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Electronic dispersion and density of states (DOS) have been calculated for the Hubbard model and the
t − J and t − J ∗ models with three-site correlated hopping by the cluster perturbation theory. We have found
a rather strong quantitative difference both in dispersion and DOS at all doping for the Hubbard and t − J

models at the energy scale ω � t . The three-site correlated hopping addition results in an almost negligible
difference for the Hubbard and t − J ∗ models. Close to the Fermi energy, at the scale ω � J , the electronic
structure of all three models is similar. We have found the line of zeros of the Green function for the t −
J model that has been previously obtained for the Hubbard model by cellular dynamical mean-field theory
calculations.
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I. INTRODUCTION

The discovery of high-Tc cuprates has resulted in intensive
studies of the electronic structure of doped Mott insulators.
Experimental data have revealed the emergence of non-Fermi
liquids under a radical evolution of electronic structure upon
doping. The most unusual state found in a wide doping range
between a weakly doped insulator and overdoped Fermi liquid
is the pseudogap state. The origin of the pseudogap state is still
an unresolved problem. The two-dimensional (2D) Hubbard
model is a relevant low-energy model for cuprates. For this
model, the pseudogap was reproduced in various theories [1,2].
The arclike angle-resolved photoemission spectra (ARPES)
were reproduced by the cluster perturbation theory (CPT) [3],
dynamical cluster approximation (DCA) [4], and the cellular
dynamical mean-field theory (CDMFT) [5–7]. Two Lifshitz
transitions with changes of the Fermi-surface topology have
been found using CPT calculations [8]. Since short-range
correlations form a very important ingredient of physics in
doped 2D Mott insulators, cluster extensions of single-site
approaches such as dynamical mean-field theory (DMFT) [9]
are important.

A widely spread simplification of the Hubbard model is the
t − J model obtained by eliminating the excitations over the
Mott-Hubbard gap U in the limit U � t , where t is the nearest-
neighbor hopping parameter [10–12]. Decreasing the number
of local single-electron states in the t − J model remarkably
reduces the computational efforts in the CPT for the t − J

model. It should be noted that the unitary transformation of
the Hubbard model Hamiltonian results in the so-called t − J ∗
model. The t − J ∗ Hamiltonian has an additional three-site
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correlated hopping H3 above the t − J Hamiltonian. On the
mean-field level, the H3 term results in a renormalization of
hopping ∝ t2/U . That is why quite often it is neglected and
one obtains the t − J model. For example, different forms of
the t − J model are analyzed in Ref. [13]. Nevertheless, there
are some indications that the H3 term may be important in the
formation of the superconducting state with d-wave symmetry
[14,15].

We would like to clarify the relevance of the models
discussed here to cuprates. The Hubbard model has three
energy scales: the high energy of the Coulomb parameter
U , the intermediate energy of the interatomic hopping t

(t � U ), and the low-energy scale of the exchange interaction
J ∼ t2/U . The energy U determines the Mott-Hubbard gap
between the upper Hubbard band (UHB) and the lower
Hubbard band (LHB) and is irrelevant for cuprates due to
the charge-transfer origin of the insulator gap [16]. Thus,
eliminating the UHB in the t − J model leaves two scales,
t and J , in which both are low energy vs U . The lowest
scale J determines the carrier dispersion close to the Fermi
level and the Fermi-surface topology. The bandwidth scale t

is relevant to the high-energy ARPES observations such as
high-energy kinks and waterfalls [17–19]. That is why the
electronic structure of the t − J and Hubbard models is of
interest both at the J and t scales.

In this paper, we compare the band dispersion and DOS in
the normal phase of the Hubbard model and the t − J model
within the CPT approach and find that the differences for these
two models become negligibly small when taking into account
the H3 term. It means that the Hubbard model and the t − J ∗
model provide indeed similar electronic structure, while the
electronic structure of the t − J model at the high-energy
scale ω � t differs remarkably from the one obtained within
the Hubbard model. As concerns the low-energy scale ω � J ,
all three models give similar results. Our other finding is zeros
of the Green function for the t − J and t − J ∗ models that
were obtained earlier for the Hubbard model [6,7].
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II. MODEL AND METHOD

The Hubbard model [20] in the nearest-neighbor hopping
approximation is given by the Hamiltonian

H =
∑
i,σ

{
(ε − μ) ni,σ + U

2
ni,σ ni,σ̄

}
− t

∑
〈i,j〉,σ

a
†
i,σ aj,σ , (1)

where a
†
iσ and aiσ are the creation and annihilation operators of

the electron with spin σ on the site i, σ̄ = −σ , niσ = a
†
iσ aiσ

is the particle-number operator, μ is the chemical potential,
U is the Coulomb repulsion parameter, t is the hopping
amplitude, and ε is the one-particle energy.

A canonical transformation in the limit U � t leads to the
following Hamiltonian [12]:

Ht−J ∗ = Ht−J + H3, (2)

Ht−J = −t
∑

〈i,j〉,σ
(c†i,σ cj,σ + H.c.)

+J
∑
〈i,j〉

(
SiSj − ni nj

4

)
, (3)

H3 = − t2

U

∑
i,σ

∑
δ 	=δ′

(c†i+δ,σ ni,σ̄ ci+δ′,σ

− c
†
i+δ,σ c

†
i,σ̄ ci,σ ci+δ′,σ̄ ), (4)

where J = 4t2/U , Si is the spin operator, and the creation
c
†
i,σ and annihilation ci,σ operators obey the anticommutation

relations [21,22]

{ci,σ ,c
†
j,σ ′ } = δij

[
δσσ ′(1 − ni,σ̄ ) + (1 − δσσ ′)S−σ

i

]
, (5)

{c†i,σ ,c
†
j,σ ′ } = {ci,σ ,cj,σ ′ } = 0, (6)

where Sσ
i = a

†
iσ aiσ̄ is a spin-flip operator.

We cover a 2D square lattice by translations of 2 × 2 cluster
using the method similar to Ref. [23] and study a paramagnetic
solution. There are three different types of three-site correlated
hopping: between sites of a single cell, two cells, or three
different cells. Taking this into account, one can regroup the
terms in Eq. (2) in order to divide the intracluster interactions
from the intercluster. After applying an exact diagonalization
to the Hamiltonian of an isolated cluster, one can define X

operators, Xα ≡ Xp,q = |p〉 〈q| [24]. Here, |p〉 and 〈q| are
local eigenstates. In terms of X operators, Eq. (2) takes the
form

H =
∑
f,p

EpX
p,p

f +
∑

f,�i,α,β

[tα,β(f,f + �i)

+ t∗α,β (f,f + �i)]Xα
f X

β

f +�i

+
∑

f,�i,λ,λ′
wλ,λ′(f,f + �i)Xλ

f Xλ′
f +�i

+
∑

f,�i,�j,α,λ,β

t∗α,β,λ(f,f + �i,f + �j )

×Xα
f Xλ

f +�iX
β

f +�j . (7)

Here, Ep is an energy of cluster state |p〉, tα,β (f,f + �i),
t∗α,β (f,f + �i), and wλ,λ′ (f,f + �i) are matrix elements
in X representation of the terms in Eq. (2), which are
responsible for hopping, three-site interactions, and exchange,
respectively, matrix elements t∗α,β,λ (f,f + �i,f + �j ) corre-
spond to correlated three-site hopping between three different
clusters, α and β are Fermi type, and λ and λ′ means the
Bose-type root vectors [25].

Considering intercluster interactions as a perturbation
within Hubbard-I approximation, one has a typical CPT equa-
tion [26] for the Green function Dα,β(k̃,ω) = 〈〈Xα

k̃
|X−β

k̃
〉〉ω in

the momentum representation:

D̂−1(k̃,ω) = [D̂0(ω)]−1 − V̂ (k̃), (8)

where

V̂ (k̃) = T̂ (k̃) + T̂ ∗(k̃) + Ĵ , (9)

D0
α,β(ω) = F (α)

ω − 
(α)
δα,β, (10)


(α) = Eq(N + 1) − Ep(N ) − μ, (11)

F (α) ≡ F (p,q) = 〈Xp,p〉 + 〈Xq,q〉. (12)

In Eq. (9), T̂ (k̃), T̂ ∗(k̃), and Ĵ are the matrices of hop-
ping, three-site interactions, and exchange, respectively. In
Eqs. (10)–(12), D̂0(k̃,ω) is the exact local Green function and
F (α) is the occupation factor. Wave vector k̃ belongs to the
reduced Brillouin zone.

The relation between the Green function in X representation
and the Green function Dαβ(k̃,ω) that is defined on the original
lattice reads [27,28]

Gσ (k,ω) = 1

Nc

∑
α,β

Nc∑
i,j=1

γi,σ (α)γj,σ (β) e−ik(ri−rj)

×Dα,β(k̃,ω), (13)

where k belongs to the original Brillouin zone and equation
Dα,β(k̃,ω) = Dα,β(k,ω) is taken into account [27]. Nc is the
number of sites within a cluster and it is equal to four in our
case; γi,σ (α) are the matrix elements of ci,σ in X representation.

The X-operator representation allows one to construct the
norm-conserving version of CPT, i.e., the NC-CPT introduced
in Ref. [28] and applied to the Hubbard model. According to
the mentioned paper, we define the f factor in order to keep
control over the total quasiparticle spectral weight:

f ≡
∑

α |γi,σ (α)|2F (α)

(1 + p) /2
, (14)

where the hole-doping rate p defines an electron concentration
〈niσ 〉 = 1−p

2 .

The spectral function satisfies the equation∫
dωAσ (k,ω) = 〈{ck,σ ,c

†
k,σ }〉 = f (1 + p)/2. (15)

When accounting for all possible Hubbard quasiparticles,
f = 1. It is possible to reduce the Hilbert-space dimension by
neglecting some high-energy cluster states that reduce the f

factor. The following results are obtained with f � 0.995, thus
we can significantly reduce the computational time without
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FIG. 1. Doping-dependent evolution of dispersion ω(k) (in t

units) of the LHB in (a) the t − J model, (b) the Hubbard model, and
(c) the t − J ∗ model at U = 12. Here and below, the dash-dotted line
denotes the chemical potential, � = (0,0), X = (π,0), M = (π,π ),
energy is measured in units of next-neighbor hopping, and p is the
doping concentration.

any notable influence on the output. We dope holes in the way
similar to Ref. [23]. The Hilbert space of a 2 × 2 cluster is
divided into the subspaces with different numbers of electrons
N within a cluster. Next, the occupancy of the ground states in
the subspaces with N = 4 and N = 3 is defined as 1 − x and x,
respectively. In our case, x = 4p and maximum doping is 0.25.

III. RESULTS

Our results for the spectral function distribution at U = 12
are shown in Fig. 1. Figure 1(b) shows typical features of
the lower Hubbard band (LHB): minor spectral weight around
(π,π ), the appearance of in-gap states with doping, the saddle
point at (π,0), and the presence of a high-energy subband,
which have been observed previously within different cluster
theories [29,30]. Note that the upper Hubbard band (UHB,
not present here) and LHB resulting from splitting of the
single-electron band due to strong correlation in the simplest
Hubbard-I-like approximation are split further due to high-
order corrections, as was shown by several methods [31–33].

Comparing Fig. 1(a) with Fig. 1(b), one can notice rather
strong quantitative differences in the dispersion of the Hubbard
and t − J models. The LHB consists of several subbands
with different momentum-dependent spectral weight, as has
been shown earlier by the quantum Monte Carlo [31] and
variational CPT (V-CPT) [32] calculations. In the t − J model,
these subbands have approximately the same width, and in the
Hubbard model, the upper subband is wider than the lower
subband. As a consequence, one can observe an appearance of
the gap close to ω = −7t in the Hubbard model [Fig. 2(b)] and
nearby ω = −6.5t in the t − J model [Fig. 2(a)]. In the upper
part of Fig. 1, it is clear that the t − J model at the point (π,π )

FIG. 2. Doping dependence of DOS N (ω) of the LHB in (a) the
t − J model, (b) the Hubbard model, and (c) the t − J ∗ model at
U = 12.

(M point) results in a state much higher in energy [Fig. 1(a)]
(more than t) than the one in the Hubbard model [Fig. 1(b)].
The in-gap states band curve near the M point is quite flat in
the Hubbard model, as distinct from the curve with a clearly
defined maximum in the t − J model. Furthermore, there is a
specific intensive band curve segment about the M point in the
t − J model [Fig. 1(a)], in contrast to the noticeably less inten-
sive analogous segment in the Hubbard model [Fig. 1(b)]. Note
that the decrease of the intensity of the spectral weight near the
M point in the Hubbard model is due to the presence of UHB
and the corresponding weight transfer between bands [23].
But in the t − J model, the spectral weight does not flow from
LHB and the intensity of the part of the dispersion near the M
point will always be higher than the one in the Hubbard model.

Taking the H3 term into account leads to the almost identical
dispersion both in the Hubbard model and the t − J ∗ model, as
can be seen by comparing Fig. 1(b) with Fig. 1(c). One can also
notice the quantitative agreement in the gap location in DOS
in the Hubbard [Fig. 2(b)] and the t − J ∗ [Fig. 2(c)] models.
Unlike the t − J model in the M point, the t − J ∗ model
gives the energy [Fig. 1(c)] the same as the Hubbard model
[Fig. 1(b)]. Analogous to the comparison of the results of the
Hubbard and t − J models (see above), there is a difference
in the magnitude of the quasiparticle spectral weight near the
M point in the Hubbard and t − J ∗ models.

Note that despite the differences in the high-energy region
of the electronic spectrum for U = 12, the dispersion near the
Fermi level is similar for all models. Moreover, we presented
results for the broadening parameter δ = 0.01t , which allowed
one to see the fine structure of the electronic spectrum [23],
but which is significantly smaller than the experimental energy
resolution in ARPES. The result of this comparison is not
trivial and suggests that the use of these models is justified to
describe the low-energy spectral properties of the hole-doped
cuprates. But this is not true for the high-energy region of
the electronic spectrum, where the t − J model should not be
used, as follows from our results.

The differences in the electronic structure at U = 6 are
similar to those described above. It can be seen in Figs. 3(a)
and 4(a) that there is a large number of breaks in dispersion in
the t − J model, which are absent in the Hubbard model. As
one can see in Figs. 3(c) and 4(c), such breaks are eliminated

245104-3



V. I. KUZ’MIN, S. V. NIKOLAEV, AND S. G. OVCHINNIKOV PHYSICAL REVIEW B 90, 245104 (2014)

FIG. 3. The same as in Fig. 1 at U = 6.

by taking the H3 term into account. Also, the distribution of
the spectral weight between the subbands is reproduced in
the t − J ∗ model similar to the Hubbard model, in contrast
to the t − J model (see Fig. 3). At the given value of the
Coulomb repulsion, the renormalization of hopping leads to
the existence of the local minimum with major spectral weight
at point (π,π ) [see Fig. 3(c)]. However, there is a maximum
at this point in the Hubbard model. Thus, it shows that the
t − J ∗ model has minor differences from the Hubbard model
for small U. On the other hand, the dispersion within the t − J

model has significant differences, indicating that it is not fully
suitable for the description of the electronic structure at the
corresponding U.

CDMFT calculations [6,7] have revealed the lines of zeros
of the Green function at Fermi energy or the so-called Luttinger
surface [34] in the Hubbard model. The nonuniform spectral
weight distribution on the Fermi surface is a consequence of
the location of the lines of zeros close to the lines of poles of the
Green function. The coexistence of poles and zeros and their
reconstruction with doping seems to play an important role in

FIG. 4. The same as in Fig. 2 at U = 6.
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FIG. 5. The spectral weight distribution in the first quadrant of the
Brillouin zone at Fermi energy and line of zeros (black solid curve) in
the t − J model at t ′ = −0.12t , t ′′ = 0.15t , J = 0.295t , where t ′ and
t ′′ are the hopping integrals, respectively, between sites of second and
third coordinate spheres. The doping p = 0.14 and the broadening
δ = 0.01t . (a) The real part of the Green function Re[Gσ (k,ω)−1] in
the Hubbard model at U = 8t , p = 0.11 taken from Ref. [7]. (b) The
white regions correspond to poles of the Green function and the black
curve corresponds to zeros.

the physics of doped Mott insulators. Figure 5(a) shows our
results for the t − J model, which are in qualitative agreement
with the data obtained in Ref. [7] [see Fig. 5(b)]. Note that
at the Fermi level, the t − J and t − J ∗ models for the set of
parameters in Fig. 5 give similar results for the band structure.
So the distribution of zeros of the Green function in the t −
J ∗ model is the same as in the t − J model. Therefore, we
represent the results for the t − J model only. The spectral
weight distribution along the arc has a maximum in a nodal
direction. The proximity of zeros to poles leads to the minor
spectral weight of the segment of the Fermi surface closer to
(π,π ). This circumstance explains the absence of this segment
in ARPES experiments.

IV. CONCLUSIONS

In conclusion, we have shown that taking three-site cor-
related hopping into account in the t − J model leads to an
almost negligible difference in the electronic structure of the
t − J ∗ model and the Hubbard model, contrary to the standard
t − J model. The exact determination of the wave function
of two electrons on the 2D square lattice [35] shows that
there are no bound states in the Hubbard model. However,
a bound state does exist at any finite U in the whole Brillouin
zone in the t − J model. In the t − J ∗ model, there is no
bound state around point (π,π ) for any finite U and there
is no bound state in the whole Brillouin zone at U > 8t .
Thus, one has to consider three-site interactions in the effective
Hamiltonian to reproduce the physics of the Hubbard model.
Our approximate consideration of the many-electron problem
agrees with the given conclusion. In addition, our approach
allowed us to reveal the lines of zeros of the Green function
in the t − J model and show their influence on the spectral
weight distribution along the Fermi surface. In particular, we
found a segment of the Fermi surface with minor spectral
weight around point (π,π ) at doping concentration p = 0.14
and showed that the decreasing of spectral weight depends
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straightforwardly on the proximity of lines of zeros to lines
of poles. It should be noticed that we observe such behavior
in the t − J and t − J ∗ models, while the analogous result
has been found for the Hubbard model in the framework of
CDMFT [6,7] and NC-CPT [23].

The study of the high-energy electronic structure is very
important for the explanation of the high-energy anomalous
properties in cuprates. It is known that the ARPES has revealed
the high-energy kink (HEK) in the dispersion. Furthermore,
the HEK is observed in a broad range of doping in cuprates
[17–19]. The theoretical study of this question has been made
in many works, both within the Hubbard model [36] and the
t − J model [37]. However, there is disagreement between the

results of these models. The HEK in a broad range of doping is
well observed within the Hubbard model. But the t − J model
results in the HEK for a hole-doped system only. Our results
show that this disagreement is possibly due to neglecting the
three-site correlated hopping in the t − J model.
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