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We consider a microcavity with degenerate dipole or hexapole eigenmodes. If the cavity is positioned between
waveguides, degeneracy is lifted. However, we show that in a nonlinearmicrocavity the degeneracy is recovered at
certain injected power. In application we consider a two-dimensional photonic crystal of GaAs rods holding two
parallel waveguides and one defect made of Kerr media. We show that 100% efficiency channel dropping can be
attained without a necessity to tune the resonant frequencies of the microcavity. © 2013 Optical Society of
America
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1. INTRODUCTION
Microcavities or resonators formed by point defects and
waveguides formed by line defects in photonic crystals (PhCs)
have been subjects for much research because of their
capability to confine photons within a small volume, and they
are expected to be key building blocks for miniature photonic
functional devices and photonic integrated circuits. Among
various PhC-based devices, ultracompact channel drop filters
(CDFs) based on resonant coupling between cavity modes of
point defects and waveguide modes of line defects have
drawn primary interest because of the substantial demand
for them in wavelength division multiplexed optical commu-
nication systems. For instance, in-plane CDFs composed of
two waveguides and two optical resonators have been
proposed by Fan and co-workers [1–3].

Many CDF designs with two resonant microcavities in PhCs
were studied theoretically and practically in [4–12], where
each cavity was represented by a single monopole eigenmode.
If a cavity supports two resonances of different symmetry,
then the degeneracy of these resonances provides 100% drop
efficiency [1,3]. Such filters potentially offer ideal transfer
characteristics with the size of a few micrometers. Alterna-
tively, twomicrocavities can be replaced by a single microcav-
ity with higher-order eigenmodes excited at the operational
frequency [13–17]. Then high-efficiency channel dropping
could be achieved in some fine designs of the defect system
in order to obtain the degeneracy of the modes [1]. A clear
channel drop operation was successfully demonstrated by
employing an ultrahigh-quality-factor single microcavity and
a suitably designed waveguide bend [18].

The presence of continua of the waveguides lifts the degen-
eracy of the cavity modes. To enforce the exact degeneracy of
the two cavity modes, the CDF designs involve inclusions of
different materials and very small feature sizes of a few

hundredths of the lattice constant. The CDF based on a tri-
angular lattice of air holes does not involve either inclusion
of additional materials or an extra small feature size [4,6].
However, those two cavities should be made precisely for
ideal filter characteristics, which is a challenge in fabrication.
In the present paper we consider a 2D square lattice PhC hold-
ing two waveguides and one microcavity made of Kerr media.
The cavity is characterized by different eigenmodes, dipole,
quadrupole, hexapole, etc. [19], whose degeneracy is lifted be-
cause of the waveguides. We show that the degeneracy of res-
onances can be restored by tuning of injected power when the
cavity is fabricated from Kerr media.

2. BASIC EQUATIONS FOR WAVE
TRANSMISSION
Let us assume a four-port system that consists of two linear
waveguides and one nonlinear optical cavity with some eigen-
frequencies belonging to the propagation band of the wave-
guide. To begin with, we consider dipole modes that would
be degenerate if there were no waveguides. As shown in
Fig. 1(a) the first mode is even or odd relative to inversion
of the x or y axis (the x axis is aligned along the waveguides),
while the second mode shown in Fig. 1(b) has opposite
symmetry properties. These two modes represent two-
dimensional irreducible representation of the group symmetry
C4v. A distance between the waveguides and the cavity can be
chosen equal to a; 2a; 3a;… where a is the lattice unit of the
two-dimensional square lattice PhC. The coupling strength be-
tween the cavity eigenmodes and the waveguides decays ex-
ponentially with this distance but has no principal importance
for the achievement of 100% channel drop efficiency, as will
be shown below. In order to demonstrate the last statement,
we consider two choices for the distance as shown in
Figs. 1(a) and 1(b) and in Figs. 1(c) and 1(d) in which the
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coupling strengths differ by 1 order of magnitude. The size and
dielectric constant of the defect rod represented by the white
circle in Fig. 1 were chosen with the condition that the eigen-
frequencies of the defect cavity fit into the propagation band
of the waveguides.

Following [21], we present the PhC design in the scheme
shown in Fig. 2 and write the coupled mode theory (CMT)
equations for time stationary amplitudes,

iωjAi � �iΩ̂� Γ̂�jAi − K̂T jS�i; (1)

jS
−

i � ĈjS�i � K̂ jAi; (2)

K̂�K̂ � 2Γ̂; ĈK̂� � −K̂ : (3)

Here the state vector is jAiT � �A1 A2 �; jS�iT �
� S1� 0 0 0 � is the injecting vector, and jS

−

iT �
� S1− S2− σ1− σ2− � is the outgoing vector as shown in
Fig. 2. In accordance with Eqs. (2) and (3), we have
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Then from Eq. (3) we obtain that the coupling matrix K̂
takes the following form:
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Finally, substituting Eqs. (4) and (5) into Eq. (1) and taking
into account the nonlinearity of the cavity, we have the follow-
ing equations for the eigenmode amplitudes A1, A2 [22]:

�ω − ω1 � λ11jA1j2 � λ12jA2j2 � 2iγ1�A1

� 2λ12 Re�A�
1A2�A2 � −

�����
γ1

p
S1�;

2λ12 Re�A�
1A2�A1 � �ω − ω2 � λ22jA2j2 � λ12jA1j2

� 2iγ2�A2 � −i
�����
γ2

p
S1�; (6)

where ω1;2 are the eigenfrequencies of the cavity modes
shifted because of coupling to the waveguides, while

λmn � c2n2
2

a2

Z
E2
m�x; y�E2

n�x; y�dxdy; (7)

are the nonlinearity constants. The eigenmodes are normal-
ized as follows:

cn2

a2

Z
εPhCEm�x; y�En�x; y�dxdy � δmn; (8)

where εPhC is the dielectric constant of the defectless PhC.
Integration is performed over the cross section of the nonlin-
ear defect rod with the nonlinear refractive index n2. The
frequencies, the resonance widths, and the nonlinear con-
stants are given in terms of 2πc∕a, while Em�x; y� are the ei-
genmodes shown in Fig. 1. After substitution of Eqs. (4) and
(5) into Eq. (2) we obtain the following equations for the
outgoing transmission amplitudes:
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It immediately follows from Eqs. (6) and (9) that the chan-
nel dropping is possible only from port 1 into port 3, i.e.,
S1− � S2− � σ2− � 0, σ1− � S1�. That gives us

Fig. 1. Microcavity eigenmodes (space profiles of the electric field directed parallel to the rods) in the two-dimensional square lattice PhC con-
sisting of GaAs dielectric rods with radius 0.18a and dielectric constant ϵ � 11.56, where a � 0.5 μm is the lattice unit [20]. The rods are shown as
open gray circles. The defect, shown as the open white circle, has (a), (b) ϵd � 6.5 and the radius rd � 0.4a in the case of dipole modes with
eigenfrequency 0.368 and (c), (d) ϵd � 11.9 and rd � 0.6a in the case of hexapole modes with eigenfrequency 0.384. Two rows of rods, shown
as dashed open circles, are assumed to be removed to fabricate two parallel waveguides.
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Fig. 2. Four-port system with a nonlinear cavity between two
waveguides. γ1∕21 and γ1∕22 are the coupling constants between wave-
guides and eigenmodes.
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therefore Re�A�
1A2� � 0 in Eq. (6). Then, from Eqs. (6) and

(10), we obtain that the frequencies become equal to each
other when the following condition is fulfilled:
ω1 − λ11jA1j2 − λ12jA2j2 � ω2 − λ22jA2j2 − λ12jA1j2. Obviously,
for the circular cross section of a defect rod, λ11 � λ22. We
assume that this equality holds even for elliptic cross sections
with slightly different semiaxes. Note that from Eqs. (7) it
follows that λ11 > λ12. Then we find values of the injected light
power,

jS1�j2 �
4γ1γ2�ω2 − ω1�

�λ11 − λ12��γ1 − γ2�
�11�

and frequency

ω � ω1 −
�ω2 − ω1��λ11γ2 � λ12γ1�

�λ11 − λ12��γ1 − γ2�
; (12)

at which we obtain perfect 100% CDF efficiency from port 1
into port 3.

Equation (11) shows the most important property of the
nonlinear cavity coupled with linear waveguides, namely, that
the degeneracy of resonances can be restored by the electro-
magnetic power injected into the waveguide for arbitrary ei-
genfrequencies ω1, ω2 and coupling constants γ1, γ2. Also one
can see that the greater the difference between resonance
frequencies ω2 − ω1, the more power must be injected in order
to restore a degeneracy. The only condition is ω1 < ω2, γ1 > γ2
or ω1 > ω2, γ1 < γ2. This yields a result important for applica-
tion in channel dropping, as will be shown below.

3. LIGHT-INDUCED RECOVERY OF
DEGENERACY OF RESONANCE DIPOLE OR
HEXAPOLE MODES OF A NONLINEAR
CAVITY
Let us first consider the dipole modes shown in Figs. 1(a) and
1(b). One can see that the first mode, which is even relative to
the x axis, has a larger coupling constant with the waveguide
than the second mode. Therefore we have γ1 > γ2 and
ω1 > ω2, at least for the circular defect rod. Numerical solu-
tion of Maxwell’s equations shows that the isolated linear de-
fect rod cavity is degenerate with the eigenfrequency
ω0 � 0.368. After removing two rows of the rods, as shown
in Figs. 1(a) and 1(b), we obtained ω1 � 0.3692,
ω2 � 0.3653, γ1 � 0.0012, γ2 � 8 × 10−6. Therefore the CDF ef-
ficiency will be damaged for the linear circular defect because
of the lack of degeneracy of resonant modes. Indeed, Fig. 3
demonstrates that transmission into port 3 achieves only
45% efficiency for the specific PhC design presented in
Fig. 1(a). Note that, for these calculations, we take the dielec-
tric constant of the GaAs rods and defect rod as independent
of frequency.

For the nonlinear defect the inequalities γ1 > γ2, ω1 > ω2

present the “bad” case according to Eq. (11). However, the
case can be changed to the “good” one if one takes the defect
of an elliptic or rectangular cross section. If we were to take,
for example, major and minor semiaxes 0.43a and 0.4a, re-
spectively, for the elliptic cross section of the defect rod,
we obtain ω1 � 0.3626, ω2 � 0.3642, and γ1 � 0.0012,

γ2 � 8 × 10−6, which conforms to the inequalities necessary
for the CDF. The major semiaxis is aligned across the wave-
guides. We stress that, although we have changed the cross
section of the defect rod, there is no necessity to precisely
tune the resonance frequencies by special designs of the
PhC structure.

As a result, for the linear elliptic defect rod we obtain in-
version of the resonance frequencies, as seen from Fig. 4(a),
compared to the former case of the circular defect rod shown
in Fig. 3. In the same PhC design the frequency behavior of the
transmission into port 3 for the linear case substantially differs
from the case of a nonlinear defect rod, as Figs. 4(a) and 4(b)
show. The wide resonance peak does not undergo visible
changes, but the narrow resonance peak undergoes a large
shift, the value of which depend on at least three factors:
the nonlinearity constant λ, the resonance width γ2, and the
injected power P0 in the universal ratio P0λ22∕γ2 [20,23].
For the given nonlinearity constant and optimal injected
power, Eq. (11), the shift can be estimated as
4�ω2 − ω1� ∼ 10−3, which agrees with the numerical result
shown in Fig. 4(b). This value also evaluates the frequency
region of high efficiency of the channel dropping. The 100%
CDF efficiency occurs at those frequencies of injected light
at which the degeneracy is recovered, as shown in Fig. 4(b).
Figure 4(c) shows the transmission into port 4. In both
Figs. 4(b) and 4(c) we mark the stable solution of Eq. (6) with
open circles.

Next, we compared the CMT results for the transmissions
with the numerical solution of the nonlinear Maxwell equa-
tions [shown as dashed curves in Figs. 4(b) and 4(c)]. The
method for solving the Maxwell equations is described in
the appendix of [24]. There is qualitative agreement between
the CMT and numerics in the frequency dependence of trans-
missions into ports 3 and 4. However the CMT and Maxwell
equations give different frequency windows and positions
where the high CDF efficiency exists. This difference is a re-
sult of neglecting radiation shifts in resonance frequencies in
the CMT equations, Eqs. (6), which are due to the coupling of
the cavity dipole eigenmodes with the waveguides. Moreover
in the CMT consideration we have neglected the contribution
of other eigenmodes of the resonance nonlinear cavity.
Finally, in Fig. 4(d) we show perfect channel dropping as

0.364 0.366 0.368 0.37
0

0.2

0.4

0.6

0.8

1

ω

tr
an

sm
is

si
on

s

 

 

0.365 0.3652
0

1

ω

 

port 3

port 2

Fig. 3. Transmission spectrum via the dipole modes of a linear
microcavity. The defect rod with dielectric constant ϵd � 6.5 has a
circular cross section with radius 0.4a.
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an effect of injected light intensity, in full correspondence
with Eq. (11).

The first dipole mode [Fig. 1(a)] has coupling constant γ1,
which exceeds the coupling constant γ2 of the second dipole
mode by 2 orders of magnitude. The higher eigenmodes have
more nodal lines that decrease this difference. An example of
higher hexapole modes is shown in Figs. 1(c) and 1(d). For the
same design of PhC the coupling constants are γ1 � 1.2 × 10−5,
γ2 � 2.8 × 10−6. For the linear case the design has to be opti-
mized in order to achieve channel dropping [1,13,15]. As in the

case of dipole modes, we show that there is no necessity to
optimize the design in the nonlinear case. However, neighbor-
ing rods, shown in Figs. 1(c) and 1(d) by brown circles, are
shifted toward the nonlinear defect in order to achieve
ω2 > ω1. However, in contrast to the linear case, the shift
can be arbitrary. To be specific, we take the shift 0.03a or
−0.03a for the left or right neighbor of the defect cavity. That
gives only 25% CDF efficiency in the linear case, as shown in
Fig. 6(a). The nonlinearity of the defect rod gives 100% effi-
ciency of transmission from port 1 into port 3, as Fig. 6(b)
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Fig. 4. Transmission spectra into ports 3 and 4 via the dipole modes of the defect cavity. The defect rod with dielectric constant ϵd � 6.5 has an
elliptic cross section with major and minor semiaxes 0.43a and 0.4a. (a) Linear defect; (b), (c) nonlinear defect with n2 � 2 × 10−13 cm2∕W for
P0 � 0.35 W∕a. (d) The transmission from port 1 into port 3 versus the intensity of injected light for ω � ωc � 0.3621. Open circles mark the stable
solution, and asterisks mark the unstable solution of Eqs. (6). The dashed curves show the solution of the nonlinear Maxwell equations.

Fig. 5. Real part of the scattering wave function (electric field) in the PhC, which holds two parallel waveguides and one nonlinear cavity with two
(a) dipole and (b) hexapole eigenmodes. Injected power and frequency obey the conditions for 100% channel dropping. Pink curves are optical
streamlines.
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demonstrates. Two hexapole modes have the eigenfrequen-
cies ω1 � 0.38791, ω2 � 0.38813. Figure 6(a) shows the reso-
nant peaks in the transmission from port 1 into port 3. One can
see that only these two eigenhexapole modes participate in
the transmission. Next, one can see from Fig. 6(b) that there
are two stable solutions around the frequency 0.3621, one with
the 100% CDF efficiency, the other with almost 0% efficiency.
This result opens a way for all-optical switching of the CDF
efficiency from zero to 100% by applying impulses of the
injected light, as was demonstrated in [22].

Our numerical calculation of the nonlinear Maxwell equa-
tions gives the results close to the results obtained from the
CMT equations. These data are shown in Fig. 5(b). The chan-
nel dropping is visualized by optical streamlines. The trans-
mission from port 1 into port 3, shown in Fig. 6(b) by the
dashed curve, perfectly coincides with the self-consistent sol-
ution of the CMT equations, unlike the case of dipole eigenm-
odes. This is because the coupling of higher-order hexapole
eigenmodes of the cavity with the waveguides is weaker than
those of the dipole eigenmodes.

4. SUMMARY AND DISCUSSION
In this paper we have demonstrated how nonlinearity can
solve the problem of tuning resonant frequencies of a defect
microcavity between two linear waveguides by use of a defect
rod made from Kerr media. Although originally the cavity
modes, dipole, quadrupole, etc., are degenerate, their coupling
with continua of waveguides lifts the degeneracy of resonant
frequencies. The recovery of the degeneracy requires special
optimization of the PhC CDF design, including different
materials with precise substitution of positions and sizes
for the linear cavity.

In the nonlinear case the degeneracy of resonant modes
can be recovered by tuning of injected power or frequency
of injected light, as implied by Eqs. (11) and (12) derived in
the framework of CMT. These results are in good agreement
with direct calculations of the nonlinear Maxwell equations,
especially for the hexapole eigenmodes of the nonlinear cav-
ity. Although theoretically we can achieve 100% channel drop
efficiency, there are hindrances that can affect that. The first
hindrance is related to losses of the EM power for transmis-
sion through the waveguides and in the cavity due to vertical
emission of light. These losses will damage the channel drop

efficiency [3]. The second potential problem is related to a
contribution of other eigenmodes of the resonance nonlinear
cavity; these modes have an exponentially small contribution
in the CMT equations (6). Note that for numerical solution of
the Maxwell equations the contribution of other eigenmodes
is taken into account that can be a source of discrepancy be-
tween the CMT and numerics seen in Figs. 4(b) and 4(c).
Equation (11) reveals one important aspect of the light-
induced degeneracy of the eigenmodes of the resonant cavity.
Assume that the first mode is coupled with ports more than
the second. Then the radiation shifts and resonance widths
obey the inequalities Δω1 > Δω2 and γ1 > γ2. If the eigenmo-
des were degenerated for the free, say, cylindrical cavity, we
obtain that the resonance frequencies obey ω1 > ω2. As a re-
sult, Eq. (11) cannot be satisfied. Therefore we had to lift the
degeneracy of the free cavity in order to achieve the inequality
ω1 < ω2 by, for example, deforming the cylindrical shape of
the cavity into an elliptic shape. Specifically, we have taken
major and minor semiaxes 0.43a and 0.4a. However, the value
of deformation has no importance, which reveals an advan-
tage of the light-induced tuning of the resonance frequencies
compared with the linear cavity, where precise tuning of res-
onant frequencies is necessary. Thus, the light-induced recov-
ery of degeneracy is completely robust relative to errors in
fabrication of the PhC design. Moreover, if the nonlinear re-
fractive index is negative, then condition (11) is satisfied even
for a cylindrical defect rod (the “good” case).
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