

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(21)(22) Заявка: 2011110649/03, 21.03.2011

(24) Дата начала отсчета срока действия патента: **21.03.2011**

Приоритет(ы):

(22) Дата подачи заявки: 21.03.2011

(43) Дата публикации заявки: 27.09.2012 Бюл. № 27

(45) Опубликовано: 27.12.2012 Бюл. № 36

(56) Список документов, цитированных в отчете о поиске: Толпыгина Ирина, Спинтроника, [он лайн], Спинтроника аt Научные работы учащихся:: Дата выкладки на сайт февраль 2011, [найдено 21.02.2012] Найдено из Интернет <URL http://npk.gymn2.ru/physics/12/. ПЕТРАКОВСКИЙ Г. и др. Состояние спинового стекла в кристалле ферригерманата бария Ba₂Fe₂GeO₇. - Физика твердого (см. прод.)

Адрес для переписки:

660036, г.Красноярск, Академгородок, 50, стр.38, ИФ СО РАН, патентный отдел

(72) Автор(ы):

Петраковский Герман Антонович (RU), Дрокина Тамара Васильевна (RU), Великанов Дмитрий Анатольевич (RU), Шадрина Александра Леонидовна (RU), Молокеев Максим Сергеевич (RU), Степанов Геннадий Николаевич (RU)

(73) Патентообладатель(и):

Федеральное государственное бюджетное учреждение науки Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук (ИФ СО РАН) (RU)

刀

(54) СПОСОБ ПОЛУЧЕНИЯ САМАРИЙСОДЕРЖАЩЕГО СПИН-СТЕКОЛЬНОГО МАГНИТНОГО МАТЕРИАЛА

(57) Реферат:

C 5

တ

 ∞

0

4

 α

Изобретение относится к разработке новых материалов c магнитным состоянием спинового стекла - системы с вырожденным основным магнитным состоянием, которые могут быть полезны для химической, атомной промышленностей и развития магнитных технологий. Способ информационных получения самарийсодержащего стекольного магнитного материала включает приготовление шихты из выдержанных при температуре 105°C оксидов Fe_2O_3 , Sm_2O_3 и ТіО2, формирование таблеток под давлением около 10 кбар и их спекание методом твердотельной реакции. Спекание осуществляют в три этапа: на первом при температуре 1200°C в течение 24 час, на втором и третьем при температуре 1250°C в течение 24 часов, с нагревом печи со скоростью 150 град/час. После завершения каждого этапа синтеза таблетки вновь перетирают, прессуют и помещают в печь. Техническим результатом изобретения является получение материала, обладающего магнитным состоянием спинового стекла. 2 табл., 1 ил.

(56) (продолжение):

тела, 2006, т.48, № 10. RU 2318262 C1, 27.02.2008. RU 2101053 C1, 10.01.1998. JP 2005-239513 A, 08.09.2005. US 2004/0036571 A1, 26.02.2004.

(19) **RU**(11) **2 470 897**(13) **C2**

(51) Int. Cl.

CO4B 35/40 (2006.01) **H01L** 43/10 (2006.01)

FEDERAL SERVICE FOR INTELLECTUAL PROPERTY

(12) ABSTRACT OF INVENTION

(21)(22) Application: 2011110649/03, 21.03.2011

(24) Effective date for property rights: **21.03.2011**

Priority:

(22) Date of filing: 21.03.2011

(43) Application published: **27.09.2012** Bull. 27

(45) Date of publication: 27.12.2012 Bull. 36

Mail address:

660036, g.Krasnojarsk, Akademgorodok, 50, str.38, IF SO RAN, patentnyj otdel

(72) Inventor(s):

Petrakovskij German Antonovich (RU), Drokina Tamara Vasil'evna (RU), Velikanov Dmitrij Anatol'evich (RU), Shadrina Aleksandra Leonidovna (RU), Molokeev Maksim Sergeevich (RU), Stepanov Gennadij Nikolaevich (RU)

(73) Proprietor(s):

Federal'noe gosudarstvennoe bjudzhetnoe uchrezhdenie nauki Institut fiziki im. L.V. Kirenskogo Sibirskogo otdelenija Rossijskoj akademii nauk (IF SO RAN) (RU)

(54) METHOD OF PRODUCING SAMARIUM-CONTAINING MAGNETIC SPIN GLASS MATERIAL

(57) Abstract:

FIELD: chemistry.

SUBSTANCE: invention relates to production of novel materials with a spin glass magnetic state - systems with a singular ground magnetic state, which can be useful in chemical and nuclear industry and for development of magnetic information technology. The method of producing samarium-containing magnetic spin glass magnetic material involves preparation of a mixture from Fe₂O₃, Sm₂O₃ and TiO₂ held at temperature of 105°C, moulding pellets

under pressure of about 10 kbar and sintering said pellets using a solid-state reaction technique. Sintering is carried out in three steps: at the first step at temperature of 1200°C for 24 hours, at the second and third steps at temperature of 1250°C for 24 hours, while heating the furnace at a rate of 150 degrees per hour. After each synthesis step, the pellets are once more milled, pressed and put into the furnace.

 ∞

ဖ

റ

EFFECT: obtaining material with a spin glass magnetic state.

2 tbl, 1 dwg

2470897 C2

2

Изобретение относится к разработке способа получения нового материала с магнитным состоянием спинового стекла - системы с вырожденным магнитным состоянием, которые могут быть полезны для химической промышленности и развития магнитных информационных технологий, а содержание в материале самария, поглощающего нейтроны, делает его полезным материалом атомной техники.

Известно монокристаллическое соединение $CuGa_2O_4$ [G.A.Petrakovskii, K.S.Aleksandrov, L.N.Bezmaternikh, S.S.Aplesnin, B.Roesli, F.Semadeni, A.Amato, C.Baines, J.Bartolome, M.Evangelisti. Spin-glass state in $CuGa_2O_4$. Phys. Rev. B, 63, 184425 (2001)] с "замороженным" пространственным распределением ориентации спиновых магнитных моментов системы магнитных ионов в области низких температур, называемого состоянием спинового стекла, синтезированного из раствора в расплаве

Это соединение характеризуется сложностью технологического процесса изготовления монокристаллического соединения, является трехэлементным, не содержит редкоземельных ионов, что обедняет понимание физики состояния спинового стекла и потенциальных применений.

Известно четырехкомпонентное оксидное соединение - монокристалл ферригерманат бария (Ba₂Fe₂GeO₇), проявляющее магнитное состояние спинового стекла [Г.Петраковский, Л.Безматерных, И.Гудим, О.Баюков, А.Воротынов, А.Бовина, Р.Шимчак, М.Баран, К.Риттер. ФТТ, т.48, №10 (2006)], выращен методом раствор-расплавной кристаллизации.

К недостаткам можно отнести сложность технологического процесса синтеза монокристаллического соединения, а также низкую величину намагниченности.

Наиболее близким к заявленному изобретению по технической сущности является способ синтеза керамического соединения $SmFeGe_2O_7$ с состоянием спинового стекла [Толпыгина И. Спинтроника. Научные работы учащихся (http://npk.gvmn2.ru./physics/12/] (прототип), использующий твердотельную реакцию из исходных окислов Fe_2O_3 , Sm_2O_3 и TiO_2 , выдержанных при температуре $105^{\circ}C$.

Техническим результатом изобретения является разработка способа получения поликристаллического четырехкомпонентного магнитного материала с состоянием спинового стекла.

Технический результат достигается тем, что в способе получения самарий-содержащего спин-стекольного магнитного материала, включающем приготовление шихты из выдержанных при температуре 105° С оксидов Fe_2O_3 , Sm_2O_3 и TiO_2 , формирование таблеток и их спекание методом твердотельной реакции, новым является то, что таблетки формируют под давлением около 10 кбар, отжиг осуществляют в три этапа: на первом при температуре 1200° С в течении 24 час, на втором и третьем при температуре 1250° С в течении 24 час, с нагревом печи со скоростью 150 град/час, причем после завершения каждого этапа синтеза таблетки вновь перетирают, прессуют и помещают в печь.

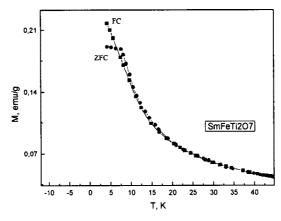
Признаки, отличающие заявляемое решение от прототипа, не выявлены при изучении данной и смежных областей техники и, следовательно, обеспечивают заявляемому техническому решению соответствие критериям «новизна» и «изобретательский уровень».

Способ получения спин-стекольного материала (SmFeTi₂O₇) представляет собой синтез реакцией в твердой фазе с участием окислов: Fe_2O_3 (10,23 вес.%), Sm_2O_3 (48,81 вес.%) и TiO_2 (40,96 вес.%), которые перед развеской высушиваются в течении 6 часов при температуре 105° С. Шихта составляется с учетом фактического содержания основного вещества в материале.

Исходные соединения, составляющие шихту, смешиваются и перетираются вручную пестиком в ступке с добавлением этилового спирта. Из приготовленной шихты с помощью пресс-формы формируются таблетки под давлением около 10 кбар с диаметром 10 мм и толщиной 1,5-2,0 мм. Таблетки помещаются в алундовый тигель и отжигаются в печи. Нагрев печи, регулируемый программным регулятором, осуществляется со скоростью 150 град/час. Температура в печи измеряется с помощью термопар (платино-платино-родиевые) с точностью 0,1°С. Перепад температур в рабочей области не превышает 5°С. Охлаждение печи происходит естественным путем. Отжиг проводится в три этапа (табл.1). После завершения каждого этапа синтеза таблетки вновь перетираются, прессуются и снова помещаются в печь.

			Таблица 1				
	Режим температурной обработки технологического процесса изготовления поликристаллического SmFeTi $_2$ O $_7$						
15	№ отжига	Температура отжига, °С	Длительность отжига, час.				
	1	1200	24				
	2	1250	24				
	3	1250	24				

Химический и фазовый состав образцов контролируется методом рентгеноструктурного анализа, а также с помощью оптического микроскопа (табл.2).


							Таблица 2		
25	Содержание элементов в самарий-содержащем спин-стекольном материале								
	Вещество	Кристаллическая решетка	Содержание элементов, ат.%						
	Самарий- содержащий цирконолит	Орторомбическая, пространственная группа Pcnb	Sm 9,09	Fe 9,09	Ti 18.18	O 63,64	Примеси		

Полученный материал - SmFeTi₂O₇ обладает магнитным состоянием спинового стекла. Состояние спинового стекла в SmFeTi₂O₇ с температурой замерзания T_f =7 К подтверждают измерения температурной зависимости магнитного момента (фиг.1), где показано, что намагниченность образца зависит от термической предыстории (охлаждение образца в магнитном поле H=0,05 T (FC) и без поля H=0 (ZFC)).

Способ получения материала, отвечающего формуле SmFeTi207, расширяет возможности синтеза материалов с магнитным состоянием спинового стекла.

Формула изобретения

Способ получения самарийсодержащего спин-стекольного магнитного материала, включающий приготовление шихты из выдержанных при температуре 105°C оксидов Fe₂O₃, Sm₂O₃ и TiO₂, формирование таблеток и их спекание методом твердотельной реакции, отличающийся тем, что таблетки формируют под давлением около 10 кбар, отжиг осуществляют в три этапа: на первом при температуре 1200°C в течение 24 ч, на втором и третьем при температуре 1250°C в течение 24 ч, с нагревом печи со скоростью 150 град/ч, причем после завершения каждого этапа синтеза таблетки вновь перетирают, прессуют и помещают в печь.

Фиг.1