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Abstract:

In this paper we have analytically and numerically studied the dynamics of spin crossover induced by time-

dependent pressure. We show that quasi static pressure, with a slow dependence on time, yields a spin
crossover leading to transition from the high spin (HS) quantum system state to the low spin (LS) state.
However, quench dynamics under shockwave load are more complicated. The final state of the system
depends on the amplitude and pulse velocity, resulting in the mixture of the HS and LS states.
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1. Introduction

Spin crossover in condensed matter physics is the trans-
formation of a system with a given spin S; at each lattice
site into another state with spin S, induced by some ex-
ternal field, such as a strong magnetic field, high pressure,
etc. Itis accompanied by energy levels E7 and E;crossing,
where E, is the local energy of the magnetic ion with spin
Sq (@ = 1,2). Recently spin crossovers in magnetic ox-
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#E-mail: gri2086@mail.ru

ides have been found under high pressure in FeBOs [1],
CdFe;(BOs)4 [2], BiFeOs [3] and Fe;04 [4] Below the
Curie temperature, spin crossover is accompanied by a
sharp change in the magnetization; nevertheless it may be
observed in the paramagnetic state (e.g. in CdFe3(BO3)4
[2]) as the sharp change of the XES satellite/main peak
intensity ratio with increasing pressure.

Energy levels crossing results in the loss of analyticity
in the energy spectrum at the critical point (in the ther-
modynamic limit) [5]. Near the critical point, adiabaticity
breaks down and non-equilibrium phenomena associated
with dramtically amplified quantum fluctuations can drive
the system away from the ground state. The final result
depends on how fast the transition occurs. If the quench
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process is sufficiently fast, large numbers of topological
defects are created and the final state, being characterized
by mixture of high and low spin phases, can be essentially
different from that obtained as result of slow evolution.
Qualitatively, quench dynamics can be described by the
Kibble-Zurek theory of nonequilibrium phase transitions
[6-8].

In this paper we consider quench dynamics in spin
crossover induced by time-dependent pressure. The paper
is organized as follows. In Sec. Il, a general model of spin
crossover under high pressure is introduced. In Sec. I,
we study quench dynamics. We consider two cases: a)
pressure defined as a linear function of time; b) pressure
defined by a pulse of a given shape. We conclude in Sec.
IV with a discussion of our results.

2. Model

The multielectron ion in a crystal field has the energies of
terms for d” configurations determined numerically by the
Tanabe-Sugano diagrams [9] as a solution of the eigen-
value problem. Simple analytical calculations of the low
energy terms with different spin values have recently been
made [10], and these calculations were sufficient to study
spin crossover. The crystal field parameter increases lin-
early with pressure P, thus the multielectron energies for
spin Sy and S, (E; and E;) are also linear functions of
P. To distinguish two different spin states in the lattice
we introduce the Ising pseudospin states |i) and | — i) for
|d?, SiY and |d}, Si), where i runs over all sites in the
lattice. Thus we neglect the spin degeneracy of the df
terms but capture the possibility of energy level crossing
that is the essential part of the spin crossover. Then, in
the basis |i), | — i), the Hamiltonian of the system can be
written as follows

H:Z()\BTI +6i?f,-z)+ZHi/, (1
i ij

where Ay = (El+E)/2, &; = (El —E)/2, and 1, 6, are the
identity and Pauli matrices, respectively; the Hamiltonian
of interaction between the spins being Hj;.

H;j includes the isotropic Heisenberg term with the ex-
change interaction /;; between nearest spins and the
anisotropic term Hy. The interatomic interaction /;; is neg-
ligibly small in comparison with the interatomic Hund's
coupling (ratio 1072). Thus its contribution to the local-
ized spin energy E7 and E; due to the effective molecular
field can be neglected. Nevertheless the exchange inter-
action plays very important role: it results in the long
range order and synchronization of each spin in the same
quantum state providing a cooperative behavior in the spin

system. If it were the ferromagnetic interaction, each spin
at T=0 would have the maximal projection S with integer
magnetic moment 2S.

In all examples given above there is the antiferromagnetic
interaction. The ground state of the isotropic Heisenberg
antiferromagnet has non-integer local magnetic moment
due to the quantum spin fluctuations. It is known that
for large spin S, the effect of quantum fluctuations is less
important than for small spin, and for FeBOs the spin is
5/2. Moreover, the magnetic anisotropy suppresses quan-
tum fluctuations. For example, in FeBO;5 the anisotropy
field is 0.3T [11] and the measured value of the effective
moment 21/S5(S + 1) = 5.9 is very close to the calculated
value of 5.916 for S = 5/2.

Thus we conclude that due to anisotropy the magnetic mo-
ment at T = 0 has integer value (of course it is a property
of the magnetic insulator that does not hold for itinerant
magnets), and due to the exchange interaction all spins are
in the same quantum state. So spin crossover at T = 0
is the transition of the whole crystal from one magneti-
cally ordered state to another. Nevertheless the criterion
of the transition can be found from consideration of the
single ion energy crossover due to space-uniform cooper-
ative magnetic order. Anisotropic relativistic interactions,
for example a spin-orbital interaction, are also important
because they can mix different spin states inside a single
ion.

We consider spin crossover far from the thermodynamic
phase transition in the paramagnetic phase, allowing us
to simplify this interaction and substitute the effect of ex-
change with the effective mean field. This mean field is
spatially uniform for the ferromagnetic insulator or two-
sublattice in the antiferromagnetic case. Examples given
above [1-4] correspond to the anti- or ferromagnetics. In
any case this mean field simply renormalizes the interi-
onic multielectron energies E; and E;, and is irrelevant
to the crossover phenomenon. Another interaction that
is smaller than the exchange interaction is given by rel-
ativistic anisotropy contribution to H;. For example a
spin-orbital interaction can mix different spin states in-
side single ion, and it is found to be important in our
problem.

In what follows we will consider the simplified spatially
uniform model [12]. Motivation for this simplification is
as follows. Although spin crossover is related to a many
body system, the essential features of its dynamics can be
described by a Landau-Zener type effective Hamiltonian
[13].

The Hamiltonian of our model is given by H = ZL Hi

where
A O e pei®
i = . . 2
M (0A0)+(pew _5) @
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The energy spectrum is given by €. = Ay £ /2 + p2.
Both A and ¢ are pressure dependent. Further we assume
that the spin excitation gap is given by

P

e(P):so(1—Fc). (3)

The crossover takes place at the point P, where ¢(P,) =
0. The spin-orbit coupling A = pe'® (with p < &) mixes
the different spin states, and plays the role of quantum
fluctuations in our Ising pseudospin basis. The dimen-
sionless spin gap, P/P. — 1, plays the role of relative
temperature (T/T. — 1) near the critical point T, [14].

3. Quench dynamics induced by
high pressure

We consider time dependent Schrédinger equation for the
Hamiltonian (2) assuming for simplicity that the pressure
is a linear function of time, P = P.(1 + t/7p). Inserting

this expression into Eq. (3), we obtain £(t) = —got/Tp.
The parameter 7o depends on P and can be written as
10 = P/P.

Let |1) and |0) be eigenstates of the operator 8,, so that
6,1y = |1) and 6,|0) = —|0). Expressing a generic state
vector as

(1)) = e TGy (t)e (1) + Co(1)e'??(0)),  (4)

we find that the coefficients Ci(t) and Cy(t) satisfy the
Schrédinger equation with the time-dependent Hamilto-
nian in the Landau-Zener (LZ) form (in units h = 1)

li C1(t) _ —At P C1(t) (5)
dt | Go(t) p At G(t) |

where A = g /1p.

In terms of dimensionless scaled time 7 = \/Et =

10(P/Pc — 1) with 1 = /&7 = W the Landau-

Zener model is described by the Hamiltonian
. ( T w ) ’ ©)

where w = p/\/E = Top/€o is the dimensionless coupling
constant. Writing |u(t)) = G(1)[1) + Co(7)|0), one can
recast the Schrodinger equation (5) as

L u(e)) = H()lu(). 0)

Here the time 7 runs from the initial time 7, = — /€70,
corresponding to the initial pressure P; = 0, to final

1 = (Pr/P. —1),/€Tq, corresponding to Ps at the end
of quench (Ps > P.). Further we assume that gyt > 1;
then time 7 can be extended to oo, and the problem
becomes fully equivalent to the LZ problem.

The energy spectrum of the Hamiltonian (6) is given by
e+(1) = £V 172 + w?, and its instantaneous eigenvectors
can be written as

i O(1) (1)
sin cos
u_(1)) = 2 Clua(t)) = 2 , (8
| ( )) ( cos 9(21') ) | +( )> sin 9(21') ( )

where cos 0(1) = —1/V/ 2 + w?. The energy gap between
the ground and excited states equals 2V 72 + w?.

From Eq. (8) it follows that while the ground state behaves
at T = o0 as [u_(—o0)) — |0) and |u_(+0o0)) — |1), the
excited state behaves as follows: |u;(—o0)) — |1) and
|uy(+00)) — |0). The state |u_(—o0)) corresponds to the
high spin (HS) of the system and |u,(—o0)) corresponds
to the low spin (LS). Thus, if the system initially was in
the HS state, at the end of the evolution its ground state
corresponds to the LS. Tunnelling between the positive
and negative energy eigenstates, leading to the mixture
of HS and LS, happens in the neighbourhood of the critical
point 7, = 0 (P = P.) when 7 € (—w, w) [15].

We assume further that the evolution of the system starts
at the moment of time 7, = — /€79 (P(;) = 0) from
the ground state |u_(7;)). Since p K g, we have
|u_(7;)) o< |0). This yields the following initial condi-
tions: Go(t;) = 1 and Gi(1;) = 0. At the end of evolution
we obtain |u_(t) — |1), while T — +o0.

In Figs. 1 — 2 we present the results of a numerical solu-
tion of the Schrdodinger equation. In Fig. 1 time evolution
of the Bloch vector, n = (u|o|u), is shown. The motion
begins at the south pole of the two-dimensional sphere
S? and for w = 3 ends at the north pole. However for
the choice of the parameter w < 1, numerical simulation
shows that the Bloch vector never reaches the north pole,
which corresponds to the LS state. This implies that at
the end of evolution the quantum system does not remain
in the ground state and its final state is the mixture of the
HS and LS states.

In Fig. 2 the probability P, = |Gi(1)|? of transition |0)
— |1) is depicted for various values of w. As can be seen,
with decreasing adiabadicity parameter w , the transition

probability decreases as well. Its asymptotic behaviour is
described by the LZ formula (14).
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Figure 1. (Color online) Bloch vector's dynamics. The evolution
starts at the south pole of the sphere. Top panel: (w = 3).
Bottom panel: w = 0.75.

3.1. Exact solution of the Landau-Zener prob-
lem

The exact solution of Eq.(7) is given in terms of the
parabolic cylinder functions [16-18], D_;_,2,(2), where
z =12 1e " Assuming that initially the system was in
the ground state, |u_(—o0)) — |0), we obtain the initial
conditions as follows: Co(—o0) = 1 and Gi(—o0) = 0. The
probability of transition to the state |1) at time 7 is given

0.91
0.81
0.7
0.6

0.41
0.31
0.2
0.1

-30-20-10 0 10 20 30 40
T

Figure 2. (Color online) Probability of transition P, obtained from
exact solution of LZ problem as function of =. From top to
bottom: w = 3,0.5,0.25.

by [18-20]

w’ —ra? /4 3in/4y|2
P = 76‘ |Df17m2/2(T P [ 9)

As can be shown, the condition £y > p may be recast to
|7:| > w, where 7, = —,/&9Tg is the initial time. Since
|| > 1, for T > | 7| the so-called weak-coupling asymp-
totic approximation may be applied [18]. The asymptotic
of the transition probability is

2
Pr~1— e = e 1 — e cos &, (v), (10)

where

2 2
cos{w(r)z%+12+%12ln2+argl—(1 —i%).(ﬂ)

3.1.1. Adiabatic approximation

The commonly used version of the adiabatic theorem takes
the form [20-22]

max |(e|dH.(t)/dt|ig))|
min [Eq(t) — Eg(1)]?

«1, (12)

where [¢J;) and |if.) are the instantaneous ground state
and the first excited state of the the total system.

For the LZ Hamiltonian (6), the condition for adiabatic
evolution, required by the adiabatic theorem, is w? > 1
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[19]. In the adiabatic approximation the probability of the
system to remain in the ground state may be described by

T

1
Paa(t) = [{u_(7)|0)]* = > (1 + N

).

In Fig. 3 the probability of the adiabatic transition (red
line) and the results of the exact solutions (blue line)
are depicted. The figures show that for w = 3 there is
a good agreement between the exact solution and the
adiabatic formula (13), but that no such agreement is
seen for w = 0.5. The probability of remaining in the
ground state at the end of evolution (T — o0) is given by
Pag = |Ci(+0o0)|%. For slow evolution we can use the LZ
formula [23, 24] to describe the probability of adiabatic
evolution:

2

Pog=1—e"" (14)

Using the so-called adiabatic-impulse (Al) approxima-
tion [13, 15], qualitatively, the dynamics of the Landau-
Zener model can be described by the Kibble-Zurek the-
ory of nonequilibrium phase transitions [6-8]. The Al-
approximation assumes that the whole evolution can be
divided in three parts and up to the phase factor the wave
|u(t)) function can be approximated to:

T E[—oo,—1]: |u(1)) = |u_(1)),
te[-%1: |u(r)x|u_(=1),
T €1, 400]:  [{u(T)|u_(1))]* = const,

A

where the time %, introduced by Zurek [7], is called the
freeze-out time and defines the instant when the behaviour
of the system changes from the adiabatic regime to an
impulse one where its state is effectively frozen and then
back from the impulse regime to the adiabatic one.

If the evolution starts at moment 7; <« —7% from the
ground state, the equation for determining 7 reads n7/2 =
1/gap(%) (for details of calculation see Ref. [13]), and its
solution is given by

. w / 4

Using the relation T = 1(P/P. — 1), we find that the
change of the adiabatic regime to a non-adiabatic one
occurs when the pressure is Py = PC(1 — %/To), and the
non-adiabatic evolution becomes adiabatic again when
the pressure increases to P, = Pc(1 + %/Tg). From here
we find that within the pressure interval AP = P, — Py =

0.9
0.8;
0.7
0.6

0.4
0.3
0.2
0.1

-30 -10 0 10 20 30 40
T

0.9]
0.8;
0.7]
0.6

0.4
0.3]
0.2
0.1

-30 -10 0 10 20 30 40
T

Figure 3. (Color online) Probability of transition |0) — |1) as function
of dimensionless time 7. Top panel: red line: probability of
adiabatic transition, P.4(7); blue line: probability of tran-
sition P, obtained from the exact solution of the LZ prob-
lem (w = 3). Bottom panel: red (upper) line: probability of
adiabatic transition; blue (lower) line: transition probability
obtained from exact solution of the LZ problem (w = 0.5).

2P 1/, the behaviour of the system is described by the
impulse regime. Employing Eq. (15), we approximate AP
for fast (w? « 1) and slow (w? > 1) transitions as

! w? <1
VI (16)

LWt > 1.

AP
P~

TTWTH

In the Al approximation the probability, P,, of finding the
system in the excited state at 1/ > 7 can be calculated
as follows [13, 15]:

52
~ Py — 4 A2 = &
Pe = Par = [(us(B)|u—(=1))” = PSR (17)
Substituting 7 from (15), we obtain
Pa = 2 (18)
A /et a+2
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0.75

0.25

Figure 4. (Color online) Probability, P, of finding the system in the
excited state (x = nw?): blue line — P, = P, (17), dashed
red line — the LZ expression, P, = e*"“’z.

where x = 7w?. For w? « 1, from Eq. (18) it follows that
Py =~ 1 — mw?. In the first order this coincides with the
result predicted by the exact LZ formula: P, = e For
the adiabatic evolution, w? > 1, we obtain Py =~ 1/7’w*
(see Fig. 4.). As can be seen, the Al approximation is
good enough for w? < 1 and in the limit w? > 1.
Comparison with experimental data. — To compare our
theoretical finding with the experiments on spin crossover
under the high pressure we use the data from Refs. [1-
4]. The typical value of the critical pressure in Fe oxides
is P. = 50 GPa, and the rest of parameters are taken
as follows: g = 1eV, p = 0.01 eV and 1o =~ 10%s.
The computation yields: Ty = 10° and w =~ 107. Thus
the spin crossover under slowly changed pressure real-
ized in the cited experiments is a highly adiabatic pro-
cess (w? 3 1). Using (16), we find the that the domain of
non-adiabaticity is defined by AP ~ 1077 Pa. The cor-
responding interval of time # ~ 1/(7p7o) is t =~ 107's.
Thus we have obtained the evident conclusion that the
non-adiabatic effect under static pressure is negligible.
In the next section we demonstrate that for a dynamical
loading the non-adiabatic effects may be rather strong.

3.2. Quench dynamics under shock-wave
load

In this section we study the quench dynamics in the spin
system under time-dependent pressure, P(t). We assume
that at the initial moment of time P(t;) = 0. Further it
is convenient to present P(t) as P(t) = Pys(t), where the
function s(t) determines the pulse shape. We assume that
its maximum is s,, = 1.

One can observe that the first term in the Hamiltonian (2),
yielding contribution to the total phase factor of the the
wave function, does not affect the dynamics of the system
and may be omitted. Setting for simplicity ¢ = 0 and

using Eq. (3), one can recast the time-dependent driving
Hamiltonian as follows:

(1 — as(t)) p

H’“):( p —60(1—05(t)))' "

where a = Py/P,. For a given a, the crossover occurs at
the critical point s, = s(t.) defined as s, = 1/a.
Applying the adiabatic theorem, we find that condition for
adiabatic evolution can be written as follows:

dP(t)/dt
(1=P(t)?)+p°

(20)

where B = p/gp. In what follows we study spin crossover
for semi-infinite and finite pulse.

3.2.1. Semi-infinite pulse.

We specify the pressure as a semi-infinite pulse with the
shape determined by

0, t<0
P= { Py tanh(at), t >0, @1

where Py is the pulse height.

For Py = P,, expanding P(t) near of the critical point
up to the first order, we obtain the related LZ problem:
P(t) = P.(1+at). From here we obtain the corresponding
LZ adiabaticity parameter as w;z = p/\/agg. Next using
Eq. (21), we obtain

aB(1 — )

2

< 1. (22)
Wiz

0<s<1

In terms of the function w(s) defined as

A1 a9 (23)

wZ wLZ \/(1 —05)2+82’

the condition of adiabaticity (22) can be recast to the
following:

max( ! ) < 1. (24)

0<s<1\ w?(s)

In Fig. 5 (top panel) the function 1/w?(s) is depicted for
wrz =1. We observe that 1/w? has a maximum at the
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2.5]

1.5

0.5

Figure 5. (Color online) Top panel. Parameter of adiabaticity as
function of s. From the left to the right: @ = 10,5,2.5,1.25
(wrz = 1). Bottom panel. Dependence of the function f(a)
on the amplitude a = Py/P. (B = 0.01).

critical point. This is in agreement with the general ob-
servation on the breakdown of adiabaticity in the neigh-
bourhood of the critical point. For B <« 1 we obtain the
following estimate

Z ) 25)
w Wi,
where
2aBV1 — a? 0 <1
fla)=1 A+VI—a)/1-a?2+8 = (20
a—1/a, a>1

In Fig. 5 (bottom panel) the function f(a) is depicted. As
can be observed f(a) ~ 0 for a < 1.

In Figs. 6 - 7 we present the results of numerical calcu-
lations for different choices of parameter a. In all calcu-
lations the parameters were chosen as follows: gy = 1€V,
p=0.01eVand a = 10ns~". This yields w;z = 1, and for
B = pleg, we obtain B = 0.01. Fig. 6 (top panel) shows
that for Py = P,, independently of the initial conditions,
the final state of the system is defined by the equal mix-
ture of HS and LS states. The reason for this phenomena
is in growing quantum fluctuations which lead to the mix-
ture of HS and LS states at the critical pressure P.. In
Fig. 6 (bottom panel) the dependence of transition proba-
bility on time and pressure is depicted for different values
of the dimensionless amplitude of the pulse, a = Py/P..
In the pressure interval 0 < P < 1.25P,, the evolution is
highly adiabatic, and for Py = 1.25P, the system comes to
the LS state with the minimal density of defects. However
with the increasing of pressure amplitude, P, the proba-
bility of passing to the LS state decreases, and the system
remains in the mixture of the HS ans LS states. Further
increasing of the amplitude leads to the domination of the
HS population over the LS population.

3.2.2. Finite pulse.

We consider a pressure pulse with a shape determined by
P = as(t), where a = Py/P,, T = at is scaled dimen-
sionless time, and

_tanh(t — 0) — tanh(t — 6 — A)]
B 2tanh §

(7) , (27)

the pulse length being A (see Fig. 8). Applying the adia-
batic theorem, we find that for the pulse (16), the condition
for adiabatic evolution is given by max(1/w?) <« 1, where
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aa ( tanh?(t — d) — tanh?(t — § — A))

1
2= = < 1. (28)
a(tanh(t — 0) — tanh(t — 0 — A))
2ptanh 34/ (1 - + B
P 2 \/( 2tanh % g
1
11
0.85 l
0.9
0.6 0.8
10.45 0.7
0.3 p 0.6
0.51 I
0.15 T |
0.41
0 ’ . . . J i
0.5 1 1.5 2 0.3
t(ns) 0.2
1 0.11 - J J
0.85 0 ‘ ‘ ‘ ‘ ‘
0 02 04 06 08 1
0.6 s
p O
10.45
0.3 Figure 7. (Color online) Transition probability P, as function of
scaled pressure s for different values of the pulse height
0.15 (a = 10ns~"). From the left to the right: @ = Py/P, =
o0l ‘ ‘ ‘ 20,10, 5,25, 1.25.
0 1 2 3
t(ns)
11
0.9
Figure 6. (Color online) Top panel. Dependence of transition proba- 8?
bility P, on time t, for different initial conditions (Py = P,). 0.6*
From up to down: |Gy(0)]*> = 0,0.25,0.5,0.75,1 (a = P05l
10ns~"). Bottom panel. Transition probability P, for dif- 0'47
ferent values of the pulse height as function of time t. 0'3,
From up to down: a = Py/P. = 1.01,1.001,0.999,0.99 0.2]
(a =10ns7"). 0:1,
0+ .
0 5 10 15
T
The dependece of the function 1/w? on dimensionless time 11
T and amplitude a is presented in Fig. 9. As we can see, g-g’
the condition of adiabaticity is extremely sensitive to the 07
choice of parameters k = a/p and a = Py/P.. Violation 0.61
. . . Lo P 0.57
of the adiabatic theorem may occur in the vicinity of the 0.4
critical points, associated with the pulse boundaries. For 8-3’
Py 2 P,, one should impose the condition k < 1 to satisfy o1
the requirement of the adiabatic theorem. 05 o 20 %
Our theoretical predictions are confirmed by the results T

of numerical simulation presented In Fig. 10.

Figure 8. (Color online) Shape of finite pulse. Top panel: A = 5.
Bottom panel: A = 25.
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40 30 20 10 0 05 1 1.5 2 0'855

T a p 0.6;
10.457
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0.207
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4030 20 10 g 1 2 3 4 5 02

T g 0! .

Figure 9. (Color online) Dependence of function 1/w? on amplitude 0.71
a = Py/P. and 7. Top panel: a/p = 0.1. Bottom panel: 0.6
alp =1 (A = 25). P o5

} ” |

I
l *‘H”lnh’ ““““

|
0 | 10 20 30

il

4

S

Figure 10. (Color online) Transition probability P, as function
of time for different values of a = Py/P. (¢ =
1(blue), 1.025 (green), 1.05(red), 1.1 (black)). First two
panels from the top: A = 5. Two panels from the
bottom: A = 25. First and third panel from the top:
k = a/p = 0.1. Second and fourth panel: xk = a/p = 1.
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4. Conclusion

We have analytically studied the properties of spin
crossover under high pressure. We showed that at static
loading and P = P, occupation numbers of both HS
and LS states are equal at zero temperature (T = 0),
nys = n;s = 0.5. For P < P. we obtain nys = 1 and
n;s = 0, while for P > P, one has nys =0 and n;s = 1.
Static transition at T = 0 is a sharp quantum phase tran-
sition with a geometric Berry-like phase being the order
parameter [12]. Finite temperature removes the singularity
in the nys(P) dependence. Thermal fluctuations between
the two states |0) and |1) result in a smooth crossover
instead of the quantum phase transition at T = 0.

To verify our theoretical predictions we have performed
numerical simulations. Fig. 6 shows that the temporal
quantum fluctuations have an effect similar to the thermal
fluctuations. Small deviations from unity of the shock-
wave amplitude Py/P,, result not in a sharp change of the
probability P; either to zero or to unity but to a contin-
uous deviation of the P, from the 0.5 value. At the same
time for Py/P. = 1 any initial distribution of the HS and
LS states will end its evolution in the equilibrium state
nys = nis = 0.5 (Fig. 6). This conclusion is valid for any
choice of parameter a.

Another dynamical effect worthy of discussion is that of the
adiabaticity violations near the critical pressure (Fig. 7).
This is a manifestation of the general Kibble-Zurek theory.
The results shown in Fig. 7 are counter-intuitive at first
glance. The shockwave with larger amplitude has smaller
final probability for spin crossover and larger probability
to stay in the initial HS state. To understand this effect
one should note that the characteristic scale of the pres-
sure increase is given by the factor aa for the wave with
amplitude a. Thus a larger amplitude wave also is faster.
Concerning experimental studies of the spin crossover un-
der dynamical loading, it is clear from our results that
for some parameters of the loading the final state will be
a mixture of the HS and LS states, even if the maximal
value of applied pressure was above the critical value. It
is known from experiments that at dynamical loading the
spin crossover may be spread over a wide pressure in-
terval (about 100 GPa), while under static pressure with
isotropic medium in the diamond anvil cell the crossover
is very narrow [25].
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