05

Особенности кристаллической структуры и магнитные свойства соединения DyFeTi₂O₇

© Т.В. Дрокина^{1,2}, Г.А. Петраковский¹, М.С. Молокеев¹, Д.А. Великанов^{1,2}, О.Н. Плетнев², О.А. Баюков¹

¹ Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия ² Сибирский федеральный университет, Красноярск, Россия E-mail: tvd@iph.krasn.ru

(Поступила в Редакцию 12 февраля 2013 г.)

Представлены результаты исследования особенностей кристаллической структуры и распределения катионов железа по позициям в соединении DyFeTi₂O₇, проведено сравнение с изоструктурным соединением GdGaTi₂O₇. Методами мессбауэровской спектроскопии и рентгеновской дифракции подтвержден атомный беспорядок в распределении ионов железа Fe³⁺ по структурным позициям в DyFeTi₂O₇. Результаты магнитных измерений в низкотемпературной области показывают излом на температурной зависимости магнитного момента и его зависимость от магнитной предыстории образца. Полученные экспериментальные данные позволяют сделать вывод о реализации состояния спинового стекла с температурой замерзания $T_f = 6 \text{ K}$ в соединении DyFeTi₂O₇.

1. Введение

DyFeTi₂O₇ — представитель ряда соединений с общей формулой RMTi₂O₇ (M = Fe, Ga; R - редкоземельные ионы). Известно, что соединения RFeTi₂O₇ изоструктурны GdGaTi₂O₇ [1]. Согласно результатам рентгеновского исследования соединение GdGaTi₂O₇ при комнатной температуре кристаллизуется в центросимметричной ромбической пространственной группе Pcnb [1]. На элементарную ячейку приходится восемь формульных единиц GdGaTi₂O₇. Она построена из четырех-, пяти-, шести- и восьмивершинных кислородных полиэдров: в восьмивершиннике располагается редкоземельный катион; три неэквивалентные октаэдрические позиции (М1, М2 и М3) являются смешанными (заселены совместно Ті и Ga); тетраэдрические позиции (t) заселены галлием, катионы Ga могут выходить из тетраэдров и заселять соседние позиции Ga' и Ga" с координацией, равной пяти (f).

Магнитные свойства соединений RFeTi₂O₇ (R = Sm, Gd) исследованы в работах [2,3], показано формирование спин-стекольных магнитных состояний с температурами замерзания $T_f = 7$ и $T_f = 3$ К соответственно.

В настоящей работе сообщается о новом соединении $DyFeTi_2O_7$ с магнитным состоянием спинового стекла. Представлены результаты рентгеновских, мессбауэровских и магнитных измерений, проведенных с целью изучения магнитных свойств и особенностей кристаллической структуры.

2. Синтез образцов и техника эксперимента

1) Приготовление образцов. Соединение DyFeTi₂O₇ получено реакцией в твердой фазе из смеси окислов Fe₂O₃, Dy₂O₃ и TiO₂. Образцы в виде таблеток диаметром 10 mm и толщиной 1.5-2.0 mm подвергались высокотемпературной обработке при температуре 1250° C и нормальном давлении. Синтез проводился в четыре этапа с промежуточным мокрым помолом в спиртовой среде и повторной процедурой прессования. Химический и фазовый состав образцов контролировался методами рентгеноструктурного анализа и ядерного γ -резонанса, а также с помощью оптического микроскопа. В синтезированных образцах имеется примесь Fe₂TiO₅ в количестве 3.4%.

2) Рентгеноструктурное исследование. Порошковая рентгенограмма DyFeTi₂O₇ была получена на дифрактометре D8 ADVANCE фирмы Bruker с использованием линейного детектора VANTEC и Cu-K*α* излучения.

В эксперименте использовалась методика переменной скорости сканирования (VCT) и переменного шага (VSS). Время экспозиции увеличивалось с увеличением угла 2θ , что приводило к значительному улучшению качества отснятой рентгенограммы [4-6]. Как правило, на полуширине пика (FWHM) должно укладываться пять-восемь экспериментальных точек. Однако, пики значительно уширяются с увеличением угла 20. Поэтому шаг может быть увеличен в высокоугловых областях 20 с целью уменьшения временных затрат в эксперименте [7]. Далее экспериментальные данные были конвертированы в один общепринятый в рентгенографии ХҮЕ файл, содержащий координаты $2\theta_i$, интенсивность I_i и стандартное отклонение $\sigma(I_i)$ для каждой экспериментальной точки. Уточнение Ритвельда, реализованное в используемой программе TOPAS 4.2 [8] учитывает стандартное отклонение каждой точки посредством введения в метод наименьших квадратов (МНК) веса для каждой точки $w_i = 1/\sigma (I_i)^2$. Таким образом, увеличение времени экспозиции для точки приводит

Рис. 1. Рентгенограмма поликристаллического соединения DyFeTi₂O₇ при комнатной температуре. Разностная рентгенограмма — нижняя кривая. Исследуемое вещество содержит 3.4% примеси состава Fe₂TiO₅.

к уменьшению стандартного отклонения $\sigma(I_i)$, и, как следствие, к большему ее весу w_i в уточнении МНК. В методике VCT происходит выравнивание между собой весов слабых высокоугловых и сильных низкоугловых рефлексов, тогда как в обыкновенном эксперименте веса неравноценны и информация о структуре, содержащаяся в высокоугловой области, теряется.

Экспериментальная рентгенограмма исследуемого образца была получена по методике VCT/VSS и разбита на четыре части: $5-38.7^{\circ}$ (экспозиция в точке 3 s, шаг 0.016°); $38.7-61.6^{\circ}$ (экспозиция в точке 9 s, шаг 0.024°); $61.6-97.5^{\circ}$ (экспозиция в точке 15 s, шаг 0.032°); $97.5-140^{\circ}$ (экспозиция в точке 24 s, шаг 0.040°). Общее время эксперимента составило примерно 16 h. Разбиение эксперимента на части было проведено в программе XRD Wizard [7]. Положение пиков определялось в программе EVA (2004) из программного пакета DIFFRAC-PLUS, поставляемой фирмой "Bruker".

3) Мессбауэровские измерения. Мессбауэровские исследования проведены на спектрометре МС-1104Ем Института физики им. Л.В. Киренского СО РАН при комнатной температуре с источником $Co^{57}(Cr)$ на порошках толщиной $5-10 \mu g/cm^2$ по естественному содержанию железа. Изомерные химические сдвиги измерены относительно металлического α -Fe.

4) Магнитные измерения. Магнитные измерения осуществлены на магнитометре MPMS-XL Сибирского федерального университета в интервале температур 2–300 К в магнитном поле 500 Ос.

3. Экспериментальные результаты

Структурные свойства образца изучены методом рентгеновской дифракции на порошках DyFeTi₂O₇. Разностная рентгенограмма представлена на рис. 1. Данные рентгеновского исследования свидетельствуют о том, что синтезированный материал DyFeTi₂O₇ имеет ромбическую кристаллическую структуру, пространственная группа *Pbcn*.

Так как исследуемое соединение DyFeTi₂O₇ изоструктурно соединению GdGaTi₂O₇ [1], то в качестве начальной модели кристаллической структуры была взята структура GdGaTi₂O₇. Заселенности позиций атомов Ті и Fe уточнялись в предположении, что позиции заняты полностью, а их тепловые параметры фиксированы. Для того чтобы суммарный заряд ячейки в результате уточнения стремился к нулю, использовалось одно мягкое ограничение в виде линейного уравнения на заселенности позиций ионов Ті: occ(Ti1) + occ(Ti2)/2 + occ(Ti3) = 2. Результаты уточнения заселенностей образца DyFeTi₂O₇ представлены в табл. 1. Координаты атомов, заселенности позиций р и тепловые параметры B_{iso} соединения DyFeTi₂O₇ содержатся в табл. 2. Для сравнения в табл. 2 также приведены заселенности позиций p₁ в соединении GdGaTi₂O₇ по данным работы [1].

Уточнение констант элементарной ячейки и анализ данных показали, что параметр a (9.8470) Å в DyFeTi₂O₇ увеличен, а параметры b (13.5751) Å и c (7.3652) Å

Параметр	DyFeTi ₂ O ₇	GdGaTi ₂ O ₇ по данным [1]
Пространственная группа	Pcnb	Pcnb
a, Å	9.8470(1)	9.7804(3)
b, Å	13.5751(2)	13.605(1)
<i>c</i> , Å	7.3652(1)	7.4186(2)
$V, Å^3$	984.54(2)	987.16(1)
Z	8	8
D_x , g/cm ³	5.737	5.848
μ , mm ⁻¹	130.319	225.7
Излучение	$Cu-K_{\alpha}$	Mo- K_{α}
$2 heta$ -интервал, $^{\circ}$	5-140	2–70
Число рефлексов	942	6267
Число уточняемых параметров	73	_
R_{wp} , %	1.018	_
$R_{\rm exp},\%$	0.573	_
$R_p, \%$	0.979	—
$GOF\left(\chi ight)$	1.775	—

Таблица 1. Основные кристаллографические характеристики соединений $DyFeTi_2O_7$, $GdGaTi_2O_7$ и параметры эксперимента

Примечание. V — объем элементарной ячейки, Z — число формульных единиц в ячейке, D_x — вычисленная плотность, μ — коэффициент поглощения, R_{wp} — весовой профильный фактор недостоверности, R_{exp} — ожидаемый фактор недостоверности, R_p — профильный фактор недостоверности.

уменьшены по сравнению с соединением GdGaTi₂O₇, т. е. наблюдается непропорциональное изменение параметров ромбической ячейки.

Согласно данным рентгеновского исследования, как в соединении $GdGaTi_2O_7$, так и в соединении $DyFeTi_2O_7$ имеется пять неэквивалентных позиций железа (галлия). Однако опыт показывает существенную разницу в распределении титана, а соответственно и железа, в смешанных октаэдрических позициях в изоструктурных

Рис. 2. Кристаллическая структура соединения DyFeTi₂O₇.

соединениях. Особенно различаются заселенности титана в позиции M2: $p_1 = 0.79$ в GdGaTi₂O₇ и p = 0.49 в DyFeTi₂O₇. Таким образом, кроме изменений констант решетки наблюдается изменение заселенностей железа по сравнению с галлием по смешанным катионным позициям Fe(Ga) и Ti.

Кристаллическая структура соединения DyFeTi₂O₇ представлена на рис. 2.

Всего в ячейке содержится $0.82 \times 8 + 0.49 \times 4 + 0.87 \times 8 = 15.50$ атомов Ті и $0.18 \times 8 + 0.51 \times 4 + 0.13 \times 8 + (0.78 \times 4 + 0.11 \times 8) = 8.52$ атомов Fe. В целом суммарную формулу с учетом стандартных отклонений можно записать в виде DyFe_{1.07(6)}Ti_{1.93(6)}O₇.

Для оценки состояния железа в DyFeTi₂O₇ проведены мессбауэровские измерения при комнатной температуре. Мессбауэровский спектр (рис. 3, a) представляет собой сумму перекрывающихся квадрупольных дублетов. Для определения состава модельного спектра вычислено рас-

Таблица 2. Координаты атомов, заселенности позиций p и тепловые параметры (изотропные B_{iso} , либо эквивалентные B_{eq}) в DyFeTi₂O₇, а также заселенности позиций p_1 в GdGaTi₂O₇

Атом	Кратность позиции	x	у	z	р	$B_{\rm iso}/B_{\rm eq}$	p_1 [1]
Dy(Gd)	8	0.2465(5)	0.1329(2)	0.0085(5)	1	0.75(4)	1
Ti1	8	0.2492(2)	0.3838(5)	0.487(1)	0.82(2)	1.5	0.88
Fe1(Ga)	8	0.2492(2)	0.3838(5)	0.487(1)	0.18(2)	1.5	0.12
Ti2	4	0.5	0.25	0.255(3)	0.49(6)	1.5	0.79
Fe2(Ga)	4	0.5	0.25	0.255(3)	0.51(6)	1.5	0.21
Ti3	8	0.003(1)	0.4894(7)	0.254(2)	0.87(3)	1.5	0.73
Fe3(Ga)	8	0.003(1)	0.4894(7)	0.254(2)	0.13(3)	1.5	0.27
Fet(Ga)	4	0	0.25	0.331(2)	0.78	1.5(3)	0.78
Fef(Ga)	8	0.037(6)	0.292(4)	0.185(8)	0.11	1.5(3)	0.11
O1	8	0.159(1)	0.391(1)	0.243(5)	1	1	1
O2	8	0.409(2)	0.109(2)	0.249(6)	1	1	1
O3	8	0.103(3)	0.145(1)	0.243(6)	1	1	1
O4	8	0.368(4)	0.286(3)	0.429(5)	1	1	1
O5	8	0.378(4)	0.279(3)	0.051(6)	1	1	1
O6	8	0.373(3)	0.497(2)	0.435(4)	1	1	1
07	8	0.387(4)	0.475(2)	0.054(5)	1	1	1

Рис. 3. *а* — Мессбауэровский спектр DyFeTi₂O₇ при *T* = 300 K, *b* — распределение вероятности квадрупольных расщеплений в экспериментальном спектре.

пределение вероятности квадрупольных расщеплений P(QS) в экспериментальном спектре, рис. 3, *b*. При этом в качестве исходных использованы две группы дублетов с различными химическими сдвигами. При вычислении P(QS) подгонялись амплитуды дублетов и химические сдвиги, общие для каждой группы дублетов.

Максимумы и особенности на распределении P(QS)свидетельствуют о возможных неэквивалентных позициях железа в цирконолите DyFeTi₂O₇. Информация, извлеченная из распределения P(QS), использована для построения модельного спектра, который затем подгонялся к экспериментальному спектру при варьировании всего набора сверхтонких параметров дублетов. Результат подгонки сведен в табл. 3.

Величины изомерных химических сдвигов соответствуют катионам трехвалентного железа — Fe³⁺. Химические сдвиги величиной ≥ 0.3 mm/s обычно наблюдаются для Fe³⁺, октаэдрически координированного по кислороду, химические сдвиги величиной < 0.3 mm/s характерны для тетраэдрической координации.

Для отнесения атомов железа, обнаруженных с помощью мессбауэровской методики, к кристаллографическим позициям использованы результаты рентгеновской дифракции, а именно, заселенность позиций железом и степень искажения координационных полиэдров. Для ионных соединений искажение координационного кислородного полиэдра, окружающего рассматриваемый катион, можно оценить, в первом приближении, величиной градиента электрического поля V_{zz} , создаваемого соседними ионами кислорода. Величина V_{zz} должна быть прямо пропорциональной измеряемому квадрупольному расщеплению QS. Принимаем за степень искажения $V_{zz} \sim \Sigma(3\cos^2 \varphi_i - 1)/r_i^3$, где φ_i — угол между главной осью октаэдра и направлением на рассматриваемый ион кислорода, r_i — расстояние между центральным катионом и окружающими ионами кислорода.

Вычисленный на основе рентгеновских данных градиент приведен в столбце V_{zz}^R табл. 3 для всех пяти кристаллографических позиций решетки DyFeTi₂O₇. Видна

Таблица 3. Мессбауэровские параметры DyFeTi₂O₇

IS, mm/s ±0.02	QS, mm/s ±0.02	<i>W</i> , mm/s ±0.03	А, дол.% ±0.03	Позиция	A^R	V^R_{zz}
0.35	0.59	0.28	0.20	Fe3	0.23	+0.116
0.35	0.81	0.25	0.17	Fe1	0.19	-0.100
0.34	1.14	0.36	0.13	Fe2 ₁		
0.29	1.47	0.49	0.17	Fe2 ₂	0.26	-0.153
0.30	1.83	0.16	0.01	Fe2 ₃		
0.24	2.20	0.25	0.26	Fet	0.25	+0.248
0.23	2.37	0.18	0.06	Fef	0.07	+0.264

Примечание. *IS* — изомерный химический сдвиг относительно α -Fe, *QS* — квадрупольное расщепление, *W* — ширина линии, *A* — долевая заселенность позиции железом. A^R — заселенность позиции железом, оцененная рентгеновской методикой, V^R_{zz} — градиент электрического поля, создаваемый координационным кислородным полиэдром.

Рис. 4. Температурная зависимость обратной восприимчивости DyFeTi₂O₇, охлаждение образца в поле H = 500 Oe, асимптотическая температура Нееля $\theta_N = -19$ K.

Рис. 5. Температурная зависимость магнитного момента в соединении DyFeTi₂O₇ в интервале 2–300 K (*a*) и в области низких температур (*b*); I — охлаждение образца в нулевом магнитном поле (нижняя кривая). 2 — охлаждение в магнитном поле H = 500 Oe от температуры T = 15 K (средняя кривая). 3 — охлаждение образца в магнитном поле H = 500 Oe от температуры T = 300 K (верхняя кривая).

Таблица 4. Значения асимптотической температуры Нееля θ_N , константы Кюри–Вейсса *C* в законе Кюри–Вейсса, расчетные и экспериментальные величины эффективного момента для соединения DyFeTi₂O₇

Соединение	DyFeTi ₂ O ₇
Значение асимптотической температуры Нееля θ_N , К Константа Кюри–Вейсса <i>С</i> , К	-19 0.036
$\mu_{ m eff(cal)},\ \mu_{ m B}$ $\mu_{ m eff(exp)},\ \mu_{ m B}$	12.13 11.12

вполне удовлетворительная корреляция между A и A^{R} , и между QS и V_{zz}^{R} , на основе которой сделана идентификация "мессбауэровских" позиций железа в столбце "Позиция". В мессбауэровских спектрах обнаруживаются три позиции Fe2: Fe2₁, Fe2₂ и Fe2₃. Это связано с хаотическим распределением катионов Ti по кристаллу. Три позиции Fe2 имеют различное число катионов Ti среди ближайших соседей. Отличие ионных радиусов Fe³⁺ (0.67 Å) и Ti⁴⁺ (0.64 Å) обусловливает изменение локального искажения на центральном катионе Fe³⁺ при различном числе соседних ионов Ti.

Таким образом, результаты мессбауэровского и рентгеновского исследований показали наличие атомного беспорядка в распределении ионов железа Fe^{3+} в цирконолите DyFeTi₂O₇.

На рис. 4 и 5 приведены результаты измерений магнитных свойств соединения DyFeTi₂O₇. На рис. 4 показана температурная зависимость обратной магнитной восприимчивости $\chi^{-1}(T)$ при условии охлаждения образца DyFeTi₂O₇ в поле H = 500 Oe. Поведение кривой $\chi^{-1}(T)$ в высокотемпературной области (T > 50 K) можно описать законом Кюри-Вейсса. Асимптотическая температура Нееля, определяемая как точка пересечения оси Т с асимптотой к кривой $\chi^{-1}(T)$ в области высоких температур, имеет значение $\theta_N = -19$ К и свидетельствует о преимущественно антиферромагнитном обменном взаимодействии в сложной магнитной подсистеме исследуемого образца. Константа Кюри-Вейсса С = 0.036 К, что соответствует значению эффективного магнитного момента (молярное значение) $\mu_{\text{eff}(\exp)} = 11.12 \,\mu_{\text{B}}$. Расчетное значение эффективного магнитного момента формульной единицы $Dy^{3+}Fe^{3+}Ti_2O_7$: $\mu_{eff(cal)} = 12.13 \mu_B$ ($\mu_{eff(cal)}^{Fe^{3+}} = 5.91 \mu_B$ и $\mu_{eff(cal)}^{Dy^{3+}} = 10.59 \mu_B$).

В табл. 4 приведены значения асимптотической температуры Нееля θ_N , константы Кюри–Вейсса *С* в законе Кюри–Вейсса, а также расчетные и экспериментальные величины эффективного момента для соединения DyFeTi₂O₇.

Экспериментальные данные также показывают, что температурная зависимость магнитного момента изучаемого соединения DyFeTi₂O₇ зависит от условий размагничивания (рис. 5). При охлаждении образца в отсутствие магнитного поля температурная зависимость магнитного момента имеет излом при температуре

T = 5 К. Излом не наблюдается при охлаждении образца от температуры T = 300 К в поле H = 500 Ое (верхняя кривая рис. 5). Средняя кривая соответствует случаю, когда охлаждение в поле H = 500 Ое осуществлялось от температуры T = 15 К, соответствующей парамагнитной области исследуемого образца.

Таким образом, при низких температурах (ниже температуры замерзания $T_f = 6 \text{ K}$) имеется несколько значений магнитного момента в зависимости от условий охлаждения образца. Результаты магнитных измерений характерны для образцов с магнитным состоянием спинового стекла. По-видимому, атомный беспорядок в распределении железа в кристаллической решетке приводит к образованию при температурах ниже T_f случайно изменяющихся взаимодействий атомов и, возможно, наличию конкурирующих магнитных взаимодействий.

4. Заключение

Методом твердофазной реакции синтезировано соединение $DyFeTi_2O_7$. Проведены рентгеноструктурные, мессбауэровские и магнитные измерения для определения магнитного состояния цирконолита $DyFeTi_2O_7$ и уточнения структурных особенностей.

С учетом относительных заселенностей индивидуальных позиций, кристаллохимическая формула исследуемого соединения имеет вид DyFe_{1.07(6)}Ti_{1.93(6)}O₇.

На основании экспериментальных данных, показывающих, с одной стороны, наличие атомного беспорядка в распределении ионов железа в кристаллической решетке, с другой стороны, возникновение при $T > T_f$ магнитного момента и его рост при понижении температуры вплоть до T_f с наличием вблизи T_f излома, а также зависимость магнитных характеристик от предыстории образца с преимущественно антиферромагнитным обменным взаимодействием, можно предполагать, что в соединении DyFeTi₂O₇ при температуры замерзания $T_f = 6$ К реализуется магнитное состояние спинового стекла.

Список литературы

- Е.А. Генкина, В.И. Андрианов, Е.Л. Белоконева, Б.В. Милль, Б.А. Максимов, Р.А. Тамазян. Кристаллография 36, 1408 (1991).
- [2] Г.А. Петраковский, Т.В. Дрокина, А.Л. Шадрина, Д.А. Великанов, О.А. Баюков, М.С. Молокеев, А.В. Карташев, Г.Н. Степанов. ФТТ 53, 1757 (2011).
- [3] Г.А. Петраковский, Т.В. Дрокина, Д.А. Великанов, О.А. Баюков, М.С. Молокеев, А.В. Карташев, А.Л. Шадрина, А.А. Мицук. ФТТ 54, 1701 (2012).
- [4] I.C. Madsen, R.J. Hill. Adv. X-ray Anal. 35, 39 (1992).
- [5] I.C. Madsen, R.J. Hill. J. Appl. Cryst. 27, 385 (1994).
- [6] W.I.F. David. Abstract P2.6, NIST Spec. Publ. 846, 210 (1992).
- [7] Diffrac-Plus Basic XRD Wizard. Bruker AXS GmbH, Karlsruhe, Germany (2002–2007).
- [8] General profile and structure analysis software for powder diffraction data. User's Manual, Bruker AXS (TOPAS V4), Karlsruhe, Germany (2008).