

В. В. Слабко, А. С. Ципотан, А. С. Александровский, Квантовая электроника, 2013, том 43, номер 5, 458–462

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 84.237.90.20 20 ноября 2020 г., 16:29:21

PACS 78.67. -n

Управляемая внешним квазирезонансным полем самоорганизованная агрегация пары частиц с разными резонансными частотами и электродипольными моментами переходов^{*}

В.В.Слабко, А.С.Ципотан, А.С.Александровский

Рассмотрено влияние фаз колебаний наведенных внешним лазерным полем дипольных моментов наночастиц металла и квантовых точек на энергию их взаимодействия. Показано, что различие в резонансных частотах приводит к возникновению дополнительных минимумов и максимумов, отсутствующих в спектральной зависимости энергии взаимодействия идентичных частиц при аналогичных ориентациях пары частиц относительно плоскости поляризации излучения. Последнее связано с достижением разностью фаз колебаний наведенных дипольных моментов частиц величин, близких к **л**.

Ключевые слова: взаимодействие лазерного излучения с веществом, дипольное взаимодействие, наночастицы, наноструктуры.

1. Введение

В последние годы все возрастающий интерес исследователей вызывает задача формирования наноструктур, обладающих определенными и заранее заданными свойствами. При этом особо привлекательными являются процессы самоорганизации, широко распространенные в живой природе, позволяющие ей, без использования каких-либо технологических приемов формировать очень сложные функциональные структуры. В настоящее время делаются достаточно успешные шаги в этом перспективном для нанонауки направлении [1-3]. Однако методы самоорганизации не всегда позволяют получить структуры с требуемыми и воспроизводимыми свойствами. Одним из способов решения этой проблемы является применение внешних физических воздействий для управляемой самоорганизации частиц. Метод формирования структур с заранее заданной геометрией из металлических наночастиц, обладающих резонансами в оптическом диапазоне, под действием лазерного излучения был предложен в работе [4]. Воздействие лазерного излучения на микрообъекты вызывает их поляризацию, которая является причиной взаимодействия частицы как с внешним полем, что позволяет формировать структуры с размерами порядка длины волны излучения [5-8], так и с другими частицами. В последнем случае возможно формирование структур с размерами, много меньшими длины волны лазерного излучения, вызывающего эту поляризацию. Наличие

^{*}Доложена на конф. «Оптика лазеров», Россия, С.-Петербург, июнь 2012 г.

оптических резонансов частицы приводит к усилению межчастичного взаимодействия и является основой для селективного формирования различных структур с заранее заданным положением частиц в агрегате.

В большинстве работ, посвященных взаимодействию частиц под действием электромагнитного поля, в качестве объектов рассматриваются атомы с частотой перехода, близкой к частоте лазерного излучения [9–11]. Однако в последнее время все большее внимание ученых привлекает взаимодействие наночастиц как с полем, так и с другими частицами. Так, в работе [12] рассматриваются квантовые эффекты, возникающие при взаимодействии квадрупольных моментов, наведенных на нейтральной частице, и внешнего электрического поля. Достаточно подробно изучено возникновение узких коллективных плазмонных резонансов в спектрах пропускания одно- и двумерных массивов металлических наночастиц при их дипольном взаимодействии [13].

В нашей работе [14] в диполь-дипольном приближении было изучено взаимодействие металлических и полупроводниковых наночастиц (квантовых точек) с различающимися резонансными частотами и ширинами линий поглощения. В отличие от пары металлических частиц [4], обнаружено возникновение дополнительных минимумов в спектральной зависимости энергии взаимодействия, появление которых может быть связано с фазовыми соотношениями колебаний наведенных дипольных моментов отдельных частиц.

Настоящая работа посвящена исследованию влияния фаз колебаний наведенных внешним полем дипольных моментов пары частиц на энергию их взаимодействия во внешнем световом поле.

2. Основные расчетные соотношения

Для описания процессов самоорганизованной агрегации частиц в поле лазерного излучения может быть использована следующая физическая модель [4, 14]. Если частицы находятся в поле лазерного излучения и в термо-

В.В.Слабко, А.С.Ципотан, А.С.Александровский. Институт инженерной физики и радиоэлектроники Сибирского федерального университета, Россия, 660074 Красноярск, ул. Киренского 28; e-mail: slabko@iph.krasn.ru, CipotanA@mail.ru, aleksandrovsky@kirensky.ru

Поступила в редакцию 5 октября 2012 г., после доработки – 5 апреля 2013 г.

динамическом равновесии со средой, в которую они помещены, то в результате броуновских блужданий эти частицы оказываются достаточно близко друг к другу, и взаимодействие наведенных на них осциллирующих дипольных моментов начинает существенно влиять на характер их движения. При этом энергия электродинамического взаимодействия частиц может превышать энергию теплового движения kT и энергию барьера, препятствующего неконтролируемой агрегации, что приводит к агрегации с образованием наноструктур в заданной внешним полем конфигурации.

Рассмотрим ансамбль, состоящий из N частиц, находящихся в точках с координатами r_i и взаимодействующих друг с другом посредством наведенной внешним световым полем поляризации, в приближении диполь-дипольного взаимодействия. Будем полагать, что размеры ансамбля много меньше длины волны падающего излучения, что позволяет считать внешнее поле E для всего ансамбля однородным и не учитывать эффекты запаздывания. Тогда вектор электрической компоненты поля световой волны представим в виде гармонической функции, зависящей только от времени:

$$E = \frac{1}{2}E_0 \exp(i\omega t) +$$
компл. сопр.

Вблизи каждой частицы учет вклада всех остальных частиц в локальное поле должен выполняться путем суммирования полей диполей, наведенных на всех частицах. В этом случае вектор дипольного момента с частотой ω , наведенного на *i*-й частице, имеет вид

$$\boldsymbol{d}_{i} = \boldsymbol{\chi}_{0i} \Big(\boldsymbol{E} + \sum_{j \neq i} \boldsymbol{E}_{j} \Big), \tag{1}$$

где $\chi_{0i} = |d_{12i}|^2 / [\hbar(\Omega_i + i\Gamma_i)] -$ линейная поляризуемость изолированной частицы в принятой нами двухуровневой схеме; $|d_{12i}|^2$ – квадрат модуля электродипольного момента перехода *i*-й частицы между состояниями 1 и 2; $\Omega_i = \omega_{0i} - \omega$ – отстройка от резонанса; \hbar – постоянная Планка; Γ_i – однородная ширина линии;

$$E_{j} = \frac{3(d_{j}r_{ij})r_{ij} - d_{j}r_{ij}^{2}}{r_{ij}^{5}}$$
(2)

– поле, создаваемое *j*-й частицей ансамбля в точке расположения *i*-й частицы [15, 16]; $r_{ij} = r_i - r_j$ – расстояние между *i*-й и *j*-й частицами.

Энергия взаимодействия *i*-го и *j*-го диполей

$$W_{d_{ij}} = \frac{(d_i d_j) r_{ij}^2 - 3(d_i r_{ij})(d_j r_{ij})}{r_{ij}^5}.$$
(3)

Таким образом, рассчитать энергию взаимодействия между частицами можно, решив систему из N уравнений относительно дипольных моментов каждой частицы, определяемых выражением (1).

Рассмотрим два простейших случая – взаимодействие серебряной и полупроводниковой частиц с разными частотами и ширинами переходов и двух серебряных наночастиц, частоты переходов которых совпадают. Пусть напряженность внешнего светового поля направлена под углом α к прямой, соединяющей центры двух частиц и параллельной оси *х*. Согласно (1), (2) получим систему уравнений для нахождения проекций дипольных моментов d_{ix} и d_{iy} частиц на оси *x* и *y*:

$$d_{1x} = \chi_{01} \Big(E \cos \alpha + \frac{2d_{2x}}{r_{12}^3} \Big), \quad d_{1y} = \chi_{01} \Big(E \sin \alpha - \frac{2d_{2y}}{r_{12}^3} \Big), \quad (4)$$
$$d_{2x} = \chi_{02} \Big(E \cos \alpha + \frac{2d_{1x}}{r_{12}^3} \Big), \quad d_{2y} = \chi_{02} \Big(E \sin \alpha - \frac{2d_{1y}}{r_{12}^3} \Big),$$

где *r*₁₂ – расстояние между центрами частиц.

Решения системы (4) с учетом зависимости линейной поляризуемости изолированной частицы от квадрата модуля электродипольного момента перехода, отстройки от резонанса и ширины линии поглощения имеют следующий вид:

$$d_{1x} = r_{12}^3 E\omega_{\rm s1} \cos\alpha$$

$$\times \left[\frac{(\Omega_{2} + 2\omega_{s2})(\Omega_{1}\Omega_{2} - \Gamma_{1}\Gamma_{2} - 4\omega_{s1}\omega_{s2}) + \Gamma_{2}(\Omega_{1}\Gamma_{2} + \Omega_{2}\Gamma_{1})}{(\Omega_{1}\Omega_{2} - \Gamma_{1}\Gamma_{2} - 4\omega_{s1}\omega_{s2})^{2} + (\Omega_{1}\Gamma_{2} + \Omega_{2}\Gamma_{1})^{2}} + i \frac{\Gamma_{2}(\Omega_{1}\Omega_{2} - \Gamma_{1}\Gamma_{2} - 4\omega_{s1}\omega_{s2}) - (\Omega_{2} + 2\omega_{s2})(\Omega_{1}\Gamma_{2} + \Omega_{2}\Gamma_{1})}{(\Omega_{1}\Omega_{2} - \Gamma_{1}\Gamma_{2} - 4\omega_{s1}\omega_{s2})^{2} + (\Omega_{1}\Gamma_{2} + \Omega_{2}\Gamma_{1})^{2}} \right]$$

 $\times \exp(i\omega t)$ + компл. сопр.,

$$d_{1y} = r_{12}^3 E \omega_{s1} \sin \alpha$$

$$\times \left[\frac{(\Omega_2 - \omega_{s2})(\Omega_1 \Omega_2 - \Gamma_1 \Gamma_2 - \omega_{s1} \omega_{s2}) + \Gamma_2(\Omega_1 \Gamma_2 + \Omega_2 \Gamma_1)}{(\Omega_1 \Omega_2 - \Gamma_1 \Gamma_2 - \omega_{s1} \omega_{s2})^2 + (\Omega_1 \Gamma_2 + \Omega_2 \Gamma_1)^2} \right]$$

$$+ i \frac{\Gamma_2(\Omega_1 \Omega_2 - \Gamma_1 \Gamma_2 - \omega_{s1} \omega_{s2}) - (\Omega_2 - \omega_{s2})(\Omega_1 \Gamma_2 + \Omega_2 \Gamma_1)}{(\Omega_1 \Omega_2 - \Gamma_1 \Gamma_2 - \omega_{s1} \omega_{s2})^2 + (\Omega_1 \Gamma_2 + \Omega_2 \Gamma_1)^2} \right]$$

 $\times \exp(i\omega t)$ + компл. сопр.,

 $d_{2x} = r_{12}^3 E \omega_{s2} \cos \alpha$

$$\times \left[\frac{(\Omega_1 + 2\omega_{s1})(\Omega_1\Omega_2 - \Gamma_1\Gamma_2 - 4\omega_{s1}\omega_{s2}) + \Gamma_1(\Omega_1\Gamma_2 + \Omega_2\Gamma_1)}{(\Omega_1\Omega_2 - \Gamma_1\Gamma_2 - 4\omega_{s1}\omega_{s2})^2 + (\Omega_1\Gamma_2 + \Omega_2\Gamma_1)^2} \right. \\ \left. + i \frac{\Gamma_1(\Omega_1\Omega_2 - \Gamma_1\Gamma_2 - 4\omega_{s1}\omega_{s2}) - (\Omega_1 + 2\omega_{s1})(\Omega_1\Gamma_2 + \Omega_2\Gamma_1)}{(\Omega_1\Omega_2 - \Gamma_1\Gamma_2 - 4\omega_{s1}\omega_{s2})^2 + (\Omega_1\Gamma_2 + \Omega_2\Gamma_1)^2} \right]$$

 $\times \exp(i\omega t)$ + компл. сопр.,

$$d_{2y} = r_{12}^3 E \omega_{s2} \sin \alpha$$

$$\times \left[\frac{(\Omega_1 - \omega_{s1})(\Omega_1 \Omega_2 - \Gamma_1 \Gamma_2 - \omega_{s1} \omega_{s2}) + \Gamma_1(\Omega_1 \Gamma_2 + \Omega_2 \Gamma_1)}{(\Omega_1 \Omega_2 - \Gamma_1 \Gamma_2 - \omega_{s1} \omega_{s2})^2 + (\Omega_1 \Gamma_2 + \Omega_2 \Gamma_1)^2} \right]$$

$$+ i \frac{\Gamma_1(\Omega_1 \Omega_2 - \Gamma_1 \Gamma_2 - \omega_{s1} \omega_{s2}) - (\Omega_1 - \omega_{s1})(\Omega_1 \Gamma_2 + \Omega_2 \Gamma_1)}{(\Omega_1 \Omega_2 - \Gamma_1 \Gamma_2 - \omega_{s1} \omega_{s2})^2 + (\Omega_1 \Gamma_2 + \Omega_2 \Gamma_1)^2} \right]$$

 $\times \exp(i\omega t)$ + компл. сопр.,

где $\omega_{si} = |d_{12i}|^2 / (\hbar r_{12}^3)$ – частотный сдвиг резонанса *i*-й частицы за счет взаимодействия с соседней частицей.

Выражение для энергии диполь-дипольного взаимодействия частиц удобно представить в виде, содержащем амплитуды и фазы наведенных дипольных моментов каждой из частиц. Тогда выражение (3) после усреднения по времени примет вид

$$W_{d} = \frac{|d_{1y}||d_{2y}|\cos(\varphi_{1y} - \varphi_{2y})\sin^{2}\alpha - 3|d_{1x}||d_{2x}|\cos(\varphi_{1x} - \varphi_{2x})\cos^{2}\alpha}{4r_{12}^{3}}, (6)$$

где $|d_{1y}|$, $|d_{2y}|$ и $|d_{1x}|$ $|d_{2x}|$ – модули, а φ_{1y} , φ_{2y} и φ_{1x} , φ_{2x} – фазы *y*- и *x*-компонент дипольных моментов первой и второй частиц, усредненных по времени соответственно.

Выражения для фаз дипольных моментов с использованием формулы (5) можно представить в виде

$$\varphi_{1x} = \arctan \frac{\Gamma_2(\Omega_1 \Omega_2 - \Gamma_1 \Gamma_2 - 4\omega_{s1}\omega_{s2}) - (\Omega_2 + 2\omega_{s2})(\Omega_1 \Gamma_2 + \Omega_2 \Gamma_1)}{(\Omega_2 + 2\omega_{s2})(\Omega_1 \Omega_2 - \Gamma_1 \Gamma_2 - 4\omega_{s1}\omega_{s2}) + \Gamma_2(\Omega_1 \Gamma_2 + \Omega_2 \Gamma_1)},$$

$$\arctan \frac{\Gamma_1(\Omega_1\Omega_2 - \Gamma_1\Gamma_2 - 4\omega_{s1}\omega_{s2}) - (\Omega_1 + 2\omega_{s1})(\Omega_1\Gamma_2 + \Omega_2\Gamma_1)}{(\Omega_1 + 2\omega_{s1})(\Omega_1\Omega_2 - \Gamma_1\Gamma_2 - 4\omega_{s1}\omega_{s2}) + \Gamma_1(\Omega_1\Gamma_2 + \Omega_2\Gamma_1)},$$
(7)

$$\varphi_{1y} =$$

 $\arctan\frac{\Gamma_2(\Omega_1\Omega_2 - \Gamma_1\Gamma_2 - \omega_{s1}\omega_{s2}) - (\Omega_2 - \omega_{s2})(\Omega_1\Gamma_2 + \Omega_2\Gamma_1)}{(\Omega_2 - \omega_{s2})(\Omega_1\Omega_2 - \Gamma_1\Gamma_2 - \omega_{s1}\omega_{s2}) + \Gamma_2(\Omega_1\Gamma_2 + \Omega_2\Gamma_1)},$

$$\varphi_{2v} =$$

 $\varphi_{2x} =$

 $\arctan \frac{\Gamma_1(\Omega_1\Omega_2 - \Gamma_1\Gamma_2 - \omega_{s1}\omega_{s2}) - (\Omega_1 - \omega_{s1})(\Omega_1\Gamma_2 + \Omega_2\Gamma_1)}{(\Omega_1 - \omega_{s1})(\Omega_1\Omega_2 - \Gamma_1\Gamma_2 - \omega_{s1}\omega_{s2}) + \Gamma_1(\Omega_1\Gamma_2 + \Omega_2\Gamma_1)}.$

В дальнейшем в расчетах будем пользоваться следующими параметрами рассматриваемых частиц. Для наночастиц серебра радиусом r = 6 нм характерными являются максимум поглощения (резонанса) при $\lambda_r = 420$ нм, однородная ширина линии (на полувысоте) $\Delta \lambda = 90$ нм и квадрат модуля электродипольного момента перехода $|d_{12}|^2 = 3.12 \times 10^{-30}$ эрг·см³ [14, 16]. Значения аналогичных величин для квантовой точки CdSe, полученные с использованием данных [17, 18], таковы: r = 5 нм, $\lambda_r = 620$ нм, $\Delta \lambda = 3$ нм, $|d_{12}|^2 = 1.91 \times 10^{-31}$ эрг·см³.

3. Результаты расчетов

Случай взаимодействия двух одинаковых металлических частиц, описанный в работе [4], аналогичен взаимодействию двух постоянных дипольных моментов (рис.1).

Для пары одинаковых частиц согласно выражению (7) разность фаз колебаний для всех длин волн внешнего поля будет одинакова и равна нулю. Тогда, если плоскость поляризации внешнего поля параллельна линии, соединяющей центры частиц (рис.1, δ), т.е. угол $\alpha = 0$, в выражении (6) первое слагаемое становится равным нулю, а второе – отрицательным. Это означает, что в спектре

Рис.1. Электрическое взаимодействие наведенных диполей при ортогональном (*a*) и коллинеарном (*б*) направлениях поля к парам частиц.

энергии взаимодействия образуется потенциальная яма и, как следствие, возникает притяжение между частицами. Если же плоскость поляризации перпендикулярна линии, соединяющей частицы, т. е. угол α = 90°, второе слагаемое в (6) становится равным нулю, а первое – положительным, тогда в спектре энергии взаимодействия образуется максимум, и частицы отталкиваются (рис.1,*a*). Эти рассуждения справедливы только в том случае, если косинус разности фаз для всех длин волн внешнего поля остается положительным. Для пары металлических частиц [4] разность фаз колебаний дипольных моментов для всех длин волн равна нулю.

Если дипольные моменты перехода, ширины линий или резонансные частоты частиц различны, фазы колебаний дипольных моментов в соответствии с (7) будут различаться. Поэтому может возникнуть ситуация, когда разность фаз будет отлична от нуля и к тому же больше $\pi/2$, что приведет к возникновению дополнительных минимумов или максимумов в спектре энергии взаимодействия [14].

Рассмотрим два простейших случая. В первом случае возьмем две одинаковые металлические частицы, а во втором – металлическую и полупроводниковую с параметрами, указанными выше, и расстоянием между центрами r_{12} , равным сумме радиусов частиц.

Схема расчетов соответствует взаимному расположению частиц и плоскости поляризации поля, показанному на рис.2, a. На рис.2, δ и e приведены расчетные значения энергии диполь-дипольного взаимодействия пар частиц, отнесенной к энергии теплового движения, в зависимости от угла α и длины волны внешнего поля. Были выбраны следующие значения входящих в уравнения величин: внешнее поле E = 200 ед. СГС, температура T = 300 К.

Из рис.2, б и в видно, что в случае взаимодействия частиц с различающимися резонансными частотами, ширинами линий и дипольными моментами перехода возникают дополнительные минимумы и максимумы в спектре энергии взаимодействия, связанные с отличием разности фаз колебаний дипольных моментов от нуля. При угле $\alpha = 0$ в случае взаимодействия металлической и полупроводниковой частиц возникновение максимума связано со сдвигом фаз колебаний дипольных моментов, когда в области длин волн 300-400 нм косинус разности фаз имеет отрицательный знак. Таким образом, второе слагаемое в выражении (6) становится положительным, и возникает отталкивание между частицами. При угле $\alpha = 90^{\circ}$ появляется минимум в области ~630 нм, означающий притяжение частиц и нехарактерный для подобной взаимной ориентации пары металлических частиц и плоскости поляризации внешнего поля.

Как следует из приведенных выше выражений, взаимодействие частиц вызывает смещение их резонансных частот. Кроме того, это взаимодействие также может влиять и на разность фаз колебаний дипольных моментов. Для примера проследим за фазами колебаний дипольных моментов пары полупроводниковых частиц с различающимися радиусами без учета и с учетом их взаимодействия. Известно, что резонансная длина волны [17] и дипольный момент перехода полупроводниковых частиц зависят от их радиуса. На рис.3 показаны рассчитанные фазы колебаний для *x*-компоненты поляризации полупроводниковых частиц радиусом 2.9 нм (сплошная кривая) и 5.4 нм (штриховая кривая) с резонансными длинами волн 508 и 768 нм соответственно.

Рис.2. Схема расчетов (*a*) и спектральные зависимости энергии диполь-дипольного взаимодействия двух металлических (сплошные кривые), а также металлической и полупроводниковой (штриховые кривые) частиц при угле $\alpha = 0$ (δ) и 90° (s).

На рис.3,*а* представлено известное поведение фаз колебаний дипольных моментов изолированных частиц для демонстрации влияния взаимодействия. При учете взаимодействия частиц с различающимися резонансными частотами и дипольными моментами переходов (рис.3, δ) особенности поведения фаз колебаний в диапазоне длин волн 440–580 нм приводят к возникновению дополнительного максимума в спектре энергии взаимодействия. Это происходит потому, что разность фаз достигает π , и дипольные моменты начинают колебаться в противофазе, а согласно рис.1,*а* это приводит к отталкиванию частиц. Аналогичная ситуация возникает и для фаз колебаний у-компоненты дипольных моментов (рис.4), когда разность фаз достигает π при $\lambda \sim 810$ нм, что приводит к возникновению потенциальной ямы.

Таким образом, различие в резонансных частотах частиц обуславливает возникновение сил отталкивания для *х*-компоненты дипольных моментов и сил притяжения для *у*-компоненты, что не характерно для стационарного взаимодействия дипольных моментов и частиц с совпадающими резонансами.

Рассмотрим влияние различия резонансных длин волн и электродипольных моментов перехода полупроводни-

Рис.3. Фазы колебаний дипольных моментов для *х*-компоненты поляризации в случае пары невзаимодействующих (*a*) и взаимодействующих (*б*) полупроводниковых частиц.

Рис.4. То же, что и на рис.3, для у-компоненты поляризации.

ковых частиц на глубину возникающей потенциальной ямы и на разности фаз колебаний дипольных моментов для их *у*-компоненты. Как известно, эти величины связаны с размерами квантовой точки. Зависимость резонансной длины волны от радиуса частицы может быть аппроксимирована на основе экспериментальных данных [17], а зависимость квадрата модуля электродипольного момента перехода от резонансной длины волны λ_0 может быть описана следующим выражением:

$$|d_{12}|^2 = \frac{3h\sigma c\lambda_0}{4\pi\Delta\lambda},\tag{8}$$

где $\sigma = 2.7 \times 10^{-19} \text{ см}^2$ – сечение поглощения [18].

На рис.5 показана зависимость глубины потенциальной ямы от разности длин волн для *у*-компоненты поля, возникающей из-за разности фаз колебаний наведенных дипольных моментов. Для первой частицы резонансная длина волны остается фиксированной, а для второй – изменяется.

Как видно из рис.5, с ростом разности резонансных длин волн, а также дипольных моментов переходов происходит увеличение глубины потенциальной ямы. Для интерпретации полученных данных на рис.6 приведена зависимость разности фаз от разности резонансных длин волн.

Согласно рис.6 и выражению (6) различие резонансных длин волн, ширин линий и электродипольных моментов переходов приводит, во-первых, к изменению знака косинуса разности фаз в (6) и возникновению притяжения между частицами, а во-вторых, для *у*-компоненты, к увеличению первого слагаемого в (6) за счет приближения

Рис.6. Зависимость разности фаз ϕ колебаний дипольных моментов от разности резонансных длин волн частиц $\lambda_{r_1} - \lambda_{r_2}$.

косинуса разности фаз к единице. Отметим, что разность фаз изменяется от нуля до значений, близких к π , при разности резонансных длин волн, примерно на порядок превышающей ширину резонансной линии $\Delta\lambda$.

4. Заключение

Таким образом, в настоящей работе рассмотрено принципиальное отличие взаимодействия наведенных внешним резонансным полем дипольных моментов частиц с различающимися резонансными длинами волн, электродипольными моментами переходов и ширинами линий от взаимодействия дипольных моментов идентичных частиц и частиц с постоянным дипольным моментом. Взаимодействие неидентичных наночастиц приводит не только к смещению резонансов изолированных частиц, но и к появлению особенностей в спектре разности фаз колебаний наведенных дипольных моментов. Последнее является причиной возникновения дополнительных минимумов и максимумов в спектре энергии взаимодействия.

Показано, что возникновение потенциальной ямы при угле $\alpha = 90^{\circ}$ обусловлено сдвигом фаз колебаний наведенных дипольных моментов частиц на величину, близкую к π .

Увеличение разности резонансных длин волн частиц приводит к увеличению глубины возникающей потенциальной ямы в спектральной зависимости энергии взаимодействия. При этом разность фаз колебаний, в зависимости от разности резонансных длин волн частиц, быстро увеличивается от нуля до величины, близкой к π , и в дальнейшем изменяется слабо.

Работа выполнена при поддержке ФЦП «Научные и научно-педагогические кадры инновационной России» (госконтракт № 16.740.11.0150 от 2.09.10 г., соглашение № 14.А18.21.1942 от 14.11.12 г.), темплана СФУ Ф-12, проектов РАН 24.29 и 24.31, ОФН РАН 3.9.5 и СО РАН 43 и 101.

- 1. Ролдугин В.И. Успехи химии, 73, 123 (2004).
- Pawlak D.A., Kolodziejak K., Turczynki S. Chem. Mater., 18, 2450 (2006).
- 3. Емельянов В.И. Квантовая электроника, 36, 489 (2006).
- Слабко В.В., Хачатрян Г.Г., Александровский А.С. Письма в ЖЭТФ, 84, 360 (2006).
- Миногин В.Г., Летохов В.С. Давление лазерного излучения (М.: Наука, 1986).
- Balykin V.I., Minogin V.G., Letokhov V.S. Rep. Prog. Phys., 63, 1429 (2000).
- 7. Kazantsev A.P., Krasnov I.V. J. Opt. Soc. Am. B, 6, 2140 (1989).
- Гаврилюк С.А., Краснов И.В., Полютов С.П. ЖЭТФ, 120, 1135 (2001).
- Жукова Н.И., Казанцев А.П., Казанцев Э.Ф., Сокожов В.П. ЖЭТФ, 76, 896 (1976).
- 10. Гадомский О.Н., Куницын А.С. ЖПС, **67**, 777 (2000).
- 11. Гадомский О.Н., Глухов А.Г. *Письма в ЖЭТФ*, **83**, 64 (2005).
- 12. Bakke K. Ann. Phys., 524, 338 (2012).
- Evlyukhin A.B., Reinhardt C., Zywietz U., Chichkov B.N. *Phys. Rev. B*, 85, 245411 (2012).
- Slabko V.V., Tsipotan A.S., Aleksandrovsky A.S. Photonics Nanostruct. Fundam. Appl., 10, 636 (2012).
- 15. Shalaev V.M. Phys. Rep., 272, 61 (1996).
- Карпов С.В., Слабко В.В. Оптические и фотофизические свойства фрактально-структурированных золей металлов (Новосибирск: изд-во СО РАН, 2003).
- Semiconductor Nanocrystal Quantum Dots. Ed. by A.L.Rogach (New York: Springer Wien, 2008).
- Alves-Santos M., Di Felice R., Goldoni G. J. Phys. Chem., 114, 3776 (2010).