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Abstract Within a new norm-conserving approach to the
cluster perturbation theory (CPT) for the 2d Hubbard model
we study the effect of the cluster size and shape on the elec-
tronic structure. We have compared two type of clusters,
4-cluster (2 × 2) and 5-cluster (cruciform of 5 atoms). With
4-cluster we can treat exactly the first and second neighbours
correlations, C1 and C2. With 5-cluster the third neighbour
correlations C3 are also treated exactly. The band structure
in the CPT with 4- and 5-clusters differs remarkably. The
quasiparticle spectral weight map for 5-clusters is very sim-
ilar to the Quantum Monte Carlo (QMC) and the variational
CPT data. With increasing doping, small hole Fermi surface
transforms into conventional Fermi-liquid type large Fermi
surface through Lifshitz quantum phase transitions.

Keywords Cluster perturbation theory · Hubbard model ·
Strong correlations · Density of states · Fermi surface

1 Introduction

Strong electron correlations (SEC) are known to determine
many unusual properties of Mott-insulators like cuprates,
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manganites, cobaltites and other compounds characterized
by interplay of spin, charge, and orbital degrees of free-
dom [1]. A theory of SEC systems is an actively devel-
oping field with different approaches being suggested (for
example, [2–19]). Cluster perturbation theory (CPT) is a
simple approximation scheme that applies to the Hubbard
model as well as some other lattice models with local inter-
action. It can be viewed as a cluster extension of the pertur-
bation theory from atomic limit [20] with the main advan-
tage to incorporate nearest neighbour correlations at zeroth
order of perturbation. Its features are found in more sophis-
ticated approaches like the variational cluster approxima-
tion (VCA) [2] and the cellular dynamical mean field theory
(C-DMFT) [3].

CPT has been proposed by several groups independently
[6–10]; some reviews are available [11, 12]. The procedure
of CPT consists of two steps: exact diagonalization (ED)
of the independent individual cluster (unit cell) Hamiltonian
H0 and perturbation theory with the intercluster hopping and
interaction H1. In this paper we address the general aspect of
the CPT. It concerns the effect of the cluster size and shape
on the electronic structure. We will use a new version of
theory, the norm-conserving CPT [13]. Usually, the Lanc-
zos procedure is used for ED of H0. It is fast because it does
not consider all multielectron states of the cluster, only the
ground state and a few excited. Our analysis [13] has shown
that neglecting by a large part of excited states results in the
lost quasiparticle (QP) spectral weight and strongly effects
on the QP dispersion and spectral function A(k,ω). To con-
trol the conservation of the spectral weight we have intro-
duced the f-factor (see definition below) that must be equal
to 1 when all multielectron cluster states are taken into ac-
count.

For example, for the Hubbard model in the 2d square lat-
tice the 2 × 2 cluster has 256 multielectron states |N, i〉
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with different number of electrons 0 ≤ N ≤ 8, and in-
dex i numerates the ground |N,0〉 and all excited terms
with i �= 0. For the half-filled band electron concentra-
tion per atom ne = 1 the minimal set of states is given
by {|3,0〉, |4,0〉, |5,0〉}. The number of cluster states is 5
(|3,0〉 and |5,0〉 has spin 1/2). For this minimal set we
have found f = 0.395 [13]. It appears that specially se-
lected finite set of cluster states (about 30 states) results
in f = 0.9995. This is the main idea of norm-conserving
CPT and the mathematical tool to handle the arbitrary large
number of cluster multielectron states is given by the Hub-
bard operators XN1i1;N2i2 = |N1, i1〉〈N2, i2| [14, 20]. Here
we want to compare QP electronic structure for two differ-
ent clusters 2 × 2 square with 4 sites (4-cluster) and 5 sites
cruciform one (5-cluster). Previously, the effect of cluster
size and shape has been discussed in several papers [11, 15–
17]. No essential difference was found for clusters of dif-
ferent shapes [15]. As concerns the size effect it is obvious
that the more the better. In this paper we show that the QP
dispersion and spectral weight distribution for 5-cluster is
better than for 4-cluster (close to the Quantum Monte Carlo
(QMC) [18], and variational CPT [19] data), that for the size
effect. The shape effect is that the ground state energy E0 is
smaller for 4-cluster as against 5-cluster.

The paper is organized as follows: The norm-conserving
cluster perturbation theory in X-representation is described
in Sect. 2. It is shown how to find the Green’s function for
an infinite lattice and a scheme for the formation of Hub-
bard quasiparticles at nonzero doping value is presented. In
Sect. 3 we study the electronic structure for the two forms
of the basic clusters within NC-CPT. The dependence of the
ground-state energy of the Coulomb interaction parameter
U is calculated and results are compared with other theoret-
ical works. The evolution of the Fermi surface of the hole
concentration is presented in Sect. 4. The discussion of the
results is provided in Sect. 5.

2 NC-CPT Method

In this section we briefly remind the norm-conserving clus-
ter perturbation theory (NC-CPT) [13]. The Hubbard model
is a good approximation to describe the two-dimensional
square lattice with strong electron correlations [21]. This
is one of the basic models for description of a large class
of materials with the SEC. The Hamiltonian of the two-
dimensional one-band Hubbard model is given by

H =
∑

iσ

{
(ε − μ)ni,σ + U

2
ni,σ ni,σ̄

}

−
∑

i �=j,σ

tij a
†
iσ ajσ , (1)

Fig. 1 (a) The cluster 2 × 2 with Nsites = 4; (b) the cruciform cluster
with Nsites = 5

where ε is an energy of electron at a site, μ is chemical
potential, U is the parameter of the Coulomb repulsion,
a

†
iσ and aiσ are the creation and annihilation operators of an

electron on the site i with spin σ (σ̄ = −σ ), niσ = a
†
iσ aiσ is

the particle number operator, tij is the hopping integral from
site j to site i.

Let us choose a cluster of such a form that it can be the
unit cell for the original square lattice. In this paper, we have
used the 5-cluster and 4-cluster (Fig. 1). We can separate
the Hamiltonian (1) in two parts with intra- and inter-cluster
interaction terms

H =
∑

f

H0(f ) +
∑

f �=g

Ht (f, g), (2)

where f , g are cluster indexes. Next step of calculation in-
cludes computing a complete set of eigenstates and eigen-
vectors of the Hamiltonian Hc

0 (f ) by exact diagonaliza-
tion method. These eigenstates allow us to construct the
cluster X-operators and to write Hamiltonian H in X-
representation. So we can write the annihilation operator of
an electron at a site i for cluster f in the following exact
representation:

af iσ =
∑

α

γiσ (α)Xα
f ,

γiσ (α) = 〈n|af iσ |m〉.
(3)

Here we use the following notation for the X-operators:
Xα

f = Xnm
f = |n〉〈m|, where α = α(n,m), m and n are ini-

tial and final states of the cluster, respectively, and f is the
cluster index. The properties of X-operators are described
in [14, 20, 22]. This expression allows to consider elec-
tron as superposition of different quasiparticles (Hubbard
fermions) Xα

f . Moreover, each quasiparticle corresponds to
the excitation with charge e and spin s = 1/2 from the initial
many-particle state |m〉 to final many-particle state |n〉. This
procedure is described in [13] with more details.

The transformed Hamiltonian (2) is given by

H =
∑

f n

εnX
nn
f +

∑

f �=g

∑

αβ

t
αβ
fg X

†α
f Xβ

g , (4)
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Fig. 2 The possible covering of the initial square lattice by cruciform
clusters with five sites. The dots indicate the sites of the original lattice,
mugs indicate sites of the cluster superlattice. In the text the notation
of coverings K1 (a), K2 (b) is used

where εn is an energy of the cluster in the state n, and t
αβ
fg

are the intercluster hopping integrals.
After Fourier transformation the inter-cluster interaction

part of the Hamiltonian (4) has the form

Ht =
∑

k̃

∑

αβ

Tαβ(k̃)X
†α

k̃
X

β

k̃
, (5)

where k̃ is a wavevector in the reduced Brillouin zone.
As is with most versions of CPT, we have used the

“Hubbard-I” approximation for the inter-cluster hopping
Tαβ(k̃) and obtained a solution for the Green function

Dαβ(k̃,ω) = 〈〈Xα

k̃
|X†β

k̃
〉〉ω in the following matrix form:

D−1(k̃,ω) = (
D0(ω)

)−1 − T (k̃), (6)

where

D0
αβ(ω) = F(α)

ω − Ω(α)
δαβ, (7)

Ω(α) = εm(N + 1) − εn(N) − μ, (8)

F(α) = F(n,m) = 〈
Xnn

〉 + 〈
Xmm

〉
. (9)

Here D0(ω) is the local (cluster) Green function, F(α) is
the filling factor, μ is the chemical potential, and N is the
number of electrons in the cluster.

The Green function Gσ (k,ω) = 〈〈akσ |a†
kσ

〉〉ω that is de-
fined on the original lattice is associated with the Green
function in X-representation that is defined on the superlat-
tice in the following way [13, 15]:

Gσ (k,ω) = 1

Nc

∑

αβ

Nc∑

i,j=1

γiσ (α)γ ∗
jσ (β)

× Dαβ(k,ω)e−ik(ri−rj ), (10)

where Nc is the number of sites in the cluster (in this case,
4 and 5), k is the wavevector defined in the original Brillouin

Fig. 3 The scheme of the low energy part of the Hilbert space for the
5-site cluster. For hole concentration p = x/5 the ground-state term
with N = 5 is filled with probability 1 − x, and the term with N = 4
with probability x. All other states are empty at T = 0. Solid arrows de-
note electron annihilation process in the case without doping (x = 0),
the dashed arrows denote additional excitations that must be consid-
ered in doped case (x �= 0). N is the number of electrons in the cluster

zone, i and j are intra-cluster sites indices. By the definition,
the spectral function

Aσ (k,ω) = − 1

π
lim

δ→0+
(
ImGσ (k,ω + iδ + μ)

)
. (11)

We control the value of f -factor in all calculations car-
ried out in this paper. This parameter introduced in [13] is a
measure of the total spectral weight of Fermi quasiparticles,
∫

dωAσ (k,ω) =
∑

α

∣∣γiσ (α)
∣∣2

F(α) ≡ f ; (12)

f = 1 for an exact calculation. But in this case it is nec-
essary to take into account the complete set of eigenstates
of the cluster, which makes the problem intractable. It was
found that it is possible to take into account smaller set of
cluster eigenstates with the value of f -factor close to 1, and
the error in the final result will not exceed a few per cent.
Moreover, we can significantly reduce the computation time
without distorting the results by controlling this value. All
the following results were obtained with f > 0.95.

The cruciform cluster gives us two independent ways to
cover the original square lattice (see Fig. 2). The procedure
of covering was described in [23] for a square cluster 2 × 2.
Arguments in [23] allow to construct a linear superposition
of solutions of two coverings (K1 and K2) by an averaging
of a hopping matrix, which determines the inverse Green
function (6),

Tαβ(k) = 1

2

(
T K1

αβ (k) + T K2
αβ (k)

)
, (13)

where k is the wavevector in the original Brillouin zone. As
shown in [23], this procedure determines the Green func-
tion (6) in the original Brillouin zone, and the Green func-
tion (10) has the symmetry of a square lattice.

In this paper we carry out the study of the electronic
structure of systems with SEC for various doping p (hole
density per site). For instance, in Fig. 3 the low-energy part
of the Hilbert space of a single cluster with five sites is
schematically shown. At half-filling (undoped) and T = 0
the excitations between the ground state in the subspace with



958 J Supercond Nov Magn (2014) 27:955–963

Fig. 4 Dispersion curves for the undoped case and U = 1 along the
symmetry directions Γ → X → M → Γ in the first quadrant of the
first Brillouin zone ((a) for the cluster 2 × 2, (b) for the cruciform

cluster). Here and below we use the notation: Γ = (0,0), X = (π,0),
M = (π,π). The line intensity is proportional to the QP spectral weight

N = 5 and states in the subspaces with N = 4 and N = 6
have nonzero filling factor (9) (in Fig. 3 this transitions are
marked by solid arrows). It is necessary to consider the pos-
sibility of population of the ground state in the subspace
with N = 4 for hole doping. This results in the additional
excitations with nonzero filling factor (marked by dashed
arrows in Fig. 3). It should be noted that we consider only
the one-electron excitations with change in the number of
particles ±1. In the case of 5-cluster the cluster doping x

and doping on the site p are related by x = 5p.

3 Band Structure and Ground State Energy

We plot the QP dispersion curves for the 4-cluster and the 5-
cluster in Fig. 4 (U = 1) and Fig. 5 (U = 8) for undoped
model with ne = 1. The energy scale is given by t = 1,
where t is the nearest neighbour hopping parameter. As was
shown long ago by Hubbard, in the paramagnetic state the
free electron band is split and the lower (LHB) and upper
(UHB) Hubbard bands are separated by the Mott–Hubbard
gap. It is clearly seen in Fig. 4(a) for 4-cluster. For 5-cluster
(Fig. 4(b)) we can see the additional splitting of the UHB
and LHB. Similar splitting has been obtained due to the
long-range antiferromagnetic (AFM) superstructure [24]. In
this paper we have consider only paramagnetic phase with
a shot-range antiferromagnetic correlations. In the 4-cluster
the ED incorporate the first neighbours correlation function
C1 and the second neighbour function C2, while in the 5-
cluster the third neighbour correlation function C3 is addi-
tionally present. Thus the difference in Fig. 4(a, b) is a typi-
cal size effect. Similar splitting of the LHB and UHB in the
paramagnetic phase has been obtained by QMC [18] and

V-CPT [19] methods. Comparison of QMC and V-CPT data
and our calculations for U = 8 is shown in Fig. 5. The dif-
ferent distribution of the QMC spectral weight is the other
size effect. The difference is clearly observed for the LHB
in the Γ point and for the UHB in the M point. In general,
both the dispersion curves and the intensity map of Fig. 5(b)
(5-cluster) are similar to the QMC and V-CPT data, but not
in Fig. 5(a) for 4-cluster. Thus, the adding of the third cor-
relation C3 strongly affects the dispersion and the intensity
map.

The splitting of the Hubbard bands can be seen also in
the density of states. In Fig. 6 the density of states within
NC-CPT approach for the 4-cluster, the 5-cluster and the C-
DMFT [25] is shown for half-filled band and U = 8 for the
model with nearest neighbours hopping. A comparison of
Fig. 6(b, c) shows a qualitative agreement of the results, in
particular the presence of a gap in the range of 4t > |ω| > 3t .
However, Fig. 6(a) shows that such gap for the 4-cluster is
not observed. Figure 6 also shows that the C-DMFT gives a
lower value of the Mott–Hubbard gap than the NC-CPT gap.
While the Mott–Hubbard gap Δ results from charge fluctua-
tions, the additional gap Δ′ appears in the long-range AFM
or quite extended short-range AFM state. It may be called a
magnetic gap. In Fig. 7 the dependence of the magnetic gap
Δ′ as a function U is shown. It is seen that this gap saturates
with increasing the Coulomb parameter U .

We calculated the energy of the ground state of an infi-
nite lattice taking into account hopping only between nearest
neighbours. In our case, we use the expression from [15, 26]
to calculate the ground state energy per site:

E0 = 1

2N

∑

σk

∫ 0

−∞
dω(εk + ω + μ)Aσ (k,ω). (14)
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Fig. 5 Dispersion curves for the undoped case for U = 8 along the symmetry directions Γ → X → M → Γ in the first quadrant of the first
Brillouin zone ((a) for the cluster 2 × 2, (b) for the cruciform cluster, (c) V-CPT [19], (d) QMC [18])

Here, εk = −2t (cos(kx)+cos(ky)) is the free electron spec-
trum (lattice constant is taken as unity), k is wave vector in
the original Brillouin zone, N is number of sites in the initial
lattice.

In Fig. 8 the dependence of the ground state energy per
site E0 calculated by different methods (including nonper-
turbative) as function of U is shown. We see that our cal-
culation for the cruciform cluster gives the value E0 higher
than in other works [19, 27–29], but for the cluster 2 × 2 our
E0 is in good agreement with the other works.

We consider this difference to be a shape effect. In the
2 × 2 cluster all sites are equivalent, while in the cruci-
form 5-cluster the central site is similar to a “bulk atom”
and all the others are the “surface atoms” with three dan-
gling bonds. Indeed, in a 2 × 2 square cluster we take into
account four first correlations C1 and two second correla-
tions C2; per site it gives 1C1 + 0.5C2. In the cruciform
5-cluster we take into account 4C1 + 4C2 + 2C3; per site
it gives 0.8C1 + 0.8C2 + 0.4C3. It is clear that the short-

est bonds are stronger, so smaller is the nearest neighbour
contribution in the case of 5-cluster results in the higher en-
ergy E0.

4 The Doping Transformation of the Fermi Surface

There are two aspects of the transformation of the Fermi sur-
face (FS) with the hole concentration in the study of high-Tc

cuprates. This is (i) a change in the topology of the Fermi
surface [30] and (ii) non-uniform redistribution of the quasi-
particle spectral weight along the FS (Fermi arc [31–33]).
Usually this behaviour is related to the presence of short-
range AFM order. The cluster approach is able to directly
account for this order and to assess its effect on the spec-
trum of quasiparticles. We will calculate the Fermi surface
for different doping concentrations by two ways, from the
poles of the electronic Green function at ω = εF and from
the spectral density map A(k, εF ) that is related to ARPES
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Fig. 6 The density of states for the undoped case at U = 8 ((a) for the
4-cluster, (b) for the 5-cluster, (c) CDMFT [25]). The parameter of the
Lorenz linewidth for the spectra line, δ = 0.01. Δ is the Mott–Hubbard
gap, Δ′ is the gap in the Hubbard sub-bands

Fig. 7 The magnetic gap Δ′ as a function of U

data [34, 35]. In the numeric computation of spectral density
we substitute a delta-function by a Lorenzian curve with a
broadening parameter δ � t . It allows to model experimen-
tal resolution of ARPES and finite QP lifetime that may ap-
pear due to high order perturbation contributions from the
intercluster hopping.

Fig. 8 The ground-state energy E0 in undoped case vs the pa-
rameter U . Solid curve is for our calculation for the cruciform
cluster; dashed curve is for variational cluster perturbation theory
(V-CPT) [19]; triangles are for Variational Monte Carlo (VMC) [27];
circles are the exact diagonalization (ED) of the cluster 4 × 4 [29];
squares are Quantum Monte Carlo (QMC) [28]; dot-dashed curve with
dots is NC-CPT for a cluster 2 × 2 [23]

The doping-dependent QP density of states (DOS) for the
LHB and position of the Fermi level are shown in Fig. 9.
For p = 0.01, the in-gap states appears above the top of the
LHB. For p > 0.05, the in-gap band is connected with the
LHB. The Fermi level lies in the region of depleted DOS for
0.01 < p < 0.12 that may be related to the pseudogap state.

The A(kx, ky, εF ) maps are shown in Fig. 10. For small
concentration, p = 0.01, the Fermi surface consists of 4
small hole pockets (Fig. 10(a)) with a centre along the line
(π/2,π/2) − (π,π). Different parts of the pocket have dif-
ferent spectral weight, the largest one in the nodal direction
at the side directed to the Γ point and the minimal at the
side directed to the (π,π) point. The small hole pocket near
(π/2,π/2) has been found in a doped Mott insulator due to
the long or shot range AFM order by ED [36, 37] and [38,
39] for the finite clusters as well as by a perturbation treat-
ment of the infinite lattice [40–43] and using slave-particles
[44, 45]. The spectral weight distribution along the Fermi
pocket has been obtained previously by several groups [46–
48] due to the hole scattering on spin fluctuations. This is
one of the evidences of the pseudogap state.

With doping increase the Fermi surface changes its topol-
ogy as can be seen in Fig. 10. Similar changes have been
obtained within the t-J -model [30] and have been discussed
as the Lifshitz quantum phase transitions (QPT) [49, 50].
The first QPT is related with the change of connectivity,
four closed small pockets transform at p = pc1 into two
large surface centred at (π,π). The large one has the large
spectral weight while the smaller surface has the small spec-
tral weight (Fig. 10(b)). There is also a line of zeros of the
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Fig. 9 The density of states for doping p = 0.0, 0.01, 0.05, 0.07, 0.12,
0.17, 0.20. The vertical dotted line marks the position of the Fermi
level. The model parameters are U = 8, t ′ = t ′′ = 0; the broadening
δ = 0.01

spectral function around (π,π), previously obtained by the
CDMF method [25, 51]. With further doping increase the
smaller surface meets the line of zeros at p = pc2, and they
annihilate each other. At this second QPT the number of
Fermi surfaces changes. Above the pc2 there is one large
hole Fermi surface (Fig. 10(c)) that corresponds to the Fermi
liquid behaviour with the volume ∼nh = 1+p. Finally, with
further doping increase there is the third Lifshitz transition
from the hole surface around (π,π) to the electronic surface
around Γ point, it occurs at pc3 = 0.12 (Fig. 10(d)). Previ-
ously a similar transition has been discussed in Ref. [52].
Further doping results in a similar transformation of the
electronic Fermi-surface (Fig. 10(e, f)). The critical concen-
tration strongly depends on parameters, so they are different
than in Refs. [30, 49, 50]. Here we have studied the gen-
eral properties of Hubbard model without fitting the cuprates
electronic structure by second and third neighbour hoppings
t ′ and t ′′. The Fermi surface topology and the type of its

changes are the general property, which is the same here and
in the more realistic model [30].

To compare the spectral function map to the ARPES
data, we have plotted the A(kx, ky, εF ) maps with larger
value of the linewidth parameter δ = 0.05t (Fig. 11) and
δ = 0.1t . Instead of the closed small pocket we obtain the
arc (Fig. 11(a)) that becomes larger in Fig. 11(b, c). This be-
haviour is typical to the ARPES conclusion on the doping
evolution of the Fermi surface in cuprates. To measure the
fine details and QPT by ARPES the better resolution should
be used.

In previous CPT calculations the Fermi surface has been
discussed for a few concentrations. Thus, for p = 0.17
the large Fermi surface has been obtained for U = 2, and
the arc has been found for U = 8 [53]. The small hole
pocket in the underdoped region has been obtained by vari-
ational CPT [54]. Similarly to our data the evolution of
the Fermi surface has been found by the C-DMFT calcu-
lations [25], by perturbation theory from the atomic limit
[55, 56], in a spin density wave fluctuation approach to the
Hubbard model [57, 58], and the multielectron configuration
quantum-chemistry calculation [59].

5 Conclusions

The comparison of 4-cluster and 5-cluster CPT has revealed
that the exact treatment of first, second and third neighbour
correlations in the 5-cluster results in the QP band struc-
ture and the spectral weight distribution that is in a good
agreement to the Quantum Monte Carlo [18], V-CPT [19],
and C-DMFT [25] methods, while the 4-cluster CPT calcu-
lations do not reproduce the LHB and UHB splitting by the
short range order AFM fluctuations. This is the size effect in
our CPT theory.

The shape effect was found in the ground state en-
ergy E0. For all values of U , the 4-cluster E0 is less than
the 5-cluster E0. We relate this with the dominant contribu-
tion of the most stronger nearest neighbour correlations.

We have studied the hole doping dependence of the QP
band structure and the Fermi surface within 5-cluster CPT.
We have reproduced the cascade of the quantum phase tran-
sitions of the Lifshitz type with increasing doping that has
been obtained previously by the X-operators perturbation
theory [30] with static shot-range AFM correlations. In the
present approach both the static and dynamical correlations
inside each cluster are treated exactly. That is why it al-
lows to describe both the shape of the Fermi surface and
the nonuniform spectral weight distribution along the Fermi
contour. The increase of the broadening parameter trans-
forms the small hole pocket in the underdoped region in
the arc. Previously a similar conclusion has been found by
C-DMFT method [25].



962 J Supercond Nov Magn (2014) 27:955–963

Fig. 10 The maps of the spectral weight for doping p = 0.01,0.05,0.07,0.12,0.17,0.20. The model parameters are U = 8; the broadening
δ = 0.01

Fig. 11 The same as in Fig. 10 with the broadening δ = 0.05
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One important physical result obtained by our CPT ap-
proach concerns the problem of Fermi arcs versus closed
Fermi contours in cuprates. While ARPES results in the
weakly doping dependent Fermi arcs, the quantum oscilla-
tions measurements have revealed the closed pockets. Our
calculations of the spectral weight map have found the
strong dependence on the spectral line width that is related
to the experimental resolution. At low resolution typical to
ARPES 10–15 years ago our theory results in the Fermi arc
with small doping dependence. For better resolution of the
modern ARPES we predict the closed pockets seen in the
dHvA experiments. Thus we suggest to ARPES community
to repeat the Fermi surface study with the state-of-art reso-
lution (for example, with energy resolution ∼2 meV).
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