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a b s t r a c t

Idealized graphene monolayer is considered neglecting the van der Waals potential of the substrate and
the role of the nonmagnetic impurities. The effect of the long-range Coulomb repulsion in an ensemble
of Dirac fermions on the formation of the superconducting pairing in a monolayer is studied in the
framework of the Kohn–Luttinger mechanism. The electronic structure of graphene is described in the
strong coupling Wannier representation on the hexagonal lattice. We use the Shubin–Vonsowsky model
which takes into account the intra- and intersite Coulomb repulsions of electrons. The Cooper instability
is established by solving the Bethe–Salpeter integral equation, in which the role of the effective
interaction is played by the renormalized scattering amplitude. The renormalized amplitude contains
the Kohn–Luttinger polarization contributions up to and including the second-order terms in the
Coulomb repulsion. We construct the superconductive phase diagram for the idealized graphene
monolayer and show that the Kohn–Luttinger renormalizations and the intersite Coulomb repulsion
significantly affect the interplay between the superconducting phases with f -, dþ id-, and pþ ip-wave
symmetries of the order parameter.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most interesting properties of graphene is controll-
ability of the position of its chemical potential by an applied
electric field, which allows the change of the carrier type (elec-
trons or holes) [1,2]. It was experimentally demonstrated that
short graphene samples placed between superconducting contacts
could be used for constructing Josephson junctions [3]. This
indicates that Cooper pairs can coherently propagate in graphene.
The question now arises of whether graphene can be structurally
or chemically modified to become a magnet [4] or even a true
superconductor.

Theoretically, a model with the conical dispersion requires the
minimum intensity of the pairing interaction to develop the
Cooper instability [5]. In view of this fact, a number of attempts
were made to theoretically analyze possible implementation of the
superconducting state in doped graphene. In paper [6], the role of
topological effects in implementation of the Cooper pairing in this
material was investigated. In paper [7], using the mean field
approximation, the plasmon type of superconductivity in gra-
phene was investigated, which leads to the low critical tempera-
tures in the s-wave channel for realistic electron densities. The

possibility of inducing superconductivity in graphene by electron
correlations was studied in [8,9]. In paper [10], the interplay
of the superconducting phase with the dþ id-wave symmetry of
the order parameter and the spin density wave phase depending
on the position of the chemical potential with respect to van
Hove singularity in the electron density of states of graphene was
investigated using the functional renormalization group. Near the
van Hove singularity, the superconducting phases with dþ id- and
f -wave symmetries of the order parameter were found.

In paper [11], the situation was considered when the Fermi
level is located near one of the van Hove singularities in the
density of states of graphene. It is known that these singularities
can enhance the magnetic and superconducting fluctuations [12].
According to the scenario described in [11], the Cooper instability
occurs due to the strong anisotropy of the Fermi contour at van
Hove filling nvH, which, as a matter of fact, originates from the
Kohn–Luttinger mechanism [13] proposed in 1965 suggesting the
appearance of the superconducting pairing in systems with the
purely repulsive interaction. According to the estimation made in
[11], the Cooper instability of this type in idealized graphene can
increase the critical temperatures of the superconducting transi-
tion up to 10 K, depending on whether the chemical potential level
is close to the van Hove singularity. It should be noted that
in the calculation only the Coulomb repulsion of electrons on
one site was taken into account. In paper [14], the possible
interplay and coexistence of the Pomeranchuk instability and the
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Kohn–Luttinger superconducting pairing in graphene were dis-
cussed. The authors of [15] demonstrated using a renormalization
group approach within the Kohn–Luttinger mechanism that in a
monolayer of the doped graphene the superconducting dþ id-
pairing can be implemented.

In this paper, an idealized monolayer of graphene is considered
neglecting the van der Waals potential of the substrate and the
role of the nonmagnetic impurities. The Cooper instability in a
monolayer is investigated in the weak coupling limit of the Born
approximation by implementing the Kohn–Luttinger mechanism
with respect to the Coulomb repulsion of electrons localized not
only on one, but also on the nearest-neighbor carbon atoms. In the
evaluation of the effective interaction in the Cooper channel, we
take into account the polarization contributions caused by the
Coulomb repulsion between electrons belonging to both one and
different branches of the graphene energy spectrum.

The necessity to account for the long-range Coulomb repulsion
in the calculation of the physical characteristics of graphene was
dictated by the results of paper [16], where in the ab initio
calculation of the effective many-body model of graphene and
graphite the values of the partially screened frequency-dependent
Coulomb repulsionwere determined. It was demonstrated that the
value of the onsite repulsion in graphene is U¼9.3 eV and the
Coulomb repulsion of electrons localized on the neighboring
sites is V¼5.5 eV, which indicates the principle importance to
take into account the nonlocal Coulomb interaction. Note that
other researchers consider the values of U and V to be much
smaller.

2. Theoretical model

Since there are two carbon atoms per each unit cell of the
graphene lattice, the latter can be divided in two sublattices A and
B. In the Wannier representation, the Hamiltonian of the Shubin–
Vonsowsky model (the extended Hubbard model) [17] for gra-
phene with respect to electron hoppings between the nearest-
neighbor and next-to-nearest-neighbor atoms and the Coulomb
repulsion of electrons located at one and at neighboring sites has
the form

Ĥ ¼ Ĥ0þĤ int ; ð1Þ

Ĥ0 ¼ �μ∑
f
ðn̂A

f þ n̂B
f Þ�t1 ∑

〈fm〉s
ða†fsbmsþh:c:Þ

�t2 ∑
〈〈fm〉〉s

ða†fsamsþb†f ;sbm;sþh:c:Þ; ð2Þ

Ĥ int ¼U∑
f
ðn̂A

f ↑n̂
A
f ↓þ n̂B

f ↑n̂
B
f ↓ÞþV ∑

〈fm〉

n̂A
f n̂

B
m: ð3Þ

Here a†fsðafsÞ are the operators that create (annihilate) an electron
with the spin projection s¼ 71=2 at site f of the sublattice A,
n̂A
f ¼∑sn̂

A
fs ¼∑sa

†
fsafs are the operators of the numbers of

fermions at site f of the sublattice A (the analogous notations are
used for the sublattice B), μ is the chemical potential of the system,
t1 is the hopping integral between neighboring atoms (hoppings
between different sublattices), t2 is the hopping integral between
the next-to-nearest-neighbor atoms (within one sublattice), U is
the parameter of the Coulomb repulsion of electrons located at
one site and having the opposite spin projections (Hubbard
repulsion), and V is the Coulomb repulsion of electrons located
at neighboring atoms. In the Hamiltonian, 〈〉 denotes the summa-
tion over the nearest neighbors only, 〈〈〉〉 denotes the summation
over the next to nearest neighbors.

After the transition to the momentum state and the Bogoliubov
transformation

αi;k;s ¼wi1ðkÞak;sþwi2ðkÞbk;s; i¼ 1;2; ð4Þ
the Hamiltonian Ĥ0 is diagonalized and acquires the form

Ĥ0 ¼ ∑
2

i ¼ 1
∑
ks
Ei;kα

†
i;k;sαi;k;s: ð5Þ

The two-band energy spectrum of graphene is described by the
expressions [18]

E1;k ¼ t1jukj�t2f k; E2;k ¼ �t1jukj�t2f k; ð6Þ
where the notations

f k ¼ 2 cos ð
ffiffiffi
3

p
kyÞþ4 cos

ffiffiffi
3

p

2
ky

 !
cos

3
2
kx

� �
;

uk ¼∑
δ
eikδ ¼ e� ikx þ2eði=2Þkx cos

ffiffiffi
3

p

2
ky

 !
; uk ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
3þ f k

q����
���� ð7Þ

were used. The Bogoliubov transformation parameters have the
form:

w1;1ðkÞ ¼wn

22ðkÞ ¼
1ffiffiffi
2

p rnk ; rk ¼
uk

jukj
;

w12ðkÞ ¼ �w21ðkÞ ¼ � 1ffiffiffi
2

p : ð8Þ

In the Bogoliubov representation of quasiparticles, the interac-
tion operator (3) is determined by the expression containing α1;k;s
and α2;k;s as

Ĥ int ¼
1
N

∑
i;j;l;m

k;p;q;s;s

Γ J
ij;lmðkpjqsÞα†

iksα
†
jpsαlqsαmssΔðkþp�q�sÞ

þ 1
N
∑
i;j;l;m
k;p;q;s

Γ?
ij;lmðkpjqsÞα†

ik↑α
†
jp↓αlq↓αms↑Δðkþp�q�sÞ; ð9Þ

where the initial amplitudes

Γ J
ij;lmðkpjqsÞ ¼ Vij;lmðkpjqsÞ ¼ Vuq�pwi1ðkÞwj2ðpÞwn

l2ðqÞwn

m1ðsÞ; ð10Þ

describe the intensity of the interaction of Fermi quasiparticles
with the parallel spins and the initial amplitudes

Γ?
ij;lmðkpjqsÞ ¼ Vij;lmðkpjqsÞþVji;mlðpkjsqÞþUij;lmðkpjqsÞ;

Uij;lmðkpjqsÞ ¼Uðwi1ðkÞwj1ðpÞwn

l1ðqÞwn

m1ðsÞ
þwi2ðkÞwj2ðpÞwn

l2ðqÞwn

m2ðsÞÞ; ð11Þ
describe the interaction of Fermi quasiparticles with antiparallel
spins. Indices i; j; l;m can take the values of 1 or 2. Note that as far
as the terms α†

iksα
†
jpsαlqsαmss and α†

jpsα
†
iksαmssαlqs correspond to

the same process, the effective interaction Γ J should be written as

Γ J
ij;lmðkpjqsÞ ¼ Vij;lmðkpjqsÞþð1�δijδlmÞVji;mlðpkjsqÞ: ð12Þ

3. Effective interaction in the Cooper channel and the
equation for the order parameter

The utilization of the weak coupling Born approximation in the
evaluation of the scattering amplitude in the Cooper channel
allows us to limit the consideration up to the second order
diagrams in the effective interaction for two electrons with the
opposite values of the momentum and spin and use the quantity
~Γ ðp; kÞ. This quantity is graphically determined as a sum of the
diagrams shown in Fig. 1. Solid lines with the light (dark) arrows
correspond to Green's function of the electrons with spin projec-
tions equal to þ1

2 ð�1
2 Þ. It is well-known that the possibility of the

Cooper pairing is determined by the characteristics of the energy
spectrum close to the Fermi level and the effective interaction of
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electrons located near the Fermi surface [19]. Assuming that upon
doping of graphene the chemical potential moves in the upper
energy band E1;k and analyzing the conditions for the appearance
of the Kohn–Luttinger superconductivity we may consider that the
initial and final momenta will also belong to the upper band. This
is shown in Fig. 1 by indices α1 (upper band) and α2 (lower band).

The first plot in Fig. 1 corresponds to the bare interaction of two
electrons in the Cooper channel and is determined analytically by
the expression

~Γ0ðp; kÞ ¼
U
2
þV
4
ðup�kr

n

prkþh:c:Þ; ð13Þ

where we took into account that u�k ¼ un

k . The next (Kohn–
Luttinger) diagrams in Fig. 1 originate from the second-order
scattering processes, δ ~Γ ðp; kÞ, and take into account the polariza-
tion effects of the filled Fermi sphere. In these diagrams, the
presence of the two solid lines without arrows indicates the
performed summation over both the values of the spin projec-
tions. Wavy lines correspond to the bare interaction. The scattering
of electrons with the same spin projection gives rise only to the
intersite contribution. If we have the interaction between elec-
trons with opposite spins, the scattering amplitude is determined
by the sum of the Hubbard and intersite repulsions. Therefore,
when we deal only with the Hubbard repulsion, the δ ~Γ ðp; kÞ
correction for the effective interaction is given only by the last
diagram of the exchange type. If we take into account the Coulomb
repulsion at the neighboring sites, then all the diagrams in Fig. 1
contribute to the renormalized amplitude.

After the introduction of the analytical expression for the
diagrams, we perform the summation over the Matsubara fre-
quencies. Here, we take into account that the main contribution to
the total scattering amplitude ΓðpjkÞ in the Cooper channel comes
from the scattering of electrons with the energies close to the
Fermi energy, therefore, we can ignore the Matsubara frequency
dependence of ~Γ in the Bethe–Salpeter integral equation. As a
result, we get the following integral expression for the effective
interaction:

~Γ ðp; kÞ ¼ ~Γ0ðp; kÞþδ ~Γ ðp; kÞ: ð14Þ
The total contribution of the second-order diagram yields

δ ~Γ ðp; kÞ ¼ � 1
N

∑
i;j;p1

χ i;jðq2; p1ÞΓ?
1i;1jðp; q2j�k; p1ÞΓ?

j1;i1ðp1; �p q2; kÞ
��

� 1
N

∑
i;j;p1

χ i;jðq1; p1Þ Γ?
1j;i1ðp; p1jq1; kÞ½Γ J

i1;j1ðq1; �p p1; �kÞ
��n

�Γ J
i1;1jðq1; �pj�k;p1Þ�

þΓ?
i1;1jðq1; �pj�k;p1Þ½Γ J

1j;1iðp; p1jk; q1Þ

�Γ J
1j;i1ðp; p1jq1; kÞ�

o
: ð15Þ

Here the notations for the generalized susceptibilities

χ i;jðk; pÞ ¼
f ðEi;kÞ� f ðEj;pÞ

Ei;k�Ej;p
; ð16Þ

are used, where f ðxÞ ¼ ðexpððx�μÞ=TÞþ1Þ�1 is the Fermi-Dirac
distribution function and the energies Ei;k are given by formulas
(6). For the sake of compactness, we introduce the following
notations of the momenta combinations:

q1 ¼ p1þp�k; q2 ¼ p1�p�k: ð17Þ
Knowing the renormalized expression for the effective inter-

action, we may proceed to the analysis of the conditions for the
realization of the Cooper instability in the investigated model. It is
known [19] that the appearance of the Cooper instability can be
found by analyzing the homogeneous part of the Bethe–Salpeter
equation. In this case, the dependence of the scattering amplitude
Γðp; kÞ on momentum k is factorized and the integral equation for
the superconducting gap ΔðpÞ is obtained. Introducing the integra-
tion over the isoenergetic contours, we reduce the investigation of
the Copper instability to the solution of an eigenvalue problem
[20–25]

1
ð2πÞ2

∮
ε

q
- ¼ μ

dq̂
vF ðq̂Þ

~Γ ðp̂; q̂ÞΔðq̂Þ ¼ λΔðp̂Þ; ð18Þ

where the superconducting order parameter Δðq̂Þ plays the role
of the eigenvector and the eigenvalues λ satisfy the relation
λ�1C lnðTc=WÞ. Here W is a bandwidth for both the upper and
the lower branches of graphene energy spectrum determined by
Eqs. (6) and (7) in case when t2 ¼ 0. In this case, the momenta p̂
and q̂ lie on the Fermi surface and vF ðq̂Þ is the Fermi velocity.

To solve Eq. (18), we represent its kernel as a superposition of
the eigenfunctions each belonging to one of the irreducible
representations of the C6v symmetry group on the hexagonal
lattice. It is known that this group has six irreducible representa-
tions [26]: four one-dimensional and two two-dimensional. For
each representation, Eq. (18) has a solution with its own effective
coupling constant λ. Further on, we use the following notation to
classify the symmetries of the order parameter: representation A1

corresponds to the s-wave symmetry; B1 and B2, to the f -wave
symmetry; E1, to the pþ ip-wave symmetry, and E2, to the
dþ id-wave symmetry.

For the irreducible representation ν, we search a solution of
Eq. (18) in the form

ΔðνÞðϕÞ ¼∑
m
ΔðνÞ

m gðνÞm ðϕÞ; ð19Þ

where m is the number of an eigenfunction belonging to the
representation ν and ϕ is the angle defining the direction of the
momentum p̂ with respect to the px axis. The explicit form of the
orthonormalized functions gðνÞm ðϕÞ is determined by the expres-
sions

A1-gðsÞm ðϕÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þδm0Þπ

p cos 6mϕ; mA ½0;1Þ;

A2-gðA2Þ
m ðϕÞ ¼ 1ffiffiffiffi

π
p sin ð6mþ6Þϕ;

B1-gðf 1Þm ðϕÞ ¼ 1ffiffiffiffi
π

p sin ð6mþ3Þϕ;

B2-gðf 2Þm ðϕÞ ¼ 1ffiffiffiffi
π

p cos ð6mþ3Þϕ;

E1-gðpþ ipÞ
m ðϕÞ ¼ 1ffiffiffiffi

π
p ðA sin ð2mþ1ÞϕþB cos ð2mþ1ÞϕÞ;

E2-gðdþ idÞ
m ðϕÞ ¼ 1ffiffiffiffi

π
p ðA sin ð2mþ2ÞϕþB cos ð2mþ2ÞϕÞ: ð20Þ

Fig. 1. First- and second-order diagrams for the effective interaction of electrons.
Solid lines with the light (dark) arrows correspond to Green's functions of electrons
with spin projections equal to þ1

2 (�1
2) and the energy corresponding to the upper

(α1) or lower (α2) bands in graphene. Indices i and j acquire the values 1 or 2. The
momenta qi are defined in Eq. (17).
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Here, for the two-dimensional representations E1 and E2, index m
runs over the values at which the coefficients ð2mþ1Þ and
ð2mþ2Þ, respectively, are not multiple of 3.

The eigenfunctions gm satisfy the orthonormality conditions:Z 2π

0
dϕ gðνÞm ðϕÞgðβÞn ðϕÞ ¼ δνβδmn: ð21Þ

Substituting Eq. (19) in Eq. (18), performing integration over
the angles, and using condition (21), we find

∑
n
ΛðνÞ

mnΔ
ðνÞ
n ¼ λνΔ

ðνÞ
m ; ð22Þ

where

ΛðνÞ
mn ¼

1
ð2πÞ2

∮
2π

0
dϕp̂ ∮

2π

0
dϕq̂

dq̂
dϕq̂ vF ðq̂Þ

~Γ ðp̂; q̂Þ

�gðνÞm ðϕp̂ ÞgðνÞn ðϕq̂ Þ: ð23Þ

Since Tc �W expð1=λÞ, each negative eigenvalue λν corresponds to a
superconducting phase with the symmetry of the order parameter of
the type ν. The expansion of the order parameter ΔðνÞðϕÞ in terms of
the eigenfunctions generally includes many harmonics, but the main
contribution is made by several terms only. The highest critical
temperature corresponds to the largest absolute value of λν.

4. Results and discussion

If upon doping of graphene the chemical potential moves to the
upper band E1;k, then when we analyze the conditions for the
appearance of the Kohn–Luttinger superconductivity, we should
consider mostly the contribution of the scattering of the electrons
with the energies corresponding to the upper branch of the energy
spectrum (Eq. (14) at i¼ j¼ 1). Calculated dependences of the
effective coupling constant λ on the carrier density n for the different
types of symmetries of the superconducting order parameter are
presented in Fig. 2. The calculation was performed for the set of
parameters t2 ¼ 0; U ¼ 3jt1j, and V¼0. It can be seen that over
the entire region of the carrier density region 1ono1:25
the superconducting phase with the f -wave symmetry of the
order parameter is realized (the contribution comes from the
gðf 1Þm ðϕÞ ¼ ð1= ffiffiffiffi

π
p Þ sin ð6mþ3Þϕ harmonics, whereas the contribution

of the gðf 2Þm ðϕÞ ¼ ð1= ffiffiffiffi
π

p Þ cos ð6mþ3Þϕ harmonics is absent), whereas
the contribution of the). Here and below, the figures show only the
curves corresponding to the f -, pþ ip-, dþ id-symmetries which are
characterized by the largest absolute values of λν.

Note that in this paper, we analyze only the range of electron
densities for which we do not approach too close to the van Hove
singularity (solid green curve in Fig. 3), in order to escape the
summation of parquet diagrams [27,28].

The inclusion of the Coulomb interaction of electrons with the
energies corresponding to different branches of the graphene
energy spectrum (in this case, the effective interaction is described
by the complete expression (14)) qualitatively changes the super-
conducting phase diagram. In particular, at the low electron
densities 1ono1:13 and near the van Hove singularity, the
competition between the superconducting phase with the f -wave
and dþ id-wave symmetries occurs, which is described by the two-
dimensional representation E2 (Fig. 4). Namely for the densities
1ono1:13 the leading SC-instability corresponds to dþ id-wave
pairing, while for the densities 1:13ono1:25 we have f -wave
pairing. It agrees well with the dependences λðnÞ calculated for the
Hubbard model on the hexagonal lattice in paper [23].

The inclusion of the intersite Coulomb repulsion significantly
affects the interplay between the superconducting phases. This is
clearly seen in Fig. 4(b) and (c), where we show the dependences
of λðnÞ for V ¼ 0:5jt1j and V ¼ 1jt1j. Their comparison to the
plots in Fig. 2 demonstrates that the inclusion of already
weak intersite Coulomb repulsion suppresses the Cooper pairing
in d+id-wave channel at the low densities, however it leads to
realization of d+id-pairing near the van Hove singularity (Fig. 4
(b)). As a result, the f -wave pairing takes place for the densities
1ono1:21. A further increase in parameter V leads to the growth
of the pairing intensity in both dþ id-wave and f-wave channels at
the low and intermediate electron densities (Fig. 4(c)). The leading
SC-instability here corresponds to f -wave pairing for the densities
1ono1:23 and to dþ id-wave pairing near the van Hove singu-
larity. In the calculation of the dependences of λðnÞ in Fig. 4(c), we
used the parameters close to those obtained from the ab initio
calculation in paper [16].

The account for electron hoppings to the next-to-nearest-
neighbor carbon atoms (t2) does not qualitatively affect the inter-
play of the superconducting phases (Fig. 4). This is illustrated
in Fig. 5, where we show the dependences of λðnÞ for the para-
meters t2 ¼ 0:2jt1j; U ¼ 3jt1j, and V ¼ 0:5jt1j. Here again we have
dþ id-wave pairing for 1ono1:12 and 1:18ono1:25, and
f -wave pairing for 1:12ono1:18. Such a behavior of the system
is explained by the fact that the inclusion of the hoppings t240 or
t2o0 does not significantly modify the electron density of states
of graphene in the regions of the carrier concentration between
the Dirac point and both points of the van Hove singularities nvH
(Fig. 3). However, it can be seen in Fig. 5 that the account for the
hoppings t2 leads to an increase in the absolute values of the

Fig. 2. (Color online) Dependences of λ on the electron density n with respect to the
effective interaction of the electrons with the energies corresponding to the upper
branch of the graphene energy spectrum E1;k for t2 ¼ 0, U ¼ 3jt1j, and V¼0. The
leading superconducting (SC) instability for all the densities 1ono1:25 corresponds
to f -wave pairing (B1-representation of the order parameter, see Eq. (20)).

Fig. 3. (Color online) Evolution of the electron density of states of graphene with
the inclusion of hoppings to the next-to-nearest-neighbor atoms.

M.Yu. Kagan et al. / Solid State Communications 188 (2014) 61–6664



effective interaction and, consequently, realization of the higher
critical temperatures of the transition to the superconducting
phase in graphene.

5. Conclusion

Considering a monolayer of an idealized graphene and neglect-
ing the van der Waals potential of a substrate and the role of the
nonmagnetic impurities, we demonstrated that the Kohn–Luttin-
ger superconducting pairing can be realized in the systems with
the linear dispersion law. The electronic structure of graphene was
described by the strong coupling Wannier representation on the
hexagonal lattice within the Shubin–Vonsowsky model, which
takes into account not only the intrasite, but also the intersite
Coulomb repulsion. We constructed the superconductive phase
diagram and demonstrated that the inclusion of the intersite
Coulomb repulsion significantly changes the regions occupied by
the superconducting phases with the f -, dþ id-, and pþ ip-wave

symmetries of the order parameter. On the other hand, the
account of the distant electron hoppings only weakly modifies
the phase diagram. At the same time, it leads to an increase in the
absolute values of the effective interaction and, consequently, to
the higher critical temperatures (up to T � 10 K) of the super-
conducting transition in graphene.

It will be interesting to generalize our results on bilayer and
multilayer graphene structures. Note that rigorously speaking the
substantial difference between graphene and graphite manifests
itself only on the level of two layers and the rotation of their
elementary lattice cells with respect to each other. In bilayer
and multilayer graphene, it is very important and desirable (see
[29–31]) to take the interlayer Hubbard repulsion U12 into account
and to construct the superconducting phase diagram as a function
of the relative strength of the interlayer and onsite Hubbard
repulsions U12=U1 and relative electron densities in the layers
n1=n2. It will be also interesting to perform the calculations in the
spirit of experiments [32] on high-Tc superconducting systems and
to find a pronounced maximum in Tc as a function of the number
of layers.
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