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Induced tunneling and localization for a quantum particle in tilted two-dimensional lattices
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We consider a quantum particle in tilted two-dimensional lattices in the tight-binding approximations. We show
that for certain lattice geometries the particle can freely move across the lattice in the direction perpendicular
to the vector of the static force. This effect is argued to be analog of the photon-induced tunneling in driven
one-dimensional lattices. We calculate the particle dispersion relation by using a method based on the Bogoliubov-
Mitropolskii averaging technique from the theory of dynamical systems. This dispersion relation draws the
analogy with driven one-dimensional lattices further by eventually showing band collapses when a control
parameter is varied.
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I. INTRODUCTION

Band collapse or dynamic localization is a destructive
interference effect that occurs in periodically driven one-
dimensional (1D) lattices. This effect has been of large
theoretical interest since the seminal work by Dunlap and
Kenkre [1] and was experimentally observed for cold atoms in
optical lattices [2–4] and the light in coupled waveguide arrays
[5]. It takes place for certain amplitudes of the driving force Fω

that are determined by roots of the equation J0(aFω/�ω) = 0,
where J0(z) is the zero-order Bessel function, ω the driving
frequency, and a the lattice period. One meets the same effect
in tilted 1D lattices provided the Bloch frequency ωB = aF/�

is a multiple of the driving frequency, i.e., ωB = qω [6–8].
In this case the original dispersion relation E(κ) = 2t cos(κa)
for the quantum particle in the 1D lattice is substituted by

E(κ) = tJq

(
aFω

�ωB

)
cos(κa) (1)

(here t is the hopping matrix element and κ the particle
quasimomentum). Then the localization condition is given by
roots of the qth order Bessel function [9]. Notice that because
Jq(z) ∼ zq for z → 0 the particle can be delocalized in the
tilted lattice only in the presence of driving—the phenomenon
known as photon-induced or photon-assisted tunneling. Thus
the resonant driving first induces the tunneling and then
suppresses it for higher amplitude of the driving force.

In the present paper we discuss emergence and suppression
of tunneling for a quantum particle in tilted two-dimensional
(2D) lattices. Similar to tilted 1D lattices, the necessary
condition to observe these effects is the resonance condition,
now on two Bloch frequencies associated with two components
of the vector F of a static force. This condition, however, is
not sufficient, and the effects are absent in simple lattices like
the square or triangle lattices. The other requirement is that
the 2D lattice should have nontrivial geometry and consist of
at least two sublattices. In this case the particle can freely
propagate in the direction orthogonal to the vector F [10]. As
shown in Refs. [11] and [12], the physics behind this effect is
the Landau-Zener tunneling between Bloch subbands of the
unbiased lattice. Here we focus on the mathematical aspect of
the problem. Specifically we address the geometry shown in
Fig. 1— a square lattice with three different hopping matrix

elements. This model covers three important cases: (i) if t3 = t2
we have a simple square lattice with no Bloch subbands; (ii) for
t3 = 0 it is topologically equivalent to the honeycomb lattice
with two subbands touching at the Dirac points; (iii) finally, the
case t3 = −t2 corresponds to a staggered magnetic field with π

flux through the elementary cell. In what follows we assume t1
to be the maximal hopping matrix element and shall measure
the other two elements in units of t1. We mention that a square
lattice with three different, independently variable hopping
matrix elements have been recently realized with cold atoms
[13,14], where tj /� are of the order of 1 kHz.

II. DISPERSION RELATION

For the considered square lattice the resonance condition
reads Fx/Fy = r/q, where r and q are co-prime numbers and
we refer to the coordinate system determined by the lattice
primary axes. Our aim is to obtain an analog of Eq. (1)
where control parameters are magnitude of the static force
F = |F| and two prime numbers r and q. The initial step
of the analysis closely follows our recent work [15] devoted
to the Wannier-Stark states in the honeycomb lattice. First
we introduce the coordinate system (η,ξ ) which is rotated
by the angle θ = arctan(Fx/Fy) = arctan(r/q) with respect to
the lattice primary axes. In this coordinate system the Stark
energy Fr depends only on ξ and, hence, we can use the ansatz
�(η,ν) = exp(iκη)ψ(ξ ) to separate the variables [16]. Notice
that in new variables the coordinates ri of the lattice sites are
a multiple of the period

d =
√

2a√
r2 + q2

, (2)

where a is the period of the square lattice with no sublattices
(t3 = t2). Using the above ansatz the stationary Schrödingier
equation reduces to the following system of coupled algebraic
equations

EψA
j = −t1e

−irκdψB
j−q − t1e

iqκdψB
j−r − t2e

i(q−r)κdψB
j−q−r

− t3ψ
B
j + FdjψA

j ,

EψB
j = −t1e

irκdψA
j+q − t1e

−iqκdψA
j+r − t2e

i(r−q)κdψA
j+r+q

− t3ψ
A
j + (Fdj + E0)ψB

j , (3)
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FIG. 1. The tight-binding model with three different hopping
amplitudes. For t3 = t2 the model reduces to the simple square lattice
while for t3 = 0 it is topologically equivalent to the honeycomb
lattice. Notice that primary axes of the square and honeycomblike
lattices are rotated by π/4 relative to each other.

where E0 = Fd(r + q)/2 and A and B are the sublattice
indexes. A similar equation was obtained in Ref. [15] where
we solved it numerically. It follows from the general structure
of Eq. (3) that the energy spectrum consists of a replica of
the (yet unknown) energy band E = E(κ) and its symmetric
counterpart E = −E(κ) arranged into two Wannier-Stark
ladders (see inset in Fig. 2). In this sense the problem is
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FIG. 2. (Color online) Width of the energy bands in units of t1 as
the function of dimensionless static force F ′ = √

2aF/t1. The system
parameters are Fx/Fy = r/q = 2/1 and (t1,t2,t3) = (1,0.5,0.25).
The dashed and solid lines are plotted by keeping in Eq. (13) the
first two and four terms, respectively, and symbols are the exact
numerical result. The inset shows a fragment of the energy spectrum
for F ′ = 2.3 where open circles are the analytical result according
to Eq. (13). The bands are shown as the functions of dimensionless
quasimomentum κ ′ = (r2 + q2)dκ = √

2(r2 + q2)aκ .

effectively one dimensional and, hence, the question about
the analog of Eq. (1) is well posed.

To find the above dispersion relation, i.e., to approach
Eq. (3) analytically, we Fourier transform it. This substi-
tutes algebraic equations by ordinary differential equations.
Denoting by ψ̃A,B(χ ) the Fourier images of the functions
ψA,B(ξ ) = ∑

j ψ
A,B
j δ(ξ − dj ) we have

iF
dψ̃A

dχ
= Eψ̃A + G̃ψ̃B,

iF
dψ̃B

dχ
= (E − E0)ψ̃B + G̃∗ψ̃A,

(4)

where the coefficient G̃ is a function of χ and κ ,
G̃(χ,κ) = t1 exp[−id(κr + χq)] + t1 exp[−id(χr − κq)] +
t2 exp[−idχ (r + q) + idκ(q − r)] + t3. It is convenient
to eliminate the diagonal part in the right hand side
of Eq. (4) and rewrite the function G̃(χ,κ) in the
rotated variables α = (χ cos θ − κ sin θ )/

√
2a and

β = (χ sin θ + κ cos θ )/
√

2a. We have

i
dc1

dχ
= 1

F
Gc2, i

dc2

dχ
= 1

F
G∗c1, (5)

where c1 = ψ̃A exp(iEχ/F ), c2 = ψ̃B exp(iEχ/F )
exp[−i(α + β)/2], and

G = 2t1 cos

(
α − β

2

)
+ 2t2 cos

(
α + β

2

)
+ (t3 − t2) exp

(
i
α + β

2

)
. (6)

Equation (5) has the structure of a classical dynamical system
with the variable χ playing the role of time [17]. Moreover,
since the coefficient (6) is a periodic function of χ , we can
use the Bogoliubov-Metropolskii technique [18] to analyze it.
This method involves averaging the function G and gives the
solution of Eq. (5) in the form of a series over the parameter
ε = 1/F .

Before proceeding with the above mentioned method we
show that for t3 = t2 Eq. (5) has a trivial solution that
corresponds to flat bands of the simple square lattice,

Ep(κ) = F
a√

r ′2 + q ′2 p,
F ′

x

F ′
y

= r ′

q ′ , p = 0,±1, . . . (7)

(here F ′
x and F ′

y are components of F in the coor-
dinate system determined by the primary axes of the
square lattice [19]). Let us denote by GR and GI

the real and imaginary parts of the function (6). After
the substitution u = (c1 + c2) exp(iε

∫
GRdχ ) and v = (c1 −

c2) exp(−iε
∫

GRdχ ) Eq. (5) takes the form

i
du

dχ
= εXv, i

dv

dχ
= εX∗u, (8)

where X = −iGI exp(2iε
∫

GRdχ ). Since for t3 = t2 the
imaginary part of the function (6) vanishes, the solution of (8)
is the constant function (u,v)T = (u0,v0)T . Then the energy
spectrum (7) follows from the requirement (quantization
condition) that the functions ψ̃A,B = ψ̃A,B(χ ; κ) are periodic
functions of χ with the period 2π/d.
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We proceed with the general case t3 �= t2. Restricting
ourselves by the second order over the parameter ε = 1/F ,
the Bogoliubov equation for the column function (u,v)T reads

i
d

dχ

(
u

v

)
= ε

(
0 〈X〉

〈X∗〉 0

)(
u

v

)
+ ε2

(〈−iX′∗X〉 0
0 〈−iX′X∗〉

)(
u

v

)
, (9)

where angular brackets denote the average over the period
2π/d and the prime sign is a shortcut for integral from the
the oscillating part of X, i.e., X′(χ ) = ∑

ν �=0
exp(iνχ )

iν
Xν . The

solution of Eq. (9) is (u,v)T = exp(−iελχ )(u0,v0)T where

λ = ±
√

|〈X〉|2 + ε2〈−iX′X∗〉2 (10)

(notice that 〈−iX′X∗〉 is real). The meaning of the quantity
λ = λ(κ) is the correction to the energy spectrum (7). Using
the explicit form of X this correction can be expressed in terms
of the Bessel functions. For the mean value of X we have

〈X〉 =
{

−i(t3 − t2)
∑

n,m Jm(z1)Jn(z2) sin
[
κd

r2+q2

r−q
(1 + n)

]
, (n + m) is even,

−(t3 − t2)
∑

n,m Jm(z1)Jn(z2) cos
[
κd

r2+q2

r−q
(1 + n)

]
, (n + m) is odd,

(11)

where integer numbers n and m satisfy the equation (r −
q)m = −(r + q)(1 + n) and arguments of the Bessel functions
are

z1 = 8t1

Fd(r − q)
, z2 = 4(t2 + t3)

Fd(r + q)
. (12)

Analogously, the mean 〈−iX′X∗〉 is given by the product of
four Bessel functions (see Appendix). Equations (10)–(12)
constitute the main result of the paper. As shown below, these
equations provide an estimate for the maximal width of the
bands and describe asymptotic behavior of the energy bands
in the limit F → ∞.

III. NUMERICAL EXAMPLES

Let us consider as a generic example the case (r,q) = (2,1).
For this direction of the static force Eq. (11) takes the form

〈X〉 = (t3 − t2) [J0(z1)J1(z2) + J3(z1)J0(z2) cos(5κd)

−J3(z1)J2(z2) cos(5κd) − J6(z1)J1(z2) cos(10κd)

+ . . .] . (13)

Notice that arguments of the Bessel functions are proportional
to 1/F . Thus different terms in the square brackets have
different asymptotic if F → ∞. In Eq. (13) we keep all terms
up to the seventh power of 1/F , and we checked that the next
order Bogoliubov correction does not contain terms larger than
(1/F )8. The inset in Fig. 2 compares the dispersion relation
calculated by using Eq. (13), open circles, with the exact
numerical results, solid lines [20]. Nice correspondence is
noticed. An important characteristic of the depicted dispersion
relation is the total band width �E which we focus on from
now on. The band width �E as the function of F is shown in
the main panel in Fig. 2. It follows from Eqs. (10) and (13) that
for F → ∞ the width decreases as 1/F 3. In the opposite limit
the width takes its maximal value at F ≈ 4.5. Remarkably,
already the first term with κ dependence in the series (13)
provides an accurate estimate for this maximal value (compare
the solid and dashed lines in Fig. 2).

Next we discuss an interesting case t3 = −t2, which can
be viewed as a charged particle in a square lattice in the
presence of a staggered magnetic field with π flux through the
elementary cell. The system of this kind can be realized with

cold atoms in a square optical lattice by properly driving the
atoms by additional laser beams [21]. As follows from Eq. (12),
for t3 = −t2 the argument z2 equals to zero, that essentially
simplifies all equations. For example, in the above considered
case (r,q) = (2,1) the first Bogoliubov approximation contains
only one term and the dispersion relation reads

E(κ) = −2t3J3

(
8t1

Fd

)
cos(5κd). (14)

Figure 3 compares Eq. (14) with numerical results for two
sets of hopping amplitudes: (t1,t2,t3) = (1,0.25,−0.25) and
(t1,t2,t3) = (1,0.5,−0.5). Almost complete band collapses are
clearly seen in the figure. Comparing the upper and lower
panels we also conclude that the actual parameter of the
perturbation theory is |t2 − t3|/F but not just 1/F . In general,
the smaller |t2 − t3| the further we can go in the region of
small F .
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FIG. 3. (Color online) Width of the energy bands as the function
of F ′ for (r,q) = (2,1) and (t1,t2,t3) = (1,0.25,−0.25), lower panel,
and (t1,t2,t3) = (1,0.5,−0.5), upper panel.
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IV. CONCLUSIONS

In conclusion, we analyzed quantum particle in tilted 2D
lattices with square symmetry for orientations of the static
force F given by the rationality condition Fx/Fy = r/q. It
is shown that for these orientations the system has common
features with the other fundamental problem—the particle in
resonantly driven 1D lattices. Namely, the energy bands of both
systems show nonmonotonic behavior when a control param-
eter (for example, the static force F ) is varied, with partial
or complete band collapse. We developed analytical method
which provides explicit expression for the particle dispersion
relation. The reported results can be verified in present-day
laboratory experiments with cold atoms in 2D optical lattices
by studying the ballistic spreading of atoms. Finally, we remark
that the presented analysis can be also viewed as a theory of
the 2D Wannier-Stark states that remain an intriguing problem
of the single-particle quantum mechanics.
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APPENDIX A: THE CASE r = q

If t3 = t2 and the static force is aligned with vertical or hori-
zontal bonds (i.e., r ′ or q ′ equals to zero), Eq. (7) takes the form

Ep(κ) = aFp − 2t1,2 cos(κa). (A1)

Notice that the energy bands have a finite width which is inde-
pendent of F . If t3 �= t2 we meet a similar situation for (r,q) =
(1,1) where the particle tunnels along the vertical bonds. In-
cluding the first-order correction the dispersion relation reads

E(κ) = ±
√

(t2 − t3)2J 2
1 (z) + 4t2

1 cos2(κd),

z = 2(t1 + t3)/Fd, (A2)

and is seen to coincide with Eq. (A1) in the limit of large F .

The case (r,q) = (1,−1) is more involved. In this case
Eq. (A2) is substituted by

E(κ) = ±
√

(t2 − t3)2J 2
0 (z) sin2(κd) + (t2 + t2)2 cos2(κd),

z = 4t1/Fd. (A3)

It follows from Eq. (A3) that E(κ) may have different
asymptotic depending on the hopping amplitude t3. Namely,
if t3 = t2 (simple square lattice) we recover the dispersion
relation (A1), while for t3 = 0 (honeycomblike lattice) we
have

Ep(κ) ≈ t2

(
1 − 4t2

1

F 2
d2 sin2(κd)

)
, (A4)

where the band width decreases as 1/F 2.

APPENDIX B: SECOND ORDER CORRECTIONS

We present the explicit form of the second-order correction
given by the term 〈−iX′X∗〉. As was mentioned in the main
text, this correction is given by the product of four Bessel
functions with the indexes n, m, n′, and m′, respectively. We
have two contributions. The first contribution is given by

A=
∑

ν+(n,m)=ν−(n′,m′)�=0

− (t3 − t2)2

dν+(n,m)
Jm(z1)Jn(z2)Jm′(z1)Jn′ (z2)

× cos[(μ+(n,m) − μ−(n′,m′))κd/2], (B1)

where

ν±(m,n) = m(r − q) + (n ± 1)(r + q),
(B2)

μ±(m,n) = (n ± 1)(r − q) − m(r + q).

The second contribution refers only to the case where n + n′ +
m + m′ is an odd number and reads

A =
∑

ν+(n,m)=ν+(n′,m′)�=0

(t3 − t2)2

dν+(n,m)
Jm(z1)Jn(z2)Jm′(z1)Jn′ (z2)

× cos[(μ+(n,m) − μ+(n′,m′))κd/2]. (B3)
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