10,11

Исследование фазовых диаграмм фторкислородной системы сегнетоэластик–антисегнетоэлектрик (NH₄)₂WO₂F₄–(NH₄)₂MoO₂F₄

© Е.В. Богданов^{1,4}, Е.И. Погорельцев^{1,2}, С.В. Мельникова¹, М.В. Горев^{1,2}, И.Н. Флёров^{1,2}, М.С. Молокеев¹, А.В. Карташев¹, А.Г. Кочарова¹, Н.М. Лапташ³

¹ Институт физики им. Л.В. Киренского СО РАН,

Красноярск, Россия

² Институт инженерной физики и радиоэлектроники,

Сибирский федеральный университет, Красноярск, Россия

³ Институт химии ДВО РАН, Владивосток, Россия

⁴ Институт энергетики и управления энергетическими ресурсами,

Красноярский государственный аграрный университет,

Красноярск, Россия

E-mail: evbogdanov@iph.krasn.ru

(Поступила в Редакцию 10 июля 2012 г.)

Выполнены теплофизические, структурные, оптические и диэлектрические исследования твердых растворов оксифторидов $(NH_4)_2W_{1-x}Mo_xO_2F_4$ (*x*: 0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1). Путем анализа фазовых диаграмм температура–давление, объем ячейки–давление и температура–состав установлен характер влияния химического и гидростатического давлений на устойчивость исходной (пр. гр. *Стист)* и искаженных сегнетоэластической и антисегнетоэлектрической фаз. На основе данных о структурных, энтропийных, барических и диэлектрических параметрах обсуждаются особенности природы и механизма фазовых переходов.

Работа выполнена при финансовой поддержке РФФИ (грант 12-02-31566 мол_а) и гранта Президента РФ для поддержки ведущих научных школ РФ (НШ-4828.2012.2.)

1. Введение

Наличие в кристаллической решетке фторкислородных анионных полиэдров $[MeO_3F_3]^{n-}$, $[MeO_2F_4]^{n-}$ или [*Me*OF₅]^{*n*-}, в которых центральный атом смещен в направлении атомов кислорода, позволяет реализовать полярные материалы, обладающие сегнето-, пиро- или пьезоэлектрическими свойствами [1,2]. Эти свойства могут проявляться в результате упорядочения структурных элементов, реализующегося либо в исходной фазе после кристаллизации [3], либо в искаженных фазах, возникающих вследствие фазовых превращений. Однако нередко и структура низкотемпературных фаз оксифторидов является центросимметричной. Такая ситуация наблюдается, например, в соединениях $(NH_4)_2 MeO_2F_4$ (Me: W, Mo) с исходной ромбической структурой (пространственная группа *Стст*, *Z* = 4), состоящей из изолированных октаэдров [*Me*O₂F₄]²⁻ и двух кристаллографически неэквивалентных аммонийных групп [4,5]. Несмотря на незначительное отличие ионных радиусов центральных атомов (Mo — 0.59 Å, W — 0.60 Å), их индивидуальные особенности повлияли на характер разупорядочения октаэдров. И соответственно вероятность заселенности двух кристаллографических позиций 4(c) и 16(h) этими атомами оказалась разной: для октаэдра [WO₂F₄]²⁻ — 0.143(6) и 0.214(2), а для [MoO₂F₄]²⁻ — 0.43(6) и 0.14(2) соответственно.

Подробные исследования (NH₄)₂WO₂F₄ показали, что при температуре $T_1 = 201 \, \text{K}$ исходная структура оксифторида теряет устойчивость [6,7]. Отсутствие генерации второй гармоники ниже температуры T₁ говорит о наличии центра симметрии, а характер оптического двойникования свидетельствует о сегнетоэластической природе фазового перехода, происходящего с изменением симметрии $Cmcm \leftrightarrow P\bar{1}$. В результате искажения исходной структуры происходит полное упорядочение фторкислородных октаэдров, но аммонийные группы остаются частично разупорядоченными [4,5]. Исследования температурной зависимости теплоемкости и восприимчивости к гидростатическому давлению показали, что фазовый переход является превращением первого рода и характеризуется значительным изменением энтропии $\Delta S_1 = R \ln 9.8$ и небольшим барическим коэффициентом $dT_1/dp = 13.4$ К/GPa. Исходя из модели искажения структуры, а также результатов исследования дейтерированного соединения (ND₄)₂WO₂F₄ сделан вывод, что основной вклад в изменение энтропии ΔS_1 вносит упорядочение анионов $[WO_2F_4]^{2-}$ [8].

Замещение центрального атома $Mo \rightarrow W$ привело к резкому возрастанию температуры потери устойчивости исходной фазы (пр. гр. Cmcm) — $T_1 = 270$ К и к изменению симметрии искаженной фазы (пр. гр. Pnma, Z = 4), которая оказалась антисегнетоэлектрической [5,9,10]. Существенным отличием от вольфрамового соединения оказалось то, что в $(NH_4)_2MoO_2F_4$ ниже температу-

ры Т₁ произошло полное упорядочение двух неэквивалентных аммонийных групп, т.е. все атомы водорода были локализованы, однако фторкислородные октаэдры остались частично разупорядоченными. Фазовый переход в $(NH_4)_2MoO_2F_4$ при температуре T_1 остался превращением первого рода типа порядок-беспорядок $(\Delta S_1 = R \ln 8.9)$. При этом барический коэффициент увеличился почти в 7 раз — $dT_1/dp = 92.7$ K/GPa. Основной вклад в энтропию фазового перехода связан с частичным упорядочением анионов $[MoO_2F_4]^{2-}$, что подтверждается, в частности, исследованиями роли одновалентного катиона на примере твердых растворов $(NH_4)_{2-x}A_xMoO_2F_4$ (A: K, Rb, Cs) [11]. Частичное замещение тетраэдрического катиона на сферический позволяет регулировать род фазового перехода, пределы устойчивости исходной фазы (пр. гр. Стст) по отношению к изменению как температуры, так и давления. При этом происходит существенное уменьшение изменения энтропии. Например, в Rb₂MoO₂F₄ и (NH₄)₂MoO₂F₄ величины изменения энтропии ΔS_1 соотносятся как 9.2/18.2, что свидетельствует о важной роли аммонийного катиона в механизме фазового перехода типа порядок-беспорядок. Однако изменение энтропии в рубидиевом оксифториде еще достаточно велико, следовательно, исходная структура остается разупорядоченной и в отсутствие тетраэдрического катиона.

В низкотемпературной области при температуре T_2 во всех исследованных соединениях $(NH_4)_{2-x}A_xMeO_2F_4$ обнаружено также аномальное поведение теплоемкости $C_p(T)$, теплового расширения $\beta(T)$, диэлектрической проницаемости $\varepsilon(T)$ и двупреломления $\Delta n(T)$ [6–12]. Так как на рентгенограммах, полученных ниже T_2 , изменений не обнаружено [4,5], то можно предположить, что, по всей видимости, низкотемпературное превращение связано с весьма небольшими смещениями каких-либо структурных элементов.

В настоящей работе для более детального выяснения роли центрального атома в механизме и природе фазовых переходов в оксифторидах с ромбической симметрией (пр. гр. Cmcm) выполнены исследования фазовых диаграмм температура–состав, объем ячейки–состав и температура–давление для системы твердых растворов (NH₄)₂W_{1-x}Mo_xO₂F₄. С этой целью изучены теплоемкость, энтропия, тепловое расширение, восприимчивость к внешнему давлению, диэлектрическая проницаемость и двупреломление.

2. Синтез и рост кристаллов, структура

Для синтеза твердых растворов $(NH_4)_2W_{1-x}Mo_xO_2F_4$ (x = 0.2, 0.4, 0.6, 0.8) были использованы соответствующие стехиометрические навески исходных оксофторометаллатов аммония $(NH_4)_2MOO_2F_4$ и $(NH_4)_2WO_2F_4$, методика выращивания которых в виде монокристаллов подробно описана в [4,5].

367

Рис. 1. Температурные зависимости параметров элементарной ячейки (NH₄)₂W_{1-x}Mo_xO₂F₄.

Смесь исходных компонентов в необходимых соотношениях (масса смеси составляла 10–15 g.) растворяли в воде с добавлением нескольких капель концентрированной HF (40%) для предотвращения гидролиза. Раствор слегка упаривали на водяной бане и фильтровали. В дальнейшем протекала спонтанная кристаллизация за счет медленного испарения раствора на воздухе.

Состав образующихся кристаллов контролировали по содержанию молибдена и вольфрама, определяемому методом атомной абсорбции. Следует отметить, что для соотношения x = 0.2 реальный состав кристаллов (в пределах ошибки анализа) соответствовал x = 0.18-0.185. В случае соотношения x = 0.8 результаты анализа оказались близки к рассчитанному составу.

Кристаллы с x = 0.1 и 0.3 выращивались путем смешивания вольфрамата аммония $(NH_4)_{10}W_{12}O_{41} \times H_2O$ с фтористоводородной кислотой HF в необходимых стехиометрических количествах. Полученные бесцветные кристаллы $NH_4[W_xO_2F_3] \times H_2O$ растворялись в аммиачной воде NH_4OH с добавлением оксида молибдена Mo_xO_3 и плавиковой кислоты HF в соответствующих соотношениях. В результате медленного упаривания на воздухе образовывались монокристаллы $(NH_4)_2W_{1-x}Mo_xO_2F_4$ (x = 0.1, 0.3).

Линейные размеры полученных разными методами монокристаллов варьировались в пределах 0.1-5 mm. Поэтому рентгеновские исследования выполнялись как на порошковом (D8 Advance Bruker), так и на монокристальном (Smart Apex II) дифрактометрах. При комнатной температуре все твердые растворы характеризуются ромбической симметрией (пр. гр. Стст), как и исходные оксифториды. На рис. 1 представлены температурные зависимости параметров элементарной ячейки. Обнаружено, что последовательное замещение Mo -> W сопровождается нелинейным изменением всех параметров. На первой стадии, в области составов с концентрацией молибдена x < 0.2, производная d(a, b, c)/dx отрицательная, а при дальнейшем росте концентрации молибдена параметры а и с увеличиваются, а параметр *b* уменьшается. В процессе уточнения структуры был определен действительный состав твердых растворов, который в большинстве случаев оказался весьма близким (± 0.01) к определенному путем химического анализа.

Элементный состав соединений $(NH_4)_2W_{1-x}Mo_xO_2F_4$ (x = 0.2, 0.3, 0.4) определялся с помощью рентгенофлуоресцентного анализа на приборе S4 Pioneer Bruker. Обнаружено удовлетворительное согласие экспериментально определенных и рассчитанных, исходя из химической формулы, концентраций отдельных элементов.

3. Теплоемкость, тепловое расширение и фазовая *T-р*-диаграмма

Все синтезированные твердые растворы $(NH_4)_2W_{1-x}Mo_xO_2F_4$, включая исходные оксифториды, были исследованы с помощью дифференциального сканирующего микрокалориметра ДСМ — 10 (ДСМ) для получения сведений о наличии фазовых переходов, их температурах, теплоемкости и интегральных энергетических параметрах. Измерения проводились в широком интервале температур 120–400 К со скоростью 8 К/min в режимах нагрева и охлаждения на образцах массой ~ 0.2 g.

Установлено, что теплоемкость всех образцов характеризуются аномальным поведением при двух характеристических температурах, которое обусловлено последовательностью из двух фазовых превращений. В дальнейшем нас будут интересовать только теплофизические

Рис. 2. Температурные зависимости аномальной теплоемкости $\Delta C_p(T)$ (NH₄)₂WO₂F₄ (*I*), (NH₄)₂W_{1-x}Mo_xO₂F₄ x = 0.1 (2), x = 0.2 (3), x = 0.3 (4), x = 0.4 (5), x = 0.6 (6), x = 0.8 (7), (NH₄)₂MoO₂F₄ (8).

параметры, связанные со структурными искажениями, поэтому на рис. 2 представлены температурные зависимости аномальной теплоемкости $\Delta C_p(T)$. Для ее определения участки температурной кривой полной теплоемкости $C_p(T)$, далекие от области фазовых переходов и представляющие собой регулярную часть C_{reg} , аппроксимировались полиномом. Аномальный вклад определялся как $\Delta C_p = C_p - C_{\text{reg}}$. Из рис. 2 видно, что характер поведения теплоемкости, как и величины аномалий, зависят от соотношения концентраций центральных атомов. Основные количественные термодинамические параметры представлены в таблице. Исходное соединение (NH₄)₂WO₂F₄ характеризуется потерей устойчивости исходной фазы (пр. гр. *Ствст*) при температуре $T_1 = 201$ K, которая хорошо согласуется с данными Термодинамические параметры последовательных фазовых переходов при T_1 и T_2 в твердых растворах $(NH_4)_2W_{1-x}Mo_xO_2F_4$, определенные из данных исследования методом ДСМ

x	<i>T</i> ₁ , K	<i>T</i> ₂ , K	$\Sigma \Delta H,$ J/mol · K	$\Sigma \Delta S$, J/mol · K	<i>dT</i> ₁ / <i>dp</i> , K/GPa	<i>dT</i> ₂/ <i>dp</i> , K/GPa
0	201.2	160	2690	13.8	13.4 [6]	41.7 [6]
0.1	199.1	170.1	2600	13.3	_	_
0.2	186.2	165	1980	9.8	3.0	-210.6
0.3	180.5	150	120	0.8	_	_
0.4	202.8	186	880	4.5	_	_
0.6	223.4	191	1300	6.6	71.7	52.3
0.8	243.8	183	3100	13.4	-	-
1	267.9	191.2	3210	13.2	92.7 [10]	16.8 [12]

ранее проведенных исследований [6]. На начальной стадии замещения центрального атома $Mo \rightarrow W$ ($x \le 0.3$) наблюдается понижение температуры Т₁ и уменьшение суммарной энтальпии $\Sigma \Delta H_i$, связанной с последовательностью фазовых переходов и определяемой интегрированием аномальной теплоемкости $\Delta C_p(T)$. Твердый раствор $(NH_4)_2W_{0.7}Mo_{0.3}O_2F_4$ характеризуется минимальной величиной $\Sigma \Delta H_i \approx 120 \,\text{J/mol} \cdot \text{K}$, которая оказалась почти в 25 раз меньше величины, определенной для исходного соединения (NH₄)₂WO₂F₄ (таблица). При дальнейшем увеличении концентрации молибдена (x > 0.3) температура перехода $Cmcm \rightarrow Pnma$ растет вплоть до температуры T₁ = 270 K, характерной для (NH₄)₂MoO₂F₄ [10], и при этом увеличивается суммарная энтальпия. Характер изменения суммарной энтропии следует поведению $\Sigma \Delta H_i(x)$. Изменение температуры между искаженными фазами имеет менее выраженную зависимость от концентрации молибдена.

Измерения теплового расширения выполнены на дилатометре NETZSCH DIL-402С в температурном диапазоне 120-350 К в динамическом режиме со скоростью нагрева ~ 3 К/min. Исследования проводились в проточной атмосфере гелия при расходе $\sim 50 \,\mathrm{ml}\,\mathrm{min}^{-1}$. Для калибровки прибора и учета теплового расширения измерительной системы использовались эталоны из плавленого кварца. Образцы исследуемых оксифторидов были приготовлены в виде таблеток диаметром 8 mm и высотой ~ 4-6 mm только путем прессования при давлении ~ 2 GPa. Мы не имели возможности приготовить керамические образцы по классической технологии, из-за присутствия в них аммония, не позволявшего выполнить высокотемпературное спекание. Правомерность использования в экспериментах необожженных образцов, была подтверждена удовлетворительным согласием температурных зависимостей деформации и коэффициентов объемного теплового расширения монокристаллического и квазикерамического оксифторида $(NH_4)_2WO_2F_4$ (рис. 3).

Результаты измерения температурных зависимостей объемной деформации в широком интервале температур представлены на рис. 4 для исходных соединений $(NH_4)_2WO_2F_4$, $(NH_4)_2MoO_2F_4$ и трех твердых растворов с концентрацией молибдена x = 0.2, 0.3 и 0.8. Скорость нарастания величины $\Delta V/V_0$ при увеличении температуры убывает с ростом концентрации молибдена (кривые *I*, *2*, *4*, *5*). Однако исключением является соединение $(NH_4)_2W_{0.7}Mo_{0.3}O_2F_4$ (кривая *3*), для которого средняя величина $d(\Delta V/V_0)/dT$ в интервале от 140 до 300 К больше, чем для образца с концентрацией x = 0.2 К обсуждению этой особенности, которая, как будет видно далее, проявляется и в поведении других свойств, мы вернемся при сопоставлении влияния химического и гидростатического давлений.

Для всех образцов обнаружены аномалии в поведении величин $\Delta V/V_0$ вблизи температур двухфазовых переходов, определенных ранее в ДСМ-исследованиях. Более наглядно аномальное поведение проявляется при рас-

Рис. 3. Зависимости $\beta(T)(a)$ и $\Delta V/V_0(b)$ для монокристаллического (1) и квазикерамического (2) образцов оксифторида (NH₄)₂WO₂F₄.

Рис. 4. Температурные зависимости деформации $(NH_4)_2WO_2F_4$ (1), $(NH_4)_2W_{1-x}Mo_xO_2F_4$ x = 0.1 (2), x = 0.3 (3), x = 0.8 (4), $(NH_4)_2MoO_2F_4$ (5).

Рис. 5. Температурные зависимости коэффициентов объемного теплового расширения в широком интервале температур (*a*) и (*b*), и в окрестности $T \approx 290 \text{ K}$ (*d*) — (NH₄)₂WO₂F₄ (*1*), (NH₄)₂W_{1-x}Mo_xO₂F₄ x = 0.2 (*2*), x = 0.3 (*3*), (*b*) x = 0.8 (*4*), (NH₄)₂MoO₂F₄ (*5*). Рисунок (*c*) — функция $\beta(T)$ для (NH₄)₂W_{0.7}Mo_{0.3}O₂F₄ в области *T*₂.

смотрении температурных зависимостей коэффициентов объемного расширения (рис. 5).

Исследования восприимчивости оксифторидов к гидростатическому давлению выполнены методом дифференциально-термического анализа (ДТА) при помощи медь-германиевой термопары в качестве рабочего элемента. Порошковые образцы массой 0.02-0.03 g упаковывались в медный контейнер, прикрепленный к одному из спаев термопары. Рабочий элемент помещался в камеру высокого давления типа цилиндр-поршень, заполненную силиконовым маслом. Измерения барических коэффициентов dT/dp проведены на двух твердых растворах с концентрациями молибдена x = 0.2 и 0.6. Методика эксперимента была аналогична использованной в [13].

Результаты измерений совместно с полученными нами ранее данными о барических коэффициентах для исходных кристаллов [7,10] представлены на фазовых диаграммах температура–давление (рис. 6) и в таблице. Для большей наглядности изменения температур фазовых переходов T_i в зависимости от концентрации компонентов и давления рассматриваются на рис. 6 по отношению к T_1 и T_2 , характерным для исходного соединения (NH₄)₂WO₂F₄ ($(T/T_1)_{p=0} = 1$ и $(T/T_2)_{p=0} = 1$).

Положительные и практически постоянные в исследованном интервале давлений значения dT_1/dp свидетельствуют о сужении температурного интервала существования исходной фазы (пр.гр. *Cmcm*) во всех исследованных соединениях (рис. 6, *a*). Так в случае (NH₄)₂W_{0.4}Mo_{0.6}O₂F₄ барический коэффициент dT_1/dp значительно больше, чем в исходном вольфрамовом соединении и приближается к значению определенному для (NH₄)2MoO₂F₄ (табл. 1). Однако и здесь есть исключение — на начальной стадии замещения Mo \rightarrow W величина dT_1/dp убывает и при концентрации молибдена x = 0.2 оказывается значительно меньше, чем для исходного оксифторида (NH₄)₂WO₂F₄.

Из рис. 6, b и таблицы видно, что строгой закономерности в зависимости величины dT_2/dp от концентрации х не обнаружено. Если в соединениях с x = 0, 0.6 и 1.0 стабильность первых искаженных фаз уменьшается с ростом давления $(dT_1/dp > 0)$, хотя и не системати-

Рис. 6. Фазовые диаграммы температура–давление в окрестности температур T_1 (*a*) и T_2 (*b*) — (NH₄)₂WO₂F₄ (*1*), (NH₄)₂W_{1-x}Mo_xO₂F₄ *x* = 0.2 (*2*), *x* = 0.6 (*3*), (NH₄)₂MoO₂F₄ (*4*).

Рис. 7. Температурные зависимости молярной теплоемкости $(NH_4)_2W_{0.7}Mo_{0.3}O_2F_4$ (*a*) и аномальной энтропии (*c*) $(NH_4)_2WO_2F_4$ (*I*) и $(NH_4)_2W_{0.7}Mo_{0.3}O_2F_4$ (*2*). Рисунок (*b*) — функция dC_p/dT в области T_2 .

чески, то для твердого раствора $(NH_4)_2W_{0.8}Mo_{0.2}O_2F_4$ восприимчивость к давлению оказалась отрицательной и весьма значительной. К тому же, с ростом давления ДТА-аномалия при T_2 быстро уменьшается и при давлениях $p \sim 0.08$ GPa уже не регистрируется.

Особенности поведения некоторых свойств образцов с малой величиной х стимулировали исследования теплоемкости методом адиабатического калориметра твердого раствора $(NH_4)_2W_{0.7}Mo_{0.3}O_2F_4$. Измерения проводились в режимах дискретных ($\Delta T = 1-2$ K) и непрерывных (dT/dt = 0.02-0.2 K/min) нагревов по методике, использованной в [14]. Исследуемый образец массой 0.28 g герметично упаковывался в алюминиевый контейнер, теплоемкость которого определялась в отдельном эксперименте.

Температурная зависимость молярной теплоемкости представлена на рис. 7, *а*. В отличие от данных ДСМ (таблица) аномальное поведение теплоемкости наблюдается при четырех температурах $T_1 = 181.4 \pm 0.1$ К, $T_2 = 150 \pm 1$ К, $T_1' = 216 \pm 1$ К и $T_2' = 242 \pm 1$ К. Правда, для надежной регистрации T_2 пришлось рассматривать функцию dC_p/dT (рис. 7, *b*). Величины T_1 и T_2 удовлетворительно согласуются с температурами, при которых наблюдались особенности коэффициентов теплового расширения. О природе аномалий теплоемкости при T_1' и T_2' сказать что-либо затруднительно, так как в этой температурной области не наблюдалось аномального поведения на температурных зависимостях теплового расширения и, как будет видно дальше, и в двупреломлении.

Разделение молярной теплоемкости на регулярную и аномальную составляющие, выполнено также как и при обработке данных, полученных методом ДСМ (см. выше). Аномальная теплоемкость $\Delta C_p(T)$ присутствует в интервале температур 140–250 К (рис. 7, *a*).

11* Физика твердого тела, 2013, том 55, вып. 2

Однако, так как природа аномалий при температурах T'_1 и T'_2 нам неизвестна, определение изменений суммарных энтальпии $\Sigma \Delta H_i = 1800 \pm 80$ J/mol и энтропии $\Sigma \Delta S_i = 10.4$ J/mol·K, связанных с последовательностью переходов при температурах T_1 и T_2 было выполнено в интервале 140–210 К.

На рис. 7, с приведено сравнение температурных зависимостей аномальной энтропии лля $(NH_4)_2W_{0.7}Mo_{0.3}O_2F_4$ и $(NH_4)_2WO_2F_4$ соединений. Видно, что замещение Mo -> W привело к значительному уменьшению энтропии, связанной с последовательностью переходов при температурах T₁ и T₂. фазовый переход оказался Высокотемпературный восприимчив к скорости измерений $C_p(T)$ в сериях непрерывных нагревов. Изменение величины dT/dt от 0.02 до 0.2 К/min привело к росту температуры устойчивости исходной фазы (пр. гр. Стст) почти на 3К. Таким образом, фазовый переход при температуре T_1 в твердом растворе остался превращением первого рода.

4. Оптические и диэлектрические исследования

Измерение температурных зависимостей двупреломления $\Delta n(T)$ выполнены методом компенсатора Берека (Leica) на поляризационном микроскопе Axioskop-40 с использованием температурной камеры Linkam LTS-350.

Согласно [1,2] монокристаллы $(NH_4)_2MOO_2F_4$ и $(NH_4)_2WO_2F_4$ имеют пластинчатый габитус с наименьшим размером вдоль кристаллографического направления [010] и обладают совершенной плоскостью спайности (010). Поскольку наиболее качественные монокристаллы $(NH_4)_2W_{1-x}Mo_xO_2F_4$ имели небольшие $(\sim 100\,\mu\text{m})$ линейные размеры, отбор образцов для экспериментов и их ориентировка осуществлялись по естественной огранке. Для измерения двупреломления были выбраны пластинки (010) толщиной 45–90 μ m.

Температурные зависимости двупреломления $\Delta n_b(T)$ для образцов с содержанием молибдена x = 0.2, 0.3и 0.4 соответственно представлены на рис. 8. Зависимость $\Delta n_b(T)$ в области температур 270–370 К для исходных кристаллов (NH₄)₂MoO₂F₄ и (NH₄)₂WO₂F₄ имеет идентичный линейный характер. При комнатной температуре величины двупреломления близки и составляют $\Delta n_b = 0.014 - 0.015$ [6,9]. Ниже температуры фазового перехода из исходной фазы (пр. гр. Стст) поведение температурных зависимостей двупреломления различное. В оксифториде (NH₄)₂WO₂F₄ фазовый переход при $T_1 = 202 \,\text{K}$ сопровождается изменением симметрии $Cmcm \leftrightarrow P\bar{1}$, что в свою очередь приводит к уменьшению величины $\Delta n_b(T)$ ниже температуры T_1 (рис. 8, кривая 1) [6]. В соединении $(NH_4)_2WO_2F_4$ фазовое превращение при $T_1 \approx 267 \, \text{K}$ сопровождается иной сменой симметрии *Стст* \leftrightarrow *Рпта* и при этом двупреломление скачкообразно возрастает. При температурах ниже Т1 величина Δn_b нелинейно растет с довольно большой

Рис. 8. Температурные зависимости двупреломления $(NH_4)_2WO_2F_4$ (1), $(NH_4)_2W_{1-x}Mo_xO_2F_4$ x = 0.2 (2), x = 0.3 (3*a* и 3*b*), x = 0.4 (4), $(NH_4)_2MoO_2F_4$ (5).

скоростью. При температуре T_2 на кривой $\Delta n_b(T)$ наблюдается резкий излом, и при дальнейшем охлаждении двупреломление продолжает увеличиваться, но значительно медленнее и практически линейно (рис. 8, кривая 5) [9]. Таким образом, по поведению температурной зависимости двупреломления можно косвенно судить о симметрии низкотемпературной фазы в исследованных твердых растворах (NH₄)₂W_{1-x}Mo_xO₂F₄.

Поведение функции $\Delta n_b(T)$ для соединения с концентрацией молибдена x = 0.2 аналогично исходному соединению (NH₄)₂WO₂F₄, несмотря на незначительное уменьшение величины $\Delta n_b(T)$ ниже температуры $T_1 = 190$ K (рис. 8, кривая 2).

В случае твердого раствора с концентрацией x = 0.4зависимость $\Delta n_b(T)$ является идентичной наблюдаемой для $(NH_4)_2MoO_2F_4$ (рис. 8, кривая 4) т.е. в этом кристалле имеет место переход со сменой симметрии $Cmcm \leftrightarrow Pnma$. При этом сохраняется наличие скачка двупреломления в точке перехода. Переход при температуре T_2 менее нагляден, но он все же имеет место при ~ 185 К. Величина Δn_b уменьшилась при температурах $T < T_2$ почти на 11% по сравнению с молибденовым соединением.

В твердом растворе $(NH_4)_2W_{0.7}Mo_{0.3}O_2F_4$ выше температуры $T_1 = 180$ К наблюдается линейная зависимость. Ниже этой температуры в образце формируются две области: в одной части кристалла выявляется поведение $\Delta n_b(T)$, характерное для перехода $Cmcm \leftrightarrow Pnma$, в другой — для $Cmcm \leftrightarrow P-1$ (рис. 8, кривые 3a и рис. 3bсоответственно).

Исследования температурной зависимости диэлектрической проницаемости твердых растворов с концентрацией Мо x = 0.2, 0.3 и 0.8 выполнены с помощью измерителя иммитанса Е7-20 на частоте 1 kHz в интервале температур 100-320 К. Измерения проводились на образцах диаметром 8 mm и высотой 1-2 mm, приготовленных по методике, использованной для образцов при исследовании теплового расширения. Ранее нами было показано [15], что поведение зависимости $\varepsilon(T)$ для исходного соединения (NH₄)₂WO₂F₄, измеренной на "квазикерамическом" образце, удовлетворительно совпадает с температурной зависимостью ($\Sigma \varepsilon_i/3$)(T) — средней арифметической величины диэлектрических проницаемостей вдоль главных кристаллографических направлений монокристаллического образца. В качестве электродов на образцы наносилось золото путем вакуумного напыления. Скорости изменения температуры в режимах нагрева и охлаждения составляли $\sim 0.7 \, \text{K/min}.$

Во всем исследованном интервале температур соединение (NH₄)₂WO₂F₄ обладает наибольшими значениями диэлектрической проницаемости (рис. 9, а, кривая 1). Замещение Mo — W приводит к постепенному уменьшению величины диэлектрической проницаемости. Поведение температурной зависимости $\varepsilon(T)$ соединения с концентрацией молибдена x = 0.2 (рис. 9, *a*, кривая 2) аналогично поведению $\varepsilon(T)$ в исходном соединении $(NH_4)_2WO_2F_4$, но при температуре T_1 скачок диэлектрической проницаемости уменьшился в два раза. Для твердого раствора (NH₄)₂W_{0.2}Mo_{0.8}F₄ зависимость $\varepsilon(T)$ качественно подобна зависимости наблюдаемой в соединении $(NH_4)_2MoO_2F_4$ (рис. 9, *a*, кривые 4 и 5 соответственно) и скачок диэлектрической проницаемости при фазовом переходе уменьшился незначительно $(\Delta \varepsilon \approx 15).$

Существенно иное поведение диэлектрической проницаемости наблюдается в твердом растворе с концентрацией x = 0.3 (рис. 9, *a*, кривая 3). В низкотемпературной области величина ε оказалась меньше на 6%, чем в со-

40

h

а

Рис. 9. Температурные диэлектрической проницаемости (a) $(NH_4)_2WO_2F_4$ (1), $(NH_4)_2W_{1-x}Mo_xO_2F_4$ x = 0.2 (2), x = 0.3 (3), x = 0.8 (4), $(NH_4)_2MoO_2F_4$ (5). Рисунок (b) — функция $\varepsilon(T)$ для $(NH_4)_2W_{0.7}Mo_{0.3}O_2F_4$ в области T_1 .

единении $(NH_4)_2MoO_2F_4$. При температуре $T_1 \approx 180 \text{ K}$ в $(NH_4)_2W_{0.7}Mo_{0.3}O_2F_4$ аномалия диэлектрической проницаемости очень мала и проявляется лишь в изменении наклона кривой $\varepsilon(T)$ (рис. 9, *b*).

Влияние замещения центрального атома на устойчивость ромбической структуры

Результаты детального исследования теплофизических, диэлектрических, оптических и структурных свойств позволяют определить характер влияния центрального атома на механизм и природу фазовых переходов в системе твердых растворов $(NH_4)_2W_{1-x}Mo_xO_2F_4$ путем анализа фазовых диаграмм температура фазового перехода–состав и объем элементарной ячейки–состав (рис. 10).

Полное замещение Мо — W привело к увеличению объема элементарной ячейки V_{uc} на 0.2%: 614.06(7) Å³ — (NH₄)₂WO₂F₄ и 615.48(1) Å³ — (NH₄)₂MOO₂F₄, а также к значительному сужению интервала стабильности исходной фазы (пр. гр. *Стст)* — примерно на 70 К. На зависимости $V_{uc}(x)$ особенность в области малых концентраций молибдена выражена более явно по сравнению с поведением параметров

Рис. 10. Фазовые джиаграммы объем элементарной ячейки — состав (*a*) температура–состав (*b*).

ячейки (a, b, c)(x) (рис. 10, *a* и 1 соответственно). При концентрации молибдена x = 0.2 объем ячейки твердого раствора уменьшился почти на 0.3% по сравнению с исходным соединением (NH₄)₂WO₂F₄. Суммируя структурные данные можно предполагать, что, по-видимому, в интервале концентраций x = 0.2-0.4 лежит граница раздела искаженных фаз $P\bar{1}$ и *Pnma*, присущих исходным оксифторидам (NH₄)₂WO₂F₄ и (NH₄)₂MoO₂F₄ соответственно.

Это предположение подтверждается и рассмотрением зависимости температур фазовых переходов от состава (рис. 10, b). Границы между исходной (пр. гр. Cmcm) и искаженными фазами (пр. гр. *P*1 и *Pnma*) нелинейные и сходятся в области концентрации молибдена ~ 30%, что свидетельствует о наличии тройной точки на фазовой Т-х-диаграмме. И именно здесь наблюдалось возникновение при одной и той же температуре в разных частях одного образца аномального двупреломления разного знака, характерного для вольфрамового и молибденового соединений. Следует заметить, что величины изменения энтропии ΔS_1 , независимо от состава, включая тройную точку, оказались характерными для фазовых переходов типа порядок-беспорядок. То есть структурные искажения, независимо от их природы, в твердых растворах весьма значительные.

При концентрации молибдена *x* < 0.3 твердые растворы обнаруживают свойства, характерные для исходного соединения (NH₄)₂WO₂F₄, что особенно наглядно демонстрируется поведением оптических свойств, а также характером восприимчивости к давлению: барический коэффициент dT_1/dp убывает с ростом концентрации. Последнее обстоятельство согласуется с данными о фазовой Т-р-диаграмме вольфрамового соединения, на которой в области отрицательных давлений (то есть при увеличении V_{uc}) температура T_1 убывает [6]. Однако, за счет более быстрого уменьшения температуры Т₂, происходит расширение температурной области существования искаженной фазы (пр. гр. P1) при отрицательных давлениях. Эти данные согласуются с результатами измерений барических коэффициентов в $(NH_4)_2 W_{0.8} Mo_{0.2} O_2 F_4$, объем, которого хоть и не намного, но все же больше, чем у $(NH_4)_2WO_2F_4$ (таблица, рис. 10, а). Поведение физических свойств в соединениях $(NH_4)_2 W_{1-x} Mo_x O_2 F_4$ с концентрациями x > 0.3 аналогично соединению (NH₄)₂WO₂F₄. Это видно из поведения двупреломления в соединении $(NH_4)_2W_{0.6}Mo_{0.4}O_2F_4$ (рис. 8) и величинам барических коэффициентов для состава (NH₄)₂W_{0.2}Mo_{0.8}O₂F₄ (таблица). Таким образом, очевидно, что при искажении исходной фазы (пр. гр. *Стст*) в результате структурного перехода антисегнетоэлектрическое состояние является более устойчивым.

Температуры фазовых переходов между искаженными фазами $P\bar{1} \leftrightarrow$? и $Pnma \leftrightarrow$? меняются значительно меньше, но минимум на зависимости $T_2(x)$ также имеет место в области $x \approx 0.3$. Что может свидетельствовать об участии одних и тех же структурных элементов или фрагментов в механизмах обоих последовательностей фазовых переходов: $Cmcm \leftrightarrow P\bar{1} \leftrightarrow$? и $Cmcm \leftrightarrow Pnma \leftrightarrow$?, характерных для вольфрамового и молибденового оксифторидов. И это, действительно, следует из результатов структурных исследований [4,5,8,16], которые подтверждают активную роль тетраэдрических катионов и шестикоординированных анионов. Отсутствие данных о симметрии искаженных фаз ниже T_2 в исходных соединениях не позволяет сделать какие-либо предположения о том, каким образом на фазовой -x — диаграмме в области малых концентраций молибдена они соотносятся с линией превращений $P\bar{1} \leftrightarrow Pnma$.

6. Заключение

Синтезирован ряд твердых растворов $(NH_4)_2W_{1-x}Mo_xO_2F_4$ путем замещения центрального атома в исходных соединениях $(NH_4)_2WO_2F_4$ и $(NH_4)_2MOO_2F_4$, характеризующихся идентичной высокотемпературной структурой (пр. гр. *Стст*), но различным типом разупорядочения фторкислородных лигандов, и претерпевающих структурные фазовые переходы соответственно сегнетоэластической и антисегнетоэлектрической природы.

Исследования температурных зависимостей теплоемкости, теплового расширения, диэлектрической проницаемости, двупреломления, фазовых диаграмм температура—состав, объем элементарной ячейки—состав и температура—давление позволили выяснить характер влияния химического и гидростатического давлений на границы существования в оксифторидах (NH₄)₂W_{1-x}Mo_xO₂F₄ кристаллических фаз разной физической природы. Обнаружено сосуществование в одном образце (x = 0.3) фаз с симметрией $P\bar{1}$ и *Pnma*, характеризующихся разным поведением оптических свойств и возникающих при одной температуре. В соответствии с энтропийными параметрами механизм структурных искажений практически не зависит от состава твердых растворов.

Установлено, что более стойким, то есть энергетически более выгодным, является антисегнетоэлектрическое состояние, реализующееся в твердых растворах $(NH_4)_2W_{1-x}Mo_xO_2F_4$ в широком интервале концентраций молибдена (x > 0.3).

Выражаем глубокую признательность Г.В. Бондаренко за выполнение рентгенофлуоресцентного анализа.

Список литературы

- P.A. Maggard, T.S. Nault, C.L. Stern, K.R. Poeppelmeier. J. Solid State Chem. 175, 27 (2003).
- [2] M.R. Marvel, J. Lesage, J. Baek, P.S. Halasyamani, C.L. Stern, K.R. Poeppelmeier. J. Am. Chem. Soc. 129, 13 963 (2007).

- [3] M.E. Welk, A.J. Norquist, C.L. Stern, K.R. Poeppelmeier. Inorg. Chem. 40, 5479 (2001).
- [4] A.A. Udovenko, N.M. Laptash. Acta Cryst., B 64, 645 (2008).
- [5] A.A. Udovenko, A.D. Vasiliev, N.M. Laptash. Acta Cryst. B 66, 34 (2010).
- [6] С.В. Мельникова, В.Д. Фокина, Н.М. Лапташ. ФТТ 48, 1, 110 (2006).
- [7] И.Н. Флёров, В.Д. Фокина, М.В. Горев, А.Д. Васильев, А.Ф. Бовина, М.С. Молокеев, А.Г. Кочарова, Н.М. Лапташ. ФТТ 48, 4, 711 (2006).
- [8] И.Н. Флёров, В.Д. Фокина, М.В. Горев, Е.В. Богданов, М.С. Молокеев, А.Ф. Бовина, А.Г. Кочарова. ФТТ 49, 6, 1093 (2007).
- [9] С.В. Мельникова, Н.М. Лапташ. ФТТ 50, 3, 493 (2008).
- [10] В.Д. Фокина, Е.В. Богданов, Е.И. Погорельцев, В.С. Бондарев, И.Н. Флёров, Н.М. Лапташ. ФТТ **50**, *1*, 148 (2010).
- [11] Е.В. Богданов, А.Д. Васильев, И.Н. Флёров, Н.М. Лапташ. ФТТ 53, 2, 284 (2011).
- [12] М.В. Горев, Е.В. Богданов, И.Н. Флёров, А.Г. Кочарова, Н.М. Лапташ. ФТТ 52, 1, 156 (2010).
- [13] I.N. Flerov, M.V. Gorev, V.D. Fokina, A.F. Bovina, E.V. Bogdanov, E.I. Pogoreltsev, N.M. Laptash. J. Fluor. Chem. 132, 713 (2011).
- [14] А.В. Карташев, И.Н. Флёров, Н.В. Волков, К.А. Саблина. ФТТ **50**, *11*, 2027 (2008).
- [15] И.Н. Флеров, В.Д. Фокина, А.Ф. Бовина, Е.В. Богданов, М.С. Молокеев, А.Г. Кочарова, Е.И. Погорельцев, Н.М. Лапташ. ФТТ, 50, 3, 497 (2008).
- [16] Л.С. Смирнов, А.И. Колесников, И.Н. Флеров, Н.М. Лапташ. ФТТ 51, 11, 2224 (2009).