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1. INTRODUCTION

The spin�dependent electron transport [1] is a basis
of spintronic devices. An applied magnetic field affects
the magnetic state of a multilayer nanostructure and
controls the spin�polarized current due to the magne�
toresistive effect. Manganites attract special attention
of researchers [2] related to the possible formation of
different types of inhomogeneous charge and spin
states such as lattice and magnetic polarons and droplet
and stripe structures. Similar phenomena are charac�
teristic of many strongly correlated electron systems.
The phase separation induced by doping can give rise to
anomalies in the transport characteristics [3] resulting
from changes in the local electron environment in the
vicinity of such inhomogeneities affecting the charge
carriers. Note that it is favorable for such inhomogene�
ities to be located as far as possible from each other to
minimize the Coulomb energy [4].

The magnetoresistance in the paramagnetic state
can result from the existence of degenerate orbital
electron states and of strong electron correlations [5].
In particular, near the complete filling of the electron
states, the orbital degeneracy is able to induce the
long�range orbital order. For the latter, the probability
to find an electron at one of the orbitals depends on
both the lattice and orbital types. The orbital order can
be accompanied by the lattice distortion, namely, by
the Jahn–Teller distortions related to the electron–
lattice coupling. At the same time, the orbitally
ordered state can also be favorable in energy without
any lattice distortions [5].

A high doping level can lead to the orbitally disor�
dered state, which is favorable in energy in comparison
to the antiferro�orbital state owing to the decrease in
the kinetic energy. Similarly to the disordered spin sys�

tems, in which ferromagnetic polarons [3] exist in the
paramagnetic state, here the orbital polarons contrib�
ute to the transport properties of the systems under
study [6]. The shape of orbital polarons depends on
the configurations of electron orbitals. They can have
a disklike or chainlike shape depending on the ratio of
the values of the exchange interaction between
pseudo�orbital angular momenta and of the hopping
integrals [6]. In the applied magnetic field, taking into
account the electron phase, the energy of the disk�
shaped orbital polaron is lower than that in the case of
the chain. In the case of nonzero orbital magnetic
moment, e.g., for electrons in t2g states, the orbital
polarons have a magnetic moment. In such a situation,
the energy of an orbital polaron depends on the direc�
tion and magnitude of the applied magnetic field. As a
result, a magnetoresistive effect is possible in the
absence of static lattice distortions.

In manganese sulfide (MnS), the orbital degener�
acy can arise at electron doping as a result of the
replacement of a divalent manganese ion by trivalent
rare�earth 4f elements, such as gadolinium ions exist�
ing in the metallic compound GdS [7] with the crystal
and magnetic structures similar to those of MnS.
Owing to strong electron correlations, MnS exhibits a
2.5�eV band gap. At certain values of the parameters,
the interactions between 5d and 4f electrons lead to a
decrease in the electron kinetic energy and favor the
formation of the orbital ordering at gadolinium ions in
the t2g subsystem. The intra� and interatomic spin–
orbit interaction, which can be enhanced by the elec�
tron–phonon interaction, leads to the spin�induced
splitting in the spectrum of electron excitations.

The aim of this work is to reveal the mechanism of
the magnetoelectric coupling for the orbitally degen�
erate electron states and to determine the correlation
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between the temperature and magnetic field depen�
dences of the magnetic and transport characteristics in
the applied magnetic field.

2. EXPERIMENTAL RESULTS

The synthesis of the GdxMn1 – xS solid solutions
and their X�ray diffraction analysis are described in
detail in [8]. The magnetic and calorimetric measure�
ments [9] revealed a decrease in the magnetic phase
transition temperature from T = 150 K to T(x = 0.2) =
120 K and allowed determining the critical doping
level corresponding to the decay of the long�range
order and to the formation of a spin glass (xc = 0.23).
The measurements of electrical resistance were per�
formed by the four�probe method in the applied mag�
netic field H = 0.8 T perpendicular to the electric cur�

rent. The measurements were performed within the
100 K < T < 550 K temperature range using samples
with the compositions x = 0.1, 0.15, and 0.2. In the
case of x = 0.1 (Fig. 1), the electrical resistance varies
with the temperature only slightly up to 260 K, and
then it exponentially decreases, whereas the activation
energy ΔE changes from 0.31 eV to 0.61 eV; the latter
value corresponds to T = 440 K. On further heating (at
T > 550 K), the electrical resistance is nearly indepen�
dent of temperature. In the applied magnetic field, the
electrical resistance increases. An especially steep
increase is observed at T > 270 K. The magnetoresis�
tance defined as δ = [ρ(H) – ρ(0)]/ρ(0) has a peak at
T = 400 K (Fig. 1b).

In the case of x = 0.15 (Fig. 2), at the transition
from the magnetically ordered phase to the paramag�
netic state, the electrical resistance increases by 50%.

Fig. 1. (Color online) (a) Electrical resistivity of
Gd0.1Mn0.9S samples (1) at zero magnetic field and (2) in
the applied magnetic field H = 0.8 T. (b) Temperature
dependence of the resistivity in the applied magnetic field
[ρ(H) – ρ(0)]/ρ(0): (1) experimental data and (2) functions

(1) and (3) calculated using the parameters  = 0.15,

HA/Tc = 0.4, λ = 0.005, Tc, B = 400 K, Tc = 500 K, and ΔE
= 0.3 eV. The inset shows the plot of the logarithm of the
resistivity versus inverse temperature at zero magnetic field.

mL
2

Fig. 2. (Color online) (a) Logarithm of the electrical resis�
tivity of Gd0.15Mn0.85S samples versus inverse tempera�
ture (1) at zero magnetic field and (2) in the applied mag�
netic field H = 0.8 T. (b) Temperature dependence of the
resistivity in the applied magnetic field [ρ(H) – ρ(0)]/ρ(0):
(1) experimental data and (2) functions (1) and (3) calcu�

lated using the parameters  = 0.6, HA/Tc = 0.1, λ =

0.02, Tc, B = 450 K, Tc = 460 K, and ΔE = 0.12 eV.
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On further heating, we observe the change in the acti�
vation energy ΔE from 0.012 eV to 0.09 eV. The
applied magnetic field induces the growth of the elec�
trical resistance in the paramagnetic state by 40%
accompanied by the growth of the magnetoresistance
at temperatures above 360 K.

If the concentration of gadolinium ions within the
100 K < T < 550 K temperature range exceeds the per�
colation threshold Xc = 0.16, the electrical resistance
of GdxMn1 – xS solid solutions varies within one order
of magnitude and has a minimum value at T = 325 K
(Fig. 3). In the applied magnetic field, the electrical
resistance also grows and the minimum in its temper�
ature dependence is shifted toward higher tempera�
tures up to T = 380 K. With the growth of the temper�
ature (at T = 320 K), the magnetoresistance illustrated
in Fig. 3b changes its sign from positive to negative. At
475 K, the magnetoresistance vanishes. An anomaly in
the temperature dependence of the magnetoresistance
is observed at T � 210 K in the samples with two com�
positions near the doping level corresponding to the
percolation threshold. This anomaly correlates with
the anomaly in the temperature dependence of the rel�
ative change in the sample volume, which is observed
within the T = 200–225 K temperature range (see
inset in Fig. 3). This dependence has been obtained by
the subtraction of the asymptotic continuation of the
linear high�temperature function ΔV/V [9] at T >
250 K from the total temperature dependence of the
relative change in the sample volume. Below 250 K,
the lattice starts to shrink and the electrical resistance
increases. Probably, this is related to structural distor�
tions of the crystal lattice. The magnetoresistance
peak is observed in the vicinity of the transition to the
magnetically ordered state and asymptotically disap�
pears with the decrease in temperature. A possible
cause of this peak stems from the phase separation and
the formation of ferrons within the antiferromagnetic
host material. Such a mechanism can be used to inter�
pret the growth of the magnetic susceptibility on cool�
ing. The magnetoresistance also manifests itself in the
form of current–voltage curves measured at room
temperature both at zero magnetic field and in the
applied magnetic field H = 0.8 T (Fig. 4). With the
increase in the electrical current, the magnetoresis�
tance exhibits a peak and then steeply decreases at an
electrical current of 1 mA and a voltage of 1 V.

3. MODEL

To interpret the experimental data, we assume that
an electron tunnels from a gadolinium ion to the 3d
band formed by the nearest manganese ions and
orbital ordering arises at manganese and gadolinium
ions. The spin–orbit interaction in the manganese
subsystem is related to the electron doping and lifting
the degeneracy in the t2g subband owing to the inter�
atomic interactions. The change in the symmetry of
the electron density at a cation leads to a modification

of phonon vibration modes in the octahedron. The
splitting of these modes near the Brillouin zone
boundary leads to a change in the permittivity and to
the electrical polarization of the regions in the vicinity
of the interface between Mn and Gd ions.

The electrical resistance below room temperature
results from the tunneling of electrons and is indepen�
dent of temperature. With the growth of the tempera�
ture, the impurity conductivity related to gadolinium
ions, which play the role of donors for Mn2+ ions,
begins to prevail. At x = 0.1, the orbital polarons
become pinned at T = 400 K and the magnetic
moments of electrons form superparamagnetic parti�
cles. Similar to the spin systems, where the fluctua�
tions of spin density described in terms of a short�
range magnetic order lead to the displacement of the
mobility edge and the growth of the electrical resis�
tance, here we use the short�range order in the orbital

Fig. 3. (a) Electrical resistivity of Gd0.2Mn0.8S samples (1)
at zero magnetic field and (2) in the applied magnetic field
H = 0.8 T. (b) Temperature dependence of the resistivity in
the applied magnetic field [ρ(H) – ρ(0)]/ρ(0): (1) experi�
mental data and (2) function (4) calculated using the
parameters Tc = 500 K, Tc,Mn = 420 K, and Tc,Gd =
320 K. Inset shows the relative change in the sample vol�
ume determined by the subtraction of the extrapolated lin�
ear function ΔV/V(T) at T > 250 K from the temperature
dependence of ΔV/V(T).
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subsystem, which is described by the correlation func�
tions of orbital magnetic moments [9] and modifies
the width of the conduction band, [1 – 〈L(0)L(r)〉]W.
The electron ordering at certain orbitals leads to the
anisotropy of hopping integrals and the narrowing of
the conduction band, i.e., to an increase in the energy
needed for the activation of charge carriers from the
impurity level to the bottom of the conduction band.
At low temperatures, the orbital magnetic moments of
clusters are oriented chaotically and the correlation
function 〈L(0)L(r)〉 tends to zero. On heating, the
orbital magnetic moments try to orient themselves
along the direction of the applied magnetic field; this
leads to the growth of 〈L(0)L(r)〉. The change in the
electrical resistance ρ in the applied magnetic field can
be written as

(1)ρ H( ) ρ 0( )–[ ]/ρ 0( )

=  LH 0( )LH r( )〈 〉 L0 0( )L0 r( )〈 〉–[ ]ΔE/kBT 1,–exp

where 〈LH(0)LH(r)〉 and 〈L(0)L(r)〉 are the orbital cor�
relation functions in the presence and absence of the
applied magnetic field, respectively. Further on, we
estimate these correlation functions using the model
of a superparamagnetic material in the presence of the
applied magnetic field H and the anisotropy field HA.
We represent the energy of superparamagnetic parti�
cles as W = MLHcosθ + MLHAcos(γ – θ), where the
angle θ specifies the direction of the orbital magnetic
moment with respect to the applied magnetic field and
γ is the angle between the directions of the applied
magnetic field and the anisotropy field. The equilib�
rium direction of the orbital magnetic moment is
determined by the expression tanθ = HAsinγ/(H +
HAcosγ). The change in the orbital magnetic moment
of all particles in the applied magnetic field can be rep�
resented as

(2)

At the random scatter of anisotropy axes within the
0 < γ < π angular range, the correlation function of
orbital magnetic moments is small. We express the
temperature dependence of this correlation function
in terms of the orbital magnetization of a cluster and
the angle between the directions of the moments

(3)

where λ = H/K and K is the anisotropy constant. In
three�dimensional anisotropic systems, the magneti�
zation in the transition region has the form M =
mL(1 – T/Tc)

β, where β = 0.3–0.33. The anisotropy
field also has a power�law temperature dependence,
HA = K(1 –T/Tc, B)n. The experimental curves are fit�
ted better by the curve corresponding to the exponent
n = 2. For x = 0.1, the experimental data on the mag�
netoresistance (see Fig. 1) are rather well fitted by
functions (1) and (3) with the following parameters:
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Fig. 4. (Color online) (a) Electrical current versus the
applied voltage in the applied magnetic field H = (1) 0 and
(2) 0.8 T. (b) (1) Measured electrical resistance in the
applied magnetic field H = 0.8 T versus the applied voltage
at room temperature for the samples with x = 0.2 and (2)
calculations according to Eq. (5) using the parameters
mL = 0.06 A/m, P0 = 0.02 C/m2, and A = 100 m3/(C A).
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the orbital magnetic moment squared of a cluster

= 0.15, anisotropy field HA/Tc = 0.4, λ = 0.005,
the pinning temperature for orbital polarons with the
formation of clusters Tc, B = 400 K, the temperature
corresponding to the formation of orbital polarons
characterized by the short�range orbital order Tc =
500 K, and the activation energy ΔE = 0.3 eV. With the
growth of the concentration of gadolinium ions, the
correlation functions for orbital magnetic moments
also increase. For the sample with x = 0.15, we have

 = 0.6, the anisotropy field decreases (HA/Tc =
0.1), λ = 0.02, the pinning temperature for orbital
polarons Tc, B = 450 K approaches the temperature of
their formation Tc = 460 K, and the activation energy
is ΔE = 0.12 eV. The theoretical results obtained using
this model agree rather well with the experimental data
on the magnetoresistance (see Fig. 2).

At x = 0.2, gadolinium ions form a percolation
cluster in the lattice. In this case, we can separate two
subsystems, of manganese and gadolinium, which at
the Mn–Gd interface have polarization charges, which
are characterized by the polarization vectors P1 and P2

related to each other via the orbital degrees of free�
dom of electrons, ML[P1, P2]. As a result, we have two
degenerate spirals with clockwise and counterclock�
wise rotation with different signs of the direction of
the orbital magnetic moment. The applied magnetic
field lifts the degeneracy with respect to the direction
of the polarization vector (ML[P1, P2] and –ML[P1,
P2]) and leads to the enhancement of the total elec�
tric field in the sample. Eventually, the bottom of the
conduction band is shifted with respect to the chem�
ical potential. Thus, the change in the electrical
resistance in the applied magnetic field can be writ�
ten as

(4)

where ML is the orbital magnetization; P0 is the polar�
ization vector; Tc, Mn and Tc, Gd are the critical temper�
atures corresponding to the vanishing of the polariza�
tion in the manganese and gadolinium subsystems,
respectively; and Tc is the critical temperature for the
formation of the orbital order. The experimental data
on the magnetoresistance shown in Fig. 3 are fitted
well by Eq. (4) with the following parameters: Tc =
500 K, Tc, Mn = 420 K, Tc, Gd = 320 K, and ΔE =
13 meV. In the framework of the model under study,
we can also describe the dependence of the magne�
toresistance on the electric field, which tends to rotate
the polarization vectors along the field, whereas the

mL
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effective coupling with the orbital magnetic moments
impedes this process. At high fields, the directions of
the polarization vectors coincide with each other, and
the coupling between the magnetic and electrical sub�
systems disappears. This can be illustrated using a sim�
ple model with the energy written as AML[P1, P2] +
E(P1 + P2). For the orthogonal configuration of the
fields (H ⊥ E), expression AML(P1xP2y – P1yP2x +
E(P1y + P2y) has a minimum at sinϕ =

. The dependence of the

magnetoresistance on the electric field is determined
by the angle ϕ

(5)

where A is the parameter characterizing the coupling
between the orbital magnetic moment and the polar�
ization vector and E = U/d is the electric field. The
canting angle of the sublattices formed by polarization
vectors decreases with the growth of the electric field.
At an angle of π/2, the magnetoresistance has a peak.
At further rotation of the vectors toward the direction
of the electric field, the coupling between the orbital
magnetic moment and the electric dipole becomes
weaker. Therefore, the magnetoresistance also
decreases. The theoretically determined field depen�
dence of the magnetoresistance shown in Fig. 4 is in
qualitative agreement with the experimental data. The
existence of the orbital order is confirmed by the mag�
netic measurements. It follows from the temperature
dependence of the magnetic susceptibility (Fig. 5a).
Within the 550 K < T < 650 K temperature range, the
magnetic susceptibility obeys the Curie–Weiss law
with the paramagnetic Curie temperature θ = –108 K.
Below 550 K, we observe deviations of χ(T) from the
Curie–Weiss law (the function Δχ = χex – χCW is plot�
ted in Fig. 5b). The total susceptibility can be repre�
sented as a sum χ = χs + χo + χso, where χs is the mag�
netic susceptibility of localized spins and χo and χso are
the orbital and mixed susceptibilities, respectively.
Below the temperature of the transition to the orbitally
ordered state, the spin and mixed susceptibilities do
not obey the Curie–Weiss law and depend on the
orbital ordering parameter ML whose temperature
dependence is described by the power�law function (4).
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The spin susceptibility at the wave vector characteristic
of the structure under study has the form [11]

(6)

where Jm is the Fourier transform of the exchange inte�
gral characterizing the exchange interaction between
spin and orbital moments and Js(Q) is the exchange
integral between spins at wave vector Q = π. The spin
susceptibility χs is enhanced for the exchange parame�
ter Jm < 0 and decreases at Jm > 0 below the tempera�
ture of the transition to the orbitally ordered state (see
inset in Fig. 5b).

χs Q( )

=  
T Jm Q( )/4 1 4ML

2–( )+

T2 T
4
��� Jm Q( ) Js Q( )–[ ] 9/4JmJs 1 ML

2–( )–+
�����������������������������������������������������������������������������������,

In [5], in the framework of the Hubbard model in
the limit of strong electron correlations, the phase dia�
gram describing the magnetic and orbital ordering was
calculated and the semiconductor type of electrical
conductivity was found, exhibiting a peak in the vicin�
ity of the transition to the orbitally ordered state. On
cooling, the electrical resistance in the applied mag�
netic field decreases and has a minimum near the
orbital ordering temperature. The magnetoresistance
attains the maximum value and then changes sign at
the Curie temperature. The theoretical calculations of
the magnetoresistance with the parameter of the on�
site Coulomb interaction between electrons at the
same orbital U/W = 4, the Hund’s rule coupling con�
stant J/W = 1.2, the interorbital Coulomb interaction
U' = U – 2J, and the applied magnetic field H/W =
0.001 (where W is the band width) are in qualitative
agreement with our experimental data for x = 0.2.

The orbital ordering in the GdxMn1 – xS solid solu�
tion is confirmed by a broad peak in the specific heat
at T = 380 K in the curve obtained by the subtraction
of the phonon contribution from the measured tem�
perature dependence of the specific heat [9]. The dif�
ference in the values of the critical temperature
obtained from the data on the specific heat and mag�
netoresistance results from the fact that the specific
heat peak is related to the decay of the long�range
order, whereas the magnetoresistance is observed
above the critical temperature and is determined by
the short�range orbital order and vanishes at higher
temperatures. In interpretation of the magnetoresis�
tance data, we used the molecular field approxima�
tion, which gives higher values for critical tempera�
tures in comparison to the model calculations taking
into account the short�range order.

4. CONCLUSIONS

In this work, we have determined the magnetoresis�
tance at temperatures exceeding by several times the
temperature characterizing the transition to the mag�
netically ordered state in GdxMn1 – xS solid solutions
with x = 0.1, 0.15, and 0.2. For all compositions, we
observe the semiconductor type of electrical conduc�
tivity with a small minimum in the high temperature
range. The growth of the electrical resistance and of
the activation energy in the applied magnetic field
results from the growth in the field of the correlations
between orbital magnetic moments. The coupling of
orbitally ordered electrons with the vibration modes of
the octahedra leads to the electrical polarization and
to the dependence of the magnetoresistance on the
applied electric field. Using the current–voltage
curve, we find the magnetoresistance peak in both the
electric current and voltage.

This work was supported by the Russian Founda�
tion for Basic Research (project nos. 12�02�00125�a
and 14�02�90010�Bel_a).

Fig. 5. Temperature dependences of (a) (1) the inverse
magnetic susceptibility for Gd0.2Mn0.8S sample and (2)
the Curie–Weiss curve for the magnetic susceptibility and
(b) their difference Δχ = χex – χCW. Inset shows the spin
susceptibility at T < Tc calculated by Eq. (6) using the

parameters Js = –110 K, ML = mL(1 –T/Tc)0.3, and Jm =
(2) 100 and (3) –100 K and (1) the Curie–Weiss relation
χs(Q) = 1/[T – Js(Q)/4] [11].
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