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We study the interaction of two photons in a Rydberg atomic ensemble under the condition of
electromagnetically induced transparency, combining a semiclassical approach for pulse propagation and a
complete quantum treatment for quantum state evolution. We find that the blockade regime is not suitable
for implementing photon-photon cross-phase modulation due to pulse absorption and dispersion. However,
approximately ideal cross-phase modulation can be realized based on relatively weak interactions, with
counterpropagating and transversely separated pulses.
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Strong nonlinearity at the single-photon level is desirable
for the realization of all-optical quantum devices.
Ensembles of highly excited Rydberg atoms under the
electromagnetically induced transparency (EIT) condition
combine the advantages of strong atom-field coupling
without significant absorption and nonlocal atomic inter-
action and have attracted intensive experimental [1–7] and
theoretical studies [8–17] recently. The strong correlation
directly between single photons inside the Rydberg atomic
ensemble was observed [7], and the formation of a Wigner
crystal of individual photons is also predicted [15]. When
such interaction is applied to implement the cross-phase
modulation (XPM) between two individual photons with a
nonzero relative velocity as in Fig. 1 [18–21], a main
difference from a single probe beam propagation in
Rydberg EIT medium [1–17] is that no steady state exists
for the pulses, because their interaction varies with the
relative distance, pulse velocity that changes pulse sizes, as
well as the absorption in the medium. The realistic time
dependence in the inherent nonlinear dynamics makes a
complete solution of the problem rather challenging. With
the combination of a semiclassical approach for pulse
propagation and a complete quantum approach for pulse
quantum state evolution, we find a realistic picture for the
dynamical process by showing the concerned figures of
merit. We show that our proposed setup outperforms the
previously considered Rydberg blockade regime [20]
clearly in terms of much lower photon absorption and
negligible group velocity dispersion.
The detailed two-photon XPM via Rydberg EIT is as

follows. One respectively couples the far-away input
photons to cold Rydberg atoms under the EIT condition
to form the light-matter quasiparticle called the dark-state
polariton (DSP) [22]. The spatial distribution of the pulses
necessitates a quantum many-body description of the

process. The prepared DSPs are in the state j1il ¼R
d3xflðxÞΨ̂†

l ðxÞj0i for l ¼ 1, 2, where flðxÞ are their
snapshots with

R
d3xjflðxÞj2 ¼ 1 and with Ψ̂ðxÞ ¼

cos θÊðxÞ − sin θŜðxÞ as the superposition of electromag-
netic field operator ÊðxÞ, where Rydberg spin-wave field
operator ŜðxÞ is the DSP field operator. The many-body
version of the atom-field Hamiltonian
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FIG. 1 (color online). (a) Two single-photon pulses propagate
in a Rydberg atomic ensemble. (b) Two pulses propagate in two
parallel waveguides filled with Rydberg atoms. For the insig-
nificant diffraction or the propagation in (b), the pulse profiles for
the numerical simulations in Figs. 3 and 4 can be approximated
as one dimensional. (c) Atomic level scheme for the system.
Without pulse interaction there is Δ1 þ Δ2 ¼ 0 under the EIT
condition. Here, Δ1 ¼ ωeg − ωp and Δ2 ¼ ωre − ωc (ωp is the
input pulses’ central frequency, and ωc is the frequency of
the pump beam). The Rydberg level is shifted by ΔR due to
the interaction with another pulse.
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(ℏ ¼ 1) also involving the polarization field P̂ðxÞ for the
excited level jei can be diagonalized in terms of two bright-
state polariton (BSP) fields Φ̂þðxÞ ¼ sin θ sinϕÊðxÞ þ
cosϕP̂ðxÞ þ cos θ sinϕŜðxÞ and Φ̂−ðxÞ ¼ sin θ cosϕÊ
ðxÞ − sinϕP̂ðxÞ þ cos θ cosϕŜðxÞ, where their spectrum
ω� ¼ 1

2
ðΔ1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

1 þ g2N þ Ω2
c

p
Þ is a function of the input

photon detuning Δ1, pump beam Rabi frequency Ωc,
and atom density N. The combination coefficients for
the polariton field operators satisfy the relations tan θ ¼
g

ffiffiffiffi
N

p
=Ωc and tan 2ϕ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2N þ Ω2

c

p
=Δ1 with g as the

atom-field coupling constant. When the DSPs get close
to each other, the interaction

HI ¼
Z

d3xd3x0Ŝ†1ðxÞŜ†2ðx0ÞΔðx − x0ÞŜ2ðx0ÞŜ1ðxÞ (2)

between the pulses takes effect. Here, we consider the
van der Waals (VdW) potential ΔðxÞ ¼ −C6=jxj6 in the
Rydberg atomic ensemble. Such interaction, however, also
causes the transition of DSP to BSPs containing P̂lðxÞ
components decaying at the rate γ. The decay of the P̂lðxÞ
field is described by [23]

Hl
D ¼ i

ffiffiffi
γ

p Z
d3xfP̂lðxÞξ̂†l ðx; tÞ − P̂†

l ðxÞξ̂lðx; tÞg; (3)

with the white-noise operators of the reservoirs satisfying
½ξ̂lðx; tÞ; ξ̂†l ðx0; t0Þ� ¼ δ3ðx−x0Þδðt− t0Þ. The evolved pulse
quantum state under all above mentioned factors should be
close to the ideal output eiφj1i1j1i2 (φ is a uniform one) for
realizing a photon-photon XPM.
Before studying the input’s quantum state evolution, one

needs to ascertain the pulses’ propagation in the medium so
that their interaction time should be known. The absorption
and dispersion of the pulses can be found in a semiclassical
approach [24,25] that treats the input pulses as the classical
fields ElðxÞ, which are equivalent to the averages hÊlðxÞi
of the quantum fields (up to a constant). In this framework,
the atom-field coupling is described by the following
equations for the atomic density matrix elements [24]:
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where μij are the transition dipole matrix elements and γij
are the decay rates of the relevant levels. The interaction
with another pulse shifts the energy level of jri and, hence,
adds an extra term ΔRðx; tÞ ¼ sin2θTðtÞ R d3x0Δðx −
x0ÞhΨ̂†

3−lΨ̂3−liðx0; tÞ to the detuning Δ2 of the pump beam,

where TðtÞ is the time-dependent transmission rate. This
practice of reducing the interaction effect to a c-number
detuning ΔR is equivalent to a mean field treatment for the
spin-wave fields in Eq. (2). One has the time-dependent
solution
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to Eqs. (4a) and (4b) under the weak drive approximation
[24,25] for single photons, where
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with γeg ¼ γ. It is straightforward to obtain the time-
dependent refractive index and decay rate from the suscep-
tibility χð1ÞðtÞ ¼ −2NμegρegðtÞ=ðϵ0ElÞ based on Eq. (5).
When two pulses approach each other, one phenomenon

that could happen is known as the Rydberg blockade. For
the red-detuned photons (Δ1 > 0) the rising magnitude of
negative ΔR constantly shifts the refractive index curve
going through the EIT point at a certain detuningΔ1 toward
that of the corresponding two-level system. In the limit
jΔRj ≫ γ, the system will virtually turn into a two-level
one; see Fig. 2(a). One signature of the Rydberg blockade is
a platform of nearly unchanging group velocity shown in
Fig. 2(b). In the blockade regime, the pulse group velocity
asymptotically tends to that of the corresponding two-level
system; only those with Δ1 ≤ 0.5γ in Fig. 2 can reach the
speed of light c with growing negative ΔR.
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FIG. 2 (color online). (a) Shift of refractive curves with
increasing ΔR < 0. Here, n − 1 ¼ 1=2Refχð1Þg [25] is obtained
from the approximated solution to Eqs. (4a) and (4b) in a slow
light regime, where ΔR changes slightly during the decay time on
the order of 1=γ. We take the photon detuning Δ1 ¼ 2γ and the
pump detuning Δ2 ¼ −2γ under the EIT condition with ΔR ¼ 0.
The pulses’ initial group velocity under the EIT condition is set as
vg ¼ 10 m=s (vg ¼ c=ng with ng ¼ nþ ωp∂n=∂ωp), while the
pump Rabi frequency is Ωc ¼ 2γ. The excited level jei is 5P1=2
of 87Rb. The dashed curve is that for the two-level system of the
corresponding parameters. The minus signs of the horizontal axis
labels come from our definition of Δ1. (b) Group velocity vg vs
ΔR with the same pulse and pump detuning as in (a). The thicker
solid curve is for Ωc ¼ 2γ, whereas the thinner curve is about
Ωc ¼ 4γ. The dashed line is the group velocity of the corre-
sponding two-level system.
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The pulses will enter the superluminal regime charac-
terized by anomalous dispersion [25], which is accompa-
nied by huge dissipation, if the interaction-induced
detuning ΔR of the positive sign is gradually added to
the pump beam of the system in Fig. 2. Equivalently, this
phenomenon happens to the blue-detuned single-photon
pulses in the presence of the attractive VdW potential. This
danger of completely damping the input photons should be
avoided in practice.
We, therefore, focus on red-detuned photons coupled

to the ensemble and propagating toward each other under
the attractive interaction. As the pulses get closer, they will
expand spatially because the characteristic size of their
distributions hΨ̂†

l Ψ̂liðz; tÞ is proportional to the average of
the distributed group velocity vgðz; tÞ over the pulses. This
modifies the ΔR value calculated with the relative distance
and absorption of the pulses, which constantly keep
changing as well. We use a numerical algorithm to simulate
this dynamical process. From the coordinate origin Z ¼ 0
situated on the center of one pulse, the longitudinal relative
distance−L ≤ Z ≤ L to the other pulse’s center throughout
their motion is divided into nd grids. The detuningΔR at the
ith (0 < i ≤ nd − 1) position is calculated with the pulse
size and transmission rate at the (i − 1)th position. Together
with the obtained numerical values of ΔR at the previous
positions of 0 ≤ k ≤ i − 1, it is plugged into Eq. (5) for the
numerical integral to find the susceptibility χð1Þ. In the same
way, the updated group velocity and transmission rate from
the susceptibility at the position iwill be used to calculate the
ΔR value at the (iþ 1)th position. Running the iterative
procedure with sufficiently large grid number nd approaches
the real pulse motion.
Figure 3 illustrates an example of pulse motion found by

the above mentioned numerical method. As shown in
Figs. 3(a) and 3(b), the greater interaction between more
transversely adjacent pulses is inseparable with the more
significant pulse losses. In the area where the Rydberg
blockade starts to manifest, the accumulated pulse absorp-
tion has been harmful to the survival of the interacting
photons [see Figs. 3(b) and 3(c)]. The pulse absorption rate
and group velocity in the blockade regime tend to those for
a two-level system with the corresponding system param-
eters, so the only way to reduce the pulse loss in the
blockade regime is by the use of a higher photon detuning
Δ1. However, one trade-off for doing so is to require a
narrower pulse bandwidth (correspondingly a longer pulse
size) to fit into the smaller EIT window, incurring a
more prominent effect measured by the ratio δvðZÞ ¼
jfvgðZ; σðZÞÞ − vgðZ; 0Þg=vgðZ; 0Þj shown in Fig. 3(d).
Here, vgðZ; σðZÞÞ is the group velocity at the location of the
characteristic longitudinal size σðZÞ from the pulse center,
and vgðZ; 0Þ is that at the pulse center. The nonuniform
group velocity distribution over pulses (in the comoving
coordinate with the pulse centers) indicated by the ratio is
equivalent to a group velocity dispersion that could make

the pulses totally disappear even without absorption.
Another disadvantage for large pulse size σ is that the
detuning value ΔR from the spatially distributed pulses
(proportional to 1=σ6 for the VdW potential) will be below
the magnitude for a significant XPM. Our results, thus,
show that in the blockade regime considered in Ref. [20]
the imperfections due to absorption and other factors are
actually much more problematic.
The next target is to understand the real-time evolution of

the DSP state j1i1j1i2 given before Eq. (1). Under the
perfect EIT condition, there is the approximation hσ̂gri ¼
−μegEl=Ωc (σ̂gr ¼ jgihrj) or its quantum many-body

version ŜlðzÞ ¼ −ðg ffiffiffiffi
N

p
=ΩcÞÊlðzÞ after neglecting the

nonadiabatic corrections for the narrow-band pulses,
implying the identical propagation of the quantized DSP
field with the electromagnetic field treated as classical in
Eqs. (4a) and (4b) [25]. In the suitable weak interaction
regime, we find for the two-photon process, such as the
most transversely separated pulses in Fig. 3 [corresponding
to the refractive curves close to that of ΔR ¼ 0 in Fig. 2(a)],
this approximation still holds with a small ratio ΔR=Ωc.
The kinetic Hamiltonian for the slowly moving DSPs in the
weak interaction regime can, therefore, be constructed as

FIG. 3 (color online). Numerical simulation for pulse motion.
Here, we adopt the relative distance coordinate Z as a substitute
for the time scale. We use jgi ¼ 5S1=2, jei ¼ 5P1=2, and jri ¼
82D3=2 of 87Rb, with the VdW coefficient jC6j ¼ 8500 GHz μm6

[26] and γ ¼ 2π × 5.75 MHz. The system parameters are chosen
as Ng2=Ω2

c ¼ 0.75 × 107 [vgð−LÞ ¼ 10 m=s], Ωc ¼ 2γ, and
Δ1 ¼ −Δ2 ¼ 2γ. The input Gaussian shaped pulses with fðzÞ ¼
ð1= ffiffiffi

π
p

σÞ1=2e−ð1=2Þz2=σ2 have the initial size σ ¼ 11.1 μm, with
the corresponding bandwidth well fitted into the EIT window.
The dashed curves are about the transverse separation a ¼ 0.58σ,
the thicker solid ones for a ¼ σ, and the thinner solid ones for
a ¼ 1.5σ. The iterative step size for the numerical simulation is
0.005σ. (a) Interaction-induced ΔRðZÞ at pulse centers. The
insertion is the refined plot for a ¼ 1.5σ. (b) Transmission
rate TðZÞ ¼ expð−kp

R
Z−L dyImfχð1ÞðyÞgÞ. (c) Group velocity

vgðZÞ ¼ c=ngðZÞ at pulse centers. The most transversely adjacent
situation shows a velocity platform near the Rydberg blockade.
(d) Group velocity deviation ratio δvðZÞ. For the same Z, more
extending pulses have higher δv due to more spatially inhomo-
geneous interaction.
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HK ¼ −Plivg;lðtÞ
R
dzΨ̂†

l ðzÞ∂zΨ̂lðzÞ, where the group
velocity vg;lðtÞ is determined with Eqs. (4a) and (4b).
Meanwhile, for slow light with cos θ ≪ 1, the BSPs
interact very slightly with the DSPs and among themselves
because they contain negligible Rydberg excitation. Their
quick decoupling from the system and decaying into the
environment allow one to treat the BSPs as motionless
oscillations, though their group velocities can be read from
their spectrum in Eq. (1).
Our method for pulse state evolution is to adopt the joint

evolution Uðt; 0Þ as the time-ordered exponential

Te−i
R

t

0
dτfHðτÞþHDðτÞg on the initial state jψ ini ¼ j1i1

j1i2j0ic as the product of the input pulse state and the
reservoir vacuum state j0ic. Tracing out the reservoir
degrees of freedom in the evolved state Uðt; 0Þjψ ini gives
the evolved system state. We have three noncommutative
items (HK , HAF, and HI) in HðtÞ as well as the dissipation
Hamiltonian HDðtÞ of Eq. (3), for the joint evolution
operator Uðt; 0Þ. Directly applying Uðt; 0Þ on the DSP
operators in jψ ini is impossible, as it is equivalent to
analytically solving a nonlinear Langevin equation. One
technique to circumvent the difficulty is the factorization of
an evolution operator into the relatively tractable ones [27].
For our problem, we have Uðt; 0Þ ¼ UKðt; 0ÞUAFðt; 0Þ
UIðt; 0ÞUDðt; 0Þ (see the Supplemental Material [28]).
Among the factorized processes UXðt; 0Þ ¼ T expf−i R t

0

dτ ~HXðτÞg, for X ¼ K, AF, I, and D, ~HK and ~HD are
indifferent to their original form HK and HD, respectively.
The operator UDðt; 0Þ takes no effect on jψ ini, but the
noncommutativity of HD with HAF makes the BSP field
operators in HAF become those in ~HAF as follows:

Φ̂�;lðzÞ → Ξ̂�;lðz; τÞ ¼ e−ϕ2
�γðt−τÞ=2Φ̂�;lðzÞ

� ffiffiffi
γ

p
ϕ�

Z
t

τ
dt0e−ϕ2

�γðt0−τÞ=2ξ̂lðzÞ;

(6)

where ϕþð−Þ ¼ cosϕðsinϕÞ. A sufficiently large γ value

approximates the commutator ½Ξ̂�;lðz; τ1Þ; Ξ̂†
�;lðz0; τ2Þ� ¼

e−γϕ�jτ1−τ2jδðz − z0Þ as vanishing for τ1 ≠ τ2. Under this
approximation, the BSP operators in UIðt; 0Þ also take the
forms in Eq. (6), hence, the evolved state ÛIðt; 0Þjψ ini,�Z

dz1dz2fðz1Þfðz2Þe−ic
4
3

R
t

0
dτΔðzτ

1
−zτ

2
ÞΨ̂†

1ðz1ÞΨ̂†
2ðz2Þ

− ic33
X2
l¼1

Z
t

0

dτ
Z

dz1dz2fðz1Þfðz2Þe−ic
4
3

R
τ

0
dt0Δðzt0

1
−zt0

2
Þ

× Δðzτ1 − zτ2Þðc1Ξ̂†
þ;l þ c2Ξ̂

†
−;lÞðz1; τÞΨ̂†

3−lðz2Þ
�
j0it; (7)

(un-normalized) to the first order of cos θ, where the
notations c1 ¼ cos θ sinϕ, c2 ¼ cos θ cosϕ, c3 ¼ sin θ,

zτ ¼ zþ R
τ
0 dτ

0vg;lðτ0Þ, and j0it ¼ j0ij0ic are used to
simplify the result. The detailed procedure for deriving
the evolved state is given in the Supplemental Material
[28]. The succeeding operation UAF only affects the BSP
components in Eq. (7), whereas UK displaces the coor-
dinate of Ψ̂†

l ðzlÞ.
The interaction potential Δðz1 − z2Þ renders the DSP

part in Eq. (7) no longer factorizable with respect to z1 and
z2. This entangled piece deviates from the ideal output state
eiφj1i1j1i2 with a uniform phase φ. We measure the
degrees of such deviation by comparing the real output
jψouti ¼ Uðt; 0Þjψ ini with a reference state jψ0

outi¼
UKðt;0ÞUAFðt;0ÞUDðt;0Þjψ ini. In the absence of UIðt;0Þ,
this reference remains in the product state j1i1j1i2j0ic, even
if the amplitude flðzlÞ in the output photon state j1il is
lowered due to any residual absorption. The output’s
fidelity F with the ideal one and the associate cross phase
φ can, thus, be found from the overlap

ffiffiffiffi
F

p
eiφ ¼

hψ0
outjψouti, where the two output states are normalized.

Similar definitions for F and φ can be found in
Refs. [29,30].
In Fig. 4, we plot the fidelity and cross phase for the most

transversely separated pulses in Fig. 3. Because of the steep
decay of the VdW potential at long distances, both fidelity
and cross phase for the counterpropagation in Fig. 4(a)
quickly converge to fixed values with increasing medium
size. A cross phase of π rad that still keeps close to unit F
can be achieved if the VdW coefficient jC6j, for example, is
lifted by about 9 times with a different Rydberg level.
Contrary to a widely held notion, counterpropagation does
not automatically ensure high fidelity; see Ref. [30]. The
inset of Fig. 4(a) shows the fidelity for an imagined motion
of two pulses passing each other very slowly. The same
propagation geometry indicates that the degrading fidelity
in the slow motion comes from the growing pulse entan-
glement over a longer interaction time. In comparison, we
also study the copropagating pulses in Fig. 4(b). The
copropagation exhibits considerable trade-off between F

FIG. 4 (color online). (a) Fidelity and cross phase of photon-
photon XPM for two counterpropagating pulses with the trans-
verse separation a ¼ 1.5σ in Fig. 3. L is the medium size. The
system parameters are the same as in Fig. 3. The inset describes
an imagined situation by reducing the initial pulse velocity to
10−2 m=s. (b) Fidelity and cross phase for two pulses propagating
together along two tracks separated by a ¼ 1.5σ. Because of
pulse absorption, their group velocity is not stable in such
copropagation (for example, it drops from 11.007 to 11.002
m/s from L ¼ 2σ to 5σ).
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and φ and would be unfavorable for making large phases of
good quality.
In summary, we have studied the process of two-photon

interaction via a Rydberg atomic ensemble. Our approach
based on the complete dynamics for both single atoms and
ensemble enables a more realistic description of the situation
without steady state. The previously considered regime near
the Rydberg blockade is found to be short of the favorable
figures of merit for photon-photon XPM. We also prove that
approximately ideal XPM creating a considerable nonlinear
phase can be realized with counterpropagating and trans-
versely separated pulses that weakly interact with each other.
The photon-photon XPM we have discussed can be the
basis for an all-optical deterministic quantum phase gate.
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