УДК 548:537.611.44

# ЗАВИСИМОСТЬ КОЭРЦИТИВНОЙ СИЛЫ ОТ РАЗМЕРА ЗЕРНА В ЛЕНТАХ НАНОКРИСТАЛЛИЧЕСКИХ СПЛАВОВ Fe<sub>64</sub>Co<sub>21</sub>B<sub>15</sub>

© 2013 г. С. В. Комогорцев<sup>1</sup>, Р. С. Исхаков<sup>1, 2</sup>, А. Д. Балаев<sup>1</sup>, А. А. Гаврилюк<sup>3</sup>

E-mail: komogor@iph.krasn.ru

Приведены результаты исследования структуры и магнитных свойств нанокристаллических лент  $Fe_{64}Co_{21}B_{15}$ , полученных в результате отжига исходного аморфного сплава. Установлено, что изотермический часовой отжиг при температурах от 300 до 480°С приводит к росту размера кристаллита ОЦК-твердого раствора FeCo(B) от 12 до 22 нм. Форма петли гистерезиса значительно изменяется в результате отжига. Установлено, что коэрцитивная сила  $H_c$  и размер зерна *D* связаны как  $H_c \sim D^2$ . **DOI:** 10.7868/S0367676513100219

## **ВВЕДЕНИЕ**

Важным результатом, демонстрирующим отличие магнетизма нанокристаллических сплавов от магнетизма крупнозернистых поликристаллических сплавов, является степенная зависимость коэрцитивной силы  $H_c$  от размера кристаллита  $H_c \sim D^n$  [1–4]. Эта зависимость означает резкий рост  $H_c$  с увеличением размера зерна, в то время как в поликристаллических материалах рост зерна приводит к уменьшению величины  $H_c$ . Впервые полученная на серии сплавов Fe<sub>73.5</sub>CuNb<sub>3</sub>Si<sub>13.5</sub>B<sub>9</sub> [1] зависимость  $H_c \sim D^6$  привлекла значительное внимание, была многократно подтверждена на многих других сплавах [2, 5, 6] и в настоящее время уже включена в современные монографии по магнетизму [2, 3].

Объяснение степенного роста коэрцитивной силы от размера зерна дает модель случайной магнитной анизотропии [1–4]. Согласно данной модели, магнитную структуру аморфных и нанокристаллических магнитных сплавов можно представить ансамблем стохастических магнитных доменов, самопроизвольно образованных большим количеством частиц [4]. Макроскопические магнитные характеристики наномагнетиков оказались обусловленными размером этих доменов, а также величиной эффективной анизотропии в них. Хаос в направлении осей легкого намагничивания кристаллитов и возможность описания магнитной структуры набором слабосвязанных стохастических магнитных доменов приводят к степенной зависимости средней анизотропии стохастического магнитного домена от размера кристаллита  $\langle K \rangle \sim D^n$  [1–4].Эта зависимость является причиной как степенной зависимости коэрцитивной силы [1–6], так и ширины линии ферромагнитного резонанса в нанокристаллических сплавах [7, 8].

Однако следует отметить, что показатель степени в эмпирически устанавливаемых степенных зависимостях  $H_c(D)$  не всегда равен 6. На практике исследователи получают степенные зависимости  $H_c(D)$  с показателями степени от 1.5 до 6 [1, 5, 6, 9–12]. Исследователи связывают это с наведенной одноосной анизотропией [9] либо с пониженной размерностью стохастического домена [10–12]. Развитие достоверных представлений в этом направлении требует проведения новых экспериментальных исследований на различных нанокристаллических сплавах.

В данной работе мы представляем экспериментальные результаты по зависимости коэрцитивной силы от размера зерна в лентах нанокристаллического сплава  $Fe_{64}Co_{21}B_{15}$ , полученного в результате отжига из аморфного состояния.

## ЭКСПЕРИМЕНТ

Ленты аморфного сплава  $Fe_{64}Co_{21}B_{15}$  толщиной 20 мкм получены закалкой из расплава в ЦНИИ ЧЕРМЕТ им. И.П. Бардина (г. Москва). Части ленты были отожжены в течение 1 часа при температурах 300, 350, 400, 480°С в атмосфере аргона. На полученных при различных условиях отжига образцах измеряли кривые намагничивания, а также спектры рентгеновской дифракции. Измерение кривых намагничивания проводили при комнатной температуре на вибрационном магнитометре в полях до 10 кЭ. Измерения спектров рентгеновской дифракции были проведены

<sup>&</sup>lt;sup>1</sup> Федеральное государственное бюджетное учреждение науки Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, Красноярск.

<sup>&</sup>lt;sup>2</sup> Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный технологический университет", Красноярск.

<sup>&</sup>lt;sup>3</sup> Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный университет".



**Рис. 1.** Рентгенограммы сплава Fe<sub>64</sub>Co<sub>21</sub>B<sub>15</sub>, отожженного в течение 1 ч при различных температурах.

на дифрактометре ДРОН-3 с использованием Си $K_{\alpha}$ -излучения. Определение фаз проводили с использованием базы дифракционных данных [13].

### РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 показаны рентгенограммы лент аморфного сплава  $Fe_{64}Co_{21}B_{15}$ , отожженного в течение 1 ч при различных температурах. Проставленные на рентгенограммах (рис. 1) метки над пиками соответствуют рефлексам твердого раствора Fe-Co с объемно центрированной (ОЦК) структурой, а также фазам (Fe,Co)<sub>3</sub>B с объемно центрированной тетрагональной (ОЦТ) структурой и (Fe,Co)<sub>2</sub>В также с ОЦТ-структурой. Видно, что отжиг при 300°С приводит к формированию четких рефлексов ОЦК-фазы на фоне аморфного гало. Ширина рефлексов ОЦК-фазы уменьшается сростом температуры отжига. Отжиг при температурах выше 350°С приводит к появлению рефлексов соответствующих (Fe,Co)<sub>3</sub>В и (Fe,Co)<sub>2</sub>В с ОЦТ-структурой. Величины межплоскостных расстояний, соответствующие идентифицированным фазам и рассчитанные по формуле Вульфа-Брэгга, привелены в таблице.

Для оценки размера области когерентного рассеяния (OKP) или размера зерна ОЦК-фазы





**Рис. 2.** Петли гистерезиса лент сплава  $Fe_{64}Co_{21}B_{15}$ , отожженного в течение 1 ч при различных температурах. На вставке — зависимость коэрцитивной силы от размера зерна.

по рентгенограммам рис. 1 определяли позицию (2 $\theta$ ) и ширину самого интенсивного пика (011) на половине высоты (*FWHM*). Этот рефлекс аппроксимировали псевдофункцией Фойгхта. Размер зерна (*D*) оценивали по формуле Шерера:  $D = 0.9 \cdot \lambda/(FWHM \cdot \cos(\theta))$ . Величины ОКР также приведены в таблице. Видно, что в процессе рекристаллизации сплава происходит рост зерна основной ОЦК-фазы первоначально зародившегося в аморфной матрице.

Форма петли гистерезиса изменяется в результате отжига (рис. 2). Величина намагниченности в поле 10 кЭ увеличивается при отжиге при 300 и 350°С от 182 эме/г для аморфного сплава до величины 217 эме/г. Дальнейший отжиг приводит к снижению намагниченности до 165 эме/г. Такое изменение отражает эволюцию фазового состава сплава. На начальных этапах отжига образуется фаза твердого раствора FeCo(B) с самой высокой намагниченностью среди составляющих материал фаз. Дальнейший отжиг приводит к образова-

Межплоскостные расстояния и величина области когерентного рассеяния фазы ОЦК FeCo(B) (единица измерения — нм)

| <i>Т</i> <sub>отж</sub> , °С | ОЦК FeCo(B) |        |         |
|------------------------------|-------------|--------|---------|
|                              | 011         | 200    | OKP (D) |
| 300                          | 0.2020      | 0.1429 | 12      |
| 350                          | 0.2017      | 0.1428 | 17      |
| 400                          | 0.2020      | 0.1429 | 19      |
| 480                          | 0.2020      | 0.1429 | 22      |
|                              |             |        |         |

нию тетрагональных боридов с меньшей величиной намагниченности.

Величина коэрцитивной силы значительно увеличивается при отжиге (рис. 2). Размер зерна основной фазы сплава ОЦК-твердого раствора Fe-Co-B также возрастает в процессе отжига. Оказалось, что величины коэрцитивной силы  $H_c$ и размера зерна *D* связаны при этом как  $H_c \sim D^2$ (смотри вставку на рис. 2). Такая зависимость не согласуется ни с зависимостью  $H_c \sim D^6$  для нанокристаллических сплавов с трехмерными стохастическими доменами [1, 2, 5, 6] ни с зависимостью  $H_c \sim D^3$  для сплавов с наведенной одноосной магнитной анизотропией [9]. Показатель степенной зависимости, равный 2, согласно [10–12, 14, 15], можно связать с образованием двумерных стохастических магнитных доменов. Отметим, что формирование двумерных доменов обсуждали ранее только для тонких пленок, где они образуются естественным образом в случае, когда толщина пленки много меньше размера стохастического магнитного домена и сопоставима с размером кристаллита. В данном случае мы наблюдаем степенную зависимость, соответствующую двумерному стохастическому магнитному домену для лент с толщиной 20 мкм, существенно превышающей размер кристаллита (10-20 нм), а также превышающей размер стохастического магнитного домена составляющего в таких сплавах от 0.1 до 1 мкм [4]. Выяснение причин появления двумерных магнитных доменов в исследованных сплавах является, на наш взгляд, интересной темой для дальнейшей работы.

## ЗАКЛЮЧЕНИЕ

Экспериментально исследованы петли гистерезиса и структура нанокристаллических лент  $Fe_{64}Co_{21}B_{15}$  полученных в результате отжига исходного аморфного сплава. Установлено, что изотермический часовой отжиг при температурах от 300 до 480°C, приводит к изменению фазового состава, при этом основной фазой, формирующей-

ся из аморфной матрицы является ОЦК-твердый раствор Fe–Co–B. Отжиг приводит также к росту размера кристаллита твердого раствора Fe–Co–B от 12 до 22 нм. В результате отжига величина намагниченности насыщения изменяется немонотонно, отражая изменение фазового состава. Коэрцитивная сила увеличивается с ростом температуры отжига. Установлено, что коэрцитивная сила  $H_c$  и размер зерна D связаны как  $H_c \sim D^2$ . Возможным объяснением такой зависимости может служить формирование двумерных магнитных доменов в исследованных сплавах.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. *Herzer G.* // IEEE Trans. Magn. 1990. V. 26 (5). P. 1397.
- 2. *Herzer G.* // Handbook of Magnetic Materials / Ed. Buschow K.H.J. Amsterdam: Elsevier, 1997. V. 10. P. 415.
- 3. *Coey J.M.D.* Magnetism and Magnetic Materials. N.Y.: Cambridge Univ. Press, 2009. 617 p.
- Iskhakov R.S., Komogortsev S.V. // Phys. Met. Metallogr. 2011. V. 112. P. 666.
- Muller M., Mattern N. // J. Magn. Magn. Mater. 1994. V. 136. P. 79.
- Kita E., Tsukuhara N., Sato H. et al. // Appl. Phys. Lett. 2006. V. 88. P. 152501.
- 7. *Комогорцев С.В., Исхаков Р.С., Кузнецов П.А. и др. //* Физика тв. тела. 2010. Т. 52. Вып. 11. С. 2143.
- Komogortsev S., Iskhakov R., Kuznetsov P. et al. // Solid State Phenom. 2011. V. 168–169. P. 365.
- 9. Suzuki K., Herzer G. // Scripta Mater. 2012. V. 67. P. 548.
- Thomas S., Al-Harthi S.H., Sakthikumar D. et al. // J. Phys. D. 2008. V. 41. P. 155009.
- 11. Echigoya J., Yue R. // J. Mater. Sci. 2005. V. 40. P. 3209.
- Contreras M.C., Calleja J.F., Matarranz R. et al. // J. Appl. Phys. 2006. V. 99. 08F110.
- 13. JCPDS X-ray diffraction data card file and key (1997).
- 14. Исхаков Р.С., Комогорцев С.В., Балаев А.Д., Чеканова Л.А. // Письма в ЖЭТФ. 2000. Т. 72. С. 440.
- Исхаков Р.С., Комогорцев С.В., Балаев А.Д., Чеканова Л.А. // Письма в Журн. техн. физики. 2002. Т. 28. Вып. 17. С. 37.