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INVESTIGATION OF THE Q-FACTOR OF OPTICAL 

RESONATORS IN PHOTONIC CRYSTALS AND PRINCIPLES OF 

DESIGNING HIGHLY SELECTIVE FILTERS ON THEIR BASIS 

B. A. Belyaev,1,2,3 V. V. Tyurnev,1,2 and V. F. Shabanov1 UDC 621.372.543.2; 535.326 

Designs of optical resonators comprising a half-wavelength dielectric layer bounded from both ends by 
quarter-wavelength layers with permittivity higher or lower than that of the half-wavelength layer are 
investigated. Electrodynamic analysis demonstrates a significant increase in the Q-factor of the multilayered 
resonator in comparison with the conventional single-layer half-wavelength resonator. Principles of designing 
highly selective passband filters based on photonic crystal structures are considered. 
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Multilayered structures consisting of alternating dielectric layers with different refractive indices and having 

the period commensurable with the electromagnetic wavelength are often called 1D photonic crystals. They are used to 
develop various optoelectronic devices: filters, polarizers, and mirrors [14]. In essence, the photonic crystals are 
systems of interacting (coupled) resonators; therefore, they have periodically alternating transparency windows and 
rejection bands (photonic band gaps) [5]. 

Coupled resonators in narrow band filters should have weak coupling with each other, and the end resonators 
should be weakly coupled with the input and output; in this case, they have high external Q-factor [6]. However, the 
external Q-factors of input and output resonators in photonic crystals, as well as the coupling coefficients of the 
neighboring resonators, depend on the difference (contrast) between the refractive indices of the contacting media: the 
greater the difference, the smaller the coupling coefficient and hence the higher the Q-factor of the resonator [7, 8]. 
Considering that the refractive indices of materials in optics are not so high, the external Q-factor of the half-
wavelength dielectric layer in free space will also be low. Therefore, nonresonant quarter-wavelength separating layers 
are used to design narrow gap photonic crystal devices to weaken coupling of the resonant half-wavelength layer with 
free space or with the adjacent resonant half-wavelength layer [1]. 

In this regard, of great interest is investigation of the external Q-factor of the half-wavelength dielectric layer 
bounded by quarter-wavelength multilayers in free space together with the selective properties of some photonic crystal 
structures of passband filters based on half-wavelength resonators. 

To calculate wave propagation through a multilayered dielectric structure, we take advantage of the 1D model 
in which the field strengths depend only on the z coordinate perpendicular to the layers, and the layers themselves are 
considered as cascaded sections of transmission lines. The normalized ABCD transmission matrix [9] 
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is convenient for a description of electrodynamic behavior of the kth section of the transmission line. Here Zk is the 
normalized wave impedance and k is the electric length of the kth section. It is assumed that the field components are 
oscillated following a harmonic law exp (–it). In this case, 

 1 ,  k k k k kZ n n T
c


   , (2) 

where nk is the refractive index and Tk is the thickness of the kth dielectric layer. 
Transmission matrix (1) together with the formula 
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enables one to calculate the electric and magnetic field strengths on one surface of the dielectric layer for the given field 

strengths on another surface. Here 0 0 0Z     is the characteristic impedance of free space. 

For cascaded line sections, their transmission matrices are multiplied in the same order. Therefore, the ABCD 
matrix of the n-layer structure can be calculated from the formula 
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We characterize the power transmitted through the multilayered structure by the element of the scattering matrix |S21|
2, 

measured in decibels, which is expressed through the ABCD matrix by the formula [9] 
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where Z1 and Z2 are the characteristic impedances of the media before and behind the structure. Having the transmission 
spectrum and neglecting dielectric loss, we can estimate the external Q-factor at resonance from the formula 

 1Q f f  , (6) 

where f is the bandwidth at a level of 3 dB and f1 is the resonant frequency. 
Now we derive the formulas for the external Q-factor of the half-wavelength dielectric layer placed in the 

middle of the layered structure formed by quarter-wavelength dielectric layers. We assume that the external layers have 
the refractive indices nH, and the refractive indices of all internal layers alternately take values nL and nH, where nL < nH. 

The external Q-factor of any oscillatory system without intrinsic loss is related to the complex frequency of free 
oscillations by the formula [10] 

  Re 2ImeQ     . (7) 

Since the electric thickness  of dielectric layers is proportional to the frequency , formula (7) can be written as 
follows: 

  Re 2ImeQ     . (8) 

The electric thickness of the quarter-wavelength dielectric layer at frequency f1 is Re 2   . 
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To simplify calculations, we now consider the presence of the symmetry plane of the layered structure. We 
place the origin of coordinate z in the centre of the resonant half-wavelength layer. Then it is sufficient to consider the 
field strength distribution only for z > 0. The half-wavelength layer is equivalent to the section of the transmission line 
close-circuited at both ends, when its refractive index (nR) is much lower than the refractive indices of the surrounding 
layers (nH); otherwise (for nR >> nL), it is equivalent to the open-circuited section of the transmission line. We note that 
the electric field strength E(z) in the half-wavelength layer is distributed by a cosine law if nR = nL and by a sine law if 
nR = nH irrespective of the contrast degree of the refractive indices. 

Thus, the distribution functions for the three-layer structure (nR = nL) have the form 
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where z1 and z2 are the coordinates of the layer boundaries, Am (m = 1, 2, 3, and 4) are unknown wave amplitudes, 
k1 = nLc, k2 = nHc, and k0 = c. 

According to the electrodynamic boundary conditions, functions (9) should be continuous at points z1 and z2. 
From here we obtain the system of equations 
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A homogeneous system has a nontrivial solution if its determinant is equal to zero. From here we obtain the equation 
for the frequency of free oscillations: 

  2
L H H L Htan tan 0n in n n n    . (11) 

It has the following solution: 
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After substitution of Eq. (12) into Eq. (8), we obtain the external Q-factor of the half-wavelength resonator in the three-
layer structure [11] 
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Addition of one more quarter-wavelength layer from the right and from the left of the half-wavelength 
resonator results in a  significant increase of its Q-factor. In this case, the refractive index of the half-wavelength layer 
should be higher than that of the adjacent quarter-wavelength layer. 

The Q-factor of the half-wavelength resonator in the five-layer structure can be calculated from the formula 
[11] 

 5 4arccotheQ
x


 , (14) 

where x is the real root of the cubic equation 

    2 3 2 2 2 2
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These formulas were derived by analogy with formula (13). 
Figure 1 shows the frequency dependences of the coefficient of light transmission through the examined 

structures with the half-wavelength resonator. All dependences have the period f1. Here solid curve 1 is for the resonator 
comprising only single half-wavelength layer with the refractive index n1 = 4. As is well known [12], the n1 values in 
the optical range are close to the maximum values of the materials. Such single half-wavelength layer even for so high 
refractive index has relatively low external Q-factor. At the frequency f1, it is equal only to Qe  2.8, which is testified 
by wide passband and considerable transmitted power in stopbands. Dashed curve 2 in Fig. 1 shows light transmission 
through the three-layer structure in which the half-wavelength layer with refractive index n1 = 2 is surrounded by 
quarter-wavelength layers with n2 = 4. In this case, the Q-factor increased almost 3 times to Qe  8.3. Dotted curve 3 is 
for the resonator with bleaching quarter-wavelength layers (n1 = 4 and n2 = 2).  
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Fig. 1. Frequency dependences of the light transmission through the single half-wavelength resonator 
(a), the resonator with quarter-wavelength layers for n2 > n1 (b), and the resonator with quarter-
wavelength layers for n2 < n1 (c) (the inserts show the refractive index profiles; the half-wavelength 
layers with n1 are hatched). 



 1382 

Figure 2 shows dependences of the Q-factor of the half-wavelength resonator in three-layer structure on the 
refractive index of quarter-wavelength layers [11]. The curves were drawn using formula (13) for the indicated values 
of the refractive index of the half-wavelength layer. It can be seen that the Q-factor of the resonator rapidly increases 
with increasing n2 and decreasing n1. We note that the Q-factor of the air resonator increases for the three-layer structure 
more than 5 times in comparison with the single layer half-wavelength resonator. 

Figure 3 shows analogous dependences for the five-layer structure calculated using formula (14). It can be seen 
that the Q-factor in this case, on the contrary, rapidly decreases when n2 increases or n1 decreases. However, we note 
that in comparison with the single layer half-wavelength resonator with n1 = 4, the Q-factor for the five-layer structure 
increases more than 20 times. 

Formulas (1)(6) can be used to calculate the Q-factor of the half-wavelength layer for any arbitrary number N 
of quarter-wavelength layers surrounding it with alternating high and low optical densities. These dependences are 
shown for the indicated refractive indices in Fig. 4. They demonstrate almost exponential increase in the Q-factor of the 
resonator with increasing number of quarter-wavelength layers surrounding it. 

Thus, the coupling of the half-wavelength resonant layer with space can be regulated via the contrast and the 
number of quarter-wavelength dielectric layers strongly reflecting electromagnetic waves at resonant frequencies of the 
half-wavelength layer. As is well known, the number of resonators m in the passband filter determines the order of the 
filter and hence its selective properties. It is obvious that the coupling between the filter resonators can also be regulated 
via the quarter-wavelength layers. Figure 5 shows the frequency response that demonstrates light transmission through 
the 7th-order filter with fractional bandwidth of 10%. It can be seen that the frequency response is the periodic function 
with the period 2f1. The structure of layers in the filter is symmetric about the central (IV) half-wavelength layer (in the 
inset of Fig. 5, the dependence of the refractive index n(z) is shown for the left half of the structure). To minimize the 
losses in the passband filter, it is important that the resonant half-wavelength layers had minimal dielectric loss; 
therefore, all seven resonators in the filter (I, II, III, IV, ...) forming the passband are air ones (n = 1). The neighboring 
resonators of the filter are separated from each other by three quarter-wavelength layers, and the end resonators are 
separated from free space by single quarter-wavelength layer. As a result, the filter comprises 27 dielectric layers.  

It is important to note that not all quarter-wavelength layers of the filter shown in Fig. 5 have identical 
refractive indices. In addition to two values n = 1 and 2.86, they also take values n = 1.06, 1.35, and 2.45. This means 
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Fig. 2. Dependences of the Q-factor of the half-wavelength resonator in the three-layer structure on the 
refractive index of the quarter-wavelength layers for the indicated values of n1. 

Fig. 3. Dependences of the Q-factor of the half-wavelength resonator in the five-layer structure on the 
refractive index of the quarter-wavelength layer for the indicated values of n1. 
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that the photonic crystal structure of the examined optical filter is not strictly periodic. It differs significantly by this 
feature from all well-known optical filters [1, 13]. A disadvantage of periodic photonic crystal structures is high 
unequalized transmission ripples in the filter passband [14] exceeding 3 dB, that is, 50% (Fig. 6). In the examined 
matched optical filter these ripples are insignificant (about 3%), and if necessary, can be made even lower. In 
microwave filters, these ripples are easily eliminated by increasing the resonator couplings toward the filter end [6]. The 
same is true when the examined optical filter is matched. 
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Fig. 4. Dependences of the Q-factor of the half-wavelength resonator on the number of quarter-
wavelength layers surrounding it. Here curve 1 is for nH = 4 and nL = 2, curve 2 is for nH = 8 and nL = 
4, curve 3 is for nH = 16 and nL = 4, and curve 4 is for nH = 16 and nL = 2. 
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Fig. 5. Calculated frequency response of the 7th-order synthesized filter (in the inset, the refractive 
index profile is shown for the left half of the filter). 
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For a comparison, Fig. 7 shows the frequency dependences of light transmission through 3rd-, 5th-, and 7th-order 

filters. It can be seen that with increasing order of the filter, that is, with increasing number of half-wavelength layers, 

the depth of the stopband increases together with the slope steepness of its frequency response. The slope steepness of 

the microwave filters is characterized by its low-slope coefficient KL and upper-slope coefficient KH [15]. In the 

photonic crystal structures, the passband slopes are symmetric; therefore, they coincide. For symmetric slopes, they are 

defined by the simple formula 

 3 dB
S

30 dB 3 dB

f
K

f f


 



  

, (16) 

where 3 dB 30 dB and f f    are the passband widths at levels of –3 dB and –30 dB, respectively. 

We note that proportional weakening of all resonator couplings leads to proportional narrowing of the filter 

bandwidth [6]. It is obvious that to weaken the couplings in the examined structure of the optical filter, not only 

a greater number of quarter-wavelength layers separating the half-wavelength resonators, but also a greater number of 

the quarter-wavelength layers separating the end resonators from free space are required. We synthesized and 

investigated narrowband filters with fractional bandwidth of 1.45% comprising from 2 to 7 resonators. For their 

implementation, three quarter-wavelength layers rather than one were placed between the end resonator and space, and 

five separating quarter-wavelength layers with the refractive index of the material n  4 rather than three were placed 

between other resonators. In this case, the 7th-order filter comprised already 43 layers.  

Figure 8 shows the dependences of the slope steepness on the order of the examined filters with fractional 

bandwidth of 1.45 and 10%. It can be seen that the slope steepness increases with increasing order of the filter slightly 

faster than a linear function. The slope steepness for the narrowband filters is slightly higher than for broadband filters. 

Thus, the electrodynamic analysis of the optical resonator representing the half-wavelength dielectric layer with 

low or high refractive index bounded from each end by quarter-wavelength layers with alternating high and low 

refractive indices has been carried out. The formulas for calculation of the external Q-factor of such resonator in free 
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Fig. 6. Frequency response of the matched filter (the solid curve) and of the periodic photonic 
crystal structure (dotted curve). 

Fig. 7. Frequency response of the 3rd-, 5th-, and 7th-order filters with fractional bandwidth of 10%. 
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space were derived. The dependences of the Q-factor on the number of dielectric layers in the structure and on their 

optical properties were investigated. The suggested approach allows the number of the quarter-wavelength dielectric 

layers covering the dielectric resonator to be determined to obtain the required Q-factor. 

The photonic crystal filters from the 2nd- to 7th-order with fractional bandwidth of 10 and 1.45% have been 

synthesized. Their selective properties were investigated. For the first time it was demonstrated that the photonic crystal 

structure of the matched optical filter should not be strictly periodic. Otherwise, the transmission ripples in the passband 

could exceed 50%. To eliminate these ripples, the contrast of the refractive indices of the neighboring quarter-

wavelength layers must be decreased from the center of the structure toward its ends. The examined designs of the 

filters can be fabricated by electron beam lithography and etching with inductively coupled plasma [16].  

This work was supported in part by the Ministry of Education and Science of the Russian Federation (State 

Contract No. 14.513.11.0010) and Federal Target Program “Scientific and Pedagogical Personnel of Innovative Russia 

for 2009–2013.” 

REFERENCES 

1. H. A. Macleod, Thin-Film Optical Filters, Adam Hilger Ltd, London (1969). 
2. E. Yablonovitch, Phys. Rev. Lett., 58, Nо. 20, 2059 (1987). 
3. M. Shirasaki, H. Nakajima, T. Obokata, and K. Asama, Appl. Opt., 21, No. 23, 4229 (1982). 
4. N. A. Feoktistov and L. E. Morozova, Tech. Phys. Lett., 20, No. 3, 180 (1994). 
5. B. A. Belyaev, A. S. Voloshin, and V. F. Shabanov, Dokl. Phys., 50, No. 7, 337 (2005). 
6. G. L. Mattei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling 

Structures, McGraw Hill, New York (1964). 
7. V. V. Tyurnev, J. Commun. Technol. Electron., 53, No. 5, 554 (2008). 
8. B. A. Belyaev, A. S. Voloshin, and V. F. Shabanov, Dokl. Phys., 49, No. 4, 213 (2004). 
9. K. C. Gupta, Р. Garg, and R. Chadha, Computer-Aided Design of Microwave Circuits Artech House, Dedham 

(1981). 
10. G. Woan, The Cambridge Handbook of Physics Formulas, Cambridge University Press (2000). 
11. B. A. Belyaev and V. V. Tyurnev, Microwave Opt. Technol. Lett., 55, No. 7, 1613 (2013). 
12. D. E. Aspnes and A. A. Studna, Phys. Rev., B27, 985 (1983). 

 

m2 3 4 5 6 7

КS 

0

1

2

3

1.45 % 
10 % 

 

Fig. 8. Dependences of the slope steepness of filters with fractional bandwidth of 1.45 and 10% on 
the number of resonators comprised in them. 



 1386 

13. J. Li, Opt. Commun., 283, 2647 (2010). 
14. W. Withayachumnankul, B. M. Fischer, and D. Abbott, Opt. Commun., 281, 2374 (2008). 
15. B. A. Belyaev, S. V. Butakov, N. V. Laletin, et al., J. Commun. Technol. Electron., 51, No. 1, 20 (2006). 
16. W. Jia, J. Deng, B. P. L. Reid, et al., Photonics and Nanostructures – Fundamentals and Applications, 10, 447 

(2012). 
 
 


	REFERENCES

