УДК 537.62

МЁССБАУЭРОВСКИЕ ИССЛЕДОВАНИЯ В ПЛЕНКАХ Ть_xFe_{1-x}-СПЛАВОВ С ПЕРПЕНДИКУЛЯРНОЙ МАГНИТНОЙ АНИЗОТРОПИЕЙ

© 2013 г. Р. С. Исхаков^{1, 2}, О. А. Баюков^{1, 2}, В. А. Середкин^{1, 2}, С. В. Столяр^{1, 2},

В. Ю. Яковчук^{1, 2}, Г. И. Фролов¹, Г. В. Бондаренко¹

E-mail: rauf@iph.krasn.ru

Получены аморфные ферримагнитные пленки Tb_xFe_{1-x} с перпендикулярной магнитной анизотропией и обменно-связанные структуры $Tb_xFe_{1-x}/NiFe$, характеризующиеся однонаправленной анизотропией. На основе мёссбауэровских исследований этих систем установлена магнитная и химическая неоднородность сплавов Tb_xFe_{1-x} компенсационных составов.

DOI: 10.7868/S0367676513030150

В пленочных структурах $Tb_xFe_{1-x}/NiFe$, Dy_xCo_{1-x}/NiFe [1], в которых слои аморфных ферримагнитных сплавов Tb_xFe_{1-x} , Dy_xCo_{1-x} изготовлены в области компенсационных составов и характеризуются интегральной перпендикулярной магнитной анизотропией, а в слое NiFe анизотропия типа легкая ось расположена в плоскости пленки, обнаружена однонаправленная анизотропия. Проведенные исследования магнитных свойств однослойных аморфных пленок DyCo, а также обменно-связанных структур DyCo/NiFe позволили выдвинуть гипотезу о наногетерофазности аморфных ферримагнитных сплавов компенсационных составов. На основе анализа результатов многочисленных экспериментов для этих систем было введено понятие двух магнитных фаз [2, 3]: нанофаза Φ_1 (для которой $M_{
m Co} > M_{
m Dy}$) и нанофаза Φ_2 (для которой $M_{\rm Co} < M_{\rm Dy}$). В зависимости от состава пленки сплава Dy_xCo_{1-x} одна из нанофаз в спиновой системе сплава выступает как основная (матричная), в то время как другая – в виде примесной. Намагниченность основной фазы в компенсационной области ориентирована ортогонально плоскости пленки из-за существующей здесь перпендикулярной анизотропии. В примесной фазе намагниченность подрешетки 3d-металла из-за обменного взаимодействия с намагниченностью подрешетки 3d-металла основной фазы имеет плоскостную составляющую, которая участвует в обменном взаимодействии с намагниченностью слоя сплава NiFe [4]. Несмотря на то что компенсационным составом (намагниченность насыщения при комнатной температуре равна нулю) пленок ферримагнитных сплавов $Tb_x Fe_{1-x}$ и $Dy_x Co_{1-x}$ является состав $x \approx 22$ ат. %, аморфные сплавы

 Tb_xFe_{1-x} отличаются от аморфных сплавов Dy_xCo_{1-x} рядом особенностей. Температура Кюри, среднее значение сверхтонкого поля на ядре Fe аморфных ферримагнитных сплавов Tb_xFe_{1-x} при увеличении содержания Fe в широком интервале концентраций уменьшается (для аморфных сплавов Dy_xCo_{1-x} , как известно, увеличение концентрации 3*d*-металла повышает температуру Кюри [5]).

Данная работа посвящена синтезу, исследованию магнитных характеристик однослойных аморфных сплавов Tb_xFe_{1-x} , а также двухслойных обменно-связанных структур Tb_xFe_{1-x} /NiFe методом мёссбауэровской спектроскопии. Использование методики ЯГР для изучения гетерофазных пленок аморфных сплавов Tb_xFe_{1-x} обусловлено чувствительностью спектра ЯГР к локальной ориентации вектора намагниченности в пленке относительно направления пучка γ-квантов [6].

ПОЛУЧЕНИЕ ОБРАЗЦОВ И МЕТОДИКА ЭКСПЕРИМЕНТА

Исследуемые пленки $\text{Tb}_x \text{Fe}_{1-x}$, $\text{Tb}_x \text{Fe}_{1-x}/\text{NiFe}$ (10 < x < 35 ar. %) были получены методом термического испарения [1–3]. В качестве экспериментальных методик использованы магнитооптический эффект Керра в полях до 15 кЭ и петлескоп с полями до 250 Э (прикладываемыми в плоскости пленки) на частоте f = 50 Гц. Термообработка при $T = 250^{\circ}\text{C}$ в течение 10 мин осуществлялась в вакуумной камере, давление остаточных газов в которой не превышало $p = 5 \cdot 10^{-6}$ мм рт. ст. Спектры ЯГР исследуемых пленок $\text{Tb}_x \text{Fe}_{1-x}$ были получены при комнатной температуре. При напылении пленок сплава проводилось обогащение по изотопу Fe⁵⁷ на 95%.

¹ Учреждение Российской академии наук Институт физики им. Л.В. Киренского СО РАН, Красноярск.

² Сибирский федеральный университет, Красноярск.

Рис. 1. Петля гистерезиса слоя NiFe в обменно-связанной структуре $\text{Tb}_x\text{Fe}_{1-x}/\text{NiFe}$. На вставке приведена магнитооптическая петля гистерезиса слоя $\text{Tb}_x\text{Fe}_{1-x}$, x = 20 ат. %.

Рис. 2. Петля гистерезиса слоя NiFe в обменно-связанной структуре $\text{Tb}_x\text{Fe}_{1-x}/\text{NiFe}$. На вставке приведена магнитооптическая петля гистерезиса слоя $\text{Tb}_x\text{Fe}_{1-x}$, x = 23 ат. %.

Рис. 3. Мёссбауэровские спектры пленок аморфных сплавов Tb_xFe_{1-x} , измеренные при комнатной температуре.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Вид магнитооптической петли гистерезиса, измеренной методом полярного эффекта Керра, для аморфных пленок сплавов РЗМ-ПМ с перпендикулярной магнитной анизотропией позволяет здесь выявить доминирующую подрешетку. В случае $M_{\rm Fe} > M_{\rm Tb}$ петля гистерезиса будет "правой". На вставке рис. 1 представлен данный вид петли гистерезиса для аморфного сплава докомпенсационного состава Tb₂₀Fe₈₀. При условии $M_{\rm Fe} < M_{\rm Tb}$ магнитооптическая петля гистерезиса будет "левой". Данный вид петли характеризует пленку аморфного сплава послекомпенсационного состава Tb₂₃Fe₇₇ (вставка рис. 2). В дальнейшем нами были синтезированы двухслойные обменносвязанные пленки Tb_xFe_{1 – x}/NiFe. На рис. 1, 2 приведены петли гистерезиса магнитомягкого слоя NiFe, измеренные на данных обменно-связанных структурах Tb_xFe_{1-x}/NiFe. Вид этих петель свидетельствует об однонаправленной анизотропии в планарных структурах.

Температурный отжиг приводил к уменьшению (или полному изчезновению) как величины перпендикулярной анизотропии в пленках сплавов $\text{Tb}_x \text{Fe}_{1-x}$, (о чем свидетельствует уменьшение величины коэрцитивного поля и прямоугольности магнитооптической петли гистерезиса однослойных пленок $\text{Tb}_x \text{Fe}_{1-x}$), так и величины однонаправленной анизотропии обменно-связанных пленок $\text{Tb}_x \text{Fe}_{1-x}$ /NiFe, о чем свидетельствует уменьшение (или исчезновение) величины поля смещения ΔH .

Спектры мёссбауэровской спектроскопии однослойных ферримагнитных пленок Tb_xFe_{1-x} характеризующихся перпендикулярной анизотропией, представлены на рис. 3. Линии спектра оказались широкими, что характерно для аморфных систем.

Для пленок Tb_xFe_{1-x} с содержанием железа более x > 25 ат. % спектры представляют собой зеемановские секстеты с небольшой примесью квадрупольного дублета. Увеличение содержание Fe в исследуемых образцах приводило к увеличению объемной доли парамагнитного дублета. Для пленок Tb_xFe_{1-x} (x < 19 ат. % Tb) спектры представляют парамагнитные дублеты с малой примесью секстета, что затрудняло обработку данных спектров. Обнаруженные концентрационные особенности спектров ЯГР исследуемых пленок согласуются с ранее выполненными исследованиями аморфных сплавов $Tb_xFe_{1-x}[6]$.

В работе использована двухэтапная расшифровка мёссбауэровских спектров. На первом этапе определяется функция *P*(*H*). На втором этапе по положениям максимумов определяются число и параметры сверхтонкой структуры (СТС) неэквивалентных позиций и состояний железа в сплаве. На основе этой информации строили модельный спектр, который подгоняли к экспериментальному спектру при варьировании всего набора сверхтонких параметров. При этой подгонке "ложные" составляющие спектра зануляются.

Задача определения углов θ (угол между направлением пучка у-квантов и локальным вектором намагниченности) для нескольких фаз неоднородного ферримагнитного сплава при подгонке всех остальных параметров СТС в общем случае не имеет однозначного решения. Необходимо или вводить ограничения на углы θ, или их фиксировать. В данной работе, согласно развиваемому нами подходу о магнитной гетерофазности аморфных ферримагнитных сплавов компенсационных составов, мы ввели предположение о том, что в пленке существуют две магнитные фазы железа: магнитный момент одной фазы ориентирован параллельно ($\theta = 90^\circ, \leftrightarrow$), а другой – перпендикулярно ($\theta = 0^{\circ}, \updownarrow$) плоскости пленки. В этом случае для определения функций *P*(*H*) использована сумма двух групп секстетов с $\theta = 0^{\circ}$ и $\theta = 90^{\circ}$. Определенные функции Р(Н) для двух составов x = 28 и 32 ат. % Тb, а также термообработанного сплава Tb₃₂Fe₆₈ показаны на рис. 4. Здесь проявляется структура на зависимостях P(H), свидетельствующая о четко оформленном химическом и топологическом ближнем порядке обнаруженных магнитных фаз. На рис. 4 видно, что независимо от составов изучаемых пленок, области сплава с $\theta = 0^{\circ}$ (магнитный момент перпендикулярен плоскости пленки) характеризуются меньшими величинами сверхтонких полей, чем области с $\theta = 90^{\circ}$. Анализируемые нами составы сплавов являются послекомпенсационными, поэтому области $\theta = 0^{\circ}$ обогащены редкоземельным элементом относительно интегрального состава пленки. Примесные области, у которых вектор намагниченности расположен в плоскости пленки ($\theta = 90^{\circ}$), неоднородного сплава обогащены Fe, а следовательно, характеризуются большими величинами сверхтонкого поля.

Отличные от нулевого значения функции P(H) для малых полей соответствуют парамагнитной составляющей спектра. Термообработка приводит к значительному уменьшению объемной доли магнитной фазы с перпендикулярной ориентацией вектора намагничивания относительно плоскости пленки и исчезновению перпендикулярной анизотропии. Данный результат согласуется с выполненными нами магнитооптическими измерениями термообработанных пленок Tb_xFe_{1-x} . На втором этапе расшифровки спектров были получены параметры парциальных секстетов, которые сведены в таблицу (см. табл.).

Из данных, приведенных в таблице, видно, что величины сверхтонких полей обнаруженных локальных нанообластей, сплава Tb₂₈Fe₇₂ характе-

Рис. 4. Распределение сверхтонких полей P(H) для случая двух ориентаций векторов намагничивания: $\theta = 0^{\circ}$ – магнитный момент перпендикулярен плоскости пленки; $\theta = 90^{\circ}$ – магнитный момент лежит в плоскости пленки.

ризуются меньшими величинами, по сравнению с величинами *H* нанообластей сплава Tb₃₂Fe₆₈. Данные особенности согласуются с имеющимися на сегодняшний день представлениями о концентрационных зависимостях температуры Кюри и среднего значения сверхтонкого поля для аморфных ферримагнитных сплавов Tb_xFe_{1-x} . Необходимо отметить, что в пленках изучаемых составов, характеризующихся перпендикулярной анизотропией, регистрируются нанообласти с IS = 0и W34 = W16, составляющие около 20% объема материала. По установленным значениям сверхтонких полей H = 170 кЭ (Tb₂₈Fe₇₂) и H = 196 кЭ (Tb₃₂Fe₆₈) их разумно отнести к матричной магнитной фазе Ф₂, для которой должно выполняться неравенство $M_{\rm Fe} < M_{\rm Tb}$. Вектор намагниченности данных областей, следовательно должен быть ориентирован перпендикулярно плоскости пленки. В эксперименте же наблюдается обратная ситуация. Данные области характеризуются $\theta = 90^{\circ}$. Обнаруженные особенности, возможно, обусловлены особым магнитным упорядочением данных нанообластей и требуют дополнительных исследований.

По данным таблицы можно определить объемные доли (долевую заселенность позиции *S*) магнитных фаз Φ_1 и Φ_2 . Для пленок состава Tb₂₈Fe₇₂ $S(\Phi_1) = 23\%$, $S(\Phi_2) = 48\%$. Для пленок состава Tb₃₂Fe₆₈ $S(\Phi_1) = 24\%$, $S(\Phi_2) = 42\%$. Широкое распределение сверхтонких полей, в фазах Φ_1 и Φ_2 указывает на локальную химическую неоднородность как фазы Φ_1 , так и фазы Φ_2 . Заселенность парамагнитных областей составляет около 10%. Термообработка приводит к изменению фазового состава сплава: повышается сверхтонкое поле и исчезает перпендикулярная анизотропия.

ИСХАКОВ и др.

	Позиция	IS	Н	QS	<i>W</i> 34	<i>W</i> 16	S
Tb ₂₈ Fe ₇₂	$\uparrow \Phi_2$	0.12	84	0	0.58	2.64	0.28
	$\uparrow \Phi_2$	-0.02	152	-0.03	0.51	1.15	0.14
	\leftrightarrow	0	170	0.04	0.82	0.82	0.20
	$\mathbf{D} \Phi_2$	0.01	194	0	0.37	0.58	0.06
	$\leftrightarrow \Phi_1$	-0.02	218	0.05	0.76	0.81	0.13
	$\leftrightarrow \Phi_1$	0.06	239	0.21	0.71	0.93	0.05
	$\leftrightarrow \Phi_1$	0.06	257	0.21	0.77	1.01	0.05
		0.21	0	1.39	0.65	—	0.09
Tb ₃₂ Fe ₆₈	$\uparrow \Phi_2$	0.15	95	0	0.39	1.8	0.16
	$\mathbf{D} \Phi_2$	-0.01	174	-0.01	0.50	1.01	0.14
	\leftrightarrow	0	196	0.01	0.91	0.91	0.22
	Φ_2	0.04	221	-0.01	0.46	0.88	0.12
	$\leftrightarrow \Phi_1$	-0.01	241	0.02	0.54	0.55	0.06
	$\leftrightarrow \Phi_1$	0.08	260	0.08	0.81	1.73	0.10
	$\leftrightarrow \Phi_1$	0.09	271	0.07	0.59	0.95	0.08
		0.25	0	1.27	0.86	_	0.12
Tb ₃₂ Fe ₆₈	\$	0.39	112	-0.12	0.77	0.88	0.08
Отжиг 250°С, 10 мин	\leftrightarrow	-0.01	197	0.33	0.42	1.42	0.15
	\leftrightarrow	0.18	219	0.10	0.45	1.78	0.21
	\leftrightarrow	0.03	244	0.52	0.27	1.26	0.13
	\leftrightarrow	0.02	256	-0.36	0.61	0.65	0.09
	\leftrightarrow	0.18	267	0	0.79	0.79	0.10
	\leftrightarrow	0.17	301	0.02	0.72	1.05	0.15
		0.37	0	1.38	1.13	—	0.09

Параметры позиций, обнаруженных в пленках Tb_xFe_{1-x}

Примечание. IS – изомерный химический сдвиг относительно α-Fe, ± 0.02 мм/с; *H* – сверхтонкое поле на ядре, ± 3 кЭ; *QS* – квадрупольное расшепление, ± 0.02 мм/с; *W*34 и *W*16 – ширины внутренних и внешних линий секстета, соответственно, ± 0.02 мм/с; *S* – долевая заселенность позиции, ± 0.03 .

Работа выполнена Сибирским федеральным университетом (проект "Многослойные обменно-связанные пленочные структуры и наночастицы. Структура, магнитные свойства, приложения") в рамках Государственного задания Министерства образования и науки Российской Федерации.

СПИСОК ЛИТЕРАТУРЫ

1. *Середкин В.А., Фролов Г.И., Яковчук В.Ю.* // Письма в ЖТФ. 1983. Т. 9. № 23. С. 1446.

- 2. Исхаков Р.С., Столяр С.В., Чеканова Л.А. и др. // Письма в ЖЭТФ. 2002. Т. 76. Вып. 11. С. 779.
- Исхаков Р.С., Середкин В.А., Столяр С.В., Фролов Г.И., Яковчук В.Ю. // Письма в ЖЭТФ. 2004. Т. 80. Вып. 10. С. 743.
- 4. Фролов Г.И., Яковчук В.Ю., Середкин В.А., Исхаков Р.С. и др. // ЖТФ. 2005. Т. 75. Вып. 12. С. 69.
- 5. *Хандрик К., Кобе С.* Аморфные ферро-ферримагнетики. М.: Мир, 1982. 296 с.
- Русаков В.С., Введенский Б.С., Воропаева Е.Т., Николаева Е.Н. // ФТТ. 1992. Т. 34. № 8. С. 2438.