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Bloch bound states in the radiation continuum in a periodic array of dielectric rods
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We consider an infinite periodic array of dielectric rods in vacuum with the aim to demonstrate three types of
Bloch bound states in the continuum (BSCs): symmetry protected with a zero Bloch vector, embedded in one
diffraction channel with nonzero Bloch vector, and embedded in two and three diffraction channels. The first and
second types of the BSC exist for a wide range of material parameters of the rods, while the third occurs only at
a specific value of the radius of the rods. We show that the second type supports the power flux along the array.
In order to find BSCs we put forward an approach based on the expansion over the Hankel functions. We show
how the BSC reveals itself in the scattering function when the singular BSC point is approached along a specific
path in the parametric space.
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I. INTRODUCTION

In 1929, von Neumann and Wigner [1] predicted the exis-
tence of discrete solutions of the single-particle Schrödinger
equation embedded in the continuum of positive-energy
states, bound states in the continuum (BSCs). Their analysis,
examined by Stillinger and Herrick [2], was regarded for a long
time as a mathematical curiosity because of certain spatially
oscillating central symmetric potentials. That situation cardi-
nally changed when Friedrich and Wintgen [3] formulated
a generic two-level Fano-Anderson model and derived a
condition for the BSC as a resonant state whose width tends
to zero as at least one physical parameter varies continuously
(see, also [4–6]). Currently, one can see a rapid growth in
the number of publications, both theoretical and experimental,
devoted to the BSCs in different physical systems [7–23].

The BSC can be classified by the mechanism responsible
for the localization of waves [15,16]. The most obvious
mechanism is related to the symmetry [7,11] when the
continuum states and the BSCs have incompatable symmetries.
The second mechanism is a Fabry-Perot resonator with the
wave trapped between the mirrors as the distance between
the mirrors is tuned. That mechanism was used in the
system of quantum dots coupled by a wire [24,25] as well
as in photonics [9,10,13,26,27]. The above-mentioned types
of the BSC were extensively studied in different photonic
structures and were experimentally observed [14,17–20].
The third mechanism is full destructive interference of two
resonances, which was originally put forward by Friedrich
and Wintgen [3] and later developed in Refs. [6,21]. It
should be noted, however, that experimental observation of
this type of BSC is difficult because it is necessary to
vary material parameters [20]. Fourth, at some value of the
parameters the coupling of a bound state of the closed system
with the continuum channel can turn to zero accidentally,
giving rise to the accidental BSC [16]. We speculate that
this mechanism underlies the robust BSC observed in the
photonic crystal slab [22,23]. In the present paper we consider
a one-dimensional periodic array of GaAs cylindrical rods.
We show that the array is capable of supporting multiple
symmetry-protected Bloch BSCs. The Bloch BSC with a
nonzero wave vector supports power flux. We also show that
there are Bloch BSCs embedded into two and three continua.

II. BASIC EQUATIONS FOR ELECTROMAGNETIC WAVE
SCATTERING BY A PERIODIC ARRAY OF RODS

The system under consideration is an infinitely long array
of GaAs rods. The rods are infinitely long in the z direction,
parallel to each other, and periodically spaced with distance h

along the x axis on the x-y plane, as shown in Fig. 1. In what
follows we take h = 1. We consider the scattering of transverse
magnetic electromagnetic waves by this array. The scattering
of plane waves by cylinders has been the subject of many
investigations. Most difficulties in this connection are caused
by multiple scattering by cylinders [28]. The problem was
considered for the cases of two cylinders [29] and an infinite
periodic row of cylinders [30,31], and a simple and tractable
formulation was developed. In this section we present the basic
equations of that theory for the reader’s convenience (based
on Ref. [31]).

Assume that the periodic array of rods is illuminated by a
plane wave

ψinc(x,y) =
√

2

|ky |e
i(kxx+kyy),

where ψ is the electric field directed along the rods, kx =
−k0 cos ϕi,ky = −k0 sin ϕi , k0 = ω/c, and ϕi defines the angle
of incidence. The plane wave can be expanded over the Bessel
functions,

ψinc(r,ϕ) =
√

2

|ky |
∑
m

(−i)meim(ϕ−ϕi )Jm(k0r)

=
∑
m

ψinc,meimϕJm(k0r), (1)

where

ψinc,m =
√

2

|ky | (−i)me−imϕi =
√

2

|ky |
(

ikx + ky

k0

)m

. (2)

The scattered wave outside the rod is given by the Hankel
functions

�s(r,ϕ) =
√

2

|ky |
∑
m

am exp (imϕ)H (1)
m (k0r). (3)
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FIG. 1. (Color online) Cross section of a periodic array of parallel
infinitely long rods illuminated by a plane wave [thick red (light gray)
arrow]. The wave can be transmitted or reflected to discrete diffraction
channels enumerated by integer l, shown by blue (dark gray) arrows.

The relation between incident and scattered waves is given by

am =
∑

n

Tmnψinc,n, (4)

where the transition matrix has the following form:

Tmn = δmn

√
εJ

′
m(qR)Jm(k0R) − J

′
m(k0R)Jm(qR)

H
(1)′
m (k0R)Jm(qR) − √

εJ
′
m(qR)H (1)

m (k0R)
, (5)

where q = √
εk0 and ε is the permittivity of a rod of radius R.

The scattering function is a sum of waves scattered from each
rod:

�s(x,y) =
√

2

|ky |
∑

j

∑
m

am,j exp (imϕj )H (1)
m (k0rj ), (6)

where (rj ,ϕj ) is the local polar coordinate system whose
origin is located in the center of the j th rod and am,j denotes
the amplitude of the field scattered from the j th rod. The
periodicity of the structure requires the scattered field to satisfy
the Bloch theorem:

�s(x + 1,y) = exp (ikx)�s(x,y), (7)

with kx being the Bloch vector. Substituting Eq. (7) into Eq. (6),
we have

�s(x,y) =
√

2

|ky |
∑

j

∑
m

exp(ikxj )am exp(imϕj )H (1)
m (k0rj ),

(8)
where am = am,0. The total wave function therefore is � =
�inc + �s . Consequently, Eq. (7) defines the wave vectors of
diffraction channels [27,31],

ky,l =
√

k2
0 − k2

x,l , kx,l = kx + 2πl,

l = 0,±1,±2, . . . . (9)

The infinite periodic array of rods scatters the wave into only
a number of directions defined by wave vectors kx,l,ky,l . In
the other words, the system under consideration supports only
a finite number of continua or diffraction channels, denoted

by integer l in Eq. (9), for which ky,l is real. The diffraction
channel waves are given by

ψ
r,t
l =

√
2

ky,l

eikx,lx±iky,ly . (10)

Here indexes t,r imply the transmitted and reflected plane
waves which are schematically shown in Fig. 1 by thin blue
(dark gray) arrows.

Following Ref. [31], we introduce the aggregate matrix Â,
which relates the amplitudes � = {ψinc,m} in the expansion
of the incident plane wave (1) to the amplitudes a = {am} of
scattered wave (8),

a = Â�inc. (11)

That matrix could be considered an analog of the scattering
matrix; however, there is an important difference. The latter
connects the scattering channels denoted by l with the incident
wave, while the former connects the amplitudes of the Hankel
functions in the scattered wave with the incident wave.

For an infinite periodic array of rods multiple scattering
events can be summated as follows [31]:

Â = (1 − T̂ L̂)−1T̂ (12)

where the T̂ matrix is given by Eq. (5) and

Ln−m =
∞∑
l=1

H
(1)
n−m(lk0h)[eikx l + (−1)n−me−ikx l)]. (13)

Let us introduce components of waves transmitted and
reflected in the lth diffraction channel,

v(t,r)
l =

√
2

ky,l

{(
ikx,l ∓ ky,l

k0

)m}
, (14)

in terms of which we rewrite Eq. (11) in accordance with
Eq. (2):

a = Âv(t)
0 . (15)

Then we have [31]

rl = [
v(r)

l

]+
a, tl = δl,0 + [

v(t)
l

]+
a, (16)

which are the reflection and transmission amplitudes for open
channels, respectively. The scattering function (6) can be
written as follows [31]:

�s(x,y) =
{∑

l rlψ
(r)
l (x,y) if y > 0,∑

l tlψ
(t)
l (x,y) if y < 0,

(17)

where both open and closed channels are summated.

III. CALCULATION OF BOUND STATES
IN THE CONTINUUM

Typically, a plane wave is scattered by the array of rods
into diffraction channels according to Eq. (15). However, there
could be a unique case when the matrix Â in Eq. (15) is singular
and the solution for the scattering wave exists irrespective of
the incident-wave amplitude v(t)

0 . As will be shown below, this
unique solution is decoupled from the diffraction channels
and localized near the array. This solution is the bound state
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with the frequency embedded in the diffraction continua, i.e.,
a BSC. In this section we adapt the approach of the effective
non-Hermitian Hamiltonian [32,33] to calculate a BSC in the
periodic array of rods.

As can be seen from Eq. (15) the aggregate matrix
Â must be singular for the BSC to exist. This matrix is
not Hermitian, and similar to the approach of the effective
Hamiltonian [34,35], it is fruitful to introduce the biorthogonal
basis of the eigenvectors of the matrix

	̂ = Â−1 = T̂ −1 − L̂ (18)

as follows:

	̂xf = λf xf , 	̂+yf = λ∗
f yf , y+

f xg = δfg. (19)

One can show that∑
f

xf y+
f = 1, 	̂−1 =

∑
f

xf y+
f

λf

. (20)

Then by using Eqs. (19) and (20) the scattering state in Eq. (15)
can be expanded over the biorthogonal basis as follows:

a =
∑
f

(
y+

f v(t)
0

)
xf

λf

. (21)

By substituting Eq. (21) into (16) we obtain the scattering
amplitudes in the following form:

rl =
∑
f

W
(r)
f,l W̃

(t)
f,0

λf

, tl = δl,0 +
∑
f

W
(t)
f,lW̃

(t)
f,0

λf

, (22)

where we introduced the coupling constants between the f th
eigenvector of the matrix 	 and the lth diffraction channel
vector v(t)

0 ,

W
(r,t)
f,l = [

v(r,t)
l

]+
xf , W̃

(t)
f,0 = y+

f v(t)
l . (23)

Equations (22) are similar to those derived in Ref. [34].
The BSC occurs when at least one of the complex

eigenvalues λ equals zero,

	̂�BSC = 0. (24)

Therefore, the BSC is, in fact, a null eigenvector. Next,
Eqs. (22) show that for the scattering amplitudes to remain
finite we have to imply the condition[

vr,t
l

]+
�BSC = 0. (25)

This equation shows that the BSC is decoupled from all
open diffraction channels and therefore does not leak into the
radiation continuum.

IV. SYMMETRY-PROTECTED BSC

In what follows we take the dielectric constant of the
rods ε = 12 (GaAs rods). We briefly describe the numerical
procedure to calculate the BSC function. In the first step the
eigenvalue problem for the matrix 	 defined by Eqs. (13)
and (18) is solved. Numerically, we truncate the rank of the
matrix 	 by |m| � 10 to ensure sufficient accuracy. Then the
eigenvector components am are substituted first into Eq. (16)
and then into Eq. (17) to find the BSC wave function outside the

FIG. 2. (Color online) Patterns of the symmetry-protected BSCs
which are solutions of Eq. (24) for ε = 12,R = 0.3 and (a) k0 =
hω/c = 2.542, (b) k0 = 3.6467, (c) k0 = 4.85, and (d) k0 = 5.3125.
The array of rods is shown by dashed circles.

rods. A summation over l includes only closed channels, i.e.,
evanescent modes. The BSC function inside the rods should
be expanded over the Bessel functions, where the coefficients
are calculated by means of matching the outside and inside
functions on the boundary of the rods.

Let us assume that only diffraction channel l = 0 is open.
Examples of Bloch states embedded in this channel are shown
in Fig. 2 for kx = 0; the pattern of the BSC in Fig. 2(a) was
first presented by Shipman and Venakides [7]. We show that
these Bloch BSCs are symmetry protected. For kx = 0,π the
matrix 	̂ has the property

	m,n = 	|m−n|. (26)

Let us introduce the operator which inverts the indexes of am,

P̂ am = a−m. (27)

Then it follows from Eq. (26) that the operator P̂ commutes
with the matrix 	̂. Therefore, the eigenvectors of the matrix 	̂

are only symmetric or antisymmetric relative to m → −m; in
particular, the same holds true for the BSC,

�
s,a
m,BSC = ±�

s,a
−m,BSC, (28)

where s and a stand for symmetric and antisymmetric states,
respectively. For kx = 0,π an additional property arises, as
can be seen from Eq. (13):

	|2m+1| = 0. (29)

That additional property allows us to split the BSCs into the
following types. The BSCs of the first type have only odd
components, ao

2m = 0, while the BSCs of the second type have
only even components, ae

2m+1 = 0. Thus, the BSCs for kx =
0,π can be split into four types: (s,o),(s,e),(a,o),(a,e).

For diffraction channel l = 0 with kx = 0 we have, from
Eq. (14),

v
(t)
l=0,m =

√
2

ky,0
(−1)m, v

(r)
l=0,m =

√
2

ky,0
. (30)
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Substituting Eq. (30) into Eq. (25), we find that only two types
of the BSCs, (a,o) and (a,e), are symmetry protected. Let us
consider first the Bloch BSC which belongs to the type (a,o).
Matching the solutions (8) on the boundary of the rod, we find
the BSC wave-function interior of the j = 0 rod as follows:

�(r,ϕ)(a,o) =
∞∑

m=1

A2m−1(r) cos(2m − 1)ϕ, (31)

with

Am(r) =
Jm(k0R)

Tmm
+ H (1)

m (k0R)

Jm(qR)
amJm(qr), (32)

where the property of the Bessel functions J−m(x) =
(−1)mJm(x) was taken into account. One can see that the
BSC function has the nodal line at ϕ = π/2, i.e., at x = 0.
However, because the BSC is a Bloch wave, we obtain
a periodical set of nodal lines at x = 0,±1,±2, . . .. Note
that the BSC does not exist only within the rods. Although
there is no contribution of the l = 0 diffraction channel to
scattering function (17) because rl=0 = 0,tl=0 = 0, there are
contributions of closed evanescent diffraction channels with
l �= 0. According to Eq. (9), the dominant contribution l = 1
gives us the localization scale in the y direction as

yBSC ∼ 1/

√
4π2 − k2

0 . (33)

The patterns of the antisymmetric odd Bloch BSC are shown
in Figs. 2(a), 2(c), and 2(d).

For the antisymmetric even BSC (a,e) we have the
following solution within the rods:

�(r,ϕ)(a,e) =
∞∑

m=1

A2m(r) sin 2mϕ, (34)

which has the nodal lines at ϕ = 0,π/2. The numerically
calculated pattern of this BSC is shown in Fig. 2(b). Thus,
the antisymmetric Bloch BSC exists provided that the BSC
frequency k0 does not exceed the threshold of the next
diffraction channels with l �= 0. Figure 3 shows that all
symmetry-protected BSCs from Fig. 2 coexist for a wide range
of the radius of the rods.

0.2 0.3 0.4
2

3

4

5

R

k
0

(d)

(c)

(b)

(a)

FIG. 3. (Color online) BSC frequencies k0 = ω/c vs radius R for
the BSCs shown in Fig. 2.

FIG. 4. (Color online) Real part of the symmetric odd Bloch BSC
for R = 0.4515,k0 = 3.0887,kx = 0.

Next, we consider the symmetric odd BSC (s,o) in
the diffraction channel kx = 0,l = 0. Substituting Eqs. (30)
and (28) into Eq. (25), we obtain

[
vr,t

l

]+
�(s,o) = 2

√
2

ky,0

∞∑
m=1

�
(s,o)
2m−1. (35)

In contrast to the antisymmetric wave, the right-hand part of
this equation can equal zero only accidentally as one varies
the radius of the rods. The corresponding BSC function,

�(r,ϕ)(s,o) =
∞∑

m=1

A2m−1(r) sin(2m − 1)ϕ, (36)

is presented in Fig. 4. This BSC has nodal lines at y = 0. The
symmetric even BSC (s,e) wave function has the following
form for r < R:

�(r,ϕ)(s,e) =
∞∑

m=0

A2m(r) cos 2mϕ. (37)

However, for a given parameter ε = 12 our computation
revealed only the symmetric odd BSC. Thus, neither the odd
nor even BSC can be classified as symmetry protected because
of the necessity to adjust the right-hand part of Eq. (35) to zero.

V. THE BOUND STATES EMBEDDED IN TWO AND THREE
DIFFRACTION CHANNELS

Now, we show that the BSC can exist even when more
than one diffraction channel is open. This phenomenon was
considered by Ndangali and Shabanov in the double arrays of
dielectric rods [27]. They showed that tuning for BSC requires
a higher dimensionality of the parametric space. In Ref. [16]
we demonstrated that the BSC can be robust relative to a few
open channels owing to the symmetry of the resonator. We
show in this section that the present system can also support
BSC embedded in a few diffraction channels. First, we assume
that only two diffraction channels, l = 0,kx,0 = kx = π and
l = −1,kx,−1 = −π , are open. The components of ingoing
and outgoing waves (14) satisfy the following relationships:

v
(r,t)
l=0,m = [

v
(r,t)
l=−1,m

]∗ = v
(r,t)
l=−1,−m. (38)

In this case all symmetric properties established in Eqs. (28)
and (29) still hold true. We start with the symmetric odd
state (s,o) and consider its coupling with the channels (38)
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FIG. 5. (Color online) Real part of the (s,o) BSC wave function
embedded in the open l = 0,l = −1 diffraction channels for R =
0.2107,k0 = 6.87,kx = π .

to establish the following equalities:

W
(r,t)
l=0 = W

(r,t)
l=−1, W

(r)
l=0 = −W

(t)
l=0. (39)

Here, for brevity we omitted the superscript (s,o). One can see
that all coupling constants equal zero if W

(t)
l=0 = 0, which can

be fulfilled by varying the radius of the rod. Such a Bloch BSC
function is shown in Fig. 5. For ε = 12 we did not find the BSC
for the other symmetry types, (s,e),(a,o),(a,e). However, that
does not mean that they are impossible for different ε.

Next, we consider the case of three open diffrac-
tion channels l = 0,kx,0 = kx = π ; l = 1,kx,1 = π ; and l =
−1,kx,−1 = −π , the maximum number of open channels with
an embedded bound state. Our simulations show that the only
the antisymmetric odd BSC (a,o) can exist, for which the
symmetry establishes five equalities for six coupling constants:

W
(r,t)
l=−1 = −W

(r,t)
l=1 , W

(r)
l=1 = W

(t)
l=1, W

(r)
l=0 = W

(t)
l=0 = 0.

(40)

Similar to the previous case, in order to cancel all couplings it
is enough to fulfill W (t)

l=1 = 0. The last equality can be achieved
by tuning the radius of the rods. The wave function within the
rods has the following form:

�(r,ϕ)(a,o) =
∞∑

m=1

A2m−1(r) cos(2m − 1)ϕ. (41)

The Bloch wave function is shown in Fig. 6. One can see
that nodal lines at x = 0,±1/2,±1, . . . are similar to the
antisymmetric odd Bloch BSC embedded in the first diffraction
channel shown in Fig. 2.

FIG. 6. (Color online) Real part of the (a,o) BSC wave function
embedded in the three open diffractions channels: l = 0,l = ±1 for
R = 0.3193,k0 = 9.876,kx = 0.

0.25 0.3 0.35
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FIG. 7. kx (solid line) and k0 (dash line) vs the radius of rods R.

VI. BLOCH BSC WITH POYNTING VECTOR

Could the Bloch BSC occur at π > kx > 0 in the contin-
uum of free-space modes? This question was first answered
positively by Porter and Evans [8], who considered acoustic
trapping in an array of rods with a rectangular cross section.
Later, Marinica et al. [10] demonstrated the existence of the
Bloch BSC at kx > 0 in two parallel dielectric gratings, and
Ndangali and Shabanov [27] demonstrated its existence in two
parallel arrays of dielectric rods. Each array has a transmission
zero for the definite incident angle and frequency to form the
Fabry-Pérot resonator that supports BSCs trapped between
the “mirrors” [10]. In a single array of rods positioned on the
surface of a bulk two-dimensional photonic crystal, multiple
BSCs with kx � 0 were considered by Wei et al [20]. That
system can also be seen as a Fabry-Pérot resonator with the
photonic crystal playing the role of the bottom mirror provided
that the frequency is in the band gap. The periodic array
of rods plays the role of top mirror at a certain frequency
and radius of the rods. Such BSCs are one-dimensional
Bloch surface states which do not leak into the radiation
continuum [19]. The next important step was undertaken by
Zhen et al. [36], who presented the Bloch BSC in a PhC slab
with one-dimensional periodicity in x, where the Bloch BSC
evolves with kx �= 0,kz = 0 into the BSC with kx = 0,kz �= 0
for decreasing slab thickness.

In the present paper we show that the electromagnetic Bloch
BSC with π > kx > 0 occurs in a periodic array of rods with a
circular cross section as the result of zero coupling of the Bloch
state with the diffraction channel at specific values of kx and k0.
We stress that like in the systems described above [20,22,23],
there is no need to tune the material parameters of the rods.
The only condition is that the dielectric constant and the radius
of the rods are large enough that only the l = 0 diffraction
channel is open, as seen in Fig. 7. These Bloch BSCs are
degenerate due to kx → −kx symmetry. Figure 8 shows the
pattern of the BSC (real part) with the Poynting vector field,
which indicates a power flux along the array. The diffraction
channel parameters can be changed as one changes the radius
of the rods, as shown in Fig. 7.
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FIG. 8. (Color online) Real part of the propagating BSC for
R = 0.3,k0 = 3.5577,kx = 1.2556. White arrows show the Poynting
vector carrying the power current in the Bloch BSC.

VII. EMERGENCE OF THE BSC IN THE
SCATTERING FUNCTION

It is clear that probing the BSC with a wave injected
into a diffraction channel is impossible because the BSC is
orthogonal to the channel. Nevertheless, one can show there
is a path in the parametric space leading to the BSC point.
Approaching the BSC point along this path reveals that the
BSC is the dominant contribution in the scattering wave
function (21). Assume that among all complex eigenvalues
λf only one tends to zero, λs → 0, while the others remain
finite in the vicinity of the BSC point. In what follows we
suppose that only one diffraction channel, l = 0, is open. Then
we can write the singular part in the scattering wave (21) as
follows:

as =
(
y+

s v(t,r)
0

)
xs

λs

, (42)

where xs is the eigenvector which tends to the null vector.
We can also present the singular parts in the reflection and
transmission amplitudes (16), i.e., the scattering matrix, as
follows:

rsl = W
(r)
s,l W̃

(t)
s,0

λs

, tsl = W
(t)
s,l W̃

(t)
s,0

λs

. (43)

FIG. 9. (Color online) Transmittance vs k0 and kx for a wave
incident to the array of dielectric rods shown in Fig. 1. The BSC
point k0 = 3.5577,kx = 1.2556,R = 0.3 is shown by the red open
circle.
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FIG. 10. (Color online) Behavior of (a) |as | and (b) the reflection
coefficient vs angular variable α for the encircling of the BSC point
shown in Fig. 9.

Figure 9 shows the transmittance vs kx and k0. One can
see a singular point where unit transmittance touches zero
transmittance, which corresponds to the collapse of the Fano
resonance [24]. This singular point kxs,k0s corresponds to
the Bloch BSC shown in Fig. 8. To find the path leading
to the BSC-like scattering wave, following Ref. [32], we
consider the behavior of the scattering function as one encircles
the singular point (shown in Fig. 9 by a green arrow). In
Fig. 10 we plot the singular part in the scattering state (42)
|as | and the reflection coefficient |rsl=0| as a function of the
angle variable α defined via kx − kxs = ρ cos α,k0 − k0s =
ρ sin α, with ρ = 0.1. The angular behavior demonstrates
sharp peaks. The smaller the radius ρ is, the sharper the
peaks associated with the BSC are. Therefore, it follows that
there is a path leading to the BSC-like scattering function.
This path is shown by a white solid line in Fig. 9 which
corresponds to the unit transmittance in the collapsing Fano
resonance.

VIII. SUMMARY

In the present paper we used the approach presented in
Ref. [31] for cylindrical rods. The approach is based on an
expansion of incident and scattered waves over the Hankel
or Bessel functions and has the advantage that the number of
functions could be taken to be rather small. The symmetry
of the system waves implies the symmetry selection rules for
coefficients am in the expansion of the Bloch BSC. That results
in four types of Bloch BSCs with wave vector kx = 0,π , as
classified in Sec. IV. In turn the symmetry restrictions for
am are reflected in the space symmetry, as demonstrated in
Fig. 2. It is important that the symmetry-protected Bloch
BSC exists for a wide range of the material parameters of
the rods. This symmetry property allows the existence of the
Bloch BSC embedded in two and three diffraction channels,
although at the price of tuning the radius of the rods. Such
BSCs are presented in Figs. 4–6. The next interesting class
of the Bloch BSC is the BSC with the nonzero Bloch wave
vector shown in Fig. 8. This BSC carries a power flux along the
array.

The BSCs exist at a selected point in the parametric space.
So it might be thought that the BSCs are not important beyond
that point. Following Ref. [32], we show that the scattering
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wave function becomes BSC-like if one approaches the BSC
point along the path where the transmission coefficient equals
unity (see Figs. 9 and 10). This provides a path for experimental
observation of the BSC.
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