05

Эволюция мёссбауэровских спектров людвигита Co_{3-x}Fe_xO₂BO₃ при замещении кобальта железом

© Ю.В. Князев¹, Н.Б. Иванова^{1,2}, О.А. Баюков¹, Н.В. Казак², Л.Н. Безматерных², А.Д. Васильев^{1,2}

 ¹ Сибирский федеральный университет, Красноярск, Россия
² Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия
E-mail: nat@iph.krasn.ru

(Поступила в Редакцию 3 декабря 2012 г.)

Синтезирован концентрационный ряд монокристаллов железо-кобальтовых людвигитов $Co_{3-x}Fe_xO_2BO_3$ (x = 0.0125, 0.025, 0.050, 0.10, 1.0). Проведены структурные исследования с помощью рентгеновской дифракции и эффекта Мёссбауэра. Обнаружен предпочтительный характер заселения железом неэквивалентных кристаллографических позиций в структуре людвигита. Определена валентность замещающих ионов железа, равная трем. Для $Co_2FeO_2BO_3$ выявлено усложнение структуры γ -резонансного спектра, обусловленное композиционным беспорядком в системе.

Работа выполнена при поддержке грантов РФФИ № 12-02-00175-а, 12-02-90410-Укр-а и 12-02-31543-мол-а, гранта Президента НШ-1044.2012.2, программы СО РАН № 38, а также при поддержке Федеральной целевой программы "Научные и научно-педагогические кадры инновационной России 2009–2013 гг.".

1. Введение

Исследования соединений из семейства оксиборатов продолжаются уже несколько десятков лет [1-5]. Тем не менее каждый год в этом обширном семействе синтезируются все новые материалы с интересными тепловыми, магнитными и электронными свойствами [6-8]. В последнее время ярко выделилось одно из наиболее интригующих направлений в данной области — изучение оксиборатов переходных металлов со структурой людвигита [9-11]. Химическая формула этих материалов $M_2^{2+}M^{3+}O_2BO_3$, а кристаллическая структура включает низкомерные элементы в виде зигзагообразных стенок, образованных кислородными октаэдрами, которые окружают металлические ионы в четырех кристаллографически неэквивалентных узлах. Двух- и трехвалентные металлические ионы, обозначенные в химической формуле М, могут быть как одного, так и разного сорта. В настоящее время известны только два гомометаллических людвигита Fe₃O₂BO₃ и Co₃O₂BO₃, а также синтезирован и исследован концентрационный ряд смешанных составов, представляющих собой переход от одного родительского соединения к другому. Для этого ряда соединений выполнены комплексные исследования с помощью разнонаправленных методик, таких как рентгеновская дифракция [10,12], эффект Мёссбауэра [7,13], нейтронное рассеяние [14], магнитометрия в различных кристаллографических направлениях [7,15], измерения теплоемкости [10], XANESи EXAFS-спектроскопия [16]. Тем не менее магнитная структура и сценарий магнитного упорядочения до сих пор окончательно не определены даже для исходных составов Fe₃O₂BO₃ и Co₃O₂BO₃, не говоря уже о материалах с замещением. В ходе исследования, бесспорно,

стал ясным тот факт, что свойства смешанных составов $Co_{3-x}Fe_xO_2BO_3$ во многом определяются распределением ионов кобальта и железа по неэквивалентным кристаллографическим позициям. В [12] показано, что при больших концентрациях замещения (x = 0.75) ионы железа имеют тенденцию входить только в одну из кристаллографических позиций кобальтового людвигита, причем валентность этих ионов равна трем. Целью настоящей работы является определение с помощью мёссбауэровской спектроскопии динамики замещения кобальта железом начиная с малых концентраций. Исследованы изменения, вызываемые этим замещением в кристаллической решетке, которые в дальнейшем должны определять магнитные, электронные и другие физические свойства.

В настоящей работе значения величины замещения x в Co_{3-x}Fe_xO₂BO₃ выбраны равными 0.0125, 0.025, 0.050, 0.10. Также исследован состав Co₂FeO₂BO₃ с x = 1.0. Для последнего материала анализ детально расшифрованной кристаллической структуры дан в [15], что позволяет провести его сравнение с данными мёссбауэровской спектроскопии, представленными в настоящей работе.

Синтез образцов и методика измерений

Монокристаллы железо-кобальтовых людвигитов выращивались раствор-расплавным методом. Для синтеза базового состава Co₃O₂BO₃ исходные реактивы были взяты в молярных соотношениях

 $Bi_2Mo_3O_{12}: B_2O_3: CoO: Na_2Co_3: Co_2O_3 = 3: 2: 4: 3: 3.$

Для получения смешанных составов часть оксида кобальта Co_2O_3 была заменена оксидом железа Fe_3O_4 . В результате были выращены монокристаллы $Co_{3-x}Fe_xO_2BO_3$ типичной для людвигитов игольчатой формы длиной до 3-4 mm. Исследования рентгеновской дифракции и эффекта Мёссбауэра проведены на приготовленных из монокристаллов порошках. Использован рентгеновский дифрактометр SMART APEX II (Мо K_{α} -излучение, ССD-детектор).

Мёссбауэровские измерения проведены на спектрометре МС-1104ЕМ при комнатной температуре с источником Co⁵⁷(Cr), имеющим ширину линии на полувысоте 0.24 mm/s, по естественному содержанию железа. Количество используемого порошка составило 5-10 mg/cm². Калибровка проведена по поглотителю из порошка нитропруссида натрия. Двухэтапная расшифровка спектров позволила сначала определить число возможных неэквивалентных позиций по квадрупольному расщеплению QS парамагнитных дублетов, составляющих спектр. Эта информация в качестве первого приближения использовалась для последующего математического моделирования спектра по методу наименьших квадратов. Этот метод позволяет уточнить первичные параметры реально существующих дублетов, а площади дублетов ложных неэквивалентных позиций становятся пренебрежимо малыми.

В настоящей работе все исследования выполнены при комнатной температуре.

3. Рентгеновская дифракция

Исследования кристаллической структуры полученных образцов показали, что всем им свойственна ромбическая структура, пространственная группа симметрии *Pbam*. Отличительную особенность структуры людвигитов составляют зигзагообразные стенки, распространяющиеся в направлении кристаллографической оси c (рис. 1). Четыре неэквивалентные кристаллографические позиции переходного иона на рис. 1 пронумерованы.

Параметры элементарной ячейки исследуемых составов приведены в табл. 1. Они больше, чем у гомоме-

Таблица 1. Параметры элементарной ячейки Co_{3-x}Fe_xO₂BO₃ при комнатной температуре

x	a,Å	b, Å	c,Å	$V, \mathrm{\AA}^3$	Лит. ссылка
0	9.302	11.957	2.972	330.56	[17]
0.0125	9.1120	12.0927	3.0296	333.83	*
0.025	9.1008	12.0920	3.0377	333.84	*
0.050	9.1281	12.1112	3.0322	335.22	*
0.10	9.2433	12.2586	3.0334	343.72	*
1.0	9.3818	12.3445	3.0578	354.13	[15]

* Данные настоящей работы.

Рис. 1. Кристаллическая структура людвигита. Большие кружки — металлические ионы, средние — ионы бора, маленькие — ионы кислорода. Цифрами обозначены неэквивалентные кристаллографические узлы.

Рис. 2. Изменение объема элементарной ячейки $Co_{3-x}Fe_xO_2BO_3$ с ростом концентрации замещения *x*.

таллического состава $Co_3O_2BO_3$, и увеличиваются при росте концентрации железа. Соответственно растет и объем элементарной ячейки V. На рис. 2 зависимость V от концентрации замещения показана графически.

4. Мёссбауэровская спектроскопия

Спектры мёссбауэровского поглощения образцов $Co_{3-x}Fe_xO_2BO_3$ показаны на рис. 3. Температуры Нееля базовых составов $Co_3O_2BO_3$ и $Fe_3O_2BO_3$ составляют 43 и 115 К соответственно [18,19]. Известно, что смешанный материал $Co_2FeO_2BO_3$ также упорядочивается магнитно в окрестности 115 К [10,15]. Видно, что для этих составов комнатная температура далека от области магнитного порядка. Естественно предположить то же

x	<i>IS</i> (±0.02), mm/s	<i>QS</i> (±0.04), mm/s	W(±0.04), mm/s	A(±0.04),%
0.0125	0.367	1.96	0.24	0.20
	0.355	1.14	0.25	0.35
	0.359	0.92	0.28	0.28
	0.369	0.31	0.33	0.17
0.025	0.371	1.95	0.27	0.20
	0.354	1.14	0.28	0.35
	0.363	0.90	0.29	0.32
	0.384	0.45	0.32	0.13
0.050	0.370	1.94	0.29	0.19
	0.353	1.14	0.30	0.38
	0.366	0.90	0.28	0.33
	0.386	0.52	0.27	0.10
0.10	0.371	1.92	0.33	0.19
	0.354	1.17	0.32	0.38
	0.366	0.90	0.28	0.35
	0.380	0.57	0.22	0.08

Таблица 2. Результаты моделирования экспериментальных мёссбауэровских спектров людвигитов с низким содержанием железа

Примечание. *IS* — изомерный сдиг, *QS* — квадрупольное расщепление, *W* — ширина на полувысоте лоренцевой линии, *A* — относительная площадь дублета в спектре.

самое для исследуемых в настоящей работе образцов $Co_{3-x}Fe_xO_2BO_3$ с малой концентрацией железа. Действительно, показанные на рис. 3 мёссбауэровские спектры характерны для парамагнитного состояния образцов. Такие спектры моделируются совокупностью квадрупольных дублетов с различным изомерным сдвигом *IS* относительно источника γ -излучения и квадрупольным расщеплением *QS*. Относительная площадь под кривой для каждого дублета дает вероятность нахождения иона железа в том или ином состоянии, включая валентность и кристаллографическое окружение.

Экспериментально полученный спектр хорошо моделируется четырьмя дублетами, которые можно соотнести с четырьмя неэквивалентными кристаллографическими позициями переходного иона. Результаты моделирования сведены в табл. 2. Изомерный химический сдвиг для всех дублетов находится в пределах 0.35–0.39 mm/s, что характерно для ионов железа в трехвалентном состоянии [20].

Исходя из соотношения площадей, ограниченных дублетами, видно, что для этих кристаллов с малым x не наблюдается безусловного доминирования в заселенности какой-либо определенной позиции, ранее имевшего место в кристаллах Co_{2.25}Fe_{0.75}O₂BO₃ [12]. В связи с этим возникают трудности в идентификации позиций по мессбауэровскому спектру. В нашем случае наиболее предпочтительным для ионов железа является узел, которому соответствует дублет с IS = 0.353 - 0.355 mm/s. Параметры этого дублета выделены в табл. 2 жирным

Рис. 3. Экспериментальные и модельные спектры гамма-резонансного поглощения для образцов Co_{3-x}Fe_xO₂BO₃.

Рис. 4. Экспериментальный и модельные спектры гамма-резонансного поглощения Co₂FeO₂BO₃.

шрифтом. По-видимому, именно этот дублет соответствует кристаллографической позиции 4, заполняемой почти исключительно ионами железа при их высоком содержании.

Спектр гамма-резонансного поглощения для образца Co₂FeO₂BO₃ представлен на рис. 4. В отличие от ранее исследованных составов моделирование этого экспериментального спектра четырьмя дублетами не дало удовлетворительных результатов. Для хорошего согласования экспериментального и модельного спектров пришлось задействовать вдвое большее количество дублетов. Параметры модельных дублетов для Co₂FeO₂BO₃ приведены в табл. 3. Величина изомерного сдвига *IS* для всех восьми дублетов, как и ранее, соответствует трехвалентному состоянию ионов железа.

5. Обсуждение результатов

Моделирование у-резонансных спектров кобальтовых людвигитов с небольшим замещением кобальта железом привело к ожидаемому результату, согласно которому число модельных дублетов равно числу неэквивалентных кристаллографических позиций. Удивление вызывают данные по моделированию мёссбауэровского спектра материала с большим содержанием железа Co₂FeO₂BO₃, где оказалось необходимым задействовать удвоенное число модельных дублетов. Сопоставив значения квадрупольного расщепления QS с полученными ранее сверхтонкими параметрами для Co_{2.25}Fe_{0.75}O₂BO₃, можно определить соответствие полученных восьми дублетов четырем неэквивалентным кристаллографическим позициям — по два на каждую из них (табл. 3). Этот результат можно объяснить, приняв за новые (ложные) неэквивалентные позиции катионы железа в различном ближайшем окружении металлических ионов. Ограничимся для рассмотрения шестью ближайшими соседями

иона Fe^{3+} . Ввиду имеющегося композиционного беспорядка в системе для этих шести ионов окружения возможны конфигурации: 6Co, 5Co1Fe, 4Co2Fe, 3Co3Fe, 2Co4Fe, Co5Fe и 6Fe. Последние три варианта можно сразу отбросить как маловероятные, так как содержание кобальта в системе вдвое больше, чем содержание железа.

Вероятность появления каждого из возможных окружений можно рассчитать, используя хорошо известное биномиальное распределение [21], на основе которого получаем

$$P_m^n = \frac{m!}{n!(m-n)!} x^{m-n} (1-x)^n.$$
(1)

Здесь m = 6 — число ближайших к иону Fe^{3+} металлических соседей, n — число ионов кобальта в конфигурации $(n = 0, 1, ..., 6), P_m^n$ — вероятность появления конфигурации, содержащей *п* ионов кобальта и m-n ионов железа, x = 0.333 — относительная концентрация железа в кристалле. Рассчитанные значения вероятностей приведены в табл. 4, откуда видно, что наиболее вероятными являются конфигурации, содержащие в ближайшем окружении иона Fe³⁺ четыре и пять ионов кобальта. Поля, создаваемые такими конфигурациями, дискретны и вполне могут давать различимые резонансные спектры с различными параметрами. В нашем случае это, по-видимому, привело к удвоению необходимого числа модельных дублетов. Нельзя обойти вниманием тот факт, что с большой вероятностью в Co₂FeO₂BO₃ может реализоваться также комбинация с тремя ионами кобальта и тремя ионами железа 3Со3Fe. Учет этого варианта призывает проводить моделирование спектра двенадцатью квадрупольными дублетами. В таком случае,

Таблица 3. Параметры модельных квадрупольных дублетов для мёссбауэровского спектра Co₂FeO₂BO₃

<i>IS</i> (±0.02), mm/s	<i>QS</i> (±0.04), mm/s	W(±0.04), mm/s	A(±0.04),%	Позиция		
0.365 0.358	0.537 0.764	0.215 0.193	0.092 0.164	2 <i>d</i>		
0.352 0.348	0.947 1.109	0.190 0.165	0.286 0.171	4h		
0.341 0.335	1.267 1.471	0.177 0.209	0.122 0.039	2 <i>a</i>		
0.362 0.361	1.780 2.005	0.254 0.248	0.066 0.059	4 <i>g</i>		

Таблица 4. Вероятности *P* (в %) различного окружения иона железа в Co₂FeO₂BO₃

6Fe	Co5Fe	2Co4Fe	3Co3Fe	4Co2Fe	5CoFe	6Co
0.14	1.6	8.2	21.8	32.8	26.2	8.7

безусловно, достигается лучшее согласие с экспериментом, но число используемых подгоночных параметров становится явно избыточным.

6. Заключение

В работе проведено исследование эволюции мёссбауэровских спектров кобальтового людвигита СозО2ВО3 при замещении части ионов кобальта железом. Показано, что в исследованном диапазоне концентраций замещения ионы железа находятся только в трехвалентном состоянии. Удалось разделить резонансные спектры, относящиеся к ионам железа в кристаллографически неэквивалентных узлах. Обнаружено, что начиная с малых концентраций замещения ионы железа проявляют предпочтение к заполнению определенных неэквивалентных кристаллографических позиций, которое, однако, не так выражено, как в случае значительного замещения. Так, в соединении $Co_2FeO_2BO_3$ позиция 4h(4) принимает 46%всех имеющихся ионов железа. Этот результат коррелирует с известными данными по рентгеновской дифракции [15], однако, согласно последним, проявляемое ионами Fe^{3+} предпочтение к позиции 4*h* еще выше.

Моделирование γ -резонансного спектра людвигита $Co_2FeO_2BO_3$ привело к необходимости использовать вдвое большее число квадрупольных дублетов, чем для неэквивалентных позиций. Объяснение этого дано на основе рассмотрения различных конфигураций окружения иона Fe³⁺, возникающих вследствие композиционного беспорядка. Показано, что среди возможных вариантов окружения иона железа другими металлическими ионами наибольшую вероятность имеют конфигурации 5Co1Fe и 4Co2Fe, что создает "ложные" позиции и может приводить к усложнению структуры мёссбауэровского спектра.

Список литературы

- [1] Y. Takeuchi, T. Watanabe, T. Ito. Acta Cryst. 3, 98 (1950).
- [2] M.J. Buerger, V. Venkatakrishnan. Mater. Res. Bull. 7, 1201(1972).
- [3] Q.A. Pankhurst, M.F. Thomas, B.M. Wanklyn. J. Phys. C 18, 1255 (1985).
- [4] J.P. Attfield, J.F. Clarke, D.A. Perkins. Physica B 180–181, 581 (1992).
- [5] M.A. Continentino, B. Boechat, R.B. Guimaraes, J.C. Fernandes, L.L. Ghivelder. J. Magn. Magn. Mater. 226–230, 427 (2001).
- [6] D.C. Freitas, R.B. Guimaraes, D.R. Sanchez, J.C. Fernandes, M.A. Continentino, J. Ellena, A. Kitada, H. Kageyama, A. Matsuo, K. Kindo, G.G. Eslava, L. Ghivelder. Phys. Rev. B 81, 024 432 (2010).
- [7] J. Bartolome, A. Arauzo, N.V. Kazak, N.B. Ivanova, S.G. Ovchinnikov, Yu.V. Knyazev, I.S. Lyubutin. Phys. Rev. B 83, 144 426 (2011).
- [8] H. Yamane, T. Kawano. J. Cryst. Soc. Jpn. 54, 2, 68 (2012).

- [9] Г.А. Петраковский, Л.Н. Безматерных, Д.А. Великанов, А.М. Воротынов, О.А. Баюков, М. Schneider. ФТТ 51, 10, 1958 (2009).
- [10] D.C. Freitas, M.A. Continentino, R.B. Guimaraes, J.C. Fernandes, E.P. Oliveira, R.E. Santelli, J. Ellena, G.G. Elsava, L. Ghivelder. Phys. Rev. B 79, 134 437 (2009).
- [11] Н.Б. Иванова, М.С. Платунов, Ю.В. Князев, Н.В. Казак, Л.Н. Безматерных, А.Д. Васильев, С.Г. Овчинников, В.И. Нижанковский. ФТТ 54, 11, 61 (2012).
- [12] N.V. Kazak, N.B. Ivanova, O.A. Bayukov, S.G. Ovchinnikov, A.D. Vasiliev, V.V. Rudenko, J. Bartolome, A. Arauzo, Yu.V. Knyazev. J. Magn. Magn. Mater. **323**, 521 (2011).
- [13] J. Larrea, D.R. Sanchez, F.J. Litterst, E.M. Baggio-Saitovitch, J.C. Fernandes, R.B. Guimaraes, M.A. Continentino. Phys. Rev. B 70, 174 452 (2004).
- [14] P. Bordet, E. Suard. Phys. Rev. B 79, 144408 (2009).
- [15] Н.Б. Иванова, Н.В. Казак, Ю.В. Князев, Д.А. Великанов, Л.Н. Безматерных, С.Г. Овчинников, А.Д. Васильев, М.С. Платунов, Ј. Bartolome, Г.С. Патрин. ЖЭТФ 140, 6, 1160 (2011).
- [16] М.С. Платунов, С.Г. Овчинников, Н.В. Казак, Н.Б. Иванова, В.Н. Заблуда, И. Весчке, И. Счайле, К.В. Ламонова. Письма в ЖЭТФ 96, 10, 723 (2012).
- [17] N.V. Kazak, N.B. Ivanova, V.V. Rudenko, S.G. Ovchinnikov, A.D. Vasilyev, Yu.V. Knyazev. Solid State Phenom. 152–153, 104 (2009).
- [18] Н.В. Казак, Н.Б. Иванова, В.В. Руденко, А.Д. Васильев, Д.А. Великанов, С.Г. Овчинников. ФТТ 51, 5, 916 (2009).
- [19] D.C. Freitas, M.A. Continentino, R.B. Guimaraes, J.C. Fernandes, J. Ellena, L. Ghivelder. Phys. Rev. B 77, 184 422 (2008).
- [20] N.N. Greenwood, T. Gibb. Mössbauer spectroscopy. Chapman & Hall, London (1971).
- [21] О.А. Баюков, М. Abd-Elmegiud, Н.Б. Иванова, Н.В. Казак, С.Г. Овчинников, В.В. Руденко. ФТТ 46, 6, 1058 (2004).