ФИЗИКА

УДК 621.371.3/205.2

В.Л. МИРОНОВ*,***, П.П. БОБРОВ**, С.В. ФОМИН*, А.Ю. КАРАВАЙСКИЙ*,***

ОБОБЩЕННАЯ РЕФРАКЦИОННАЯ ДИЭЛЕКТРИЧЕСКАЯ МОДЕЛЬ ВЛАЖНЫХ ПОЧВ, УЧИТЫВАЮЩАЯ ИОННУЮ РЕЛАКСАЦИЮ ПОЧВЕННОЙ ВОДЫ

Предложена многорелаксационная обобщенная рефракционная диэлектрическая модель влажных почв в диапазоне частот от 0,2 до 14,8 ГГц. Модель основана на данных диэлектрических измерений, проведенных в этом частотном диапазоне, при температуре 20 °С, для относительных весовых влажностей, изменяющихся в пределах от 2 до 43 %. Созданная модель расширяет частотный диапазон применимости ранее предложенной однорелаксационной модели в область мегагерцового диапазона за счет учета ионной релаксации Максвелла – Вагнера, которая существенно проявляется в связанной почвенной воде в этом диапазоне частот. Показано, что ошибка расчета с помощью предложенной модели спектров комплексной диэлектрической проницаемости влажной почвы имеет тот же порядок, что и погрешность экспериментальных данных, используемых при построении модели.

Ключевые слова: диэлектрическая проницаемость, влажные почвы, спектроскопические параметры.

Введение

В настоящее время обобщенная рефракционная диэлектрическая модель для частотных спектров влажных почв (ОРДМВП), предложенная в [1], стала эффективным инструментом для расчета диэлектрических спектров влажных почв в СВЧ-диапазоне. Эта модель учитывает только дипольную релаксацию молекул воды в гигагерцовом диапазоне частот и может быть определена как однорелаксационная ОРДМВП. Погрешности расчета комплексной диэлектрической проницаемости (КДП) с помощью моделей, развитых на базе однорелаксационной ОРДМВП [2–5], оказываются значительно меньше, чем в случае широко используемой полуэмпирической диэлектрической моделей [6]. Между тем ошибки диэлектрических моделей [2–5] заметно возрастают при уменьшении частоты ниже 1,0 ГГц. Это происходит потому, что однорелаксационная ОРДМВП не учитывает наблюдаемый в экспериментах [7–11] значительный рост действительной и мнимой частей КДП влажных глинистых почв с понижением частоты при переходе в мегагерцовый диапазон. В [11] показано, что этот рост может быть вызван ионной релаксацией Максвелла – Вагнера [12] связанной почвенной воды.

В данной работе создана многорелаксационная ОРДМВП с учетом как дипольной, так и ионной релаксации молекул почвенной воды для диапазона частот от 0,2 до 14,8 ГГц. Разработаны методики определения параметров диэлектрических спектров многорелаксационной ОРДМВП на примере глинистого чернозема, содержащего кварц ~ 50–60 %, плагиоклаз ~ 15–20 %, диоктаэдрическую слюду ~ 10 %, калиевый полевой шпат ~ 10 %, хлорит ~ 5–7 %, смектит ~ 2–3 % и органические компоненты ~ 2 %. Погрешность многорелаксационной ОРДМВП оценена через коэффициент Пирсона и стандартное отклонение между измеренными и рассчитанными с помощью модели значениями действительной и мнимой частей комплексной диэлектрической проницаемости.

Концепция многорелаксационной ОРДМВП

Выразим действительную n_s и мнимую κ_s части комплексного показателя преломления (КПП) влажной почвы как функцию весовой влажности M, относительно веса сухого образца, в форме рефракционной диэлектрической модели смеси [1, 3, 5]:

$$\frac{n_s(M,f)-1}{\rho_d} = \begin{cases} \frac{n_m - 1}{\rho_m} + (n_b(f) - 1)M, & 0 \le M \le M_{t1}, \\ \frac{n_s(M_{t1}, f) - 1}{\rho_d} + (n_t(f) - 1)(M - M_{t1}), & M_{t1} \le M \le M_{t2}, \\ \frac{n_s(M_{t2}, f) - 1}{\rho_d} + (n_u(f) - 1)(M - M_{t2}), & M \ge M_{t2}; \end{cases}$$
(1)

$$\frac{\kappa_{s}(M,f)-1}{\rho_{d}} = \begin{cases} \frac{\kappa_{m}}{\rho_{m}} + \kappa_{b}(f) M, & 0 \le M \le M_{t1}, \\ \frac{\kappa_{s}(M_{t1},f)}{\rho_{d}} + \kappa_{t}(f) (M - M_{t1}), & M_{t1} \le M \le M_{t2}, \\ \frac{\kappa_{s}(M_{t2},f)}{\rho_{d}} + \kappa_{u}(f) (M - M_{t2}), & M \ge M_{t2}, \end{cases}$$
(2)

где n_s , n_m , n_b , n_t , n_u , и κ_s , κ_m , κ_b , κ_t , κ_u – соответственно значения действительной и мнимой частей КПП; f обозначает частоту электромагнитного поля; через ρ_d выражена плотность образца сухого сложения. Подстрочные индексы s, m, b, t и u в (1), (2) и в последующих выражениях обозначают соответственно влажную почву, органоминеральную компоненту почвы, связанную (адсорбированную), рыхлосвязанную (пленочную) и свободную (капиллярную) почвенную воду. В свою очередь, M_{t1} и M_{t2} обозначают предельно возможное количество связанной воды и предельно возможное суммарное количество связанной и рыхлосвязанной и рыхлосвязанной воды в конкретном типе почвы. Значения действительной n_p и мнимой κ_p частей КПП выразим через действительную ε_p' и мнимую ε_p'' части КДП:

$$n_p \sqrt{2} = \sqrt{\sqrt{(\varepsilon_p')^2 + (\varepsilon_p'')^2} + \varepsilon_p'}, \quad \kappa_p \sqrt{2} = \sqrt{\sqrt{(\varepsilon_p')^2 + (\varepsilon_p'')^2} - \varepsilon_p'}, \quad (3)$$

где индекс p принимает значения p = s, b, t и u в случае влажной почвы, связанной, рыхлосвязанной и свободной воды.

Определим действительную и мнимую части КДП для почвенной воды в формулах (3) через двухрелаксационное уравнение Дебая [13] для непроводящих жидкостей, которое учитывает только токи смещения:

$$\varepsilon_{p}' = \frac{\varepsilon_{0pL} - \varepsilon_{0pH}}{1 + \left(2\pi f \tau_{pL}\right)^{2}} + \frac{\varepsilon_{0pH} - \varepsilon_{\infty pH}}{1 + \left(2\pi f \tau_{pH}\right)^{2}} + \varepsilon_{\infty pH}, \quad \varepsilon_{p}'' = \frac{\varepsilon_{0pL} - \varepsilon_{0pH}}{1 + \left(2\pi f \tau_{pL}\right)^{2}} 2\pi f \tau_{pL} + \frac{\varepsilon_{0pH} - \varepsilon_{\infty pH}}{1 + \left(2\pi f \tau_{pH}\right)^{2}} 2\pi f \tau_{pH}. \quad (4)$$

Здесь ε_{0pL} и ε_{0pH} или ε_{0pH} и $\varepsilon_{\infty pH}$ – низкочастотный и высокочастотный пределы действительной части КДП; а τ_{pL} или τ_{pH} – времена релаксации для ионной или дипольной релаксаций соответственно; все эти спектроскопические параметры должны быть отнесены к связанной (p = b), рыхлосвязанной (p = t) и свободной (p = u) почвенной воде; $\varepsilon_r = 8,854 \cdot 10^{-12} \text{ Ф/м}$ – диэлектрическая проницаемость вакуума. Для определения КДП в случае свободной почвенной воды будем использовать однорелаксационное уравнение Дебая, которое следует из (5) при $\varepsilon_{0uL} = \varepsilon_{0uH}$.

Поскольку формулы (4) учитывают только токи смещения, то рассчитанные с помощью (1) – (4) значения КПП влажной почвы будут отличаться от наблюдаемых в эксперименте при измерении влажных образцов почвы, обладающих электропроводностью на постоянном токе. Однако формулы (1) – (4) можно применить для расчета действительной части КДП образца влажной почвы

$$\varepsilon_s' = n_s^2 - \kappa_s^2, \tag{5}$$

так как эта величина определяется только токами смещения. В то же время мнимую часть КДП влажной почвы можно выразить в виде суммы вкладов, возникающих, во-первых, за счет токов смещения, $2n_s\kappa_s$, и, во-вторых, за счет постоянного тока, протекающего через влажный образец, $\sigma_s/2\pi f\varepsilon_r$, где σ_s – удельная электропроводность влажного образца, ε_r – диэлектрическая проницаемость свободного пространства. При этом удельную электропроводность влажного образца представим в виде суммы удельных электропроводностей всех типов воды, присутствующих в почве при заданной влажности образца, с учетом их относительного объемного содержания, $\sigma_s = W_b \sigma_b + W_t \sigma_t + W_u \sigma_u$, где $W_p = M_p \rho_d$ – объемное содержание отдельных типов воды в почве (p = b, t, u). В результате выражение для мнимой части КДП влажного образца может быть записано в следующем виде:

$$\varepsilon_{s}'' = \begin{cases} 2n_{s}\kappa_{s} + \rho_{d}(M)M\sigma_{b}(M)/2\pi f\varepsilon_{r}, & 0 \le M \le M_{t1}, \\ 2n_{s}\kappa_{s} + \rho_{d}(M)[M_{t1}\sigma_{b}(M_{t1}) + (M - M_{t1})\sigma_{t}(M)]/2\pi f\varepsilon_{r}, & M_{t1} \le M \le M_{t2}, \\ 2n_{s}\kappa_{s} + \rho_{d}(M)[M_{t1}\sigma_{b}(M_{t1}) + (M_{t2} - M_{t1})\sigma_{t}(M_{t2}) + (M - M_{t2})\sigma_{u}(M)]/2\pi f\varepsilon_{r}, & M \ge M_{t2}. \end{cases}$$
(6)

В формуле (6) удельные электропроводности связанной, рыхлосвязанной и свободной почвенной воды в общем случае зависят от влажности образца, так как с добавлением в образец воды может происходить разбавление почвенного раствора. Однако, как показано ниже, в случае измеряемой почвы эти зависимости являются слабыми, и можно было считать проводимости каждого типа воды постоянными величинами во всем диапазоне изменения содержания соответствующих типов почвенной воды.

Как видно из уравнений (1) – (6), в рамках предложенной многорелаксационной ОРДМВП спектр КДП для конкретной почвы при заданной влажности *M* и частоте электромагнитного поля *f* может быть рассчитан с помощью следующего набора параметров:

1) приведенные действительные и мнимые части КПП для органо-минеральной компоненты: $(n_m - 1) / \rho_m$ и κ_m / ρ_m ;

2) плотность сухого сложения почвы ρ_d ;

2) максимальное количество связанной (M_{t1}) и рыхлосвязанной $(M_{t2} - M_{t1})$ воды в данном типе почвы;

3) низкочастотные ε_{0pL} , ε_{0pH} и высокочастотные $\varepsilon_{\infty pH}$ пределы действительной части КДП для ионной и дипольной релаксаций в случае связанной (p = b), рыхлосвязанной (p = t) и свободной (p = u) почвенной воды;

4) времена ионной τ_{pL} и дипольной τ_{pH} релаксаций связанной (p = b), рыхлосвязанной (p = t) и свободной (p = u) почвенной воды;

5) удельные электропроводности связанной σ_b, рыхлосвязанной σ_t и свободной σ_u почвенной воды.

Все эти параметры могут быть получены для конкретного типа почвы с помощью обычных диэлектрических измерений влажной почвы, как это было сделано в [14] для однорелаксационной ОРДМВП. Предложенная в [14] методика определения параметров спектроскопической модели основана на многомерном регрессионном анализе измеренных спектров КДП влажной почвы с использованием в качестве теоретической модели регрессии уравнений (1) – (6). Далее изложены результаты проведенного регрессионного анализа.

Определение параметров многорелаксационной ОРДМВП

Для определения параметров многорелаксационной модели были проведены лабораторные измерения при температуре 20 °С спектров КДП для влажного глинистого чернозема, минеральный состав которого приведен выше. При этом использовалась установка и метод измерений, описанные в [5]. Измерения проводились в диапазоне частот от 200 МГц до 14,8 ГГц. Весовые влажности образцов изменялись в диапазоне от 0 до 43 %. В общей сложности были получены данные для 13 влажных образцов. Кроме того, для каждой влажности определялась плотность сухого сложения $\rho_d(M)$. Используя измеренные влажностные зависимости КПП, формулы (1), (2) и предложенную в [3] методику регрессионного анализа, мы определили вначале приведенные значения действительной, $(n_m - 1)/\rho_m = 0,45$, и мнимой, $\kappa_m/\rho_m = 0,001$, частей КПП органоминеральной компоненты почвы, значения максимального содержания связанной воды ($M_{t2} = 0,31$).

Далее были использованы измеренные спектры, показанные символами на рис. 1, которые соответствуют присутствию в образце только связанной воды (кривые 1 и 2), связанной и рыхлосвязанной (кривые 3, 4, 5) и связанной, рыхлосвязанной и свободной воды (кривая 6). Затем, применяя методику регрессионного анализа, предложенную в [14], и формулы (1) – (6), с помощью измеренных диэлектрических спектров, показанных на рис. 1, мы определяли спектроскопические параметры связанной, рыхлосвязанной и свободной почвенной воды. Значения найденных таким образом параметров многорелаксационной модели приведены в таблице, из которой следует, что разность $\varepsilon_{0tL} - \varepsilon_{0tH}$ не равна нулю, а это указывает на присутствие ионной релаксации в рыхлосвязанной воде. Ранее мы наблюдали присутствие этой релаксации только в связанной воде [11]. Следует отметить также, что в таблице приведены усредненные значения проводимостей связанной, рыхлосвязанной и свободной воды. В дополнение к данным таблицы использовано известное [1] значение $\varepsilon_{\infty pH} = 4,9$. Рассчитанные с помощью найденных параметров многорелаксационной ОРДМВП и формул (1) – (6) диэлектрические спектры иллюстрируются сплошными линиями на рис. 1. Сравнение рассчитанных спектров с измененными показывает их хорошее количественное соответствие. Для определения ошибки расчета спектров с помощью многорелаксационной ОРДМВП проведен корреляционный анализ, результаты которого изложены далее.

Рис. 1. Экспериментальные спектры действительной є' и мнимой є'' частей КДП (символы) влажной почвы и их расчеты с применением формул (1) – (6) и данных из таблицы (сплошные линии). Весовые влажности $M(\Gamma/\Gamma)$: 0,021 (кр. 1), 0,168 (кр. 2), 0,190 (кр. 3), 0,248 (кр. 4), 0,292 (кр. 5) и 0,335 (кр. 6)

Физические характеристики		Спектроскопические параметры						Оценки погрешности	
M	04	Связанная		Рыхлосвязанная		Свободная		Лин. регрессия	$\varepsilon'_m =$
	Pu	вода		вода		вода		ε′	$= 0,009+0,969 \cdot \varepsilon'_{p}$
0,021	1,413	ϵ_{0bL}	750	ϵ_{0tL}	150	-	-	ρ	0,998
0,168	1,123	ϵ_{0bH}	40	ϵ_{0tH}	140	ϵ_{0uH}	100	σ	0,454
0,190	1,389	$\tau_{bL}(ns)$	5,5	$\tau_{tL}(ns)$	0,06	-	-	Лин. регрессия	ε'' _m =
0,248	1,499							ε″	$=-0,125+0,994 \cdot \varepsilon''_{p}$
0,292	1,555	τ_{bH} (ps)	12,5	τ_{tH} (ps)	8	τ_{uH} (ps)	10,6	ρ	0,995
0,335	1,408	σ_b (S/m)	0,001	σ_t (S/m)	0,18	σ_u (S/m)	0,4	σ	0,361

Спектроскопические параметры и погрешности многорелаксационной диэлектрической модели

Погрешность многорелаксационной ОРДМВП

На рис. 2 представлены зависимости измеренных КДП от рассчитанных значений этой величины. Если бы рассчитанные величины не отклонялись от измеренных, то зависимости, показанные на рис. 2 символами, совпали бы с биссектрисами, которые показаны пунктирными линиями. Оценим статистическую погрешность расчетов КДП через коэффициент Пирсона ρ и стандартное отклонение σ, соответствующие линейной регрессии для данных на рис. 2. Линейная регрессия

Рис. 2. Корреляция рассчитанных ε'_p и ε"_p и измеренных ε'_m и ε"_m значений действительной и мнимой частей КДП (показаны символами). Пунктирная линия – биссектриса. Сплошная линия – линейная регрессия

показана на рис. 2 сплошными линиями. Значения коэффициентов Пирсона и стандартных отклонений σ приведены в таблице. Здесь же даны уравнения линейной регрессии, которые позволяют оценить систематическую погрешность (отклонение линии регрессии от биссектрисы). Приведенные в таблице погрешности многорелаксационной модели в виде стандартных отклонений равных 0,454 и 0,361 для действительной и мнимой частей КДП соответственно сравнимы с ошибками самих диэлектрических измерений [15].

Заключение

В данной работе была разработана методика построения многорелаксационной ОРДМВП для расчета спектров КДП в диапазоне частот от 0,2 до 14,5 ГГц в случае конкретного типа влажной почвы при заданной температуре. Разработанная методика основана на данных диэлектрических измерений влажной почвы. В предлагаемой диэлектрической модели используются двухрелаксационные спектры для комплексной диэлектрической проницаемости связанной и рыхлосвязанной воды в почве. Ошибки расчета КДП при использовании многорелаксационной ОРДМВП оказались сравнимы с ошибками диэлектрических измерений почв. В работе впервые показано, что рыхлосвязанная вода в почве обладает ионной релаксацией. Многорелаксационная ОРДМВП будет использована далее с целью создания диэлектрических моделей, учитывающих также зависимости от гранулометрического состава почвы и температуры, как это делается в [2–5]. Такие диэлектрические модели необходимы в радарном и радиометрическом дистанционном зондировании поверхности суши в гигагерцовом и мегагерцовом диапазонах частот.

СПИСОК ЛИТЕРАТУРЫ

- 1. Mironov V.L., Dobson M.C., Kaupp V.H., et al. // IEEE Trans. Geosci. Remote Sens. 2004. V. 42 No. 4 P. 773–785.
- 2. Mironov V.L., Kosolapova L.G., and Fomin S.V. // IEEE Trans. Geosci. Remote Sens. 2009. V. 47 No. 7 P. 2059-2070.
- 3. Mironov V.L., De Roo R.D., and Savin I.V. // IEEE Trans. Geosci. Remote Sens. 2010. V. 48. No. 6 P. 2544-2556.
- 4. Mironov V.L. and Fomin S.V. // PIERS Online. 2009. V. 5 No. 5. P. 411-415.
- 5. Mironov V.L. and Lukin Yu.I. // Russ. Phys. J. 2011. V. 53. No. 9. P. 956-963.
- 6. Dobson M.C., Ulaby F.T., Hallikainen M.T., and El-Rayes M.A. // IEEE Trans. Geosci. Remote Sens. – 1985. – V. 23. – No. 1. – P. 35–46.
- 7. Curtis J.O., Weiss C.A., Jr., and Everett J.B. // Technical Report EL-95-34, U.S. Army Corps Eng. Waterways Exp. Station Vicksburg MS. Dec. 1995.
- 8. Kelleners T.J., Robinson D.A., Shouse P.J., et al. // Soil Sci. Soc. Am. J. 2005. V. 69. No. 1. P. 67-76.
- 9. Lukin Yu.I. and Komarov S.A. // Proc. IGARSS. 2007. P. 735-737.
- 10. Wagner N., Emmerich K., Bonitz F., and Kupfer K. // IEEE Trans. Geosci. Remote Sens. 2011. V. 49. No. 7. P. 2518–2530.
- Bobrov P.P., Mironov V.L.. Kondratieva O.V., and Repin A.V. // Proc. the XII International Conference «Physics of Dielectrics» (Dielectrics-2011), Sankt Petersburg RUSSIAN, 23–26 May, 2011. – V. 1. – P. 207–209.
- 12. Kremer F., Schonhals A., and Luck W. Broadband Dielectric Spectroscopy. Springer Verlag, 2002.
- 13. А х а д о в Я. Ю. Диэлектрические свойства чистых жидкостей. М.: Изд-во стандартов, 1972. 410 с.
- 14. Mironov V.L., Bobrov P.P., Kosolapova L.G., et al. // Proc. IGARSS'06. 2006. V. 6. P. 2957-2961.
- 15. Миронов В.Л., Комаров С.А., Лукин Ю.И., Шатов Д.С. // Радиотехника и электроника. 2010. Т. 55. № 12. С. 1465–1470.

Поступила в редакцию 15.06.12.

им. акад. М.Ф. Решетнёва, г. Красноярск, Россия

E-mail: rsd@ksc.krasn.ru

^{*}Институт физики им. Л.В. Киренского СО РАН, г. Красноярск, Россия **Омский государственный педагогический университет, г. Омск, Россия

^{***}Сибирский государственный аэрокосмический университет

Миронов Валерий Леонидович, д.ф.-м.н., чл.-кор. РАН;

Бобров Павел Петрович, д.ф.-м.н., профессор;

Фомин Сергей Викторович, мл. науч. сотр.;

Каравайский Андрей Юрьевич, аспирант.