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Abstract The free induction decay (FID) of the transverse magnetization in a

dipolar-coupled rigid lattice is a fundamental problem in magnetic resonance and in

the theory of many-body systems. As it was shown earlier the FID shapes for the

systems of classical magnetic moments and for quantum nuclear spin ones coincide

if there are many nearly equivalent nearest neighbors n in a solid lattice. In this

paper, we reduce a multispin density matrix of above system to a two-spin matrix.

Then we obtain analytic expressions for the mutual information and the quantum

and classical parts of correlations at the arbitrary spin quantum number S, in the

high-temperature approximation. The time dependence of these functions is

expressed via the derivative of the FID shape. To extract classical correlations for

S [ 1/2 we provide generalized POVM measurement (positive-operator-valued

measure) using the basis of spin coherent states. We show that in every pair of spins

the portion of quantum correlations changes from 1/2 to 1/(S ? 1) when S is

growing up, and quantum properties disappear completely only if S ? ?.

1 Introduction

Nuclear spin systems observed by nuclear magnetic resonance (NMR) really for a

long time and yet now are performing a suitable laboratory for studying the physics

of nonequilibrium processes in quantum many-body systems. Some of the most of

fundamental lines of that type activities are the emergence and growth of

correlations, spin dynamics and so on [1]. Quite recently applications of the NMR
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spin dynamics to investigate quantum information processing were initiated [2]. It is

usually assumed that the quantum correlation existing both at low and at high

temperatures influence the performance speed of quantum computer [3]. In this

regard, the interest of researchers has shifted from the calculation of the correlation

function as a whole to their partitioning into quantum and classical parts (e.g. see

the review [3]). On the other hand different time correlation functions determine

observed NMR signals in conventional NMR [1]. However, their decomposition in

quantum and classical components has not been done yet. In the present article it

will be done for one of the most significant NMR time correlation function, namely,

for the free induction decay (FID) function.

The FID shape links to the shape of NMR absorption line via Fourier transform

[1]. In the many-body spin systems of solids, the calculation of the time correlation

functions is a very challenging problem and different approaches to it solutions have

been widely discussed. In light of the above, we point the works [4, 5]. In the article

[4], the numerical simulation has been used to derive FID curves for a simple cubic

lattice with 216 classical magnetic moments (classical spins) coupled by dipole–

dipole interaction. It was found that the calculated FID shape close to the FID shape

of fluorine nuclei (nuclear spin S = 1/2) which was experimentally measured in

CaF2 [6].

In Ref. [5] we explained this result. We showed that the time dependence of FID

for the system consisting of quantum spins and one formed by classical magnetic

moments l ¼ c�h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SðSþ 1Þ
p

coincides in a limit of a large number of the equivalent

nearest neighbors surrounding a probe spin (anyone spin) in a lattice. The deduction

has been made on the basis of the analysis of various contributions to the spectral

moments of all orders of NMR spectrum. Actually in Ref [5], we demonstrated that

if the number of the rather equivalent nearest neighbors for any spin is large enough,

then the moment terms with maximum number of the summing indexes on the

lattice are carrying the principal contributions to the arbitrary NMR spectral

moment. Referred above contributions coincide exactly for classical and quantum

spin systems. So it works for ordinary regular three-dimensional lattices (e.g. simple

cubic one). Comparison of the values of the exact spectral moments from M4 to M8,

performed in Ref. [5] also revealed insignificant discrepancies between results for

the systems of quantum and classical spins.

It is interesting to calculate share of quantum correlations under these conditions.

One of the approaches to solve the problem of clearing quantum effects (quantum

correlations) consists of the reduction of the multispin density matrix to the two-spin

matrix with the subsequent analysis of pair correlations [3]. Thus, such approach is

applied to the description of one-dimensional XY chain in Refs. [7, 8], and also, in

Ref. [9], to investigation of spins in nanopore with equal dipolar interaction between

any two spins. In both cases, only nuclei with a spin quantum number S = 1/2 were

studied. In the present work we consider lattices formed by nuclei with an arbitrary

spin S. Any disturbing quadrupole effects are neglected. We will provide a reduction

of the multispin density matrix to a two-spin matrix. Then, following the program

put forward in Ref. [10], we are going to calculate shares of quantum and classical

correlations: for S = 1/2 we shall use the von Neumann orthogonal measurement,
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whereas for S [ 1/2 we shall provide generalized POVM measurement (positive-

operator-valued measure) [3, 11] using the basis of spin coherent states (SCS) [12].

2 Hamiltonian and Dynamics

In traditional experiments employing NMR, the spin temperature considerably

exceeds the energy of the Zeeman and other interactions in the spin system. As a

consequence, polarization is very small for nuclear spin in the strong static magnetic

field at room temperature T, b ¼ �hx0=kT � 10�5 � 1 (x0 is the Larmor

frequency), and the equilibrium density matrix has the form [1]:

q̂eq ¼ ð1þ bŜzÞ=Z; ð1Þ

where Z is the partition function, Ŝa ¼
P

j Ŝja, Ŝja is the a-component (a = x, y, z) of

the spin j, and the external magnetic field H0 is directed along the z-axis. As well

known [1] for observation of a FID signal it is preliminary necessary to prepare the

spin system using the pulse of the radio-frequency magnetic field causing rotation of

spins at p/2-angle around the y-axis of the rotating with the Larmor frequency

reference frame. So we get

q̂ð0Þ ¼ Ŷ q̂eqŶ�1 ¼ ð1þ bŜxÞ=Z:

This initial density matrix evolves in time as

q̂ðtÞ ¼ ÛðtÞq̂ð0ÞÛ�1ðtÞ ¼ ½1þ bÛðtÞŜxÛ�1ðtÞ�=Z ¼ ½1þ bDq̂ðtÞ�=Z; ð2Þ

where ÛðtÞ ¼ expð�iĤt=�hÞ is the operator of evolution with the Hamiltonian Ĥ. An

observable signal of FID is proportional to time correlation function:

FðtÞ ¼ TrfŜxq̂ðtÞg
TrfŜxq̂ð0Þg

ð3Þ

and it links to the shape of NMR absorption line via the Fourier transform.

In nonmetallic diamagnetic solids a principal cause of the absorption NMR line

broadening is a secular part of dipole–dipole interaction between nuclear spins [1]:

Ĥd ¼
X

i 6¼j

bijŜziŜzj þ
X

i 6¼j

aijðŜxiŜxj þ ŜyiŜyjÞ ¼ Ĥzz þ Ĥff ; ð4Þ

where, bij ¼ c2�hð1� 3 cos2 hijÞ=2r3
ij, aij ¼ �bij=2, r~ij is the vector connecting spins i

and j, hij is the angle, formed by vector r~ij with the static external magnetic field.

From here on, energy is expressed in frequency unities (�h ¼ 1). So this interaction

completely specifies the dynamics of the nuclear spin system.

Interaction between transversal spin components does not allow writing an

explicit time dependence of the density matrix. In this situation for finding the

appropriate form of the density matrix, we shall decompose it over the complete

system of orthogonal operators [k) following the line outlined in Ref. [13–15]. In

this representation,
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ŜxðtÞ ¼ ÛðtÞŜxÛ�1ðtÞ ¼
X

1

k¼0

AkðtÞ k½ Þ: ð5Þ

The initial operator 0½ Þ ¼ Ŝx. Each subsequent operator of the basis is obtained

from the previous one after the procedure of commutation with the Hamiltonian

according to the recursion relations:

1½ Þ ¼ i Ĥd; 0½ Þ
� �

; k þ 1½ Þ ¼ i Ĥd; k½ Þ
� �

þ m2
k�1 k � 1½ Þ ðif k� 1Þ;

m2
k ¼ Tr k þ 1½ Þþ k þ 1½ Þ

� ��

Tr k½ Þþ k½ Þ
� �

:

where [k)? is Hermitian adjoint to [k). For amplitudes Ak (t) the system of the

differential equations [13, 14] has been revealed

_A0ðtÞ ¼ m2
0A1ðtÞ; _AkðtÞ ¼ Ak�1ðtÞ � m2

kAkþ1ðtÞ ðif k� 1Þ: ð6Þ
To avoid confusion, a certain difference in the definition of amplitudes Ak (t) in

references [13] and [14] should be noticed. The difference is in the factor (i)k. We

have chosen a variant used in Ref. [14] at which functions Ak (t) contain no

imaginary part, because the factor (i)k is included into definition of operators [k).

The parameters {mk} which values determine the solution of the system Eq. (6), are

expressed unequivocally through the moments of the NMR absorption line [13]. In

particular

m2
0 ¼ M2 ¼ 3SðSþ 1Þ

X

j

b2
ij; m2

1 ¼ ðM4 �M2
2Þ=M2; m2

2

¼ ðM2M6 �M2
4Þ=ðM4 �M2

2ÞM2; ð7Þ

where M2, M4, M6 are the second, fourth and sixth moments of the NMR absorption

line.

Let us substitute decomposition Eq. (5) to Eq. (2) and then execute the reduction.

As it means we have to choose two spins at sites i and j and then to calculate a trace

in Eq. (2) over all other spin variables. Thus we have

q̂ijðtÞ ¼
1

d2
1þ b

X

1

k¼0

AkðtÞ
d2

Z
Tr
6¼i;j

k½ Þ
( )

; ð8Þ

where d = 2S ? 1. So for the first two orthogonal operators of the complete set we

get

1

Z
Tr
6¼i;j

0½ Þ ¼ 1

Z
Tr
6¼i;j

X

f

Ŝxf ¼
1

d2
ðŜxi þ ŜxjÞ; ð9Þ

1

Z
Tr 1½ Þ
6¼i;j

¼ i

Z
Tr
6¼i;j
½Ĥd; Ŝx� ¼

�2

d2
ðbij � aijÞðŜyiŜzj þ ŜyjŜziÞ: ð10Þ

The contribution to Eq. (8) from orthogonal operators of the higher order can be

obtained in two cases. First case assumes zero direct interaction between the chosen

spins i and j. It is a possible case for example, if the angle hij between the vector r!ij

and external magnetic field is equal to the ‘‘magic’’ value 54�440. In this situation

we have to take into account the contribution from vector [3) which depends on the
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constant bifbjf
2 through the intermediate spin f if this constant is distinct from zero.

The second case appears if S [ � because orthogonal operators of the high order

are formed of products of spin operators not only from different sites, but also from

the same site. For examples in vector [2) there is a contribution

ŜxifŜ2
zj � SðSþ 1Þ=3g, and in vector [3) one gets a contribution

ŜyifŜ3
zj � Ŝzjð3S2 þ 3S� 1Þ=5g. We shall neglect above mentioned contributions

in Eq. (8) because these parts are small corrections to contributions from Eqs. (9)

and (10). The trifle of discussing corrections is a consequence of the different time

dependence of the different order amplitudes: Ak(t) * tk at small times. Because of

the rapid decay of amplitudes Ak(t) at times t� 1
�

ffiffiffiffiffiffi

M2

p
, each additional power of t

adds only a small factor bijt
�

�

�

��
ffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
ij=M2

q

� 1=
ffiffiffi

n
p

\\1.

Having retained two contributions Eqs. (9) and (10) in Eq. (8) we get

q̂ijðtÞ �
1

d2
f1þ bA0ðtÞðŜxi þ ŜxjÞ þ bA1ðtÞBijðŜyiŜzj þ ŜyjŜziÞg; ð11Þ

where Bij ¼ �2ðbij � aijÞ ¼ �3bij for the Hamiltonian Eq. (4). At last, at the further

reduction to one spin one gets

q̂iðjÞðtÞ �
1

d
f1þ bA0ðtÞŜxiðjÞg: ð12Þ

Having substituted Eq. (12) in Eq. (3), we get FðtÞ ¼ A0ðtÞ.

3 Classical and Quantum Correlations

3.1 Mutual information

The information-theoretic measure of correlations between two spins is the mutual

information [3, 11],

Iðq̂ijÞ ¼ SNðq̂iÞ þ SNðq̂jÞ � SNðq̂ijÞ; ð13Þ

where SNðq̂Þ ¼ �Trfq̂ log2 q̂g is the von Neumann entropy. We assume to calculate

the von Neumann entropy in the lowest order on b [1, 10],

SNðq̂Þ ¼ �Trfq̂ log2 q̂g � log2 Z � b2

2Z ln 2
TrðDq̂Þ2:

In the high-temperature approach accepted the mutual information Eq. (13) is as

follows:

Iðq̂ijÞ ¼
b2

2 ln 2

1

d2
TrðDq̂ijÞ2 �

1

d
TriðDq̂iÞ2 �

1

d
TrjðDq̂jÞ2

	 


: ð14Þ

The density matrix Eq. (11) looks like similar expression for isolated pair of the

spins, calculated in [10] at small times. Therefore, skipping on intermediate

evaluations, we are giving the results at once. By such a way we calculated for the

mutual information
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Iðq̂ijÞ �
b2

9 ln 2
½SðSþ 1ÞBijA1ðtÞ�2 ¼

b2b2
ij

M2
2 ln 2

½SðSþ 1Þ _FðtÞ�2: ð15Þ

Under the transformations in process of obtaining the Eq. (15) formulas Eqs. (6)

and (7) were used.

3.2 Orthogonal projective measurement of von Neumann

The mutual information Eq. (13) is used to measure the total correlations, which are

sums of the classical and quantum correlations. The classical correlations can be

calculated by the measurement, described in [3]. To perform a von Neumann

measurement we must project the state q̂ijðtÞ Eq. (11) on the complete basis of

orthogonal wave functions Wmj i by means of a complete set of projectors,

P̂m ¼ Wmj i Wmh j;
X

m

P̂m ¼ 1: ð16Þ

In the case of system with S = 1/2 the complete set of orthogonal projectors of

the spin i consists of two projectors

P̂i� ¼ �
1

2

�

�

�

�

�

� 1

2

�
�

�

�

�

¼ 1

2
� Ŝiz;

where � 1
2

�

�




i
are eigenstates of the operator Ŝiz with eigenvalues � 1

2
. In general, if

the direction of the quantization axis does not coincide with one of the axis z, and

specified by the direction cosines na (a = x, y, z), these projectors can be written as

follows:

P̂i� ¼
1

2
½1� ðnxr̂ix þ nyr̂iy þ nzr̂izÞ�; ð17Þ

where r are the Pauli matrices. The density matrix q̂ijðtÞ is transformed after

projecting on the states of the spin i to

P̂iðq̂ijÞ ¼
1

Z
½1þ bP̂iðDq̂ijðtÞÞ�; ð18Þ

where we have

P̂iðDq̂ijðtÞÞ ¼
X

m

ðP̂im 	 ÊjÞDq̂ijðtÞðP̂im 	 ÊjÞ;

and where Êj is the unit matrix. After carrying out calculations we have

P̂iðDq̂ijÞ ¼ A0ðtÞŜjx þ
1

2
P̂iþfnxA0ðtÞ þ A1ðtÞBijðnzŜjy þ nyŜjzÞg

� 1

2
P̂i�fnxA0ðtÞ þ A1ðtÞBijðnzŜjy þ nyŜjzÞg

ð19Þ

As usual let us choose the mutual information IðP̂iðq̂ijÞÞ calculated using

formulas Eqs. (13), (14) and (19) for this matrix, as a measure of classical

correlations
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IðP̂iðq̂ijÞÞ ¼
b2

32 ln 2
½BijA1ðtÞ�2ðn2

z þ n2
yÞ: ð20Þ

Unfortunately the gained value Eq. (20) will depend on the chosen basis Eq. (17).

It was proposed [3] to search all bases and to take the maximum value of correlation

IðP̂iðq̂ijÞÞ as the universal measure. If we subtract the classical part from all

correlations Eq. (15), then we obtain the quantum part of the correlations

Dij ¼ Iðq̂ijÞ �max
na

IðP̂iðq̂ijÞÞ: ð21Þ

After carrying out of minimization of this quantity on the direction cosines na one

gains an entropy measure of quantum correlations named by quantum discord Dij

[3]. We obtain that nz
2 ? ny

2 = 1 and that the quantum discord Dij are related to the

mutual information Iðq̂ijÞ from Eq. (15) by the relations:

Dij ¼ Iðq̂ijÞ=2: ð22Þ

3.3 POVM measurement

For S [ 1/2 we shall provide generalized POVM measurement [3, 11] using the

basis of SCS [12]. It is assumed that the SCS (Bloch states) [12]

h;/j i ¼ R̂ðh;/Þ Sj i ¼
X

m¼S

m¼�S

2S

Sþ m

� �1=2

cos h=2ð ÞSþm
ei/ sin h=2
� �S�m

mj i; ð23Þ

are closest to the states of the classical momenta. Here h and u are the polar and

azimuthal angles on the unit sphere (Bloch sphere), mj i is an eigenstate of the

operator Sz with eigenvalue m assuming 2S ? 1 values,

�S;�Sþ 1; . . .; S� 1; S:

These states Eq. (23) are obtained from the ground state Sj i by the rotation

operator R̂ðh;/Þ ¼ expf�ihð�Ŝx sin /þ Ŝy cos /Þg and are a superposition of

states with different m. The average values of spin projections in the state Eq. (23)

are as follows

h;/h jŜz h;/j i ¼ S cos h; h;/h jŜx h;/j i ¼ S sin h cos /; h;/h jŜy h;/j i ¼ S sin h sin /

and are the same as for classical momentum. The completeness property

2Sþ 1

4p

Z

h;/j i h;/h j sin hdhd/ ¼ 1

is satisfied for the SCS basis, but this basis is not orthogonal. If one wants to use the

generalized POVM measurement, he must recognize that the functions Wmj i in

operators Eq. (16) can now be no orthogonal, and these operators strictly speaking

are already not projectors [11].

We take the SCS system as the measurement basis of Eq. (16), to perform the

POVM measurement at the spin i, which reduces by multiplying the SCS and

calculating the trace, and one obtains the classical density function for the

probability distribution of the angle values
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P̂iðq̂ijÞ ¼ q̂jðhi/i; tÞ ¼ 2Sþ 1

4p
Trifq̂ijðtÞ hi;/ij i hi;/ih j 	 Ejg

¼ 2Sþ 1

4p
hi;/ih jq̂ijðtÞ hi;/ij i

¼ 1

4pð2Sþ 1Þ f1þ bA0ðtÞðSi sin hi cos /i þ ŜxjÞ

þ bA1ðtÞBijðSi sin hi sin /iŜzj þ ŜyjSi cos hiÞg ð24Þ
Now to calculate the Shannon entropy we have to calculate the integral over the

Bloch sphere

SShNðq̂jðhi/i; tÞÞ ¼ �
Z

Trjfq̂jðhi/i; tÞ log2 q̂jðhi/i; tÞg sin hidhid/i:

As a measure of classical correlations the mutual information IðP̂iðq̂ijÞÞ
calculated using formulas Eqs. (13), (14) and (24) for this matrix is

IðP̂iðq̂ijÞÞ �
b2

9 ln 2
S3ðSþ 1Þ½BijA1ðtÞ�2: ð25Þ

If we subtract the classical part from all correlations Eq. (15), then we obtain the

quantum part of the correlations

Qij ¼ Iðq̂ijÞ � IðP̂iðq̂ijÞÞ: ð26Þ

Measure Eq. (26) without optimization was called a measurement dependent

discord [3]. We obtain the quantum part of correlations Qij (if S [ 1/2) are related to

the mutual information Iðq̂ijÞ from Eq. (15) by the relations:

Qij � Iðq̂ijÞ=ðSþ 1Þ: ð27Þ

We should note that whether S = 1/2 the expression Eq. (27) equal to 2/3

whereas from Eq. (22) one gets l/2. The discrepancy relates with the distinctions in

the methods of measurement.

On the basis of the results derived above, it can be concluded that the time

dependence of the mutual information Eq. (15) and the quantum part of correlations

(22), (27) is revealing through the derivative of FID shape Eq. (3). Thus rapid

exhaustion of pair correlations and reduction of their peak values with the growing

up of the number of neighbors n generally speaking do not mean impairment of

correlated relations of spins, but mean redistribution of pair correlations to more

complicated multispin ones. As a measure of total correlation the total information

[3, 16] can serve:

Tðq̂Þ ¼
X

i

SNðq̂iÞ�SNðq̂Þ �
b2

3 ln 2
SðSþ 1Þ½1� F2ðtÞ�: ð28Þ

At the initial moment of time F(0) = 1 and Tðq̂Þ ¼ 0. For a long times F2(t) is

coming to zero and, therefore, Tðq̂Þ reaches own limiting value only defined by

entry conditions: e.g. by polarization b at given temperature and at the fixed strength

of the external magnetic field.
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4 Conclusion

Our results mean that in spite of coincidence [5] of the FID shapes of both classical

and quantum spin systems for a large number n of nearest neighbors, the quantum

properties of the system are not lost. For every pair of spins the portion of quantum

correlations changes from 1/2 to 1/(S ? 1) with S growing up. In reality the

quantum properties disappear completely only if S ? ? but not in the case when

n ? ?. The similarity of the FID shapes means that measurable classical

correlations and ‘‘immeasurable’’ (lost at measurement) quantum correlations are

bringing the equal influence at FID. So it implies that unobservable simultaneously

spin components Ŝx; Ŝy; Ŝz are capable to give the contribution to dynamics of spins

simultaneously. Thereof the time scale dependence is determined by the quantity

S (S ? 1), instead of S2, where S is the maximal value of an observable projection

upon any axis.
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