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In many cases the standard perturbation approach appears to be too simple to describe precisely the angle-
resolved photoemission spectrum of a strongly correlated electron system. In particular, to describe the momentum
asymmetry observed in the photoemission spectra of high-Tc cuprates, a phenomenological approach based on
an extremely correlated Fermi-liquid model has been recently introduced. Here we analyze the general structure
of the Green’s function of quasiparticles in strongly correlated electron systems and stress that it is defined not
only by the self-energy of Hubbard quasiparticles but also by a strength operator. The latter leads to an additional
odd momentum contribution to the spectral function and alone can explain the observed asymmetry. So, the
asymmetry of the angle-resolved photoemission spectra can be a measure of the strength of electron correlations
in materials.
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I. INTRODUCTION

Angle-resolved photoemission spectroscopy (ARPES) is
a very powerful method to study the electronic structure
of solids, especially for anisotropic layered materials such
as high-Tc cuprates where the quasiparticle dispersion law
ε(kx,ky) may be obtained [1]. It is particularly important for
strongly correlated electron systems where the conventional
ab initio local density approximation to the density functional
theory (LDA-DFT) fails to get the correct quasiparticle
electronic structure.

While the conventional description of electrons is based
on “bare electron” parameters renormalized by interactions,
it is difficult to understand what the “bare electron” is in
the strongly correlated system. The modern understanding of
strong or extreme correlations is still primitive. The exact
solution for the basic model in the theory of correlated
materials, the Hubbard model, is available only for one-
dimensional cases. It results in unconventional physics of
holons and spinons with a Luttinger liquid instead of a
Fermi liquid. In the absence of exact results for two- and
higher-dimensional strongly correlated electronic systems it
is instructive to discuss some alternative approaches to the
theory of multielectron systems with strong interactions.
In this situation the role of angle-resolved photoemission
spectroscopy is extremely important because it provides the
experimental data on the electronic dispersion and spectral
weight. Nevertheless, a theoretical analysis is required to get
these fundamental electronic properties from experimental
data. That is why a general analysis of the ARPES line shape
for strongly correlated systems should be done.

Within the usually applied three-step model of photoemis-
sion and using the sudden approximation [2], the photoelectron
counts I (k,ω) as a function of energy ω and momentum k
are given by I (k,ω) = |Mij |2f (ω)A(k,ω), where Mij is the
dipole matrix element for the photoexcitation, f (ω) is the
Fermi-Dirac distribution, and A(k,ω) = (−1/π )Im G(k,ω) is
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the spectral function for the single-electron retarded Green’s
function G(k,ω). If one disregards the effect of the energy and
momentum resolutions as well as the matrix element effect [3]
and the extrinsic background [4], the photoelectron intensity
is proportional to the spectral function multiplied by the Fermi
function.

Usually the standard perturbation representation of the
Green’s function G(k,ω) in terms of Fermi-type operators
is used for the analysis [1,5] of ARPES data. Introducing
the real and imaginary parts of the quasiparticle self-energy
�k(ω) = �′

k(ω) + i�′′
k(ω), one can write the spectral function

as

A (k,ω) = 1

π

�′′
k (ω)

[ω − εk − �′
k (ω)]2 + �′′

k(ω)2
. (1)

This is the central formula for the ARPES analysis. It provides
the Lorentzian line shape for the momentum distribution curve
(MDC) defined as I (k,ω = const) [6] as long as the self-energy
�k(ω) can be considered as momentum independent and the
bare dispersion εk is linearized in the vicinity to the Fermi
level. (A more general assumption [7] is that ∂�′

k(ω)
∂k

can only
be a constant independent of ω.)

This approach works well for metals where the Fermi-liquid
picture is adequate and for many high-Tc cuprates [1,5,8].
Nevertheless, from a theoretical point of view, the standard
perturbation approach seems to be inappropriate for strongly
correlated electron systems such as underdoped and optimally
doped hole cuprates where non-Fermi-liquid effects have been
found in the pseudogap state. Various approaches towards
clarifying the quasiparticle properties in the regime of strong
electron correlations have been attempted: a phenomenologi-
cal marginal Fermi-liquid approach [9], an asymptotic solution
to the Gutzwiller projected ground state of the t-J model [10],
and low-dimensional non-Fermi-liquid theory [11]. Recently
the extremely correlated Fermi-liquid model has been sug-
gested [12]. Its improved phenomenological version [13]
successfully describes the dichotomy of the spectral functions
of momentum and energy. One important result obtained in
Ref. [13] is the MDC asymmetry that has been observed
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for under- and optimally doped La2−xSrxCuO4 (as discussed
in Ref. [13] with a link to the data of Ref. [14]) and
Ca2−xNaxCuO2Cl2 [15].

In this Rapid Communication we have demonstrated that
the MDC asymmetry is not a particular model [12,13] property.
It is a general property of the spectral function in strongly
correlated electron systems, where the Coulomb interaction
U is much larger than the quasiparticle kinetic energy and the
perturbation over εk/U � 1 seems to be more appropriate. We
have also shown that the odd-in-energy term in the spectral
function can be used to measure the strength of electron
correlations in materials.

This Rapid Communication is organized as follows: The
idea of a quasiparticle description of electrons in strongly
correlated systems is described in Sec. II. Section III provides
the equation for the exact single-electron Green’s function,
which is a linear combination of the Green’s functions of these
quasiparticles. The general structure of the corresponding
spectral function is analyzed in Sec. IV. Section V is
dedicated to a comparison between that approach and the
phenomenological theory from Ref. [13]. Section VI presents
the conclusion.

II. QUASIPARTICLE DESCRIPTION OF ELECTRONS IN
STRONGLY CORRELATED SYSTEMS

When the Coulomb energy is much higher than the kinetic
energy, the idea of a bare electron as a zero approximation
of a theory does not work. On the contrary, the localized
multielectron dn(f n) configurations for a separate ion in the
crystal field can be easily determined. The appropriate number
of localized electrons is clear from local electroneutrality.
There are many possible terms for the given configuration
dn(f n), so let us denote these terms as Eq(n). One of them is
the ground term E0(n) that is occupied at zero temperature. An
excitation from the ground to any term with the energy �Eq0 =
Eq(n) − E0(n) is the local Bose-type quasiparticle (exciton,
magnon, etc.). If the external electron comes to the given
ion, the latter changes its configuration to dn+1(f n+1) with its
own energy spectra Ep(n + 1). The electron addition energy
	pq = Ep(n + 1) − Eq(n) may be considered as the single
particle excitation between two multielectron configurations,
with the initial state Eq(n) and the final state Ep(n + 1). Due
to the large number of initial- and final-state terms, there are
different quasiparticles with all possible pairs of (p,q).

Thus we arrive at the idea that an electron in a strongly
correlated system is the linear combination of different
quasiparticles. Of course, the contribution of a particular
|q,n〉 → |p,n + 1〉 excitation is determined by the matrix
element 〈p,n + 1|c†|q,n〉 of the electron creation operator c†.
For example, it is not possible to change the spin �S > 1

2 with
a single particle excitation. Also, it is evident that excitation
from empty |q,n〉 to empty |p,n〉 has zero spectral weight
while its energy 	pq is defined. Total or partial occupation
of the participating multielectron terms results in a nonzero
spectral weight of the quasiparticle.

This definition of the local quasiparticles results from the
exact Lehmann representation for the single-electron Green’s
function [16]. It is a straightforward generalization of the
original Hubbard idea of the perturbation theory from the

atomic limit. In the Hubbard model there are two Fermi-type
local quasiparticles corresponding to the low Hubbard band
and upper Hubbard band. The interatomic hoppings of the
electron result in a quasiparticle dispersion, and the local
excitation energy 	pq transforms into the quasiparticle band
	pq(k).

III. EXACT SINGLE-ELECTRON GREEN’S FUNCTION IN
THE GENERALIZED TIGHT-BINDING METHOD

The natural and proper mathematical tool in the atomic
limit εk/U � 1 is given by the Hubbard X operators [17].
Their algebra automatically fulfills the constraint condition
that forbids some sectors of the Hilbert space due to strong
electron correlations. Formerly, Hubbard’s ideas about the X

operators have been developed in a cluster perturbation theory
within the generalized tight-binding (GTB) method [18,19].
This approach has been proposed to calculate the electronic
structure of correlated materials such as underdoped cuprates,
manganites, and cobaltites [20]. Its ab initio LDA+GTB
version [21] is a hybrid scheme using the local density
approximation to construct the Wannier functions and obtain
the single-electron and Coulomb parameters of the multiband
Hubbard-like Hamiltonian. At the next step this method
combines the exact diagonalization of the intracell part of
the Hamiltonian, the construction of the Hubbard operators
on the basis of exact intracell multielectron eigenstates,
and the perturbation treatment of the intercell hoppings and
interactions.

This is essentially a multielectron approach which does not
use the idea of a bare electron. An electron in a generalized
tight-binding method is a linear combination of quasiparticle
excitations between the multielectron initial dn and final dn±1

configurations. Each excitation from the initial state |q〉 to final
state |p〉 is described by the Hubbard operator X

pq

f = |p〉〈q|.
Thereby, any local operator can be represented as a linear
combination of X operators. So, the operator of removing of
an electron with spin σ at a lattice site f takes the form

af,σ =
∑
p,q

|p〉 〈p|af,σ |q〉 〈q|

=
∑
p,q

γσ (p,q) X
pq

f =
∑
m

γσ (m) Xm
f . (2)

To simplify the notations we introduce the quasiparticle
band index m corresponding to the pair (p,q). Equation (2)
clearly shows the difference between the description of Fermi-
type quasiparticles in the single-electron language and the
multielectron one. The operator af,σ simultaneously decreases
the number of electrons by one for all sectors of the Hilbert
space, while the Xm

f operator describes the partial process of
removing the electron from the (n)-electron configuration |q〉,
with the final (n − 1)-electron configuration |p〉. The matrix
element γσ (m) gives the probability of such a process. It
should be noted that splitting of an electron onto different
Hubbard fermions as stated by Eq. (2) and the following
spectral weight redistribution over these quasiparticles are the
underlying effects of the band structure formation in correlated
systems.
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According to Eq. (2), the single-electron retarded Green’s

function G(k,ω) = 〈〈ak,σ | †
ak,σ 〉〉ω is given by a linear com-

bination of the Green’s functions of Hubbard quasiparticles

Dmn
k,ω = 〈〈Xm

k |
†

Xn
k〉〉ω,

G (k,ω) =
∑
m,n

γσ (m) γ ∗
σ (n)Dmn

k,ω, (3)

and here the notation of Zubarev [22] for Green’s functions
is used. Due to complicated commutation rules there is
no conventional Wicks theorem and conventional diagram
technique for Hubbard operators. Nevertheless, the gener-
alized Wicks theorem has been proved [23] and then the
diagram technique for X operators was developed [24,25].
The Dyson equation [26] for the matrix Green’s function
D̂(k,ω) = {Dmn

k,ω} has also been modified,

D̂ (k,ω) = Ĝk (ω)P̂k (ω) , (4a)

with propagator Ĝk(ω) as

Ĝk (ω) = [
Ĝ−1

0 (ω) − P̂k (ω) t̂k − �̂k (ω)
]−1

. (4b)

Here Ĝ−1
0 (ω) is a local propagator determined by the mul-

tielectron eigenstates |p〉 and |q〉, and t̂k is the interaction
matrix with elements tmn

k = γσ (m)γ ∗
σ (n)εk, where εk is the

bare band dispersion. It should be stressed that the function
�̂k(ω) in Eq. (4b) is the self-energy for the Hubbard fermions
and therefore it is different from the single-electron one in
Eq. (1).

Besides the self-energy �̂k(ω) of Hubbard quasiparticles,
the unusual strength operator P̂k(ω) appears in Eq. (4). It
results in both the redistribution of the quasiparticle spectral
weight and in the renormalization of quasiparticle dispersion
which becomes dependent on doping and temperature. Initially
the strength operator has been introduced in the diagram
technique for spin operators [27]. It is important that in order
to use the generalized Dyson equation in the perturbation
expansion, it is necessary to calculate both functions �̂k(ω)
and P̂k(ω) in the same order of perturbation [28].

IV. SPECTRAL FUNCTION

The dimension of the D̂(k,ω) matrix depends on the energy
interval under consideration. For example, in cuprates only one
kind of quasiparticle is involved in the low excitation energy
limit of ARPES. To demonstrate that the general structure of
the quasiparticle Green’s functions in perturbation theory for
strongly correlated electron systems results in an additional
odd contribution to the spectral function A(k,ω), we proceed
with the above case. This involves no loss of generality. For
hole-doped cuprates the quasiparticle index m is given by
the terms (−σ,2), where the doublet |σ 〉 and singlet |2〉 are
the ground terms of the CuO4 unit cell with one and two
holes per site, respectively. In this low-energy limit the exact
single-electron Green’s function reads

G (k,ω) = |γσ̄ ,2|2 Pk,ω

ω − ε − tkPk,ω − �k,ω

, (5)

where ε = ε0 − μ is the eigenvalue of the local state |σ 〉 and μ

is the chemical potential. Generally, both the self-energy and

strength operator can be presented as a sum of real P ′
k,ω,�′

k,ω

and imaginary P ′′
k,ω,�′′

k,ω parts, respectively. Therefore, the
electron spectral function takes the form

A(k,ω) = |γσ̄2|
π

2

×
(

P ′
k,ω�k,ω

(ω − εk,ω)2 + �2
k,ω

+ P ′′
k,ω(ω − εk,ω)

(ω − εk,ω)2 + �2
k,ω

)
,

(6)

where εk,ω = ε + tkP
′
k,ω + �′

k,ω is the renormalized quasi-
particle dispersion and �k,ω = tkP

′′
k,ω + �′′

k,ω is the inverse
lifetime of the quasiparticles. It should be emphasized that
Eqs. (4)–(6) are exact. Below we have used some general
assumptions on the properties Pk,ω and �k,ω in the vicinity of
the Fermi level that are similar to the Fermi-liquid theory.

Since we are interested in analyzing the MDC line shape
determined by Eq. (6), we fix the energy ω = ω0 and assume a
k independence of the quasiparticle inverse lifetime �k,ω and
strength operator Pk,ω in a small vicinity to the Fermi level. In
such a case the spectral function A(k,ω0) appears to be a sum of
even Aeven(k,ω0) and odd Aodd(k,ω0) contributions. In the limit
�ω0 → 0 the even part tends to a δ function with a renormalized
spectral weight |γσ̄2|2P ′

ω0
. For the finite quasiparticle inverse

lifetime �ω0 and linearized quasiparticle dispersion εlin
k,ω0

the
even part has a Lorentzian line shape that is similar to the case
of a noncorrelated Fermi liquid,

Aeven (k,ω0) = |γσ̄2|
π

2 P ′
ω0

�ω0(
ω0 − εlin

k,ω0

)2 + �2
ω0

. (7)

Essentially the different feature of the spectral function in
strongly correlated electron systems is the odd contribution
that appears in Eq. (6) due to the imaginary part P ′′

k,ω of the
strength operator,

Aodd (k,ω0) = |γσ̄2|
π

2 P ′′
ω0

(
ω − εlin

k,ω0

)
(
ω − εlin

k,ω0

)2 + �2
ω0

. (8)

The strength operator in Eq. (4) results from the non-Fermi
commutation rules of the Hubbard X operators in the same
way as in the spin Green’s function it results from the non-
Bose commutation rules of the spin operators [27]. In the
limit of weak correlations the anticommutator (commutator)
of the Fermi (Bose)-like operators of Hubbard’s quasiparticles
is equal to the c number. Formally in this limit the strength
operator tends to unity Pk,ω → 1 and the odd contribution to
the spectral function disappears. Thus the odd contribution to
the spectral function close to the Fermi level is a measure of
strong correlations.

To briefly discuss the problem in the superconducting
state we write down the matrix Green’s function D̂(k,ω) =
〈〈�kσ |�†

kσ 〉〉ω in terms of the Nambu operators �
†
kσ =

(Xσ0
k ,X

0,−σ
−k ) and then denote the components of all relevant

matrices via the corresponding superscript. According to
Eq. (4a), the normal-state function D

(11)
k,ω = 〈〈X0σ

k |Xσ0
k 〉〉ω is

given by the expression

D
(11)
k,ω = G(11)

k,ω P
(11)
k,ω + G(12)

k,ω P
(21)
k,ω , (9a)
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TABLE I. The key features of the spectral functions in the different approaches of the ECFL model [12,13] and in the present work.

The model
Model Numerator of the spectral function describes successfully/cannot describe

sECFL Qn�
′′
ω − Qn

γn0
(ω − εk)�′′

ω EDCs/conventional and asymmetrical MDCs

MI pECFL Qn�
′′
ω − Qn

γn0
ω�′′

ω EDCs and conventional MDCs/asymmetrical MDCs

MD pECFL Qn�
′′
ω − Qn

γnk
(ω − εk)�′′

ω EDCs, conventional and asymmetrical MDCs/–

Present work P ′
k,ω�k,ω + (ω − εk,ω)P ′′

k,ω

where the propagator functions G(11)
k,ω and G(12)

k,ω are solutions of
Eq. (4b),

G(11)
k,ω = 1

det Ĝk,ω

(
ω + ε − t

(22)
k P

(22)
k,ω − �

(22)
k,ω

)
, (9b)

G(12)
k,ω = 1

det Ĝk,ω

(
t

(11)
k P

(21)
k,ω + �

(12)
k,ω

)
, (9c)

and the denominator reads

det Ĝk,ω = (
ω + ε − t

(22)
k P

(22)
k,ω − �

(22)
k,ω

)
× (

ω − ε − t
(11)
k P

(11)
k,ω − �

(11)
k,ω

)
+ (

�
(12)
k,ω + t

(22)
k P

(12)
k,ω

)(
�

(21)
k,ω + t

(11)
k P

(21)
k,ω

)
. (9d)

In the superconducting state the off-diagonal components
of the strength operator, just as the off-diagonal self-energy
components, differ from zero [28,29]. That is why the normal-
state function D

(11)
k,ω has such a complicated structure. We do

not give the cumbersome expression for the spectral function
A(11)(k,ω) = (−1/π )Im D

(11)
k,ω in the superconducting state

since a general analysis of its symmetry is beyond the scope of
this Rapid Communication. Nevertheless, it is easy to show
that in the nodal direction (kx = ky) the spectral function
A(11)(k,ω) of superconductors with a dx2−y2 -gap symmetry
has the same structure as the function given by Eq. (6), to
wit, the additional odd contribution to the ARPES line shape
should be present.

V. DISCUSSIONS

The odd contribution to the spectral function demonstrated
above results from the general structure [Eqs. (3) and (4)] of
the Green’s function of quasiparticles in strongly correlated
systems. The particular form of Eq. (6) determining the
line shape of ARPES data depends on the expressions for
the self-energy �̂k(ω) and the strength P̂k(ω) operators.
The way to obtain these expressions is given by a diagram
technique [24–26] for Hubbard operators, and examples for
different systems can be found elsewhere [28,29]. A discussion
of the experimental data in the context of the present analysis is
a subject for future research. Nevertheless, we believe that the
general structure of the Green’s function and of the spectral
function of quasiparticles in correlated systems should be a
reference point in experimental data analyses.

Below we compare the proposed approach and the theory
that suitably describes the ARPES data of high-Tc compounds.
As it has been shown recently, the phenomenologically
improved [13] version of the extremely correlated Fermi-liquid

(ECFL) model [12] successfully reproduces the normal-state
data, both EDCs and MDCs, obtained in different experimental
conditions and for different materials, with the same intrinsic
parameters. In various modifications of the ECFL model the
spectral function can be written as

A (k,ω) = Cn (k,ω) AFL (k,ω) , (10)

where Cn(k,ω) is the “caparison factor” [12,13,30] playing
the role of k- and ω-dependent adaptive spectral weights and
AFL(k,ω) is the spectral function for the “auxiliary Fermi-
liquid” Green’s function AFL(k,ω) = 1

π
Im[ω − εk − �ω]−1.

Here the notations of the authors [13] have been kept so that
�ω is an ordinary Fermi-liquid self-energy and εk is the one-
electron dispersion relation. According to Eq. (10) the spectral
function has the form

A (k,ω) = 1

π

Cn (k,ω) �′′
ω

(ω − εk − �′
ω)2 + �′′2

ω

. (11)

There is an apparent difference between this expression and
the general one (6) which consists of the definition of the
self-energy operators �ω and �k,ω. However, we have also
found a significant correlation between the two approaches.

To demonstrate it, we list in Table I the ECFL spectral
function numerator given by a product of the “caparison
factor” Cn(k,ω) and of the imaginary part �′′

ω of the
single-electron self-energy value in various approximations of
Refs. [12,13]: (i) the not modified or so-called simplified ECFL
(sECFL) model and phenomenologically improved (ii) mo-
mentum independent (MI p) or phenomenologically improved
(iii) momentum dependent (MD p) ECFL models. The
numerator of the general spectral function (6) is also presented
in Table I. Each expression in this table consists of two
contributions. In the modified ECFL models the first terms are
even and correspond to the ordinary Fermi-liquid theory with
a renormalized spectral weight. The coefficient Qn reducing
the spectral weight at high energies is given by the expression
(1 − n

2 ), where n is the number of electrons (holes) per unit
cell. The same expression has the real part of the strength
operator P ′

k,ω in the Hubbard-I approximation. In addition,
the first terms are formally equivalent in all approaches if the
general theory is taken in a small vicinity to the Fermi level
when �k,ω → �ω.

The second contribution to the spectral functions differs
in the two theories even formally since the imaginary part
of the different strength operator appears in our approach
instead of the imaginary part of self-energy in the modified
ECFL models. At the same time we should point out the
fact of nonuniversal modification of the k dependence of the
“caparison factor” within the ECFL models. Namely, in the
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expressions of Table I the “caparison factor” Cn(k,ω) is the
constant independent of k and ω for the sECFL and MI pECFL
models and is the function of k in the MD pECFL model.
Moreover, in the MI pECFL model there is no k dependence
of the “caparison factor” at all. However, comparing the
expression in our approach with the ones in the modified ECFL
theory, we find that the structures of the spectral functions turn
out to be similar in both theories under several conditions.
In the sECFL model the structure of the spectral function is
equivalent to the one in the general approach if (i) a small
vicinity to the Fermi level is considered and (ii) corrections
to the quasiparticle dispersion εk,ω from the real part of
the self-energy operator �

′
k,ω can be neglected. In such a

case, the expression [(ω − εk,ω)P ′′
k,ω] tends to [(ω − εk)P ′′

ω ],
where εk = ε + tkP

′
k. Keeping the assumption regarding the

quasiparticle spectra, we immediately find similarities between
the spectral functions in our approach and in MD pECFL.
The similarity in spectral functions in our and MI pECFL
approaches can be found under different conditions, for
example, if we assume that (εk + �′

k,ω) tends to zero and
P ′′

k,ω → P ′′
ω . The same conclusion may result from a more

complicated structure of the imaginary part of the strength
operator.

Therefore, we reveal strong correlations between the struc-
tures of the phenomenologically designed spectral function

and the function (6) derived from the general consideration.
We believe that all modifications of the ECFL model, each of
which has its own strong features as indicated in Table I, can
be combined into a more general one.

VI. CONCLUSION

We argue that the asymmetrical structure of the spectral
function in strongly correlated electron systems has, among
other things, the fundamental reason considered above and can
reflect the strength of the correlations. The odd contribution to
MDC may be found experimentally in the underdoped samples
of cuprates that are close to the doped Mott-Hubbard insulator
and in optimally doped ones where correlation effects are
still strong enough. In overdoped cuprates as well as in Fe
pnictides, the electron correlations are not so strong, hence an
odd contribution is not expected.
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