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1. INTRODUCTION 

As is known, the characteristics of microwave
devices using magnetic materials as active media
depend substantially on the spectrum of natural oscil�
lations of magnetization, which, in turn, is determined
by many factors, including the shape of samples and
the boundary conditions on the surface. However, the
study of the magnetization dynamics in high�fre�
quency and static magnetic fields is also very impor�
tant for the elucidation of the nature and conditions of
the origin of various oscillation modes in complex
magnetic structures [1, 2]. These problems are solved
using both analytical and numerical methods. Analyt�
ical methods are based either on the solution of the
classical Walker equation [3, 4], which describes the
dynamic variations of the magnetostatic potential in a
uniformly magnetized sample, or on the use of tensor
Green’s functions [5, 6]. Moreover, as a rule, the ana�
lytical solution can be obtained only in the case of a
homogeneous internal magnetic field in the studied
objects; therefore, the samples should have a spherical
or ellipsoidal shape. On this basis, in a number of
works, exact analytical solutions were obtained for
some objects, in particular, for a spheroid, an infinite
plate, and an infinite cylinder [7]. 

However, the most important problem in the devel�
opment of magnetoelectronic devices is to determine
the natural frequencies and natural oscillation modes
in actually used ferromagnetic objects of various
shapes, for example, disks, cylinders, parallelepipeds,

or rings [2], in which the internal magnetic field, as a
rule, is highly inhomogeneous even in a uniformly
magnetized sample. In this case, inhomogeneities of
the internal field in such complex objects are caused by
inhomogeneities of the demagnetizing fields, which
are generated by surface magnetic charges. Therefore,
when studying the magnetization dynamics in samples
with inhomogeneous internal fields, which are espe�
cially pronounced in objects with sizes of the same
order of magnitude in all three coordinates, it is
required to know the spatial distribution of the internal
field. This substantially complicates the problem, but,
in the case of its solutions, makes it possible to reveal
new effects, for example, those associated with the
localization of oscillation modes in particular areas of
the object [8, 9]. 

The solution of the problem with a required accu�
racy for magnetic samples of “complex” shapes can be
obtained using numerical methods of analysis of their
models on the basis of the theory of micromagnetism
[10], which are being actively developed in recent
years. In [11, 12], the natural frequencies and natural
oscillation modes of the magnetization were deter�
mined using the standard programs originally devel�
oped for the determination of the ground state of the
magnetization in the sample. In the solution, the
authors used a Fourier analysis of the response of the
magnetic system to an applied external field pulse,
which was related to the dynamics of chosen magneti�
zation components. The main difficulty of this
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approach is associated with the complexity of the for�
mation of an appropriate field pulse, because, by vir�
tue of nonlinearity of the medium at large oscillation
amplitudes, the normal modes become coupled,
which makes it impossible to resolve them (to separate
them from each other). 

In recent years, numerical methods for solving this
problem have been developed [13–15] and have
already been widely used. These methods are based on
the linearization of the Landau–Lifshitz equation for
the case of small magnetization oscillations with
respect to the ground state. The solution of this equa�
tion is reduced to the standard problem for eigenvec�
tors and eigenvalues. This idea was implemented in
our previous study [16], where we described the
approach to the calculation of the normal magnetiza�
tion oscillation modes and the spin�wave absorption
spectrum using the previously developed discrete
model of the object under investigation [17, 18]. 

In this work, the objects of investigation are orthog�
onally magnetized thin disks of yttrium iron garnet
(YIG), which have been used both as active elements
in constructions of microstrip devices with controlled
characteristics for communication and radar systems
and as high�speed actuators of modern magnetic
recording and data transmitting systems [2, 19]. It is
also important that, for uniformly magnetized disks,
there are analytical methods of calculation, which
makes it possible not only to perform a comparison,
but also to evaluate the accuracy and efficiency of the
proposed numerical method of calculation. 

2. MATHEMATICAL DESCRIPTION 
OF THE DISCRETE MODEL 

OF A FERROMAGNET 

Let us divide a ferromagnetic object into N identi�
cal discrete elements in the form of a parallelepiped
with volume V0, where the components of the magne�
tization M(i) (i = 1, 2, …, N) are specified in each ele�
ment. In this case, the expression for the free energy,
which includes the Zeeman energy, the energy of
exchange and magnetostatic interactions, and the
energy of uniaxial magnetic anisotropy, can be written
in the form [17] 

(1)

where H is the external magnetic field and  is the
tensor describing the interaction between the discrete
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Here,  and  are the tensors describing
respectively the exchange interaction (with the
exchange constant J) and the magnetic anisotropy
(with the uniaxial anisotropy constant Ki and the
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Using the method of successive approximations [7]

and taking into account the inequalities |m(k)| � 

and |heff(k)| � , the solution will be sought in the
form 

(6)

where  is the equilibrium magnetization of the
kth cell, which, as shown in [17], is determined using
the system of linear inhomogeneous equations with
undetermined Lagrange multipliers νk: 

(7)

Earlier [17], we proposed the algorithm for solving
such a system of equations. The check for stability of
this solution of the system is determined from the
requirement of positive determinedness of the matrix

A' = (  – ), where δij is the Kronecker delta.

In this case, in expression (6), m(k)(t) is the dynamic
part of the magnetization, and the static and dynamic
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In order to determine the normal magnetic modes
of magnetization oscillations, we first of all consider
the case of free oscillations. In the absence of an exter�
nal alternating field (hrf(k) = 0), expression (9) has the
simple form 

(11)

The solution to the system of linear differential equa�
tions (11) will be sought in the form of m(i)(t) = V(i)eλt.
Here, λ = –iω; ω is the precession frequency of the
magnetization. After substituting this term into
expression (11), we obtain 

(12)

By solving equation (12) for eigenvectors and eigen�
values, the general solution of the homogeneous sys�
tem (11) can be written as an expansion in eigenvec�
tors of normal magnetic oscillation modes 
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In order to solve this system of equations, we introduce
the following notation: 

(16)

where E is the identity matrix and U = (V TV)–1V T

(here, T denotes the transposition, and –1 indicates
the inverse matrix). It should be specially noted that
the solution of equation (12) leads to a complex con�

jugate eigenvalue pairs λm and  and their corre�

sponding eigenvector pairs Vm and , which, in turn,
are not linearly independent (their real and imaginary
parts are linearly independent). Therefore, the prod�
uct V TV is not the identity matrix and U ≠ V T. 

With this notation, the system of equations (15) is
reduced to the following form: 

(17)

By integrating the differential equations, we find 

(18)
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high�frequency field of any form; however, from the
practical point of view, it is important to consider the
case of excitation of the system by a high�frequency
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Then, the expression defining the mode amplitudes
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By substituting this expression into formula (14), we
obtain the general solution of the equation describing
the motion of the magnetization of the ith cell: 

(20)

It should be noted that the first term of this expression
describes free oscillations of the magnetic system. This

can be easily seen if we put  equal to zero. In the
case of the damping in the system, the behavior of
m(i)(t) in the steady�state regime is described by the
expression 

(21)

In this case, we can easily calculate the absorption
energy of the high�frequency field [21] 
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graphic magnetic anisotropy of the sample was not
considered to facilitate the analysis of the results. 

The discretization of the studied disk was per�
formed only in the plane; in this case, we used four dif�
ferent square grids with a multiple decrease in the size
of cells, which, with two decimal places, had the fol�
lowing values: a = 124.38, 62.19, 31.09, and 15.55 μm
(Fig. 1). This was necessary to evaluate the influence
of the degree of discretization on the quality of the
numerical calculation. As a result, the sample was
divided into equal parallelepipeds a × a × L in size.
Because of the strong influence of the shape anisot�
ropy, for the chosen geometry of the “unit cell” in our
calculation of the magnetostatic interaction tensor, we
used the exact analytical expression presented in [20].
The external static magnetic field H0 = 4.9 kOe, which
was applied orthogonally to the film plane, obviously,
ensured the reliable homogeneous “magnetization” of
the sample. 

First of all, we consider the results of the numerical
simulation of the demagnetizing field, which exerts a
significant influence on the high�frequency properties
of magnetic disks. In the framework of the considered
discrete model, the demagnetizing field was defined by
the following expression: 

(23)

where  is the equilibrium magnetization of the jth
cell. It should be noted that the algorithm for calculat�
ing the demagnetizing fields included the method of
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fast Fourier transform [22], which made it possible to
decrease the required memory for storing the elements

 and to significantly speed up the computa�
tional procedures. 

The results of the numerical calculation of the
dependence of the demagnetizing field Hdem on the
coordinate r along the diameter of the studied disk
with the discretization cell size a = 62.19 μm are
shown by open circles in Fig. 2. For comparison,
closed circles in this figure show a similar dependence
constructed for the disk with the ratio L/D = 0.5709.
Dashed lines represent the results of the calculation
according to the formula Hdem(r) = –4πMsI(r), for
which the dependence of the demagnetizing factor
I(r) was obtained analytically in the approximation
L/D � 1 [23]. 

It can be seen that, for the studied disk (L/D =
0.0714), the discrepancy between the results of the
micromagnetic simulation and analytical calculation
is noticeable only at the edges of the sample; however,
for the disk with L/D = 0.5709, this discrepancy is sig�
nificant for any r. Solid lines in the figure show the
dependences constructed using a more accurate ana�
lytical expression for the demagnetizing factor I(r) =
Nzz(r, z) [24], which also takes into account the depen�
dence of the demagnetizing factor on the thickness of
the sample. These results agree very well with the
results of the numerical simulation both in the case of
L/D = 0.0714 and in the case of L/D = 0.5709. 

It is important to note that, in uniformly magne�
tized samples of nonellipsoidal shape, the inhomoge�
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Fig. 1. Fragments of the models of the studied disk after
discretization in the plane by square grids with different
steps. 
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Fig. 2. Dependences of the demagnetizing fields Hdem(r)
along the diameter of the orthogonally magnetized YIG
disk for two values of the ratio L/D. Open and closed cir�
cles indicate the results of the numerical calculation of the
discrete model for a = 62.19 μm. Solid and dashed lines
correspond to the analytical calculations according to for�
mulas from [24] and [23], respectively. 
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neous internal magnetic field can encourage excita�
tion of magnetostatic oscillation modes under the
influence of a homogeneous high�frequency magnetic
field, which was observed for the first time by Dillon
[25]. This fact is well illustrated by the numerical cal�

culation of the absorption spectrum of the studied
YIG disk in the microwave range, which was per�
formed using the discrete model and the derived
expression (22). 

Figure 3 shows four microwave absorption spectra
calculated for different discretizations. It can be seen
that the part of the spectrum in the regions of lower
oscillation modes remains almost unchanged with a
decrease in the cell size a from 124.38 to 15.55 μm.
However, as should be expected, the division of the
disk into “large” discrete elements leads to an ambig�
uous determination of higher oscillation modes, so
that their spectrum in this case has a number of addi�
tional resonances. It can be seen that, with an increase
in the number of elements in the discrete model, the
spectrum in the region of higher modes of inhomoge�
neous magnetization oscillations is gradually “puri�
fied” from additional resonances, but, accordingly,
this leads to an increase in the required computational
time [22]. Therefore, for each studied method of
micromagnetic simulation of the object, it is impor�
tant to determine the optimum discretization of the
model. Our estimates show that, for a satisfactory
description of the spectrum in the frequency range
studied, it is required that the wavelength of the high�
est oscillation modes in the spectrum should be
accounted for by at least ten discrete cells. 

In order to estimate the accuracy of the calculation
of the microwave absorption spectra, we compare the
results of our simulation with the results of the calcu�
lation in the model proposed by Yukawa and Abe [23],
which is simple but quite well consistent with the
experiment. In this model, the dispersion relation for
magnetostatic waves in a normally magnetized plate or
disk was obtained at standard electrodynamic bound�
ary conditions on the upper and lower surfaces of the
sample [7]: 

(24)

Here, k is the wave number of a magnetostatic wave
propagating in the plane of the disk and μ is the diag�
onal component of the magnetic permeability tensor 

(25)

where 
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Fig. 3. Resonance absorption spectra constructed for a
normally magnetized YIG disk upon pumping by a homo�
geneous external high�frequency field in the plane for dif�
ferent sizes of elements in the discrete model. 
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cutoff frequencies of magnetostatic waves Hi(r) ≤

ω/γ ≤ . The magnetostatic wave propa�
gating in the inhomogeneous internal field Hi(r) radi�
ally from the center of the disk undergoes reflection at
a specific distance r1, where the wave number k van�
ishes. For r > r1, the wave number in the general case
becomes complex, which corresponds to oscillations
with an exponentially decreasing amplitude. The dis�
tance r1, at which there occurs a reflection of the mag�
netostatic wave, is determined from the condition
ω/γ = Hi(r1). 

The condition of a standing wave, when an integer
number of half�waves fits at the distance –r1 < r < r1,
leads to the expression for calculating the number n of
the magnetostatic oscillation mode. Using the desig�
nations ρ = r/R and ρ1 = r1/R, we can write the above
condition in the form [23] 

(26)

Every time when n becomes an integer, there occurs a
resonant absorption of the high�frequency pump field
energy. It should be recalled that, when the sample is
placed in a homogeneous high�frequency magnetic
field, magnetostatic oscillations are excited only for
odd mode numbers n. As was shown by Yukawa and
Abe, the theoretical results obtained using expressions
(26) are in quite good agreement with experimental
measurements [23]. 
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The dependence of the natural magnetostatic
oscillation frequencies on the mode number calcu�
lated for an orthogonally magnetized disk according to
formula (26) is shown by the solid line in Fig. 4. In this
case, the internal field Hi(r) involved in the expression
for the magnetic permeability μ was determined using
an improved analytical calculation of the demagnetiz�
ing factor [24]. The points in the figure represent the
results of the numerical micromagnetic calculation
performed for three different cell sizes in the discrete
model. It can be seen that the resonant frequencies of
the lowest oscillation modes obtained by the numeri�
cal calculation are in good agreement with the results
of the analytical calculation for any degree of discreti�
zation of the model. However, in the region of higher
modes, there is some difference. In the numerical cal�
culations for the model with a = 124.38 μm, the insuf�
ficient degree of discretization of the disk is the cause
for the overestimation of the frequency of higher
modes in comparison with the analytical calculation.
However, at a sufficiently high discretization of the
disk (a = 15.55 μm), the numerical calculation, on the
contrary, gives a small decrease in the resonant fre�
quencies of the higher oscillation modes. The discrep�
ancy between the analytical calculation and the
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Fig. 4. Dependences of the natural magnetostatic oscilla�
tion frequencies for an orthogonally magnetized disk on
the mode number. Points are the results of the numerical
simulation, the solid lines show the results of the calcula�
tions in the model of Yukawa and Abe, and the dashed and
dash�dotted lines correspond to the calculations [26] with
and without averaging of the demagnetizing factor, respec�
tively. 
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Fig. 5. Distribution of the internal magnetic field Hi(ρ)
over the disk diameter (dashed line) and the resonance
fields ωres/γ (dash�dotted horizontal lines). Solid lines
show the distributions of the high�frequency magnetiza�
tion oscillation amplitudes for the four lowest modes con�
structed on this figure for clarity in arbitrary units. 
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numerical calculation in the discrete model can be
understood from Fig. 5. 

In Fig. 5, the dashed line shows the distribution of
the internal magnetic field Hi(ρ) along the diameter of
the disk, and the dash�dotted horizontal lines indicate
values of the resonance fields ωres/γ for the observed
magnetization oscillation modes. Moreover, for the
four lowest resonant modes, this figure shows the cal�
culated distributions of the high�frequency magneti�
zation oscillation amplitudes. It can be seen that the
boundaries of the existence of the magnetostatic
modes –r1 < r < r1, which are used in the theoretical
model proposed by Yukawa and Abe, do not localize it
completely (at the boundaries, the high�frequency
magnetization is nonzero). The magnetization oscilla�
tion amplitude exponentially decreasing toward the
edges of the disk broadens this region, which leads to
an increase in the effective radius for the formation of
standing waves and, consequently, to a decrease in the
frequency. And since the broadening of the region par�
ticularly strongly affects the “short” waves with large
values of k, the observed difference in the resonant fre�
quencies of the modes increases for peaks with a large
value of n. 

The analytical model proposed by Yukawa and
Abe, despite its simplicity and good agreement with
the experiment, cannot completely meet all the needs
in the analysis of such systems. First, this model is
restricted to considering only the radial modes excited

by a planar field. The modes, which, in the general
case, depend on the azimuthal and normal coordi�
nates, remain beyond the scope of this model. Second,
this model does not give an accurate distribution of the
excited high�frequency magnetization modes in the
sample. Apart from the positions of the absorption
peaks and their number, no additional information in
the context of this model can be obtained. 

The problem of excitation of magnetostatic oscilla�
tions in a normally magnetized disk has an exact ana�
lytical solution, provided that the internal magnetic
field of the disk remains homogeneous [4, 7]. In this
case, it is assumed that I(r) = const, and the consider�
ation of the standard electrodynamic boundary condi�
tions on the side surfaces of the disk for the magneto�
static potential 

(27)

leads to the additional equation 

(28)

which, together with dispersion relation (24), deter�
mines the entire spectrum of magnetostatic oscilla�
tions of an orthogonally magnetized disk. Here, Jm is
the Bessel function; Km is the Bessel function of the
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Fig. 6. (a) Distribution of the magnetization oscillation amplitudes for the four lowest modes (arrows indicate the directions of
the magnetization motion at a fixed point of time) and (b, c) distributions of the magnetostatic potential for the first four modes
according to (b) results of the numerical simulation and (c) results of the calculation using formula (27). 
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imaginary argument; and the factor Cm in formula (27)
is the normalization factor, which in our calculations
is set equal to unity. 

Based on the simultaneous solution of equations
(24) and (28) for I(r) = 1, in Fig. 4 we plotted the
dependence of the resonant frequency on the oscilla�
tion mode number n (dash�dotted line). It can be seen
that the disregard of the inhomogeneity of the internal
field leads to a serious error. To avoid this discrepancy,
the authors of [26] proposed to use the method of aver�
aging the demagnetizing factor I(r) along the diameter
of the disk and obtained the value Iav ≈ 0.895. Using
this value, we carried out the calculation similar to that
performed previously. The results of this calculation
are presented in Fig. 4 by the dashed line. It can be
seen that the results obtained for the lower modes are
in good agreement with both the results of the numer�
ical simulation and the results of the calculation in the
model proposed by Yukawa and Abe. However, in the
cited paper [26], probably, there is some inaccuracy.
The average value of the demagnetizing factor Iav ≈
0.895, which is presented in [26] and obtained for
parameters of the model similar to that studied in our
work, is slightly overestimated. Indeed, according to
[23], this average value is Iav = 0.8714, but, according
to [24], it is Iav = 0.8763. Possibly, the authors of [26]
performed the averaging not over the entire disk width,
but only over its part. 

For the analysis of the structure of magnetostatic
oscillation modes, Fig. 6a presents the distributions of
high�frequency magnetization oscillation amplitudes
for the four lowest excited modes according to the
results of the numerical micromagnetic simulation.
Moreover, arrows in this figure schematically indicate
the directions of magnetization motion at a fixed point
of time. It can be seen that the modes have a strictly
radial distribution of the high�frequency magnetiza�
tion oscillation amplitudes. 

Using the results of the numerical simulations, we
also obtained the distributions of the magnetostatic
potential for these modes (Fig. 6b), which were com�
pared with the results of analytical calculations using
formula (27) (Fig. 6c). It can be seen that the obtained
results are in very good agreement. A small difference
is that the results of the numerical simulation are char�
acterized by a certain localization of the modes closer
to the center, which is apparently caused by the inclu�
sion of the inhomogeneity of the internal field,
whereas in accordance with formula (27), the modes
are more uniformly distributed. Moreover, the results
of the numerical simulation demonstrate that the
magnetostatic potential for mode 4 begins to show a
symmetry that is characteristic of square samples
rather than of disks. This is obviously associated with
the error in the approximation of the cylindrical sur�
face of the disk by parallelepipeds of insufficiently
small sizes. 

4. CONCLUSIONS 

Thus, the absorption spectrum of a normally mag�
netized disk of yttrium iron garnet has been numeri�
cally investigated using the developed micromagnetic
model of a ferromagnet. It has been shown that non�
uniform magnetostatic oscillations that are responsi�
ble for the resonance peaks observed in the absorption
spectrum are excited because of the gradient distribu�
tion of the internal magnetic field in a magnetized
disk, which is subjected to a homogeneous high�fre�
quency magnetic field. A comparison of the results of
the micromagnetic simulation with analytical calcula�
tions performed for special cases has proved the valid�
ity and high reliability of the developed approach to
the numerical micromagnetic simulations of ferro�
magnetic objects with arbitrary shape and size. 

It is important to note that the presented calcula�
tion allows one not only to determine the spectrum of
normal oscillation modes of the magnetization for
composite samples of magnetic and nonmagnetic
materials of any shape, but also to calculate the elec�
tromagnetic energy absorption spectrum for both the
magnetic field sweep and the pump frequency sweep.
In particular, the developed method makes it possible
to investigate the frequency and field dependences of
the magnetic permeability tensor components for
complex multilayer structures, which are currently
considered as the most promising objects for the cre�
ation of new microelectronic elements. 
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