going from MBBA to nCB and
nOCB is accompanied by a monotonic decrease in βH in
formula (7) from 0.28 [20] till 0.17 [27]. This corresponds
to the increasing effect of higher terms of series (20) at
small positive or negative (MBBA) values of C* [5, 28].

5. CONCLUSIONS

For the best known nematic MBBA, the possibility
of the experimental determination of the components
Lj and γj of the Lorentz tensor and the molecular
polarizability tensor in the system of refraction ellip�
soid axes without a priori assumptions about unob�
servable properties of molecules or their dependence
on the LC phase state is shown. The experimentally
determined quadratic dependences γl, t(S), Δγ(S), and

(S) in the spectral region from the visible range to
λ = ∞ are caused by changes in the oscillator strengths
of long�wavelength electronic transitions of MBBA
molecules due to the intermolecular interactions and
the change in the molecular core conformation.

The derivation of the observed dependences Δγ(S)
and (S) in the lowest approximation of the phenom�
enological theory showed that the absence of a term
linear in S is a consequence of the nematic phase sym�
metry and the absence of the invariant SpS = 0 for the
tensorial order parameter S of this phase. Either of the
functions ξ1(S) = Δγ – Δγi and ξ2(S) =  –  is
defined by two opposite�sign terms. Various relations
between these terms lead to the features of changes in
Δγ(S) and (S), which correspond to those observed
for MBBA and other known LCs.

A consequence of changes in Δγ(S) and (S) is the
linear dependence of the N–I transition temperature
TNI on the parameters Δγi and , which explains the
available data on changes in TNI when varying Δγi and

 in mesogenic molecules. This makes it possible to
control the nematic phase position on the temperature
scale. The mutually consistent change in the parame�
ters Δγ, , and S manifests itself in renormalization of
the ΔFS functional coefficients and the change in the
dependence S*(T) minimizing this functional. There�

χm
2

γ

γ

γ

γ γi

γ

γ

γi

γi

γ

fore, to approximate the experimental dependence
S(T) by the function S*(T), the terms to S6 should be
taken into account in the functional ΔFS. 
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