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Abstract: In this paper we have analytically and numerically studied the dynamics of spin crossover induced by time-
dependent pressure. We show that quasi static pressure, with a slow dependence on time, yields a spin
crossover leading to transition from the high spin (HS) quantum system state to the low spin (LS) state.
However, quench dynamics under shockwave load are more complicated. The final state of the system
depends on the amplitude and pulse velocity, resulting in the mixture of the HS and LS states.
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1. Introduction

Spin crossover in condensed matter physics is the trans-formation of a system with a given spin S1 at each latticesite into another state with spin S2, induced by some ex-ternal field, such as a strong magnetic field, high pressure,etc. It is accompanied by energy levels E1 and E2crossing,where Ea is the local energy of the magnetic ion with spin
Sa (a = 1, 2). Recently spin crossovers in magnetic ox-
∗E-mail: nesterov@cencar.udg.mx (Corresponding author)
†E-mail: sgo@iph.krasn.ru
‡E-mail: gri2086@mail.ru

ides have been found under high pressure in FeBO3 [1],CdFe3(BO3)4 [2], BiFeO3 [3] and Fe3O4 [4]. Below theCurie temperature, spin crossover is accompanied by asharp change in the magnetization; nevertheless it may beobserved in the paramagnetic state (e.g. in CdFe3(BO3)4[2]) as the sharp change of the XES satellite/main peakintensity ratio with increasing pressure.
Energy levels crossing results in the loss of analyticityin the energy spectrum at the critical point (in the ther-modynamic limit) [5]. Near the critical point, adiabaticitybreaks down and non-equilibrium phenomena associatedwith dramtically amplified quantum fluctuations can drivethe system away from the ground state. The final resultdepends on how fast the transition occurs. If the quench
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process is sufficiently fast, large numbers of topologicaldefects are created and the final state, being characterizedby mixture of high and low spin phases, can be essentiallydifferent from that obtained as result of slow evolution.Qualitatively, quench dynamics can be described by theKibble-Zurek theory of nonequilibrium phase transitions[6–8].In this paper we consider quench dynamics in spincrossover induced by time-dependent pressure. The paperis organized as follows. In Sec. II, a general model of spincrossover under high pressure is introduced. In Sec. III,we study quench dynamics. We consider two cases: a)pressure defined as a linear function of time; b) pressuredefined by a pulse of a given shape. We conclude in Sec.IV with a discussion of our results.
2. Model
The multielectron ion in a crystal field has the energies ofterms for dn configurations determined numerically by theTanabe-Sugano diagrams [9] as a solution of the eigen-value problem. Simple analytical calculations of the lowenergy terms with different spin values have recently beenmade [10], and these calculations were sufficient to studyspin crossover. The crystal field parameter increases lin-early with pressure P , thus the multielectron energies forspin S1 and S2 (E1 and E2) are also linear functions of
P . To distinguish two different spin states in the latticewe introduce the Ising pseudospin states |i〉 and | − i〉 for
|dni , Si1〉 and |dni , Si2〉, where i runs over all sites in thelattice. Thus we neglect the spin degeneracy of the dniterms but capture the possibility of energy level crossingthat is the essential part of the spin crossover. Then, inthe basis |i〉, | − i〉, the Hamiltonian of the system can bewritten as follows

H =∑
i

(
λi011 + εiσ̂ zi ) +∑

ij
Hij , (1)

where λi0 = (E i1+E i2)/2, εi = (E i1−E i2)/2, and 11, σ̂z are theidentity and Pauli matrices, respectively; the Hamiltonianof interaction between the spins being Hij .
Hij includes the isotropic Heisenberg term with the ex-change interaction Iij between nearest spins and theanisotropic term HA. The interatomic interaction Iij is neg-ligibly small in comparison with the interatomic Hund’scoupling (ratio 10−2). Thus its contribution to the local-ized spin energy E1 and E2 due to the effective molecularfield can be neglected. Nevertheless the exchange inter-action plays very important role: it results in the longrange order and synchronization of each spin in the samequantum state providing a cooperative behavior in the spin

system. If it were the ferromagnetic interaction, each spinat T=0 would have the maximal projection S with integermagnetic moment 2S.In all examples given above there is the antiferromagneticinteraction. The ground state of the isotropic Heisenbergantiferromagnet has non-integer local magnetic momentdue to the quantum spin fluctuations. It is known thatfor large spin S, the effect of quantum fluctuations is lessimportant than for small spin, and for FeBO3 the spin is5/2. Moreover, the magnetic anisotropy suppresses quan-tum fluctuations. For example, in FeBO3 the anisotropyfield is 0.3T [11] and the measured value of the effectivemoment 2√S(S + 1) = 5.9 is very close to the calculatedvalue of 5.916 for S = 5/2.Thus we conclude that due to anisotropy the magnetic mo-ment at T = 0 has integer value (of course it is a propertyof the magnetic insulator that does not hold for itinerantmagnets), and due to the exchange interaction all spins arein the same quantum state. So spin crossover at T = 0is the transition of the whole crystal from one magneti-cally ordered state to another. Nevertheless the criterionof the transition can be found from consideration of thesingle ion energy crossover due to space-uniform cooper-ative magnetic order. Anisotropic relativistic interactions,for example a spin-orbital interaction, are also importantbecause they can mix different spin states inside a singleion.We consider spin crossover far from the thermodynamicphase transition in the paramagnetic phase, allowing usto simplify this interaction and substitute the effect of ex-change with the effective mean field. This mean field isspatially uniform for the ferromagnetic insulator or two-sublattice in the antiferromagnetic case. Examples givenabove [1–4] correspond to the anti- or ferromagnetics. Inany case this mean field simply renormalizes the interi-onic multielectron energies E1 and E2, and is irrelevantto the crossover phenomenon. Another interaction thatis smaller than the exchange interaction is given by rel-ativistic anisotropy contribution to Hij . For example aspin-orbital interaction can mix different spin states in-side single ion, and it is found to be important in ourproblem.In what follows we will consider the simplified spatiallyuniform model [12]. Motivation for this simplification isas follows. Although spin crossover is related to a manybody system, the essential features of its dynamics can bedescribed by a Landau-Zener type effective Hamiltonian[13].The Hamiltonian of our model is given by H = ∑N
i=1Hi,where

Hi = ( λ0 00 λ0
)+( ε ρe−iφ

ρeiφ −ε

)
. (2)
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The energy spectrum is given by ε± = λ0 ±√ε2 + ρ2.Both λ0 and ε are pressure dependent. Further we assumethat the spin excitation gap is given by
ε(P) = ε0

(1− P
Pc

)
. (3)

The crossover takes place at the point Pc , where ε(Pc) =0. The spin-orbit coupling λ = ρeiφ (with ρ � ε0) mixesthe different spin states, and plays the role of quantumfluctuations in our Ising pseudospin basis. The dimen-sionless spin gap, P/Pc − 1, plays the role of relativetemperature (T /Tc − 1) near the critical point Tc [14].
3. Quench dynamics induced by
high pressure
We consider time dependent Schrödinger equation for theHamiltonian (2) assuming for simplicity that the pressureis a linear function of time, P = Pc(1 + t/τQ). Insertingthis expression into Eq. (3), we obtain ε(t) = −ε0t/τQ .The parameter τQ depends on Ṗ and can be written as
τQ = Pc/Ṗ .Let |1〉 and |0〉 be eigenstates of the operator σ̂z , so that
σ̂z |1〉 = |1〉 and σ̂z |0〉 = −|0〉. Expressing a generic statevector as
|ψ(t)〉 = e−i

∫
λ0(t)dt(C1(t)e−iφ/2|1〉+ C0(t)eiφ/2|0〉), (4)

we find that the coefficients C1(t) and C0(t) satisfy theSchrödinger equation with the time-dependent Hamilto-nian in the Landau-Zener (LZ) form (in units h̄ = 1)
i ddt

(
C1(t)
C0(t)

) = ( −∆t ρ
ρ ∆t

)(
C1(t)
C0(t)

)
, (5)

where ∆ = ε0/τQ .In terms of dimensionless scaled time τ = √∆t =
τ0(P/Pc − 1) with τ0 = √ε0τQ = √ε0Pc/Ṗ , the Landau-Zener model is described by the Hamiltonian

H = ( −τ ω
ω τ

)
, (6)

where ω = ρ/
√∆ = τ0ρ/ε0 is the dimensionless couplingconstant. Writing |u(τ)〉 = C1(τ)|1〉 + C0(τ)|0〉, one canrecast the Schrödinger equation (5) as
i ddτ |u(τ)〉 = H(τ)|u(τ)〉. (7)

Here the time τ runs from the initial time τi = −√ε0τQ ,corresponding to the initial pressure Pi = 0, to final
τf = (Pf /Pc − 1)√ε0τQ , corresponding to Pf at the endof quench (Pf > Pc). Further we assume that ε0τQ � 1;then time τ can be extended to ±∞, and the problembecomes fully equivalent to the LZ problem.The energy spectrum of the Hamiltonian (6) is given by
ε±(τ) = ±√τ2 + ω2, and its instantaneous eigenvectorscan be written as

|u−(τ)〉 = ( − sin θ(τ)2cos θ(τ)2
)
, |u+(τ)〉 = ( cos θ(τ)2sin θ(τ)2

)
, (8)

where cosθ(τ) = −τ/√τ2 + ω2. The energy gap betweenthe ground and excited states equals 2√τ2 + ω2.From Eq. (8) it follows that while the ground state behavesat τ = ±∞ as |u−(−∞)〉 → |0〉 and |u−(+∞)〉 → |1〉, theexcited state behaves as follows: |u+(−∞)〉 → |1〉 and
|u+(+∞)〉 → |0〉. The state |u−(−∞)〉 corresponds to thehigh spin (HS) of the system and |u+(−∞)〉 correspondsto the low spin (LS). Thus, if the system initially was inthe HS state, at the end of the evolution its ground statecorresponds to the LS. Tunnelling between the positiveand negative energy eigenstates, leading to the mixtureof HS and LS, happens in the neighbourhood of the criticalpoint τc = 0 (P = Pc) when τ ∈ (−ω,ω) [15].We assume further that the evolution of the system startsat the moment of time τi = −√ε0τQ (P(τi) = 0) fromthe ground state |u−(τi)〉. Since ρ � ε0, we have
|u−(τi)〉 ∝ |0〉. This yields the following initial condi-tions: C0(τi) = 1 and C1(τi) = 0. At the end of evolutionwe obtain |u−(τ)→ |1〉, while τ → +∞.In Figs. 1 – 2 we present the results of a numerical solu-tion of the Schrödinger equation. In Fig. 1 time evolutionof the Bloch vector, n = 〈u|σ |u〉, is shown. The motionbegins at the south pole of the two-dimensional sphere
S2 and for ω = 3 ends at the north pole. However forthe choice of the parameter ω < 1, numerical simulationshows that the Bloch vector never reaches the north pole,which corresponds to the LS state. This implies that atthe end of evolution the quantum system does not remainin the ground state and its final state is the mixture of theHS and LS states.In Fig. 2 the probability Pτ = |C1(τ)|2 of transition |0〉
→ |1〉 is depicted for various values of ω. As can be seen,with decreasing adiabadicity parameter ω , the transitionprobability decreases as well. Its asymptotic behaviour isdescribed by the LZ formula (14).
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Figure 1. (Color online) Bloch vector’s dynamics. The evolution
starts at the south pole of the sphere. Top panel: (ω = 3).
Bottom panel: ω = 0.75.

3.1. Exact solution of the Landau–Zener prob-
lem

The exact solution of Eq.(7) is given in terms of theparabolic cylinder functions [16–18], D−1−iω2/2(z), where
z = √2 τe−iπ/4. Assuming that initially the system was inthe ground state, |u−(−∞)〉 → |0〉, we obtain the initialconditions as follows: C0(−∞) = 1 and C1(−∞) = 0. Theprobability of transition to the state |1〉 at time τ is given

Figure 2. (Color online) Probability of transition Pτ obtained from
exact solution of LZ problem as function of τ. From top to
bottom: ω = 3, 0.5, 0.25.

by [18–20]
Pτ = ω22 e−πω2/4∣∣D−1−iω2/2(τ√2e3iπ/4)|2. (9)

As can be shown, the condition ε0 � ρ may be recast to
|τi| � ω, where τi = −√ε0τQ is the initial time. Since
|τi| � 1, for τ > |τi| the so-called weak-coupling asymp-
totic approximation may be applied [18]. The asymptoticof the transition probability is
Pτ ∼ 1− e−πω2 − 2ω

τ e−πω2/2√1− e−πω2 cos ξw (τ), (10)
where
cos ξw (τ) = π4 + τ2 + ω22 τ2 ln 2 + arg Γ(1− iω22

)
.(11)

3.1.1. Adiabatic approximationThe commonly used version of the adiabatic theorem takesthe form [20–22]
max |〈ψe|dHτ (t)/dt|ψg〉|min |Ee(t)− Eg(t)|2 � 1, (12)

where |ψg〉 and |ψe〉 are the instantaneous ground stateand the first excited state of the the total system.For the LZ Hamiltonian (6), the condition for adiabaticevolution, required by the adiabatic theorem, is ω2 � 1
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[19]. In the adiabatic approximation the probability of thesystem to remain in the ground state may be described by
Pad(τ) = |〈u−(τ)|0〉|2 = 12

(1 + τ√
τ2 + ω2

)
. (13)

In Fig. 3 the probability of the adiabatic transition (redline) and the results of the exact solutions (blue line)are depicted. The figures show that for ω = 3 there isa good agreement between the exact solution and theadiabatic formula (13), but that no such agreement isseen for ω = 0.5. The probability of remaining in theground state at the end of evolution (τ →∞) is given by
Pad = |C1(+∞)|2. For slow evolution we can use the LZformula [23, 24] to describe the probability of adiabaticevolution:

Pad = 1− e−πω2 . (14)
Using the so-called adiabatic-impulse (AI) approxima-tion [13, 15], qualitatively, the dynamics of the Landau-Zener model can be described by the Kibble-Zurek the-ory of nonequilibrium phase transitions [6–8]. The AI-approximation assumes that the whole evolution can bedivided in three parts and up to the phase factor the wave
|u(t)〉 function can be approximated to:

τ ∈ [−∞,−τ̂ ] : |u(τ)〉 ≈ |u−(τ)〉,
τ ∈ [−τ̂, τ̂ ] : |u(τ)〉 ≈ |u−(−τ̂)〉,
τ ∈ [τ̂,+∞] : |〈u(τ)|u−(τ)〉|2 = const,

where the time τ̂ , introduced by Zurek [7], is called the
freeze-out time and defines the instant when the behaviourof the system changes from the adiabatic regime to animpulse one where its state is effectively frozen and thenback from the impulse regime to the adiabatic one.If the evolution starts at moment τi � −τ̂ from theground state, the equation for determining τ̂ reads πτ̂/2 =1/gap(τ̂) (for details of calculation see Ref. [13]), and itssolution is given by

τ̂ = ω√2
√√1 + 4

π2ω4 − 1. (15)
Using the relation τ = τ0(P/Pc − 1), we find that thechange of the adiabatic regime to a non-adiabatic oneoccurs when the pressure is P1 = Pc

(1 − τ̂/τ0), and thenon-adiabatic evolution becomes adiabatic again whenthe pressure increases to P2 = Pc
(1 + τ̂/τ0). From herewe find that within the pressure interval ∆P̂ = P2−P1 =

Figure 3. (Color online) Probability of transition |0〉 → |1〉 as function
of dimensionless time τ. Top panel: red line: probability of
adiabatic transition, Pad(τ); blue line: probability of tran-
sition Pτ obtained from the exact solution of the LZ prob-
lem (ω = 3). Bottom panel: red (upper) line: probability of
adiabatic transition; blue (lower) line: transition probability
obtained from exact solution of the LZ problem (ω = 0.5).

2Pc τ̂/τ0, the behaviour of the system is described by theimpulse regime. Employing Eq. (15), we approximate ∆P̂for fast (ω2 � 1) and slow (ω2 � 1) transitions as
∆P̂
Pc

=


1√
πτ0 , ω2 � 11

πωτ0 , ω2 � 1. (16)
In the AI approximation the probability, Pe, of finding thesystem in the excited state at τf � τ̂ can be calculatedas follows [13, 15]:

Pe ≈ PAI = |〈u+(τ̂)|u−(−τ̂)〉|2 = τ̂2
ω2 + τ̂2 . (17)

Substituting τ̂ from (15), we obtain
PAI = 2

x2 + x
√
x2 + 4 + 2 , (18)

898



Alexander I. Nesterov, Sergey G. Ovchinnikov, Grigorii A. Iaroshenko

Figure 4. (Color online) Probability, Pe, of finding the system in the
excited state (x = πω2): blue line – Pe ≈ PAI (17), dashed
red line – the LZ expression, Pe = e−πω2 .

where x = πω2. For ω2 � 1, from Eq. (18) it follows that
PAI ≈ 1 − πω2. In the first order this coincides with theresult predicted by the exact LZ formula: Pe = e−πω2 . Forthe adiabatic evolution, ω2 � 1, we obtain PAI ≈ 1/π2ω4(see Fig. 4.). As can be seen, the AI approximation isgood enough for ω2 ≤ 1 and in the limit ω2 � 1.
Comparison with experimental data. – To compare ourtheoretical finding with the experiments on spin crossoverunder the high pressure we use the data from Refs. [1–4]. The typical value of the critical pressure in Fe oxidesis Pc = 50 GPa, and the rest of parameters are takenas follows: ε0 = 1eV, ρ = 0.01 eV and τQ ≈ 104 s.The computation yields: τ0 ≈ 109 and ω ≈ 107. Thusthe spin crossover under slowly changed pressure real-ized in the cited experiments is a highly adiabatic pro-cess (ω2 � 1). Using (16), we find the that the domain ofnon-adiabaticity is defined by ∆P̂ ≈ 10−7 Pa. The cor-responding interval of time t̂ ≈ 1/(πρτ0) is t̂ ≈ 10−21 s.Thus we have obtained the evident conclusion that thenon-adiabatic effect under static pressure is negligible.In the next section we demonstrate that for a dynamicalloading the non-adiabatic effects may be rather strong.
3.2. Quench dynamics under shock-wave
load

In this section we study the quench dynamics in the spinsystem under time-dependent pressure, P(t). We assumethat at the initial moment of time P(ti) = 0. Further itis convenient to present P(t) as P(t) = P0s(t), where thefunction s(t) determines the pulse shape. We assume thatits maximum is sm = 1.One can observe that the first term in the Hamiltonian (2),yielding contribution to the total phase factor of the thewave function, does not affect the dynamics of the systemand may be omitted. Setting for simplicity φ = 0 and

using Eq. (3), one can recast the time-dependent drivingHamiltonian as follows:
Hτ (t) = ( ε0(1− as(t)) ρ

ρ −ε0(1− as(t))
)
, (19)

where a = P0/Pc . For a given a, the crossover occurs atthe critical point sc = s(tc) defined as sc = 1/a.Applying the adiabatic theorem, we find that condition foradiabatic evolution can be written as follows:
∣∣∣∣∣ dP(t)/dt
ρ
√(1− P(t)2) + β2

∣∣∣∣∣� 1, (20)
where β = ρ/ε0. In what follows we study spin crossoverfor semi-infinite and finite pulse.
3.2.1. Semi-infinite pulse.We specify the pressure as a semi-infinite pulse with theshape determined by

P = { 0, t < 0
P0 tanh(αt), t ≥ 0, (21)

where P0 is the pulse height.For P0 = Pc , expanding P(t) near of the critical pointup to the first order, we obtain the related LZ problem:
P(t) = Pc(1+αt). From here we obtain the correspondingLZ adiabaticity parameter as ωLZ = ρ/√αε0. Next usingEq. (21), we obtain

1
ω2
LZ

max0<s<1
∣∣∣∣∣ aβ(1− s2)√(1− as)2 + β2

∣∣∣∣∣� 1. (22)
In terms of the function ω(s) defined as

1
ω2 = 1

ω2
LZ

aβ(1− s2)√(1− as)2 + β2 , (23)
the condition of adiabaticity (22) can be recast to thefollowing:

max0<s<1
( 1
ω2(s)

)
� 1. (24)

In Fig. 5 (top panel) the function 1/ω2(s) is depicted for
ωLZ =1. We observe that 1/ω2 has a maximum at the
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Figure 5. (Color online) Top panel. Parameter of adiabaticity as
function of s. From the left to the right: a = 10, 5, 2.5, 1.25
(ωLZ = 1). Bottom panel. Dependence of the function f (a)
on the amplitude a = P0/Pc (β = 0.01).

critical point. This is in agreement with the general ob-servation on the breakdown of adiabaticity in the neigh-bourhood of the critical point. For β � 1 we obtain thefollowing estimate
1
ω2 ≈ f (a)

ω2
LZ
, (25)

where
f (a) =


2aβ√1− a2(1 +√1− a2)√1− a2 + β2 , a ≤ 1

a− 1/a, a ≥ 1 (26)

In Fig. 5 (bottom panel) the function f (a) is depicted. Ascan be observed f (a) ≈ 0 for a ≤ 1.
In Figs. 6 - 7 we present the results of numerical calcu-lations for different choices of parameter a. In all calcu-lations the parameters were chosen as follows: ε0 = 1eV,
ρ = 0.01 eV and α = 10 ns−1. This yields ωLZ = 1, and for
β = ρ/ε0, we obtain β = 0.01. Fig. 6 (top panel) showsthat for P0 = Pc , independently of the initial conditions,the final state of the system is defined by the equal mix-ture of HS and LS states. The reason for this phenomenais in growing quantum fluctuations which lead to the mix-ture of HS and LS states at the critical pressure Pc . InFig. 6 (bottom panel) the dependence of transition proba-bility on time and pressure is depicted for different valuesof the dimensionless amplitude of the pulse, a = P0/Pc .In the pressure interval 0 < P <∼ 1.25Pc , the evolution ishighly adiabatic, and for P0 ≈ 1.25Pc the system comes tothe LS state with the minimal density of defects. Howeverwith the increasing of pressure amplitude, P0, the proba-bility of passing to the LS state decreases, and the systemremains in the mixture of the HS ans LS states. Furtherincreasing of the amplitude leads to the domination of theHS population over the LS population.
3.2.2. Finite pulse.

We consider a pressure pulse with a shape determined by
P = as(τ), where a = P0/Pc , τ = αt is scaled dimen-sionless time, and

s(τ) = tanh(τ − δ)− tanh(τ − δ − ∆)]2 tanh ∆2 , (27)

the pulse length being ∆ (see Fig. 8). Applying the adia-batic theorem, we find that for the pulse (16), the conditionfor adiabatic evolution is given by max(1/ω2)� 1, where
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1
ω2 =

∣∣∣∣∣∣∣∣∣∣
αa
( tanh2(τ − δ)− tanh2(τ − δ − ∆))

2ρ tanh ∆2
√(1− a(tanh(τ − δ)− tanh(τ − δ − ∆))2 tanh ∆2

)2 + β2

∣∣∣∣∣∣∣∣∣∣
� 1. (28)

Figure 6. (Color online) Top panel. Dependence of transition proba-
bility Pτ on time t, for different initial conditions (P0 = Pc).
From up to down: |C0(0)|2 = 0, 0.25, 0.5, 0.75, 1 (α =10 ns−1). Bottom panel. Transition probability Pτ for dif-
ferent values of the pulse height as function of time t.
From up to down: a = P0/Pc = 1.01, 1.001, 0.999, 0.99
(α = 10 ns−1).

The dependece of the function 1/ω2 on dimensionless time
τ and amplitude a is presented in Fig. 9. As we can see,the condition of adiabaticity is extremely sensitive to thechoice of parameters κ = α/ρ and a = P0/Pc . Violationof the adiabatic theorem may occur in the vicinity of thecritical points, associated with the pulse boundaries. For
P0 >∼ Pc , one should impose the condition κ � 1 to satisfythe requirement of the adiabatic theorem.Our theoretical predictions are confirmed by the resultsof numerical simulation presented In Fig. 10.

Figure 7. (Color online) Transition probability Pτ as function of
scaled pressure s for different values of the pulse height
(α = 10 ns−1). From the left to the right: a = P0/Pc =20, 10, 5, 2.5, 1.25 .

Figure 8. (Color online) Shape of finite pulse. Top panel: ∆ = 5.
Bottom panel: ∆ = 25.
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Figure 9. (Color online) Dependence of function 1/ω2 on amplitude
a = P0/Pc and τ. Top panel: α/ρ = 0.1. Bottom panel:
α/ρ = 1 (∆ = 25).

Figure 10. (Color online) Transition probability Pτ as function
of time for different values of a = P0/Pc (a =1 (blue), 1.025 (green), 1.05 (red), 1.1 (black)). First two
panels from the top: ∆ = 5. Two panels from the
bottom: ∆ = 25. First and third panel from the top:
κ = α/ρ = 0.1. Second and fourth panel: κ = α/ρ = 1.

902



Alexander I. Nesterov, Sergey G. Ovchinnikov, Grigorii A. Iaroshenko

4. Conclusion
We have analytically studied the properties of spincrossover under high pressure. We showed that at staticloading and P = Pc , occupation numbers of both HSand LS states are equal at zero temperature (T = 0),
nHS = nLS = 0.5. For P < Pc we obtain nHS = 1 and
nLS = 0, while for P > Pc one has nHS = 0 and nLS = 1.Static transition at T = 0 is a sharp quantum phase tran-sition with a geometric Berry-like phase being the orderparameter [12]. Finite temperature removes the singularityin the nHS (P) dependence. Thermal fluctuations betweenthe two states |0〉 and |1〉 result in a smooth crossoverinstead of the quantum phase transition at T = 0.To verify our theoretical predictions we have performednumerical simulations. Fig. 6 shows that the temporalquantum fluctuations have an effect similar to the thermalfluctuations. Small deviations from unity of the shock-wave amplitude P0/Pc , result not in a sharp change of theprobability Pτ either to zero or to unity but to a contin-uous deviation of the Pτ from the 0.5 value. At the sametime for P0/Pc = 1 any initial distribution of the HS andLS states will end its evolution in the equilibrium state
nHS = nLS = 0.5 (Fig. 6). This conclusion is valid for anychoice of parameter α .Another dynamical effect worthy of discussion is that of theadiabaticity violations near the critical pressure (Fig. 7).This is a manifestation of the general Kibble-Zurek theory.The results shown in Fig. 7 are counter-intuitive at firstglance. The shockwave with larger amplitude has smallerfinal probability for spin crossover and larger probabilityto stay in the initial HS state. To understand this effectone should note that the characteristic scale of the pres-sure increase is given by the factor aα for the wave withamplitude a. Thus a larger amplitude wave also is faster.Concerning experimental studies of the spin crossover un-der dynamical loading, it is clear from our results thatfor some parameters of the loading the final state will bea mixture of the HS and LS states, even if the maximalvalue of applied pressure was above the critical value. Itis known from experiments that at dynamical loading thespin crossover may be spread over a wide pressure in-terval (about 100 GPa), while under static pressure withisotropic medium in the diamond anvil cell the crossoveris very narrow [25].
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