11,19

Сегнетоэластические фазовые переходы в (NH₄)₂TaF₇

© Е.И. Погорельцев¹, С.В. Мельникова¹, А.В. Карташев^{1,2}, М.С. Молокеев¹, М.В. Горев^{1,2}, И.Н. Флёров^{1,2}, Н.М. Лапташ³

 ¹ Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия
² Институт инженерной физики и радиоэлектроники, Сибирский федеральный университет, Красноярск, Россия
³ Институт химии ДВО РАН, Владивосток, Россия
E-mail: pepel@iph.krasn.ru

(Поступила в Редакцию 22 августа 2012 г.)

Выполнены измерения теплоемкости, параметров элементарной ячейки, диэлектрической проницаемости, оптических свойств и теплового расширения соединения $(NH_4)_2 TaF_7$ с семикоординированным анионным полиэдром. Обнаружены два последовательных фазовых перехода с изменением симметрии тетрагональная $(T_1 = 174 \text{ K})$ ромбическая $(T_2 = 156 \text{ K})$ тетрагональная. Установлена сегнетоэластическая природа структурных превращений, определены их энтропии и восприимчивость к гидростатическому давлению.

Работа выполнена при финансовой поддержке гранта Президента РФ для поддержки ведущих научных школ РФ (НШ-4828.2012.2) и в рамках программы ОФН РАН (проект II.5.2).

1. Введение

Существует значительное количество химических соединений, в кристаллической структуре которых присутствуют четырех-, шести- или семикоординированные фторные полиэдры. Одними из наиболее распространенных являются фториды с общими химическими формулами $AMeF_3$, $AMeF_4$, A_2MeF_4 , A_3MeF_6 , $A_2A'MeF_6$, имеющие перовскитоподобную кристаллическую решетку [1-3]. Исходным фазам такого рода кристаллов часто свойственны кубическая или тетрагональная симметрия, которая может понижаться в результате структурных фазовых переходов, связанных, в частности, а иногда и главным образом, с поворотами фторных октаэдров [MeF₆], остающихся при этом практически неискаженными. Механизм фазовых переходов может быть обусловлен либо процессами упорядочения октаэдров, имеющих в исходной фазе несколько кристаллографически и энергетически эквивалентных ориентаций, либо довольно незначительными смещениями атомов фтора, которые можно представить как следствие поворотов октаэдров на небольшие углы. Как правило, природа такого рода структурных превращений является сегнетоэластической [1-3].

Помимо соединений с шестикоординированными полиэдрами, исследуемых интенсивно в течение длительного времени, существуют фториды с общей формулой $A_x MeF_7$ (x = 1, 2, 3) с семикоординированным анионом, которые к настоящему времени известны в незначительном количестве и изучены довольно поверхностно. Полиэдры [MeF_7], как правило, могут быть представлены в виде или моношапочной тригональной призмы, или пентагональной бипирамиды [4,5]. Их симметрия и валентность центрального атома определяют степень разупорядочения лигандов и симметрию кристаллической решетки в целом. Соединения $A_3 \text{ZrF}_7$ (A: K, NH₄) обладают кубической симметрией (пр. гр. *Fm*-3*m*, *Z* = 4) при комнатной температуре [4,5], в то время как симметрия кристаллов $AMeF_7$ и A_2MeF_7 зависит еще и от размера катиона A. Известно, что в ряду соединений $A\text{TaF}_7$ (A: Ca, Ba, Sr, Pb) возможно образование кубической и моноклинной структур [6], а в соединениях $A_2\text{TaF}_7$ реализуется тетрагональная (A: Rb) [7] или моноклинная (A: K) кристаллическая решетка [4].

Сведения об устойчивости исходных фаз фторидов $A_x MeF_7$ к изменению внешних параметров сводились в основном лишь к сообщениям об изменении структуры при обратимых фазовых переходах [4,7,8]. Практически нет данных о физических свойствах, которые крайне необходимы для определения природы и механизма фазовых переходов, для построения моделей кристаллической структуры и определения степени разупорядочения отдельных структурных элементов.

В настоящей работе выращены кристаллы соединения с семикоординированным анионным полиэдром $(NH_4)_2TaF_7$, которое впервые было синтезировано и описано в 1866 г. [9]. Нами проведены исследования его теплоемкости, параметров элементарной ячейки, диэлектрической проницаемости, оптических свойств и теплового расширения.

2. Синтез, идентификация образцов и поисковые исследования

Синтез монокристаллов $(NH_4)_2 TaF_7$ осуществлялся двумя способами. Первый заключался в спекании исходного гидратированного оксида тантала (V) с гидродифторидом аммония (NH4HF2) при 150–200°С в соответствии с реакцией

$$Ta_2O_5 + 7NH_4HF_2 = 2(NH_4)_2TaF_7 + 3NH_3 + 5H_2O_5$$

Полученный спек подвергали водному выщелачиванию с добавлением небольшого количества концентрированной (40%) НF (все концентрации указаны в mass%). Раствор фильтровали и при медленном упаривании на воздухе получали прозрачные монокристаллы (NH₄)₂TaF₇.

Во втором случае в процессе нагрева исходный гидратированный оксид тантала $Ta_2O_5 \cdot nH_2O$ (15g) взаимодействовал с концентрированной (40%) HF (45 mL). К отфильтрованному раствору добавляли 20–25 mL концентрированного раствора аммиака (25%) (величина рН результирующего раствора составляла ~ 2). При медленном упаривании на воздухе происходило образование кристаллов исследуемого комплекса.

Тщательный химический анализ на содержание фтора показал, что реальный состав кристаллов соответствует формуле $(NH_4)_2 TaO_{0.3}F_{6.4}$. Подобное частичное изоморфное замещение фтора кислородом наблюдалось также в родственном кристалле $Rb_2 TaF_7$ [7]. Однако так как количество примеси не превышает ~ 4%, в дальнейшем мы будем использовать стехиометрическую формулу $(NH_4)_2 TaF_7$.

Идентификация полученных кристаллов и определение структурных параметров выполнены на ренттеновском дифрактометре D8-ADVANCE (Cu- K_{α} — излучение, $\theta - 2\theta$ — сканирование). Установлено, что при комнатной температуре симметрия кристалла (NH₄)₂TaF₇ тетрагональная (пр. гр. *P4/nmm*, *Z* = 2), как это было ранее найдено и для фторида Rb₂TaF₇, структура которого исследована в [7]. На рентгенограммах аммонийного соединения не обнаружено рефлексов, указывающих на присутствие в образце посторонних фаз. Замещение сферического катиона Rb⁺ на тетраэдрический NH₄⁺ привело к незначительному изменению параметров элементарной ячейки: (NH₄)₂TaF₇ (a = b = 5.8947(3) Å; c = 10.6856(5) Å) и Rb₂TaF₇ (a = b = 5.9118(3) Å; c = 10.617(1) Å).

Устойчивость исходной фазы $(NH_4)_2 TaF_7$ к изменению температуры была исследована с помощью дифференциального сканирующего микрокалориметра ДСМ-10М (ДСМ). Измерения осуществлялись в интервале температур 110–350 К в режимах нагрева и охлаждения на серии образцов из разных кристаллизаций. Масса порошковых образцов составляла ~ 0.10 g.

В результате поисковых калориметрических исследований обнаружены две аномалии теплоемкости с температурами максимумов при $T_1 = 174.3 \pm 2.0$ К и $T_2 = 154.5 \pm 1.0$ К, зафиксированные в процессе нагрева со скоростью $dT/d\tau = 8$ К·min⁻¹ и воспроизводящиеся при термоциклировании. На рис. 1, *а* представлена температурная зависимость избыточной теплоемкости (NH₄)₂TaF₇. Вид аномалии при T_2 , представляющей собой острый практически симметричный пик с максимальным значением $(\Delta C_p^{T2})_{max} \approx 70$ J · (mol · K)⁻¹, характерен для фазовых переходов первого рода. Об этом

Рис. 1. Температурные зависимости избыточной теплоемкости (a) и объема элементарной ячейки $(NH_4)_2 TaF_7$ (b).

же свидетельствует гистерезис температуры перехода $\delta T_2 = 2.5 \, {\rm K}$, обнаруженный при охлаждении образца. Аномалия при T₁ в значительной степени размыта и составляет лишь $(\Delta C_p^{T1})_{\max}/(\Delta C_p^{T2})_{\max} \sim 7\%$. Примерно так же выглядит соотношение между энтальпиями фазовых превращений, определенных интегрированием функции $\Delta C_p(T)$: $\Delta H_1 \approx 25 \,\mathrm{J} \cdot \mathrm{mol}^{-1}$, $\Delta H_2 \approx 280 \,\mathrm{J} \cdot \mathrm{mol}^{-1}$. Небольшие величины тепловых эффектов указывают на незначительные искажения структуры при фазовых переходах. Вполне вероятно, что именно поэтому в рентгеновских экспериментах заметных различий дифрактограмм исходной и низкотемпературных фаз не обнаружено. Это обстоятельство не является исключением и наблюдалось неоднократно, например, при исследовании фторидов Rb₂KMeF₆ (Me: In, Sc) для которых также характерны небольшие изменения энтальпии $\Delta H \approx 500 \,\mathrm{J} \cdot \mathrm{mol}^{-1}$ [10]. Фазовые переходы в этих кристаллах в рентгеновских экспериментах были зафиксированы лишь по изменению параметров ячейки. На рис. 1, *b* показана температурная зависимость объема элементарной ячейки (NH₄)₂TaF₇. И в этом случае существенных аномалий, связанных с каждым из переходов, обнаружить не удалось, однако, видно, что именно в области превращений происходит резкое изменение поведения функции V(T).

3. Оптические свойства

Прозрачные кристаллы $(NH_4)_2 TaF_7$ представляли собой, в основном, прямоугольные пластинки (001) с огранкой по $(100)_T$. Поляризационно-оптические исследования и измерения двупреломления по методу компенсатора Берека с точностью ± 0.0001 были проведены на образцах (001) и (100), не подвергавшихся предварительной обработке. Эксперименты выполнены с помощью микроскопа "Axioskop-40" и температурной камеры "Linkam LTS 350" в интервале 90–300 К.

Поляризационно-оптические исследования показали, что при комнатной температуре кристалл $(NH_4)_2 TaF_7$ оптически одноосный (тетрагональный). В поле зрения поляризационного микроскопа при скрещенных поляризаторах виден темный образец (001)-среза (рис. 2, *a*) (фаза G_1). В процессе охлаждения, так же как и в калориметрических экспериментах, обнаружены две особые температурные точки. Ниже $T_1 = 170.5$ К в образце появляется оптическая анизотропия и клиновидные

Рис. 2. Наблюдение кристаллических пластинок $(NH_4)_2 TaF_7$ (001)-среза в поляризованном свете: фаза G_1 (*a*), двойникование в фазе G_2 (*b*), оптически одноосная фаза G_3 (*c*).

Рис. 3. Температурные зависимости двупреломления в кристалле $(NH_4)_2$ TaF₇: *Ia* и *Ib* — двупреломление Δn_c в пластинках (001) двух кристаллизаций, 2 — главное двупреломление $\Delta n_a = n_0 - n_e$.

двойники с границами вдоль [110], перемещающиеся по образцу при изменении температуры (рис. 2, b). При этом наблюдается четкое погасание кристалла по $[100]_T$ (фаза G_2). Дальнейшее охлаждение приводит к тому, что при T_2 оптическая анизотропия резким фронтом исчезает и образец вновь становится оптически одноосным (рис. 2, c) (фаза G_3).

На рис. З приведены температурные зависимости двупреломления в кристалле $(NH_4)_2 TaF_7$. Кривые *1, а* и *1, b* описывают поведение оптической анизотропии в пластинках (001) образцов из двух кристаллизаций. Видно, что двупреломление Δn_c существует только в узкой (~ 20 K) температурной области, соответствующей фазе G_2 , ширина которой оказалась различной для образцов, приготовленных разными способами. При этом температура T_1 практически идентична для обоих образцов, а T_2 , изменяясь в пределах 148.2–152.7 K, характеризуется почти неизменной величиной гистерезиса $\delta T_2 \approx 0.4$ K.

Кривая 2 на рис. З представляет температурную зависимость главного двупреломления $\Delta n_a = n_0 - n_e$ тетрагонального кристалла (NH₄)₂TaF₇. В области температур 170–300 К (фаза G_1) все экспериментальные точки описываются полиномом второго порядка. На эту же кривую (с небольшим разбросом) ложатся результаты измерений $\Delta n_a(T)$ в фазе G_3 . В области существования фазы G_2 наблюдаются выбросы экспериментальных точек вследствие появления оптической анизотропии Δn_c и подвижности двойников.

Таким образом, результаты наблюдений в поляризованном свете кристалла $(NH_4)_2 TaF_7$ позволяют предположить существование следующей последовательности изменения симметрии фаз: G_1 (P4/nmm) \leftrightarrow \leftrightarrow G_2 (Pmmn) \leftrightarrow G_3 (тетрагональная). Примитивную ромбическую ячейку фазы G_2 выбираем, исходя из того, что в этой температурной области погасание в образцах (001) четкое и совпадает с осями тетрагональной ячейки фазы G_1 . Появившиеся в G_2 двойники с границами вдоль [110] свидетельствуют о потере соответствующих элементов симметрии.

Напомним, что приведенные на рис. 3 результаты получены на необработанных свободных пластинках роста. Если же перед оптическим экспериментом образец подвергнуть шлифовке и полировке, в нем появляются неоднородные деформации, которые видны в пластинке (001) как неясные анизотропные пятна. В таком образце наблюдается сдвиг температур обоих переходов на 2-3 К вниз.

4. Диэлектрические свойства

Несмотря на то что из оптических данных следует отсутствие полярных фаз в (NH₄)₂TaF₇, для уточнения особенностей фазовых переходов, связанных с их природой, нами проведены исследования диэлектрической проницаемости. Из-за присутствия в структуре танталата аммонийного катиона невозможно было приготовить образец в соответствии с классической керамической технологией. Поэтому измерения проводились на псевдокерамическом образце в виде таблетки ($d = 8 \, {\rm mm}$, $h = 2 \,\mathrm{mm}$), приготовленной только путем прессования без термической обработки. Серебряные электроды наносились методом вакуумного напыления. Надежность результатов, полученных на такого рода образцах, была нами ранее доказана путем сравнения данных о зависимостях $\varepsilon(T)$, полученных на монокристаллических пластинках и псевдокерамических образцах оксифторидов [11].

На рис. 4 приведены температурные зависимости диэлектрической проницаемости и диэлектрических потерь в $(NH_4)_2$ TaF₇. При измерениях на частоте 1 kHz (кривые 1, 2) наблюдается значительное увеличение обеих характеристик с ростом температуры. Наиболее очевидным является аномальное поведение диэлектрической проницаемости в виде размытого скачка на ~ 0.4 единицы, связанное с фазовым переходом при T_2 (рис. 4, *a*). В области температуры T_1 на зависимости $\varepsilon(T)$ особенностей не наблюдается, однако обнаружена аномалия ε в виде пика при 246 K. На температурной зависимости tg δ присутствует небольшая бугрообразная аномалия лишь в области перехода при T_2 (рис. 4, *c*).

Увеличение измерительной частоты до 1 МНz вызвало резкое уменьшение роста диэлектрической проницаемости и тангенса угла потерь с ростом температуры (рис. 4, *a*, *b* — кривые 3, 4). Это обстоятельство, очевидно, связано с тем, что исследования проводились на псевдокерамическом образце, не подвергавшемся обжигу при высоких температурах, что могло, как минимум, способствовать уменьшению его плотности [11,12]. В то же время, как и в случае f = 1 kHz, скачкообразное изменение диэлектрической проницаемости при T_2 составляет ~ 0.4 единицы и неизменным остается пик

Рис. 4. Температурные зависимости диэлектрической проницаемости ε и тангенса диэлектрических потерь tg δ (NH₄)₂TaF₇, измеренные на частоте 1 kHz (1, 2) и 1 MHz (3, 4): *a*, *b* — в широком интервале температур, *c* — в области фазового перехода $G_2 \leftrightarrow G_3$.

в районе ~ 245 К (рис. 4, *a*). При измерении диэлектрических потерь на частоте 1 MHz более надежно фиксируется аномалия при T_2 и регистрируется пик tg δ в районе 245 К, не наблюдавшийся в экспериментах с f = 1 kHz (рис. 4, *b*).

Поведение диэлектрической проницаемости, демонстрирующее незначительные аномалии, подтверждает вывод о несегнетоэлектрической природе фазовых переходов в $(NH_4)_2$ Та F_7 , сделанный на основе анализа оптических свойств.

5. Теплоемкость

Подробные исследования теплоемкости $C_p(T)$ кристалла (NH₄)₂TaF₇ проведены в интервале температур 80–305 К с помощью адиабатического калориметра с тремя тепловыми экранами. Методика калориметрических экспериментов, выполненных в режимах дискретных и непрерывных нагревов, была аналогична описанной в [13]. Измерения проводились на образце массой 0.230 g, приготовленном в виде цилиндрической таблетки d = 8 mm, спрессованной из порошка, полученного путем перетирания монокристаллов. Образец

помещался в алюминиевый контейнер с нагревателем. Для обеспечения надежного теплового контакта между образцом и контейнером использовалась вакуумная смазка "Рамзай".

Соотношение теплоемкостей образца и фурнитуры (контейнер + смазка) составляло 0.45/0.55. Погрешность определения теплоемкости не превышала $\pm 0.5\%$.

На рис. 5, а показана температурная зависимость изобарной молярной теплоемкости, на которой наблюдаются аномалии в области температур, согласующейся с данными оптических и предварительных калориметрических экспериментов. Температуры фазовых переходов, определенные по максимумам теплоемкости, зафиксированным практически в равновесных условиях при небольших скоростях нагрева образца $dT/d\tau = 3.5 \cdot 10^{-2} \,\mathrm{K} \cdot \mathrm{min}^{-1}$, составили $T_1 = 156.6 \pm 0.2$ К, $T_2 = 174.3 \pm 0.2$ К. Некоторое несоответствие величин Т1 и Т2, определенных в калориметрических и оптических экспериментах, может быть объяснено разными способами приготовления исследуемых образцов. Как отмечалось выше, температуры переходов при измерении $\Delta n_c(T)$ отличаются не только для кристаллов, полученных разными способами, но и для образцов, необработанных и подвергавшихся незначительной механической обработке. Как сказано выше, для измерения $C_p(T)$ образцы были приготовлены путем прессования ($p \approx 0.1 \, \text{GPa}$) порошка, полученного перетиранием мелких монокристаллов (NH₄)₂TaF₇.

Для получения информации об интегральных теплофизических характеристиках фазовых переходов необходимо было разделить регулярный и аномальный вклады в полную теплоемкость кристалла. Решеточная теплоемкость C_L (рис. 5, *a*) определялась аппроксимацией экспериментальных данных вне области существования аномалий с использованием, во-первых, комбинации функций Дебая $C_{\rm D}(\Theta_{\rm D}/T)$ и Эйнштейна $C_{\rm E}(\Theta_{\rm E}/T)$, и, во-вторых, полиномиальной функции. Отклонение экспериментальных точек от сглаженных кривых для обоих случаев было практически одинаковым. Варьирование температурных интервалов, включаемых в процедуру аппроксимации, показало, что наилучшие результаты соответствуют наличию избыточной теплоемкости $\Delta C_p(T) = C_p - C_L$ в широкой области температур 133-270 К.

Близость температур аномалий теплоемкости не позволяет определить интегральные тепловые эффекты для каждого из фазовых переходов. Суммарное изменение энтальпии оказалось равным $\Sigma \Delta H = \int \Delta C_p dT = 920 \pm 70 \text{ J} \cdot \text{mol}^{-1}$. Вклад от избыточной теплоемкости, существующей в очень широком интервале выше T_1 (рис. 5, *b*), в величину $\Sigma \Delta H$ достаточно велик и составляет ~ 40%.

Следует обратить внимание, что в районе 245 К наблюдается незначительное нарушение регулярного спада избыточной теплоемкости (рис. 5, *b*). Как показано выше, при исследовании диэлектрических свойств в этой же области температур был обнаружен небольшой

Рис. 5. Температурные зависимости молярной теплоемкости (a), аномальной теплоемкости в области T_1 (b), энтропии, связанной с последовательностью структурных превращений (c). Штриховая линия — решеточная теплоемкость.

Рис. 6. Зависимость гистерезиса температуры *T*₂ от скорости сканирования.

пик на зависимостях $\varepsilon(T)$ и tg $\delta(T)$ (рис. 4, *a*, *c*). В то же время аномального поведения двупреломления в фазе G_1 не наблюдалось.

Температурная зависимость аномальной энтропии $\Delta S(T)$ представлена на рис. 5, *с*. В соответствии с первым родом фазового перехода резкое изменение ΔS при T_2 было интерпретировано, как скачок энтропии $\delta S_2 = 1.6 \,\mathrm{J} \cdot (\mathrm{mol} \cdot \mathrm{K})^{-1}$. Величина полного изменения энтропии, связанного с последовательностью фазовых переходов, составила $\Sigma \Delta S = \int (\Delta C_p/T) dT = 5.8 \pm 0.4 \,\mathrm{J} \cdot (\mathrm{mol} \cdot \mathrm{K})^{-1}$.

В области фазового перехода первого рода гистерезисные явления подробно изучены методами ДСМ и адиабатического калориметра. С этой целью в первом случае были определены величины температуры перехода в режимах нагрева (T'_2) и охлаждения (T''_2) со скоростями сканирования, варьировавшимися в широком интервале значений: $dT/d\tau = (4-64) \text{ K} \cdot \min^{-1}$. Из рис. 6 видна существенная зависимость температуры перехода от скорости нагрева и охлаждения. Экстраполяция температур T'_2 и T''_2 к $dT/d\tau = 0$ позволила определить величину гистерезиса $\delta T_2 \approx 1$ К, соответствующую переходу в квазиравновесных условиях. В экспериментах на адиабатическом калориметре, где скорости сканирования не превышали $dT/d\tau = 3.5 \cdot 10^{-2}$ К · min⁻¹, величина гистерезиса $\delta T_2 \approx 0.5$ К оказалась практически такой же, как и при измерениях двупреломления в режиме термостатирования.

6. Тепловое расширение

Тепловое расширение $(NH_4)_2 TaF_7$ исследовалось на дилатометре DIL-402C фирмы NETZSCH в температурном диапазоне 90–320 К в динамическом режиме со скоростями изменения температуры от 2 до 4 К/min. Измерения проводились в потоке гелия. Калибровка и учет расширения измерительной системы выполнены с использованием эталонов из корунда. Для дилатометрических экспериментов использовался образец, на котором проводились калориметрические исследования. Наблюдалось удовлетворительное согласие результатов, полученных в нескольких сериях измерений.

Температурные зависимости линейной деформации $\Delta L/L_0$ и коэффициента линейного теплового расширения α , измеренные в режиме нагрева, показаны на рис. 7. Температуры минимумов коэффициента расширения, принятые за температуры фазовых переходов $T_1 = 157 \pm 1$ К, $T_2 = 173.8 \pm 1$ К, вполне удовлетворительно согласуются с температурами, определенными в калориметрических измерениях. Видно, что α характеризуются аномальным поведением в широкой области температур, как и теплоемкость (рис. 5). Для уточнения интервала существования аномального коэффициента теплового расширения $\Delta \alpha$ была использована связь между регулярными составляющими теплового расши-

Рис. 7. Температурные зависимости коэффициента линейного теплового расширения (*a*) и линейной деформации (*b*). Штриховая линия — решеточный вклад.

рения и теплоемкости в рамках закона соответственных состояний [14]. В тетрагональной фазе P4/nmm от 270 K до 305 K соотношение между обеими величинами удовлетворительно описывается уравнением $\alpha_L(T) = K \cdot C_L(T)$ при $K = 5.85 \cdot 10^{-5} \text{ mol} \cdot \text{J}^{-1}$. С использованием температур Дебая и Эйнштейна, определенных при анализе решеточной теплоемкости, было восстановлено поведение решеточного вклада в $\alpha(T)$. Это позволило установить, что ниже $T_2 \Delta \alpha$ существует в более широком интервале температур по сравнению с ΔC_p , а именно вплоть до 100 K.

Интерпретируя изменение коэффициента теплового расширения $\delta \alpha = -2.9 \cdot 10^{-5} \,\mathrm{K}^{-1}$ при T_1 , как скачок, связанный с переходом второго рода, можно сопоставить его со скачком теплоемкости $(\delta C_p)_{T=T_1} = 15 \,\mathrm{J} \cdot (\mathrm{mol} \cdot \mathrm{K})^{-1}$ в рамках уравнения Эренфеста [14]. Для оценки восприимчивости керамического образца $(\mathrm{NH}_4)_2 \mathrm{TaF}_7$ к гидростатическому давлению мы приняли следующую связь между объемным и линейным коэффициентами расширения $\beta = 3\alpha$. В этом случае величина барического коэффициента оказалась равна $dT_1/dp = V \cdot T_1(\delta \alpha / \delta C_p) \approx -110 \,\mathrm{K} \cdot \mathrm{GPa}^{-1}$.

Из рис. 6, *b* видно, что линейная деформация и соответственно объемная $\Delta V/V_0 = 3\Delta L/L_0$ растут с увеличением температуры, за исключением области фазового перехода при T_2 , где наблюдается резкое уменьшение объема. В соответствии с уравнением Клапейрона–Клаузиуса $dT_2/dp = (\delta V_2/V_0)/\delta S_2$ [14] отрицательный скачок объема $\delta V_2/V_0 = -1.7 \cdot 10^{-3}$ свидетельствует о понижении температуры фазового перехода при T_2 с ростом гидростатического давления. Расчет величины $dT_2/dp = -113 \text{ K} \cdot \text{GPa}^{-1}$ показывает, что восприимчивость к давлению температур обоих фазовых переходов в (NH₄)₂TaF₇ практически одинаковая.

Значительные величины барических коэффициентов позволяют, с нашей точки зрения, объяснить различие температур фазовых переходов, отмечавшееся выше. Образцы, использованные в разных экспериментах, в большей или меньшей мере подвергались внешнему механическому воздействию, связанному с операциями шлифовки, полировки, растирания, прессования, что безусловно приводило к возникновению в них разной степени напряженности. Более того, даже в образцах, полученных разными способами и не подвергавшихся механической обработке, величины T_2 оказывались различными.

7. Заключение

В результате замещения атомарного катиона на молекулярный симметрия исходной структуры аммонийного фторида $(NH_4)_2TaF_7$ с семикоординированным анионным полиэдром осталась тетрагональной (*P4/nmm*, *Z* = 2) с параметрами ячейки, близкими к параметрам родственного Rb₂TaF₇ [7]. При этом температура *T*₁, характеризующая устойчивость фазы *P4/nmm*, повысилась на ~ 30 К. Оба соединения при охлаждении испытывают переход в ромбическую фазу. Однако калориметрические, дилатометрические, диэлектрические и оптические исследования свидетельствуют об ее существовании в $(NH_4)_2TaF_7$ в узкой области температур $(T_1 - T_2 \approx 20 \text{ K})$ в отличие от Rb₂TaF₇. Ниже T_2 аммонийный кристалл опять становится оптически одноосным, испытывая фазовый переход первого рода в тетрагональную фазу. В соответствии с характером оптического двойникования и поведения диэлектрических свойств структурные искажения имеют сегнетоэластическую природу, которая, скорее всего, определяет установленную в работе значительную восприимчивость аммонийного танталата к гидростатическому давлению.

Полное изменение энтропии, связанное с последовательностью фазовых переходов в (NH₄)₂TaF₇, оказалось достаточно большим $\Sigma \Delta S \approx R \ln 2$. Так как промежуточная ромбическая фаза существует в весьма узком интервале температур, разделить вклады в $\Sigma\Delta S$ от каждого из двух переходов не удается. В то же время аномальная энтропия наблюдается в очень широком диапазоне температур, особенно в исходной тетрагональной фазе $\sim (T_1 + 90 \,\mathrm{K})$. Такое поведение ΔS характерно для кристаллических систем, в которых в значительной мере развиты корреляционные эффекты за счет отсутствия ярко выраженных дальнодействующих сил. Отсутствие подробных данных о структурах всех фаз не позволяет проанализировать возможные модели искажения кристаллической ячейки в совокупности с энтропийными параметрами переходов.

В соответствии с данными о структуре родственных фторидов Rb_2TaF_7 и K_2TaF_7 семикоординированные полиэдры $[TaF_7]^{2-}$, представляющие собой моношапочные тригональные призмы, разупорядочены по двум ориентациям за счет поворотов вокруг локальной оси четвертого порядка [4,7]. Полное упорядочение полиэдров в этих фторидах в результате фазового перехода могло бы сопровождаться изменением энтропии $R \ln 2$, соответствующим величине $\Sigma \Delta S$ в $(NH_4)_2TaF_7$. Однако сведения о фазовом переходе есть только для Rb_2TaF_7 [7], но данные об энтропии отсутствуют.

Безусловно, замещение $Rb \rightarrow (NH_4)$ могло привести к другому характеру разупорядорчения структурных элементов, в том числе одновалентного катиона—аммонийного тетраэдра, о чем свидетельствует, в частности, изменение типа ячейки ромбической фазы с базоцентрированной на примитивную и появление второго фазового перехода. Из вышеизложенного следует, что для понимания механизма структурных искажений во фторидах $A_2 TaF_7$ несомненный интерес представляют подробные исследования кристаллической структуры всех фаз (NH₄)₂TaF₇ и теплофизических свойств Rb₂TaF₇.

Список литературы

- [1] К.С. Александров, Б.В. Безносиков. Перовскитоподобные кристаллы. Наука, Новосибирск (1997). 216 с.
- [2] К.С. Александров, Б.В. Безносиков. Перовскиты. Настоящее и будущее. Изд-во СО РАН, Новосибирск (2004). 231 с.

- [3] I.N. Flerov, M.V. Gorev, K.S. Aleksandrov, A. Tressaud, J. Grannec, M. Couzi. Mater. Sci. Eng. R 24, 81 (1998).
- [4] E.C. Reynhardtt, J.C. Pratt, A. Watton, H.E. Petch. J. Phys. C 14, 4701 (1981).
- [5] H.J. Hurst, J.C. Taylor. Acta Cryst. B 26, 417 (1970).
- [6] T. Buni, M. Tramsek, E. Goreshnik, B. Zemva. Solid State Sci. 9, 88 (2007).
- [7] N.M. Laptash, A.A. Udovenko, T.B. Emelina. J. Fluorine Chem. 132, 1152 (2011).
- [8] С.В. Мисюль, С.В. Мельникова, А.Ф. Бовина, Н.М. Лапташ. ФТТ 50, 10, 1871 (2008).
- [9] M.C. Marignac. Ann. Chim. Phys. 9, 249 (1866).
- [10] И.Н. Флёров, М.В. Горев, С.В. Мельникова, С.В. Мисюль, В.Н. Воронов, К.С. Александров, А. Трессо, Ж.-П. Шаминад, Ж. Граннек, Л. Рабардель, Х. Гэнгар. ФТТ **34**, *11*, 3493 (1992).
- [11] И.Н. Флеров, В.Д. Фокина, А.Ф. Бовина, Е.В. Богданов, М.С. Молокеев, А.Г. Кочарова, Е.И. Погорельцев, Н.М Лапташ. ФТТ 50, 3, 497 (2008).
- [12] A. Guyomar, G. Sebald, B. Guihard, L. Seveyrat. J. Phys. D 39, 4491 (2006).
- [13] В.С. Бондарев, А.В. Карташев, А.Г. Козлов, И.Я. Макиевский, И.Н. Флёров, М.В. Горев. Автоматизация калориметрических установок. Препринт № 829Ф. ИФ СО РАН, Красноярск (2005). 40 с.
- [14] Л.Д. Ландау, Е.М. Лифшиц. Статистическая физика. Наука, М. (1964). 568 с.