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1. INTRODUCTION

For the processing of quantum information, one
should be able to implement a sequence of basic quan�
tum logical operations (gates) on a given physical sys�
tem [1, 2]. Quantum computing can be performed
both on two�level quantum systems (qubits) and on
multilevel quantum systems—qudits [3–5] (when
there are d levels). The latter systems have a number of
advantages; for example, the same size of computa�
tional basis can be guaranteed by a smaller number of
qudits. When considering the implementation of
quantum algorithms, one should take into account, in
addition to the operational complexity (the number of
gates to perform an algorithm [2]), the time complex�
ity (time taken to perform an algorithm) [6–11]. The
reduction of this time minimizes losses due to interac�
tion with the environment. The time complexity of
quantum logical operations is determined by the
quantum system and the method of its control. In the
general case, the presence of a certain minimum time
Tmin within which a quantum gate can be implemented
with an acceptable error is a fundamental limitation
on the speed of quantum operations.

Finding efficient methods of control of quantum
systems to implement gates with the maximum accu�
racy and in the minimum time is one of the most
important problems in the development of a full�scale
quantum computer. Among the physical systems used
for this purpose, systems of nuclear spins are distin�
guished by their relative simplicity. Therefore, many
experimental studies have been carried out on such
systems, that demonstrate the implementation of
quantum algorithms by the nuclear magnetic reso�
nance (NMR) technique [12]. In some simple cases,
the minimum time of the gate and the corresponding

effective Hamiltonian for its implementation by a
radio�frequency (RF) magnetic field can be found
analytically (see, for example, [8–10, 13, 14]). In
more complex systems, numerical methods have been
used for this purpose [7, 11, 15–20].

The quantum Fourier transform (QFT) [1, 2, 12]
plays a key role in many quantum algorithms. Compu�
tations of QFT on spin�1/2 systems have shown that
the minimum time Tmin strongly depends on the phase
factor in the definition of a gate [7, 11]. The point is
that the evolution operator U(T) of a spin system dur�
ing time T with a traceless Hamiltonian belongs to a
special unitary group SU(N) (N is the dimension of the
Hilbert space of the system). Hence, the equality
det{U(T)} = 1 holds. At the same time, the quantum
gates UG are defined in the group of unitary operators
U(N) such that the moduli of determinants satisfy the
equality  = 1. Therefore, we can implement
gates only up to a phase factor:

(1)

The global phase in (1) can be chosen from a certain
set of values [7],

(2)

where N = 2n for a system of n spins 1/2 and φ0 is the
minimum value of the angle φ0 ∈ [0, π] such that
det{exp(iφ0)UG} = 1. Numerical calculation [7] for a
QFT gate on three spins 1/2 has shown that the mini�
mum time Tmin depends on the value (2) of the global
phase. In [11], a similar result was obtained for gates of
QFT and the rearrangement of states (SWAP) on two
spins 1/2. In [20], numerical simulation of the imple�
mentation of QFT on qudits with the numbers of states
d = 3 and d = 4 represented by quadrupole nuclei with
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spins I = 1 and I = 3/2, respectively, has also demon�
strated that the minimum time of a gate strongly
depends on the value of the global phase.

Today, there are a lot of publications devoted to the
analysis of various manifestations of the quantum
phase (see the reviews [21–23]). Most often, one con�
siders the Berry phase [24] under adiabatic evolution
and the Aharonov–Anandan phase [25] under nona�
diabatic evolution. In the general case, the total phase
is a sum of dynamic and geometric parts. In the field of
quantum computations, the main focus is placed on
the implementation of quantum gates by means of a
geometric phase (see [12, 23, 26–28] and references
therein). In [29], the authors analyze the phase and the
Hamiltonian of a gate by examples of qubit rotation
gate and SWAP gate between the ends of a spin chain.
The above�mentioned relationship between the phase
factor of the gate and the minimum time of its imple�
mentation has not been explained, as far as we know;
in the present study, we consider this relationship by an
example of QFT.

Earlier [7, 11, 20], it has been established by
numerical methods that one can find such time
dependence of RF field that allows one to implement
a gate with one of possible values of the global phase
(2) each of which corresponds to its own minimum
implementation time. It is clear that the phase factor
in itself cannot affect the duration of a pulse. Hence,
there should be another reason for such a relationship.
However, it is very difficult to understand the mecha�
nism of this relationship by the computed complex
time dependence of the RF field. Therefore, in the
present study, we apply analytic methods to the inves�
tigation of effective Hamiltonians that implement a
gate and consider simple methods for its approximate
construction. In Section 2, we obtain general formulas
that describe the relation between the phase factor of a
quantum gate and the effective Hamiltonian that
implements this gate. In Section 3, we consider an
example of QFT for a qutrit represented by a quadru�
pole nucleus with spin I = 1. In Section 4, we obtain
an effective Hamiltonian of QFT for a system of two
qubits. In Section 5, we accomplish the division of the
phase into dynamic and geometric parts.

2. RELATIONSHIP BETWEEN THE PHASE 
FACTOR AND THE EFFECTIVE 

HAMILTONIAN OF A GATE

Suppose that a unitary operator of some gate in a
computational basis is represented by a matrix UG,
which is expressed in exponential form as

(3)

Using transformation P, we reduce the matrices UG

and K to a diagonal form:

(4)

UG eiK
.=

P†KP D Λf f| 〉 f〈 |,
f 1=

N

∑= =

(5)

where  is the projector onto the eigenstate .
Now, if we add the number 2πmk to the eigenvalues Λk,
where mk is an integer, then the value of the exponen�
tial function in (5) remains unchanged, but the matrix
D is changed; hence, the matrix K is transformed into
a new matrix

(6)

In this case, the trace of the matrix is changed:

(7)

Suppose that we want to implement the gate UG on
a given physical system by the effective Hamiltonian
Heff. Since its trace is zero, we should take a matrix

(8)

to implement this gate, where E is the unit matrix. Let
us explain transformations (6) and (8) in physical
terms. When one chooses different sets of numbers mk

in (6), the effective Hamiltonian (8) is changed so that
one or several of its energy levels are shifted by
2πmk/T. The associated variation of the mean energy
is eliminated by a scale shift such that this mean value
is taken as the origin. As a result, we obtain the opera�
tor

(9)

Note that transformation (7) has allowed us to change
the trace of the matrix K and pass from one value of the
global phase to another, whereas unitary transforma�
tions (for example, rotations caused by the external
field) preserve the trace of the matrix.

Comparing operators (9) and (11), we obtain

Thus, we have obtained an operator UG (1) up to a
global phase each of whose values from the set (2) cor�
responds to its own effective Hamiltonian. Such an
implementation of a gate allows one to choose, from

among the effective Hamiltonians , the one that

has advantages, for example, that can be implemented
in less time.

P†UGP iD( )exp iΛf( ) f| 〉 f〈 |,exp
f 1=

N

∑= =

f| 〉 f〈 | f| 〉

Km P D 2πmk k| 〉 k〈 |+( )P†=

=  K 2πmkP k| 〉 k〈 |P†
.+

TrKm TrK 2πmk NΦm.≡+=

THeff
m Km– ΦmE,+=

Um T( ) iTHeff
m–( )exp UG iΦm–( ).exp= =

φp Φm mod 2π( ).–=

Heff
m
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Consider a QFT gate with a matrix:

(10)

Let us analyze the above�described transformations by
an example of a qutrit. Then, in expressions (3)–(5)
for the matrix UG = QFT3(10), we have

(11)

where g1 = sin2(θ/2), g2 = cosθ = 1/ , and θ =

arctan . The matrix 

(12)

transforms matrices K and D to diagonal form. The
matrices

(13)

UG QFTN
1

N
�������= =

×

1 1 1 … 1

1 σ σ2 … σN 1–

1 σ2 σ4 … σ2 N 1–( )

1 σN 1– σ2 N 1–( ) … σ N 1–( )
2

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,

σ 2πi
N

������⎝ ⎠
⎛ ⎞ .exp=

… … … ……

K π
2
��

2g1 g2– g2–

g2– 1 g2/2+ g2/2

g2– g2/2 1 g2/2+⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

D π
1 0 0

0 0 0

0 0 1/2⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

3

2

P 1

2
�����

2 0 0

0 1 1

0 1 1–⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

×
θ/2( )sin θ/2( )cos 0

θ/2( )cos– θ/2( )sin 0

0 0 1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

2πm1P 1| 〉 1〈 |P†

=  πm1

2g1 g2– g2–

g2– 1 g1– 1 g1–

g2– 1 g1– 1 g1–⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,

2πm2P 2| 〉 2〈 |P†

define variations of the effective Hamiltonian.

Returning to the general case, notice that the QFT
gate (10) can be obtained by a series of rotations selec�
tive with respect to transitions between levels [30, 31].
In this case, the variation of the phase factor (1) affects
the numerical values of the exponents in the diagonal
part of the QFT expansion but does not affect the
sequence of selective rotation operators themselves.
This method of obtaining a QFT gate is not time opti�
mal, as demonstrated by numerical calculations in
[16]. For the optimal implementation of a gate, one
should act on all the transitions simultaneously, as this
is done in a QFT gate implemented by an optimized
RF pulse or by the effective Hamiltonian (8).

3. CONSTRUCTION OF AN EFFECTIVE 
HAMILTONIAN OF QFT ON A QUTRIT

Consider a qudrupole nucleus with spin I = 1
placed in a strong static magnetic field and a control
RF magnetic field. In the reference frame rotating
about the direction of the static field (z axis) with the
frequency ωrf of the RF field [32], the Hamiltonian
takes the form

(14)

Here ω0 is the Larmor frequency, I
α
 is the spin projec�

tion operator onto axis α (α = x, y, z), q is the constant
of quadrupole interaction of the nucleus with the gra�
dient of the axially symmetric crystal field, and the
amplitude u

α
(t) is the projection of the control RF

field onto the axis α. Assume that � = 1; then the
energy is measured in the units of frequency. Let us
pass to dimensionless time and dimensionless fre�
quencies expressed in the units of 1/q and q, respec�
tively. As qutrits, we can take, following, for example,
[33], deuterium nuclei (I = 1) in a liquid crystal. The
NMR spectrum consists of two narrow lines with split�
ting of 200 Hz, which allows one to control all the
transitions between three levels by an optimized RF
pulse [20] with practically attainable amplitude.

=  πm2

2 1 g1–( ) g2 g2

g2 g1 g1

g2 g1 g1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,

2πm3P 3| 〉 3〈 |P† πm3

0 0 0

0 1 1–

0 1– 1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

H t( ) ω0 ωrf–( )Iz– ux t( )Ix uy t( )Iy Hq,+ + +=

Hq q Iz
2

2/3–( ).=
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To implement a gate for quantum computations,
one should find a control field u

α
(t) (14) such that the

evolution operator

(15)

performs, in time T, the necessary logical unitary
operation of the qutrit state up to the phase factor (1).

Here  is the time ordering operator. A variant of
numerical solution of this problem is given in [20]. In
the present section, we analytically construct an effec�
tive Hamiltonian that implements a QFT gate.

In the absence of the RF field, system (14) has
three nonequidistant energy levels for states with dif�
ferent values of Iz:

(16)

We take these states as a computational basis of a
qutrit. Earlier [13], we found an effective Hamiltonian
for rotations selective with respect to transitions
between the levels of this qutrit. To obtain a QFT on

qutrit, we should construct an effective Hamiltonian

in the form of the matrix  (8) with the substitution
of (11) and (13). Moreover, this Hamiltonian should
be constructed from operators that describe actions on
the system that are admissible in our model. Introduce
the notations

(17)

where the first two operators can be obtained from the
free evolution operators and the operators of nonse�
lective rotations through angles ϕ and ψ due to the fol�
lowing property of exponential operators:

The operator C in (17) is obtained by an RF field (in
contrast to the case of selective rotations [13], we take
a z�field instead of a y�field). Equating the sum of
matrices of the operators (17) to (8), we obtain a sys�
tem of equation

(18)

The joint solution of these equations yields the sought
values of the parameters, which are given in Table 1.
For every value of the phase, solutions with positive
evolution times are chosen that lead to the minimum
value of the sum T = t1 + t2.

Thus, for the parameters given in Table 1, we obtain
the matrix –Km + ΦmE for QFT in the form of the sum

(19)

Since the operators in this expression do not commute
with each other, to obtain a pulse sequence that imple�
ments the given Hamiltonian, we apply the Trotter–

Suzuki formula [34] for exponential operators:

(20)

In view of expression (19), this product converges, as
r  ∞, to the ideal QFT gate (10): QFT3exp{–iΦm}.

The r�times repeated product of operators in
parentheses on the left�hand side of (20) can be
obtained by the operators of nonselective rotations
{θ}

α
 = exp(–iθI

α
), separated by intervals of free evolu�

tion, that are shown by arrows  ≡ exp(–itHq):

U T( ) T̂ i H t( ) td

0

T

∫–
⎝ ⎠
⎜ ⎟
⎛ ⎞

exp=

T̂

Iz = 1| 〉 1| 〉, Iz = 0| 〉 2| 〉,= =

Iz = –1| 〉 3| 〉.=

Heff
m

A iϕIx–( ) Hqt1( ) iϕIx( ),expexp=

B iψIy–( ) Hqt2( ) iψIy( ),expexp=

C ξIx δIz,+=

iϕIx–( ) iHt( ) iϕIx( )expexpexp

=  iϕIx–( )iHt iϕIx( )expexp[ ].exp

Km– ΦmE+

=  

1
6
�� 3 ϕcos

2
1–( )t1 3 ψcos

2
1–( )t2+[ ] δ+ 1

2
����� it1 ϕ ϕcossin– t2 ψ ψcossin ξ+ +( ) 1

2
�� t1 ϕsin

2
t2 ψsin

2
–( )–

1

2
����� it1 ϕ ϕcossin t2 ψ ψcossin ξ+ +( ) 1

3
�� 3 ϕcos

2
1–( )t1 3 ψcos

2
1–( )t2+[ ]– 1

2
����� it1 ϕ ϕcossin t2 ψ ψcossin– ξ+( )

1
2
�� t1 ϕsin

2
t2 ψsin

2
–( )– 1

2
����� it1 ϕ ϕcossin– t2 ψ ψcossin– ξ+( ) 1

6
�� 3 ϕcos

2
1–( )t1 3 ψcos

2
1–( )t2+[ ] δ–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.

THeff
m A B C.+ +=

e iA/2r– e iB/2r– e iC/r– e iB/2r– e iA/2r–( )
r

=  e i A B C+ +( )– O r 3–( ).+

t

Table 1. The values of parameters for obtaining  for QFT3

Φm m1, m2, m3 ϕ ψ ξ δ t1 t2 T

3π/6 0, 0, 0 0 1.083 0.3206 0.6802 1.08 2.32 3.40

7π/6 0, 1, 0 π/2 1.326 –1.431 –1.466 2.41 0.63 3.04

–π/6 –1, 0, 0 π/2 –0.6657 0.7901 0.1052 3.44 4.27 7.71

Heff
m
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(21)

where the central position in the sequence is occupied

by the rotation through angle Ω/r =  about
the axis with the direction cosines ξ/Ω and δ/Ω along
the axes x and z. A nonselective rotation can be
obtained by a simple or composite pulse of RF field of
large amplitude [14].

In quantum algorithms, in addition to the direct

QFT, one uses the inverse QFT:  = . Since
we cannot change the sign of time in formulas (9) and
(19), we should change the sign of the effective Hamil�
tonian under invariant original quadrupole interaction
(14). The parameters obtained after solving Eqs. (18)
for this case are presented in Table 2.

Above, we used a standard relation (16) between
the physical basis of the system (states with different
projections of spin) and the logical basis of a qutrit.
However, we can change this relation to another,

(22)

which better correlates with the layout of the energy
levels of the Hamiltonian in the rotating reference
frame. As an example, we point out paper [35], in
which the authors demonstrated the enhancement of
the efficiency of an adder on a quadrupole nucleus

ϕ{ }x ϕ{ } x– ψ{ }y  ψ{ } y– Ω/r{ }Ω
× ψ{ }y  ψ{ } y– ϕ{ }x  ϕ{ } x– ,

t1/2r t2/2r

t2/2r t1/2r

ξ2 δ2+ /r

UG
†

QFT3
1–

Iz = 0| 〉 1| 〉, Iz = 1| 〉 2| 〉,= =

Iz = –1| 〉 3| 〉,=

133Cs (I = 7/2) after renaming the computational basis.
The change of the basis (16) to (22) leads to a simple
permutation of the matrix elements of the effective
Hamiltonian on the right�hand side of Eq. (18):

By solving the new systems of equations, we find the
values of the parameters given in Tables 3 and 4.

In the new basis, the solution of system (18) has a
simpler form than in the old basis. This is associated
with the fact that the matrix of the effective Hamilto�
nian (18) in the new basis has the same symmetry as
the matrix of the operator K (11) for a QFT. According
to Table 3, for given permutation, the minimum time
T = 2.72 is implemented for the phase Φm = 3π/6 and
is less than that in the case of the standard logical basis
(16).

Effective Hamiltonians corresponding to all the
cases considered above and the sequences of nonselec�
tive RF pulses separated by intervals of free evolution
that are necessary for implementing these Hamilto�
nians can be obtained by formulas (20) and (21). The
same gates can be implemented by optimized RF
pulses the time dependence of whose amplitudes
(u

α
(t) in expression (14)) are determined numerically

as described in [20]. As a result of calculations, we have
found that the minimum durations Tmin of such pulses

ΠTHeff
m Π Π A B C+ +( )Π, Π

0 1 0

1 0 0

0 0 1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.= =

Table 2. The values of parameters for obtaining  for 

Φm m1, m2, m3 ϕ ψ ξ δ t1 t2 T

–3π/6 0, –1, 1 0 –0.6532 3.653 3.036 0.85 4.91 5.76

–7π/6 0, –1, 0 0 –1.489 1.431 1.466 2.36 1.83 4.19

π/6 1, 0, 0 π/2 0.9051 –0.7901 –0.1052 0.83 4.27 5.09

Heff
m

QFT3
1–

Table 3. The values of parameters for obtaining Π Π for QFT3

Φm m1, m2, m3 ϕ ψ ξ δ t1 t2 T

3π/6 0, 0, 0 π/2 π/2 1.283 0 1.81 0.907 2.72

7π/6 –1, 0, 0 π/2 0 3.848 0 5.86 0.421 6.28

–π/6 1, 0, 0 0 π/2 –1.283 0 1.81 4.05 5.86

Heff
m

Table 4. The values of parameters for obtaining Π Π for 

Φm m1, m2, m3 ϕ ψ ξ δ t1 t2 T

–3π/6 0, 0, 0 0 π/2 –1.283 0 1.81 0.907 2.72

–7π/6 0, 1, 0 π/2 π/2 1.283 0 1.81 4.05 5.86

π/6 –1, 0, 0 π/2 0 1.283 0 4.05 2.23 6.28

Heff
m

QFT3
1–
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take one of three values, depending on the value of the
phase factor. For all the variants of a QFT on qutrit
considered above, these three durations coincide to
within the accuracy of computation, but the corre�
sponding phase factors change places, as is shown in
Table 5. Note that the time dependence of the ampli�
tudes of optimized RF pulses calculated for different
variants of QFT strongly differs in these cases.

We find that the relationship between the durations
Tmin of QFT implementations for different values of
the global phase taken from the tables for the effective
Hamiltonians qualitatively agrees with the relation�
ship between the results of a numerical experiment
that are shown in Table 5. The quantitative values of
Tmin after numerical optimization turn out to be less,
which suggests that the Hamiltonian Heff should be
complicated or made explicitly time�dependent to
achieve optimality in the analytic approach. Never�
theless, the value T = 2.72 obtained is about half the
calculated minimum duration T = 5.36 of a QFT gate
implemented as a sequence of optimal selective rota�
tions [16].

4. CONSTRUCTION OF AN EFFECTIVE 
HAMILTONIAN OF QFT OF TWO QUBITS

As the second example, we consider a system of two
spins 1/2 with a Hamiltonian

(23)

with the matrix

in a standard computational basis  = ,  =
,  = , and  = , where 0 and 1 are the

values of the projections Iz = 1/2 and Iz = –1/2,
respectively.

In [9], the authors showed that if one takes the val�
ues of constants Jx = 4Jz and b = Jz, then as a result of
evolution of the system, within time T = π/8Jz, we
obtain an operator U“QFT”(T) = exp(–iHT), which can

H 4JzI1zI2z 4Jx I1xI2x I1yI2y+( )+=

+ 2b I1z I2z+( )

H

Jz 2b+ 0 0 0

0 Jz– 2Jx 0

0 2Jx Jz– 0

0 0 0 Jz 2b–⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

1| 〉 00| 〉 2| 〉
01| 〉 3| 〉 10| 〉 4| 〉 11| 〉

easily be transformed into a QTF gate (10) under the
action of the Hadamard operator W on the first qubit:

This solution corresponds to the global phase Φm =
3π/8. Let us find effective Hamiltonians and durations
for other values of phases (2) by the method proposed
in Section 2 above. First, we reduce the matrices H and
U“QFT”(T) to a diagonal form by the transformation

(24)

After that, according to (8), we obtain the following
system of four equations to calculate the parameters of
the effective Hamiltonian:

(25)

where Φm = π(m1 + m2 + m3 + m4)/2 + 3π/8. Let us
find a solution to the system:

(26)

The global phase Φm is defined up to 2π and can take

four different values for different values of :

(27)

One can express time T in terms of this phase:

(28)

For each possible value of the phase, by varying the
number m, one can find the minimum time T of the
QFT and the corresponding values of the parameters
Jx and b.

In real experiments, one usually assumes that the
spin–spin interaction constant is invariant (defined by
nature). For example, in [11], the authors took an iso�
tropic original Hamiltonian (23) with the constants

(29)

QFT4 WU  QFT  T( )W, W 1

2
����� 1 1

1 1–⎝ ⎠
⎜ ⎟
⎛ ⎞

E.⊗= =”“

P 1

2
�����

2 0 0 0

0 1 1 0

0 1 1– 0

0 0 0 2⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.=

2πm1 Φm– Jz 2b+( )T,–=

2πm2 Φm– 2Jx Jz–( )T,–=

π 2m3 Φm–+ 2Jx Jz+( )T,=

π/2 2πm4 Φm–+ Jz 2b–( )T,–=

JzT– π m1 m4 m2– m3–+( )/2 π/8,–=

JxT– π m2 m3–( )/2 π/4,–=

bT π m4 m1–( )/2 π/8.+=

mii∑

Φm

3π/8, m1 m2 m3 m4+ + + 0,=

7π/8, m1 m2 m3 m4+ + + 1,=

π/8, m1– m2 m3 m4+ + + 1,–=

11π/8, m1 m2 m3 m4+ + + 2.=⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

T 1
Jz

��� π
2
�� Φm– π m2 m3+( )+

⎩ ⎭
⎨ ⎬
⎧ ⎫

.=

Jx
0 Jy

0 Jx
0 J/4.= = =

Table 5. The values of phases Φm when implementing vari�
ants of QFTs by means of optimized RF pulses

Tmin QFT3 ΠQFT3Π Π Π

1.86 7π/6 –7π/6 3π/6 –3π/6

3.15 3π/6 π/6 –π/6 –7π/6

4.51 –π/6 –3π/6 7π/6 π/6

QFT3
1–

QFT3
1–
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Let us describe how an effective QFT Hamiltonian is
derived from this Hamiltonian. We turn one of the
spins through an angle of 180° about one of the axes x,
y, or z by an RF pulse. Then the interaction between
the spin projections onto this axis remains unchanged,
whereas the interaction between the other two projec�
tions changes its sign. Denote these changes as fol�
lows:

where the indices x, y, and z denote the rotation axis
and ± are the new signs of interactions (in the original
interaction, H = H0 = (+ + +). The effective Hamil�
tonian with the necessary values of the interaction
constants (26) is obtained by summing four Hamilto�
nians:

(30)

The parameters for solving this problem with mini�
mum time for each value of the phase are shown in
Table 6. Table 7 presents the parameters for obtaining
the inverse Fourier transform. Note that identical
durations of the direct and inverse QFTs are obtained
for different phases.

In [11], the authors found the minimum durations
of the QFTs of two qubits for different phases and val�
ues of J by a numerical optimization method. In par�
ticular, for J = 0.8, we obtain two values for the mini�
mum duration from Table 6: 3π/2J = 5.89 and 5π/2J =
9.82, which well agree with the results of the numerical
experiment of [11] for appropriate phases φm =
(Φm + 5π/8) mod (2π). The forms of the dependence
of the QFT duration on J for small values of J also
coincide.

Hx + – –( ), Hy – + –( ), Hz – – +( ),= = =

THeff t0H0 txHx tyHy tzHz.+ + +=

To obtain experimentally the effective Hamiltonian
with the parameters given in Tables 6 and 7 with the
use of the procedure described in the previous section,
we can construct a sequence of RF pulses separated by
intervals of free evolution.

For a different form of the original spin–spin inter�
action, the necessary Hamiltonian can also be con�
structed by the above�described method with some
variations. For example, if, in the original Hamilto�
nian, only the interaction between z components of
spins is nonzero, as in [7], then the interactions
between the x and y components can be obtained by
rotations through an angle of 90° about the axes y and
x, respectively.

5. ANALYSIS OF THE PHASE

We refer the phase considered in this work to the
Aharon–Anandan phases [25] because there occurs a
nonadiabatic cyclic evolution. Indeed, let us succes�
sively apply first the direct QFT and then the inverse
QFT to an arbitrary state . Denote the variables of
the inverse QFT by an upper bar:

(31)

Depending on the parameters, the phase difference

takes different values ΔΦ =  + Φm = –2π(p + )/N

Ψ| 〉

Ψ T T+( )| 〉 U T( )U T( ) Ψ| 〉 iΦm–{ }UG
1– UGexp= =

× iΦm–{ } Ψ| 〉exp iΔΦ–{ } Ψ| 〉.exp=

Φ p

Table 6. The values of parameters for obtaining QFT4

Φm T t0 tx ty tz m1, m2, m3, m4 bT

3π/8 3π/2J 2T/3 T/6 T/6 0 0, 0, 0, 0 π/8

11π/8 3π/2J 0 T/6 T/6 2T/3
1, 1, 0, 0 –3π/8

0, 1, 0, 1 5π/8

–π/8 5π/2J 5T/8 0 0 3T/8
0, 0, 0, –1 –3π/8

–1, 0, 0, 0 5π/8

7π/8 5π/2J 3T/8 0 0 5T/8 0, 1, 0, 0 π/8

Table 7. The values of parameters for obtaining 

Φm T t0 tx ty tz m1, m2, m3, m4 bT

–3π/8 5π/2J 0 3T/10 3T/10 2T/5 0, 0, 0, 0 –π/8

–11π/8 5π/2J 2T/5 3T/10 3T/10 0
–1, –1, 0, 0 3π/8

0, –1, 0, –1 –5π/8

π/8 3π/2J 5T/8 0 0 3T/8 0, 0, 1, 0 –π/8

–7π/8 3π/2J 3T/8 0 0 5T/8
–1, 0, 0, 0 3π/8

0, 0, 0, –1 –5π/8

QFT4
–1
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according to (2). Following [25], we divide the phase
obtained into the dynamic

(32)

and the geometric γ = ΔΦ – β parts. For different
states  and different Hamiltonians, the relation
between β and γ takes different values.

The study of the phases of optimized pulses with
complex time dependence of the control field in
expressions (14) and (15) for H(t) requires separate
consideration. Now we return to the case of time�

independent Hamiltonians Heff and  for the direct
and inverse QFTs, respectively. The eigenfunctions of
these Hamiltonians coincide (by construction) with
the eigenfunctions of the gate (5). In this basis,

(33)

According to (8) and (9), Eq. (31) for a particular state
of the basis yields

(34)

Summing up these equations over f and taking into
account that the traces of the Hamiltonians Heff and

 are zero, we obtain

(35)

Substituting expressions (33)–(35) into (32), we
obtain the following expressions for the dynamic and
geometric phases:

(36)

For every set , mf, by varying cf, we can change the
relation between the two phases (36), for example, we
can get rid of the dynamic phase.

Note that the value of the phase (31) can be mea�
sured experimentally by an auxiliary spin, for example,
by the NMR interferometer scheme from [36]

6. CONCLUSIONS

One and the same logical operator (gate) can be
represented mathematically as an exponential func�
tion with different matrices in the exponent, whose
eigenvalues may differ by values divisible by 2π. Each
such matrix can be implemented on a physical system
by an appropriate effective Hamiltonian. When an
eigenvalues is changed by 2π, we pass to a new solution

β Ψ〈 |H t( ) Ψ| 〉 td

0

T

∫ Ψ〈 |H t( ) Ψ| 〉 td

0

T

∫+=

Ψ| 〉

Heff

Ψ| 〉 cf f| 〉, cf
2

f 1=

N

∑
f 1=

N

∑ 1.= =

T f〈 |Heff f| 〉 T f〈 |Heff f| 〉+ ΔΦ 2π mf mf+( ).–=

Heff

ΔΦ 2π
mf mf+

N
��������������.

f 1=

N

∑=

β 2π mf mf+( ) cf
2 1

N
���–⎝ ⎠

⎛ ⎞ ,

f 1=

N

∑–=

γ 2π mf mf+( ) cf
2
.

f 1=

N

∑=

mf

with the global phase changed by 2π/N. First, the cor�
responding energy level of the effective Hamiltonian is
shifted by –2π/T, and, second, all the levels experi�
ence a compensatory shift by 2π/NT. As a result of
such shifts, the implementation time T of a gate by the
given Hamiltonian is changed. The construction rules
for effective Hamiltonians and the values of imple�
mentation times depend on a chosen physical system.
Above, we have considered the implementation of a
QFT gate on a qutrit represented by a quadrupole
nucleus with spin I = 1, as well as on a system of two
qubits (I = 1/2). We have found effective Hamiltonians
and minimum implementation times corresponding
to different global phases. We have proposed schemes
for their implementation by the NMR method by
means of a sequence of RF pulses separated by inter�
vals of free evolution. The conclusions made above
have been confirmed by the agreement between ana�
lytic results for the minimum times of gates and the
results obtained by numerical optimization methods.

Thus, we have explained how the phase factor
affects the minimum implementation time of a gate.
The general relations obtained on this way for the vari�
ation of the phase factor under the variation of the
effective Hamiltonian of the gate will be useful both
for systems of qubits and for systems of qudits. The
phase factors considered should be controlled when
constructing complex quantum circuits. Otherwise,
they may spoil the interference pattern necessary for
implementing a quantum algorithm [12]. Specific
results obtained for the QFT are practically important
for implementing quantum algorithms on nuclei with
spin I = 1 with weak quadrupole interaction in a liq�
uid�crystal matrix [33], as well as on heteronuclear
systems of two spins with I = 1/2. In addition, they
may find application in other multilevel physical sys�
tems, for example, for the QFT on atoms controlled by
laser pulses, which were considered in [4, 30, 37].
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